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MINIMUM-WEIGHT SPANNING TREE CONSTRUCTION IN
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Abstract. We consider a simple model for overlay networks, where all n processes are connected
to all other processes, and each message contains at most O(logn) bits. For this model, we present a
distributed algorithm which constructs a minimum-weight spanning tree in O(log logn) communica-
tion rounds, where in each round any process can send a message to every other process. If message
size is Θ(nε) for some ε > 0, then the number of communication rounds is O(log 1

ε
).
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1. Introduction. A minimum-weight spanning tree (MST) is one of the most
useful distributed constructs, as it minimizes the cost associated with global opera-
tions such as broadcasts and convergecasts. This paper presents an MST construction
algorithm that works in O(log log n) communication rounds, where in each round each
process can send O(log n) bits to every other process (intuitively allowing each mes-
sage to contain the identity and weight of only a constant number of edges). Our result
shows that an MST can be constructed with little communication: throughout the
execution of the algorithm, each pair of processes exchanges at most O(log n log log n)
bits; the overall number of bits sent is Θ(n2 log n), which is optimal. The algorithm
extends to larger message sizes, in the sense that the number of communication rounds
is O(log 1

ε ) if each message can contain nε bits for some ε > 0. Note that if messages
are not restricted in size, then the MST can be trivially constructed in a single round
of communication: each process sends all its information to all its neighbors, allowing
each node to locally compute the MST.

The number of communication rounds dominates the time complexity in situa-
tions where latency is high and bandwidth is scarce. This may be the situation in
some overlay networks. Briefly, the idea in overlay networks is to think of the un-
derlying communication network (e.g., the Internet) as a “black box” that provides
reliable point-to-point communication. On top of that network run distributed ap-
plications. This approach (whose precursor is the Internet’s “end-to-end argument”
[13]) is different from classical distributed models, where processes reside in networks
nodes (i.e., switches or routers), and thus their implementation would require using
low-level communication. Rather, the pragmatic view now is that distributed applica-

∗Received by the editors February 11, 2004; accepted for publication (in revised form) April 27,
2005; published electronically September 8, 2005. A preliminary version of this work appeared in
Proceedings of the 15th Annual ACM Symposium on Parallelism in Algorithms and Architectures,
San Diego, CA, 2003.

http://www.siam.org/journals/sicomp/35-1/44184.html
†Department of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel (zvilo@eng.tau.

ac.il, boaz@eng.tau.ac.il).
‡Department of Computer Science, The Hebrew University, Jerusalem 91904, Israel (elan@cs.huji.

ac.il).
§Department of Computer Science and Applied Mathematics, The Weizmann Institute, Rehovot

76100, Israel (david.peleg@weizmann.ac.il). The work of this author was supported in part by a
grant from the Israel Science Foundation.

120



O(log logn)-ROUND MST CONSTRUCTION 121

tions create their own overlay network by choosing which pairs of local processes will
communicate directly according to various criteria. The concept of overlay networks
is central to areas such as multicast or content distribution networks (see, e.g., [8] and
the references therein), peer-to-peer systems (for example, Chord [14]), and others.

1.1. Related work. Spanning tree construction is well studied as a sequential
optimization problem (see, e.g., [15, 9]). Distributed MST constructions are presented
in [6, 3] (and see the references in [11]). These classical distributed algorithms are
oriented towards minimizing the total number of messages in general networks, and
their time complexity is inherently Ω(logn), even when run on fully connected graphs.
The model we use in this paper is a special case of the model studied in [7, 12, 10]:
in these papers, each message has O(log n) bits, but the fully connected graph is
not directly considered. The best previously known upper bound for fully connected
graphs in this model is O(log n) communication rounds. This bound holds also for
graphs of diameter 2 [10]. (It is known that the number of rounds jumps at least to
Ω(n1/4) when the diameter of the network is 3 or more [10, 12].)

The parallel time complexity of MST construction depends on the particular
architecture considered, but we are not aware of any sublogarithmic time algorithm
that uses small messages. For the PRAM model, there are quite a few O(log n)
algorithms, including a deterministic one for the CRCW model [4] and a randomized
one for the EREW model [5]. Adler et al. [1] study the total number of bits that
must be communicated in the course of an MST construction problem under various
parallel architectures. For our model, their results imply that the worst-case number
of bits that need to be communicated throughout the execution of the algorithm is
Ω(n2 log n).

1.2. System model. In the underlying formal model, the system is represented
by a complete n-node weighted undirected graph G = (V,E, ω), where ω(e) denotes
the weight of edge e ∈ E. Each node has a distinct ID of O(log n) bits. Each node
knows all the edges incident to it (and hence, since the graph is a clique, each node
knows about all other nodes in the system). An execution of the system proceeds in
asynchronous steps: in a “receive” step, a node receives some of the messages sent to
it in previous steps. In a “send” step, a node makes a local computation and sends
messages to the other nodes in the system. Each message may be different, and we
require that each message contains at most O(log n) bits. (The results are extended
to larger message sizes in section 4.) We assume that messages may be delayed
arbitrarily but are never lost or corrupted. The time complexity of an algorithm
in the asynchronous model is measured by normalizing the scale so that the longest
message delivery time is one unit.

Simplification: The synchronous model. In the synchronous model, computation
advances in global rounds, where in each round processes send messages, receive
them, and do some local computation. This model is much more convenient as a
programming mode. Fortunately, since we assume that the system is reliable, we
may apply a synchronizer that allows us to present the algorithm in the synchronous
model. Specifically, we use the α synchronizer of Awerbuch [2]. Let us outline the
idea briefly. Assume that we have an algorithm SA for the synchronous model. The
execution in the asynchronous model is done as follows. A process starts the next
round only after receiving a special “proceed” message from a distinguished node v∗

(say, the node with the lowest ID in the system). It then sends messages according to
SA. For each SA message received, the receiver node sends an “ack” message back
to the sender; when a sender has received acknowledgements to all the messages it
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sent, the sender forwards a “safe” message to v∗; when v∗ receives “safe” messages
from all nodes in the system, it sends a “proceed” message to all other nodes, which
may then send their SA messages of the next round. Note that since we assume that
the graph is fully connected, this transformation incurs only a constant blowup in the
message complexity and in time complexity. We shall henceforth use the synchronous
model, but we emphasize that the algorithm works in the asynchronous model using
the simple synchronizer described above.

1.3. The MST construction problem. We assume that in the initial state,
the input to each node v ∈ V consists of the weights of all its incident edges ω(v, u)
for all u ∈ V \ {v}. Edge weights are assumed to be integers that can be represented
using O(log n) bits. Without loss of generality, we assume that all the edge weights
are distinct (otherwise we can break ties by node IDs), and hence the MST is unique.
When our algorithm halts, all nodes know the full list of all n− 1 edges in the MST
of G.

2. Algorithm description. In this section we describe the algorithm. In sec-
tion 2.1 we give an overview of the main ideas. In section 2.2 we specify the main
algorithm, and in sections 2.3 and 2.4 we specify local subroutines used by the main
algorithm.

2.1. Overview. The algorithm operates in phases: Each phase takes O(1)
rounds, and there are at most O(log log n) phases. At the end of each phase k ≥ 0,
the nodes of G are partitioned into disjoint clusters Fk = {F k

1 , . . . , F
k
mk

},
⋃

i F
k
i = V .

For each cluster F ∈ Fk, the algorithm selects also a spanning subtree T (F ). The
partition Fk and the corresponding subtree collection T k = {T (F ) | F ∈ Fk}, in-
cluding the weights of the edges in those subtrees, are known to every vertex in the
graph. (For notational consistency, we think of the initial situation at the beginning
of phase 1 as the end of an “imaginary” phase 0, with each node forming a singleton
cluster, i.e., F0 = {F 0

1 , . . . , F
0
n}, where F 0

i = {vi} for every 1 ≤ i ≤ n.)
Define a fragment to be a connected subtree of the MST. For a set of nodes F ⊆ V ,

denote by T (F ) the subgraph of the MST induced by F . With these notations, we
can state the following invariant, satisfied by the algorithm at the end of each phase
k ≥ 0:

T (F ) = T (F ) for every cluster F ; namely, the spanning subtree se-
lected for F is a fragment.

In our model, it is easy for the nodes of each cluster to learn, in constant time,
the lightest edge to every other cluster. Hence, intuitively, it is possible to “contract”
each cluster C into a vertex vC , thus creating a smaller logical graph Ĝ, and continue
working on this logical graph. (In practice, each real vertex belonging to some cluster
C knows the weight of the edge connecting its vertex vC to every other vertex in Ĝ.
The operations of each vertex vC of the logical graph Ĝ are carried out by the real
vertices belonging to the cluster C, or by a single representative called the leader of
C, denoted �(C).) This enables us to simulate the usual “fragment growing” MST
construction process for Ĝ, based on examining the edges one by one in increasing
order of weight and including in the MST each inspected edge that is the minimum-
weight outgoing edge (MWOE) of its fragment. This can be done in O(log n) time.

To reduce the time complexity to O(log log n), it is necessary to speed up the
process by making the cluster sizes grow quadratically in each phase. The main idea
used for achieving this growth rate is the following. Essentially, we would like to
provide every vertex vC in the logical graph Ĝ with information about additional
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edges in Ĝ, beyond its own. In particular, if we were somehow able to let every vertex
vC learn the entire topology of Ĝ, then we could finish the MST construction for
Ĝ in a single step by asking each vertex in the graph to compute the MST locally.
Unfortunately, such information exchange seems to require too much time. On the
positive side, denoting the minimum cluster size by N , it is possible for the (N or
more) members of each cluster to inform a distinguished vertex v∗ of the graph, in
constant time, of the N lightest edges connecting their cluster to other clusters, by
appropriately sharing the workload of this task among them. (For concreteness, we
assume that v∗ is the node with the smallest ID in the system.)

Subsequently, we now face a special subtask of the MST construction problem to
solve in v∗. This node now has a partial picture of the logical graph Ĝ, consisting
of all the vertices vC but only some of the edges connecting them, particularly the
N lightest edges emanating from each vertex of Ĝ (to N other vertices). It is now
necessary to perform (locally) as many legal “fragment merging” steps as possible on
the basis of this information. That is, we would like to sort the edges known to us
by increasing order of weight, examine them one by one, and add edges that are the
MWOE of one of the two fragments they connect, so long as we can be sure of that
fact. So the question becomes: When is it “dangerous” to continue the merging steps
in the absence of information about the weights of the edges unknown to us?

The answer to this question is that it is perfectly safe to continue merging a
fragment F (in the logical graph Ĝ), so long as for each vertex vC in F we have
still not inspected at least one of its N lightest edges (which is known to us by
assumption). However, once we have already inspected all the edges of some vertex
vC in the fragment F , it becomes dangerous to continue attempting to merge the
fragment over edges known to us, as it is possible that the true MWOE of F is the
(N + 1)st lightest edge emanating from vC , which is not known to us (yet is lighter
than any edge emanating from C that we do know of at this moment).

The crucial observation is that this “safety rule” still allows us to grow each of
the fragments to contain at least N + 1 vertices of Ĝ. This means that the clusters
of the next phase will be of minimum size Ω(N2).

An interesting observation is that even when we can no longer identify the MWOE
of some fragment F , we may still be able to safely merge F with some other fragment
F ′. This may still be legitimate if we can ascertain that the edge connecting F and
F ′ is the MWOE of F ′.

Finally, after constructing locally the new fragments, v∗ sends out the identity of
the edges added to the chosen set. This can be done in constant time by letting v∗

send each edge to a different intermediate node, which will broadcast that edge to all
other nodes.

2.2. The main algorithm. In the algorithm, whenever a node is instructed to
send a message containing the edge e = (u, v), this should be interpreted as a message
including the IDs of its two endpoints, ID(u) and ID(v), as well as the edge weight
ω(e).

We now describe the steps taken in phase k for all 1 ≤ k ≤ log log n. Let v∗

denote the node whose ID is minimal among all nodes in the graph.
Throughout, the algorithm is illustrated on the 16-vertex complete graph K16

with weights as depicted in Figure 1. Note that in this case there are only two phases.
The flow of the algorithm is illustrated in Figure 2. In the first column, the fragment
leaders are marked by horizontal stripes. Note that in the first phase all the nodes
are leaders, whereas in the second phase only half of the nodes are leaders. The
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Fig. 1. The example graph K16: (a) The edge weights (weight 1 is a solid line, 2 is a dashed
line, and 3 is a double-dashed line). Edges not shown in the figure have weight 4; hence they do not
participate in the MST. (b) The resulting MST.
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Fig. 2. An illustration of the execution of the algorithm on the example graph K16.

second column shows the selected edges. In the first phase each fragment chooses one
edge, while in the second phase each fragment chooses two edges, with the cheapest
edge of each fragment denoted by a single-dashed line and the second cheapest edge
denoted by a double-dashed line. The third column shows the guardian of each of
the selected edges: the horizontally striped nodes are the guardians of cheapest edges
and the vertically striped nodes are the guardians of the second cheapest edges. The
last column shows the new edges that node v∗ adds to the MST.
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Phase k: Code for node v in cluster F of size N = |F |

Input: A set of chosen edges. The set of connected components defined by this set
is the set of clusters Fk−1. For each cluster F ′ ∈ Fk−1, �(F ′) is the node with the
minimal ID in F ′.

1. (a) Compute the minimum-weight edge e(v, F ′) that connects v to (any node
of) F ′ for all clusters F ′ �= F .

(b) Send e(v, F ′) to �(F ′) for all clusters F ′ �= F .
2. If v = �(F ) then

(a) Using the messages received from step 1, compute the lightest edge be-
tween F ′ and F for every other cluster F ′.

(b) Perform (locally) Procedure Cheap Out (described below), which does
the following:
• It selects a set A(F ) containing the N cheapest MWOEs that go

out of F to N = |F | distinct clusters.
• It appoints for each such edge e a guardian node g(e) in F , ensuring

that each node in F is appointed as guardian to at most one edge.
3. Let e′ ∈ A(F ) be the edge for which v was appointed as guardian, i.e., such

that g(e′) = v. Send e′ to v∗, the node with the minimal ID in the graph.
(At the end of this step, v∗ knows all the edges in the set A =

⋃
F ′∈Fk−1 A(F ′).)

4. If v = v∗ then
(a) Perform (locally) Procedure Const Frags. This procedure (described be-

low) computes Ek, the new set of edges to add.
(b) For each edge e ∈ Ek, send a message to g(e).

5. If v receives a message from v∗ that e ∈ Ek, then v sends e to all nodes in
the graph.

6. Each node adds all edges in Ek and computes Fk.

2.3. Procedure Cheap Out. The local procedure Cheap Out is invoked by clus-
ter leaders in each phase, and it operates as follows at the leader of cluster F with
|F | = N at phase k.

Input: Cheapest edge e(F, F ′) for every F ′ ∈ Fk−1.

1. Sort the input edges in increasing order of weight.
2. Let μ = min{N, |Fk−1| − 1}.
3. Define A(F ) to be the first μ edges in the sorted list.
4. Sort the nodes of F by increasing order of ID.
5. Appoint the ith node of F as the guardian of the ith edge added to A(F ).
6. For each node u ∈ F : send the edge to which u is appointed.

2.4. Procedure Const Frags. The local procedure Const Frags is invoked only
by the distinguished node v∗, and it operates as follows. It receives as input the
initial partition Fk−1, the spanning subtree collection T k−1, and the set of edges for
inspection, A. Its output is a set of edges Ek, which defines a new partition Fk and
its spanning subtress T k: the edge set of T k is the union of the set of edges in T k−1

with the set Ek, and Fk is the set of connected components of T k.
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The procedure operates in two stages. In the first stage, it contracts the input
clusters into vertices, thus creating a logical graph Ĝ, partitions this logical graph
into “superclusters,” and constructs a spanning subtree for each such supercluster. In
the second stage, the procedure transforms the superclusters and spanning subtrees
constructed for Ĝ into clusters and spanning subtrees for the original graph G.

We now continue with a more detailed description of the two stages. The first
stage operates as follows. The procedure starts by creating the logical graph Ĝ =
(V̂ , Ê), where each input cluster is viewed as a vertex, namely, V̂ = Fk−1. The edge
set Ê consists of the logical edges corresponding to the edges of the set A. Set the
logical edge corresponding to e = (u,w) to be X(e) = (F, F ′), where u ∈ F and
w ∈ F ′. Then Ê = {X(e) | e ∈ A}. Each logical edge X(e) is assigned the same
weight as e.

Then the procedure constructs a collection F̂ of superclusters and a corresponding
collection T̂ of spanning subtrees on this logical graph. The construction operates as
follows. The procedure first initializes the output partition as F = {{F} | F ∈ Fk−1};
i.e., each vertex of V̂ = Fk−1 is a separate supercluster. The output collection of
spanning subtrees is initialized to T̂ = ∅. The procedure then inspects the edges
of Ê sequentially in increasing order of weight. An inspected logical edge X(e) is
added to T̂ if it does not close a cycle with edges already in T̂ . Whenever an edge
X(e) = (F1, F2) is added to T̂ , the superclusters F̂1 and F̂2 containing F1 and F2,
respectively, are merged into one supercluster F̂ , setting F̂ = F̂1 ∪ F̂2 and eliminating
F̂1 and F̂2, and the corresponding spanning subtrees are fused together into a spanning
subtree for the new supercluster F̂ , setting T̂ (F̂ ) = T̂ (F̂1) ∪ T̂ (F̂2) ∪ {X(e)}.

In each step during this process, whenever a logical edge X(e) = (F1, F2) between
two superclusters F̂1 and F̂2 such that F1 ∈ F̂1 and F2 ∈ F̂2 is inspected, the procedure
also considers declaring one or two superclusters finished as follows:

• If the step resulted in a merge operation creating a new supercluster F̂ =
F̂1 ∪ F̂2, then the newly constructed supercluster F̂ is declared finished if one
of the following conditions hold:

– e is the heaviest edge in A(F1) or in A(F2), or
– either F̂1 or F̂2 is finished.

• If the step did not result in a merge between F̂1 and F̂2, then
– the supercluster F̂1 is declared finished if e is the heaviest edge in A(F1);
– the supercluster F̂2 is declared finished if e is the heaviest edge in A(F2).

Also, after every edge inspection step, some of the remaining edges become “dan-
gerous” and are removed from the set A. A remaining logical edge X(e) = (F1, F2),
F1 ∈ F̂1, F2 ∈ F̂2, is still “safe” (i.e., not dangerous) if e ∈ A(F1) and the supercluster
F̂1 is still unfinished, or if e ∈ A(F2) and the supercluster F̂2 is still unfinished. Thus
after every edge inspection step, the procedure examines every edge and removes each
dangerous edge e from the set A. The procedure also removes the corresponding log-
ical edge X(e) from Ê. The process terminates once all superclusters are declared
finished (which, as can easily be verified, happens concurrently with the set A becom-
ing empty).

In the second stage, the procedure transforms the superclusters and spanning
subtrees constructed for Ĝ into ones for the original graph G. Specifically, for every
supercluster F̂ ∈ F̂ of the logical graph Ĝ, with spanning subtree T̂ (F̂ ), the procedure
merges the original clusters included in the supercluster F̂ into a cluster F ′ of G and
creates the corresponding spanning subtree T (F ′) for this cluster by merging T̂ (F̂ )
together with all the spanning subtrees from the collection T k−1 spanning the original
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of phase 2 edge merge edge merges of phase 2
beginning after first after six end

Fig. 3. The operation of Procedure Const Frags during phase 2 on K16 and the logical graph
structure after various stages of its execution.

clusters included in the supercluster F̂ , i.e., setting

T (F ′) = {e | X(e) ∈ T̂ (F̂ )} ∪
⋃

F∈F̂

T (F ).

It then adds the cluster F ′ to the output cluster collection Fk and the spanning
subtree T (F ′) for it into T k.

The operation of Procedure Const Frags during the second phase of the algorithm’s
execution on our example graph K16 is illustrated in Figure 3.

3. Analysis. In this section we prove that the algorithm described in section 2 is
correct and analyze its complexity. It is more convenient to start with the complexity
analysis.

3.1. Complexity. The following lemma is the key to the complexity analysis.
It bounds from below the growth rate of fragments.

Consider phase k of the algorithm. Let Ĝ be the logical graph constructed by
Procedure Const Frags. Let F̂ be the collection of clusters constructed by Procedure
Const Frags for Ĝ. Define μ to be the minimum between the smallest cluster size and
number of clusters minus one (cf. line 2 in Procedure Cheap Out).

Lemma 3.1. Every supercluster in F̂ consists of at least μ + 1 logical vertices of
Ĝ.

Proof. To establish the lemma, we prove the following stronger claim: whenever
the procedure declares a supercluster F̂ finished, it contains at least μ + 1 logical
vertices of Ĝ. This claim is proved by structural induction on the superclusters.

There are three base cases. The first is when F̂ is declared finished following a
merge step F̂ = F̂1 ∪ F̂2 where the two merged superclusters were unfinished. This
merge step was based on the inspection of some logical edge X(e) = (F1, F2) such
that F1 ∈ F̂1 and F2 ∈ F̂2. By the specification of Procedure Const Frags, without
loss of generality we may assume that e is the heaviest edge in A(F1). As the edges
are inspected in increasing weight order, all other edges in A(F1) have already been
inspected. There are μ such edges, ei1 , . . . , eiμ , leading to distinct original clusters
Fj1 , . . . , Fjμ . Whenever an edge eil was inspected, either the superclusters containing
F1 and Fjl were merged, or eil was found to close a cycle, indicating that F1 and Fjl

already belonged to the same supercluster. Hence the finished supercluster F̂ contains
(at least) the μ + 1 original clusters F1, Fj1 , . . . , Fjμ .
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The second base case is when F̂ is declared finished following the inspection of
some logical edge X(e) = (F, F2) such that F ∈ F̂ and F2 ∈ F̂2, which did not result
in a merge. This happens since e is the heaviest edge in A(F ). Again, all μ− 1 other
edges in A(F ) have already been inspected, and by a similar reasoning as above, the
finished supercluster F̂ contains (at least) μ+1 original clusters. The third base case
is the dual case where F̂ is declared finished following the inspection of some logical
edge X(e) = (F1, F ) such that F1 ∈ F̂1 and F ∈ F̂ , which did not result in a merge.
Again this happens since e is the heaviest edge in A(F ), and the claim follows in the
same way.

The inductive claim concerns the case where F̂ is declared finished following a
merge step F̂ = F̂1 ∪ F̂2 where one or both of the two merged superclusters were
finished. In this case, the claim follows directly from the inductive hypothesis.

Lemma 3.2. For any cluster F ∈ Fk, |F | ≥ 22k−1

.
Proof. Denote by μk the minimum size of a cluster F ∈ Fk. First, note that for

all k ≥ 0,

μk+1 ≥ μk(μk + 1).(3.1)

Equation (3.1) is true by Lemma 3.1, which implies that clusters generated in phase
k+1 consist of the union of at least μk +1 clusters of phase k, each containing at least
μk nodes. Now, since μ0 = 1, we have μ1 ≥ 2. Since (3.1) implies that μk+1 > μ2

k, we

conclude that μk > μ2k−1

1 = 22k−1

.
Corollary 3.3. The algorithm terminates after at most log log n + 1 phases.
Proof. The proof follows from Lemma 3.2, since the algorithm terminates at

phase k in which |F | ≥ n for any F ∈ Fk.
The following statement is immediate from the code of the algorithm.
Lemma 3.4. Each phase requires O(1) rounds.
We now conclude with the following result.
Theorem 3.5. The time complexity of the algorithm is O(log log n) rounds, and

the overall number of bits communicated is O(n2 log n).
Proof. The time complexity bound follows directly from Corollary 3.3 and Lemma

3.4. For the total number of bits communicated, we account for each step separately
as follows. In step 1 of the main algorithm, each node in a cluster F sends messages
to all other clusters; i.e., each node sends |Fk−1| − 1 messages. Since each cluster is

of size at least 22k−1

by Lemma 3.2, it follows that |Fk−1| ≤ n/22k−1

. Therefore, the

number of messages sent by a node at step 1 of phase k is less than n/22k−1

. Since
each message contains at most c log n bits for some constant c, the number of bits
sent over all phases in step 1 is less than

log log n+1∑

k=0

n · c log n · n

22k−1 = n2c log n

log log n+1∑

k=0

2−2k−1

= O(n2 log n) .

No messages are sent in step 2. The number of messages sent in step 3 of the algorithm
in each phase is O(n) over all nodes (since each node receives at most one message),
for a total of O(n log n log log n) bits throughout the execution. To account for the
number of messages sent in steps 4 and 5, we bound the total number of messages
sent in that step over all nodes and over all phases: note that each edge added to the
MST contributes O(n log n) bits sent at steps 4 and 5, and since exactly n− 1 edges
are added to the MST overall, the total number of bits sent in these steps throughout
the execution of the algorithm is O(n2 log n). The result follows.
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We note that by the results of Adler et al. [1] applied to our model, the minimal
number of bits required to solve the MST problem is Ω(n2 log n) in the worst case.

3.2. Correctness. The correctness of the algorithm is proved by the following
invariant.

Lemma 3.6. In each phase k, for every cluster F ∈ Fk constructed by Procedure
Const Frags, the corresponding spanning tree is a fragment, namely, T (F ) = T (F ).

Proof. The proof is by induction on k. The initial partition, F0, trivially satisfies
the claim. Now suppose that the collection T k−1 consists of only MST edges, and
consider the collection T k constructed in phase k. The spanning subtrees in this
collection are composed of spanning subtrees from T k−1 fused together by new edges
added by Procedure Const Frags. It suffices to show that every edge added to the
trees of T k in phase k is indeed an MST edge. For this, we rely on the standard
MST construction rule which says that if e is the lightest outgoing edge incident
on a fragment, then it belongs to the MST. Consequently, we have to show that
whenever Procedure Const Frags selects a logical edge X(e) = (F1, F2), F1 ∈ F̂1,
F2 ∈ F̂2, and uses it to merge the two superclusters F̂1 and F̂2 in Ĝ, then e is the
lightest edge outgoing from one of the two corresponding clusters H1 =

⋃
F∈F̂1

F and
H2 =

⋃
F∈F̂2

F in G.

As the edge e has not been erased prior to this step, necessarily either e ∈ A(F1)
and F̂1 is unfinished, or e ∈ A(F2) and F̂2 is unfinished. Without loss of generality
suppose the former. We claim that in this case, e is the lightest outgoing edge incident
on H1.

Consider some other outgoing edge e′ incident on H1; i.e., e′ is incident on some
fragment F ′ ∈ F̂1. Suppose, towards contradiction, that ω(e′) < ω(e). If e′ ∈ A(F ′),
then e′ should have been considered by Const Frags before e, and subsequently either
added to the spanning subtree T̂ (F̂1) or discarded as an internal edge, in either case
contradicting our assumption that e′ is an outgoing edge of H1 (hence X(e′) is an
outgoing edge of F̂1). It follows that e′ �∈ A(F ′). Let X(e′) = (F ′, F ′′). There may
be two reasons why e′ was not added to A(F ′). The first is that some other edge
e′′ with X(e′′) = (F ′, F ′′) was already included in A(F ′) before e′. In that case,
ω(e′′) < ω(e′), and hence also ω(e′′) < ω(e). This implies that e′′ has already been
inspected by the procedure at some earlier step. But then the clusters F ′ and F ′′

must already belong to the supercluster F̂1; and hence in F̂1, the edge e′ is internal,
a contradiction. The other possible reason why e′ was not added to A(F ′) is that
there are μ lighter edges incident on F ′, which were added to A(F ′). Letting e′′

be the heaviest edge in A(F ′) in this case, it follows that ω(e′′) < ω(e′), and hence
ω(e′′) < ω(e). This means that e′′ has already been inspected by the procedure at
some earlier step. But then the supercluster F̂0 that contained F ′ at the end of that
step should have been declared finished upon inspection of its heaviest edge. This
would necessitate that F̂1 is finished now, a contradiction.

Theorem 3.7. The tree produced by the algorithm is an MST of the graph.

Proof. The proof follows from Lemma 3.6 and the fact that by Lemma 3.2, Fk

contains exactly one cluster for k > log log n.

4. Extension to larger messages. In this section we extend the algorithm
to a model in which each message can contain any number of bits (so long as it is
at least log n). Specifically, we assume that each meassage may contain � log n bits.
The extension of the algorithm to this case is straightforward. It turns out that the
asymptotic worst-case number of rounds drops to a constant when the message size
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is nε for ε > 0, but Θ(log logn) rounds are required by our algorithm for any polylog
message size.

First, we explain how to modify the algorithm to use messages that can contain
� edges. The idea is to change steps 2(b) (which is the invocation of Procedure
Cheap Out) and 3 in the main algorithm so that each node can be the guardian of �
edges. Specifically, the modified algorithm is identical to the algorithm of section 2,
except for the following steps.

2b*. Perform (locally) Procedure Cheap Out∗. This procedure (described below) does
the following:

• It selects a set A(F ) containing the � ·N cheapest edges that go out of
F to � ·N distinct clusters.

• It appoints for each such edge e a guardian node g(e) in F , ensuring that
each node in F is appointed as guardian to at most � edges.

3*. Let {e′1, . . . , e′�} ⊆ A(F ) be the edges for which v was appointed as guardian, i.e.,
all edges e′i such that g(e′i) = v. Send {e′1, . . . , e′�} to v∗, the node with the
minimal ID in the graph.
(At the end of this step, v∗ knows all the edges in the set A =

⋃
F ′∈Fk−1 A(F ′).)

The modified Cheap Out∗ procedure is identical to Procedure Cheap Out, except
for the following two steps:

2*. Let μ = min{� ·N, |Fk−1| − 1}.
5*. Appoint the ith node of F as the guardian of the jth edge added to A(F ) if

j mod (� ·N) = i.

The correctness of the modification is obvious, as Lemma 3.6 is stated in terms
of a general μ, and it relies only on the assumption that A(F ) contains the μ lightest
edges connecting F to μ distinct clusters.

The complexity analysis of the generalized algorithm requires a little work. First,
we observe that Lemma 3.1 holds without change: it is also stated in terms of a
general μ. Lemma 3.4 also holds by the assumption that each message can contain
� edges, and since each node is the guardian of at most � messages by the modified
procedure Cheap Out∗. However, Lemma 3.2 holds only for � = Θ(1). Below we
generalize Theorem 3.5 to different values of �.

Theorem 4.1. The extended algorithm terminates in O(log( logn
log � )) rounds, and

the total number of bits communicated is Θ(n2 log n).

Proof. Let μk be the smallest possible cluster size after the kth round. By
definition, μ0 = 1. If each guardian node sends � edges, then each cluster merges with
at least �μk other clusters in the kth phase. It follows that μk+1 ≥ (�μk +1)μk > �μ2

k.

Since μ0 = 1, we have μ1 > �, and therefore μk > �2
k−1

. The bound on the number
of rounds follows, since the algorithm terminates when μk ≥ n, and each phase takes
only O(1) rounds by Lemma 3.4. For the total number of bits communicated by
the algorithm, we observe that the only difference is the number of messages sent
in step 3*. Let B3 denote the total number of bits sent in step 3* throughout the
execution of the algorithm. We claim that B3 = O(n2 log n). To see this, note that
the total number of edge identifiers sent in step 3 in a single phase, over all nodes, is
O(n�). It follows that B3 = O(Tn� log n), where T is the number of phases. As shown
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above, T = O(log( logn
log � )). This means that B3 = O(n2 log n): If 1 < � < n/ log log n,

then T is bounded by O(log log n); and if � ≥ n/ log log n, then T = O(1).
Let us interpret the result of Theorem 4.1 in two typical cases. First, if � is

polynomial in n, i.e., � = nε for some ε > 0, then the total running time of the
algorithm is O(log(1/ε)). However, the number of rounds remains Θ(log logn) if �
is only polylogarithmic in n. (In fact, it remains O(log log n) even if � is as large as

(log n)(log n)1−ε

for some constant ε > 0.)

5. Conclusion. This paper shows that an MST can be constructed in subloga-
rithmic time, even if each message can contain only a constant number of edges. We
believe that the algorithm may be useful in some overlay networks. Theoretically,
important gaps remain. While there are nontrivial lower bounds on the running time
of MST construction in graphs of diameter 3 or more, currently no superconstant
lower bound is known even for graphs of diameter 2. We do not know whether there
exist lower bounds or better algorithms for graphs of diameter 1 and 2 (recall that
the fastest known algorithm for diameter 2 runs in O(log n) rounds).
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