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Abstract

Human action recognition is an important yet challeng-

ing task. The recently developed commodity depth sensors

open up new possibilities of dealing with this problem but

also present some unique challenges. The depth maps cap-

tured by the depth cameras are very noisy and the 3D posi-

tions of the tracked joints may be completely wrong if seri-

ous occlusions occur, which increases the intra-class vari-

ations in the actions. In this paper, an actionlet ensem-

ble model is learnt to represent each action and to capture

the intra-class variance. In addition, novel features that

are suitable for depth data are proposed. They are robust

to noise, invariant to translational and temporal misalign-

ments, and capable of characterizing both the human mo-

tion and the human-object interactions. The proposed ap-

proach is evaluated on two challenging action recognition

datasets captured by commodity depth cameras, and an-

other dataset captured by a MoCap system. The experimen-

tal evaluations show that the proposed approach achieves

superior performance to the state of the art algorithms.

1. Introduction

Recognizing human actions can have many potential ap-

plications including video surveillance, human computer

interfaces, sports video analysis and video retrieval. Despite

the research efforts in the past decade and many encourag-

ing advances, accurate recognition of the human actions is

still a quite challenging task. There are two related major

issues for human action recognition. The first one is the

sensory input, and the other is the modeling of the human

actions that are dynamic, ambiguous and interactive with

other objects.

The human motion is articulated, and capturing such

highly articulated motion from monocular video sensors is

a very difficult task. This difficulty largely limits the per-

formance of video-based human action recognition, as in-

dicated in the studies in the past decade. The recent in-

troduction of the cost-effective depth cameras may change

the picture by providing 3D depth data of the scene, which

Figure 1. The general framework of the proposed approach.

largely eases the task of object segmentation. Moreover, it

has facilitated a rather powerful human motion capturing

technique [20] that outputs the 3D joint positions of the hu-

man skeleton.

Although the depth cameras in general produce bet-

ter quality 3D motion than those estimated from monoc-

ular video sensors, simply using such 3D motion sensory

data and the estimated 3D joint positions for human action

recognition is not plausible. One reason is that the estimated

3D joint positions are noisy and may have significant errors

when there are occlusions such as one leg being in front

of the other, a hand touching another body part, two hands

crossing, etc. In addition, the 3D skeleton motion alone

is not sufficient to distinguish some actions. For example,

“drinking” and “eating snacks” give very similar motion for

the human skeleton. Extra inputs need to be included and

exploited for better recognition.

This paper presents a novel human action recognition ap-



proach using a depth camera. The basic idea is illustrated in

Fig. 1. Based on the depth data and the estimated 3D joint

positions, we propose a new feature called local occupancy

pattern or LOP feature. Each 3D joint is associated with

a LOP feature, which can be treated as the “depth appear-

ance” of this 3D joint. Translational invariant and highly

discriminative, this new feature is also able to capture the

relations between the human body parts and the environ-

mental objects in the interaction. In addition, to represent

the temporal structure of an individual joint in an action,

we propose a new temporal pattern representation called

Fourier Temporal Pyramid. This representation is insen-

sitive to temporal sequence misalignment and is robust to

noise.

More importantly, we propose a new model for human

actions, called the Actionlet Ensemble Model. The artic-

ulated human body has a large number of kinematic joints,

but a certain action is usually only associated with and char-

acterized by the interactions and combinations of a subset

of them. For example, the joints “right wrist” and “head”

are discriminative for the action “drinking”. Therefore, we

introduce the concept of actionlet. An actionlet is a partic-

ular conjunction of the features for a subset of the joints,

indicating a structure of the features. As there are an enor-

mous number of possible actionlets, we propose a novel

data mining solution to discover discriminative actionlets.

Then an action is represented as an Actionlet Ensemble,

which is a linear combination of the actionlets, and their

discriminative weights are learnt via a multiple kernel learn-

ing method. This new action model is more robust to the

errors in the features, and it can better characterize the intra-

class variations in the actions. For example, for the action

“call cellphone”, some people use their right hands while

others use their left hands. This variation can be character-

ized by the proposed actionlet ensemble model.

Our main contributions include the following three as-

pects. First, this paper proposes the actionlet ensemble

model as a new way of characterizing and recognizing

human actions. Second, our extensive experiments have

shown that the proposed features are well suitable for the

depth data-based action recognition task. Third, the pro-

posed Fourier temporal pyramid is a new representation of

temporal patterns, and it is shown to be robust to temporal

misalignment and noise.

The proposed features and models are evaluated on

three benchmark datasets: CMU MoCap dataset [1], MSR-

Action3D dataset [14] and DailyActivity3D dataset. The

first dataset contains 3D joint positions captured by a multi-

camera motion capturing system, and the other two datasets

are captured with commodity depth cameras. Our extensive

experimental results show that the proposed method is able

to achieve significantly better recognition accuracy than the

state-of-the-art methods.

2. Related Work

Actions are spatio-temporal patterns. There are two im-

portant issues in action recognition: the representation of

suitable spatio-temporal features, and the modeling of dy-

namical patterns.

Features can be sensor-dependent. In video-based meth-

ods, it is a common practice to locate spatio-temporal in-

terest points like STIP [10], and use the distributions of the

local features like HOF [11] or HOG [7] to represent such

local spatio-temporal pattern. When we want to use depth

data, however, because there is no texture in the depth map,

these local features are not discriminative enough for clas-

sification.

It is generally agreed that knowing the 3D joint position

is helpful for action recognition. Multi-camera motion cap-

ture (MoCap) systems [3] have been used for human action

recognition, but such special equipment is marker-based

and expensive. It is still a challenging problem for marker-

free motion capturing via regular video sensors. Cost-

effective depth cameras have been used for motion captur-

ing, and produced reasonable results, despite of the noise

when occlusion occurs. Because of the different quality of

the motion data, the action recognition methods designed

for MoCap data may not be suitable for depth camera.

In the literature, there have been many different ap-

proaches for temporal modeling. One way to model the

human actions is to employ generative models, such as a

Hidden Markov model (HMM) for a number of pre-defined

relative position features from 3D joint positions [15], or

a conditional random field (CRF) for the 3D joint posi-

tions [9]. Similar approaches are also proposed to model

human actions in normal videos [18, 5]. However, the 3D

joint positions that are generated via skeleton tracking from

the depth map sequences are generally more noisy than that

of the MoCap data. When the difference between the ac-

tions is subtle, it is usually difficult to determine the ac-

curate states from the observation without careful selection

of the features, which undermines the performance of such

generative models. Moreover, with limited amount of train-

ing data, training a complex generative model is easy to

overfit.

Another generative approach to dynamical patterns can

also be modeled by linear dynamical systems, and the states

of the system can be used for MoCap action categoriza-

tion [9]. In addition, the complex and nonlinear dynam-

ics can also be characterized by a Recurrent Neural Net-

work [16]. Although these two approaches are good mod-

els for time series data and are robust to temporal misalign-

ment, it is generally difficult to learn these models from lim-

ited amount of training data.

Another method for modeling actions is dynamic tempo-

ral warping (DTW), which matches the 3D joint positions to

a template [17], and action recognition can be done through



a nearest-neighbor classification method. Its performance

heavily depends on a good metric to measure the similarity

of frames. Moreover, for periodic actions (such as “wav-

ing”), DTW is likely to produce large temporal misalign-

ment which may ruin action classification [13].

Different from these approaches, we propose to employ

Fourier Temporal Pyramid to represent the temporal pat-

terns. The Fourier temporal pyramid is a descriptive model.

It does not involve complicated learning as in the genera-

tive models (e.g., HMM, CRF and dynamical systems), and

it is much more robust than DTW to noise and temporal

misalignment.

For the action of a complex articulated structure, the mo-

tion of the individual parts are correlated. The relationship

among these parts (or high-order features) may be more dis-

criminative than the individual ones. Such combinatorial

features can be represented by stochastic AND/OR struc-

tures. This idea has been pursued for face detection [6],

human body parsing [24], object recognition [23], and hu-

man object interaction recognition [22]. This paper presents

an initial attempt of using the AND/OR ensemble approach

to action recognition. We propose a novel data mining so-

lution to discover the discriminative conjunction rules, and

apply multiple kernel learning to learn the ensemble.

3. Spatio-Temporal Features

This section gives a detailed description of two types of

features that we utilize to represent the actions: the 3D joint

position feature and the Local Occupancy Pattern (LOP).

These features can characterize the human motions as well

as the interactions between the objects and the human. In

addition, the Fourier Temporal Pyramid is proposed to rep-

resent the temporal dynamics. The proposed features are

invariant to the translation of the human and robust to noise

and temporal misalignment.

3.1. Invariant Features for 3D Joint Positions

The 3D joint positions are employed to shape the motion

of the human body. Our key observation is that representing

the human movement as the pairwise relative positions of

the joints results in more discriminative features.

For a human subject, 20 joint positions are tracked (the

Motion Capture system captures 30 joints) by the skele-

ton tracker [20] and each joint i has 3 coordinates pi(t) =
(xi(t), yi(t), zi(t)) at a frame t. The coordinates are nor-

malized so that the motion is invariant to the absolute body

position, the initial body orientation and the body size.

For each joint i, we extract the pairwise relative position

features by taking the difference between the position of

joint i and that of each other joint j:

pij = pi − pj , (1)

The 3D joint feature for joint i is defined as:

pi = {pij |i ̸= j}.

Although enumerating all the joint pairs introduces some

information that is irrelevant to our classification task, our

approach is able to select the joints that are most relevant to

our recognition task. The selection will be handled by the

Actionlet mining as discussed in Section 4.

Representing the human motion as the relative joint po-

sitions results in more discriminative and intuitive features.

For example, the action “waving” is generally interpreted

as “arms above the shoulder and move left and right”. This

can be better characterized through the pairwise relative po-

sitions.

3.2. Local Occupancy Patterns

It is insufficient to only use the 3D joint positions to fully

model an action, especially when the action includes the

interactions between the subject and other objects. There-

fore, it is necessary to design a feature to describe the local

“depth appearance” for the joints. In this paper, the inter-

action between the human subject and the environmental

objects is characterized by the Local Occupancy Patterns

or LOP at each joint. For example, suppose a person is

drinking a cup of water. When the person fetches the cup,

the space around his/her hand is occupied by the cup. Af-

terwards, when the person lifts the cup to his/her mouth,

the space around both the hand and the head is occupied.

This information can be useful to characterize this interac-

tion and to differentiate the drinking action from other ac-

tions.

In each frame, as described below, an LOP feature com-

putes the local occupancy information based on the 3D

point cloud around a particular joint, so that the temporal

dynamics of all such occupancy patterns can roughly dis-

criminate different types of interactions.

At frame t, we have the point cloud generated from the

depth map of this frame. For each joint j, its local region

is partitioned into Nx × Ny × Nz spatial grid. Each bin

of the grid is of size (Sx, Sy, Sz) pixels. For example, if

(Nx, Ny, Nz) = (12, 12, 4) and (Sx, Sy, Sz) = (6, 6, 80),
the local (96, 96, 320) region around a joint is partitioned

into 12× 12× 4 bins, and the size of each bin is (6,6,80).

The number of points at the current frame that fall into

each bin bxyz of the grid is counted, and a sigmoid normal-

ization function is applied to obtain the feature oxyz for this

bin. In this way, the local occupancy information of this bin

is:

oxyz = δ(
∑

q∈binxyz

Iq) (2)

where Iq = 1 if the point cloud has a point in the location

q and Iq = 0 otherwise. δ(.) is a sigmoid normalization



Figure 2. A Illustration of the Fourier Temporal Pyramid.

function: δ(x) = 1
1+e−βx . The LOP feature of a joint i is

a vector consisting of the feature oxyz of all the bins in the

spatial grid around the joint, denoted by oi.

3.3. Fourier Temporal Pyramid

Two types of features are extracted from each frame t :

the 3D joint position features pi[t], and the LOP features

oi[t]. In this subsection, we propose the Fourier temporal

pyramid to represent the temporal dynamics of these frame-

level features.

When using the current cost-effective depth camera, we

always experience noisy depth data and temporal misalign-

ment. We aim to design temporal representations that are

robust to both the data noise and the temporal misalignment.

We also want such temporal features to be a good represen-

tation of the temporal structure of the actions. For example,

one action may contain two consecutive sub-actions: “bend

the body” and “pick up”. The proposed Fourier Temporal

Pyramid is a descriptive representation that satisfies these

properties.

Inspired by the Spatial Pyramid approach [12], in order

to capture the temporal structure of the action, in addition

to the global Fourier coefficients, we recursively partition

the action into a pyramid, and use the short time Fourier

transform for all the segments, as illustrated in Fig. 2. The

final feature is the concatenation of the Fourier coefficients

from all the segments.

For each joint i, let gi = (pi,oi) denote its overall fea-

ture vector where pi is its 3D pairwise position vector and

oi is its LOP vector. Let Ni denote the dimension of gi, i.e.,

gi = (g1, . . . , gNi
). Note that each element gj is a function

of time and we can write it as gj [t]. For each time segment

at each pyramid level, we apply Short Fourier Transform

[19] to element gj [t] and obtain its Fourier coefficients, and

we utilize its low-frequency coefficients as features. The

Fourier Temporal Pyramid feature at joint i is defined as the

low-frequency coefficients at all levels of the pyramid, and

is denoted as Gi.

The proposed Fourier Temporal Pyramid feature has

several benefits. First, by discarding the high-frequency

Fourier coefficients, the proposed feature is robust to noise.

Second, this feature is insensitive to temporal misalignment,

because time series with temporal translation have the same

Fourier coefficient magnitude. Finally, the temporal struc-

ture of the actions can be characterized by the pyramid

structure.

4. Actionlet Ensemble

Although the proposed feature is robust to noise, to deal

with the errors of the skeleton tracking and better charac-

terize the intra-class variations, an actionlet ensemble ap-

proach is proposed in this section as a representation of the

actions.

An actionlet is defined as a conjunctive (or AND) struc-

ture on the base features. One base feature is defined as

a Fourier Pyramid feature of one joint. A discriminative

actionlet should be highly representative of one action and

highly discriminative compared to other actions. A novel

data mining algorithm is proposed to discover the discrimi-

native actionlets.

Once we have mined a set of discriminative actionlets, a

multiple kernel learning [4] approach is employed to learn

an actionlet ensemble structure that combines these dis-

criminative actionlets.

4.1. Mining Discriminative Actionlets

An actionlet is denoted as a subset of joints S ⊆
{1, 2, · · · , Nj}, where Nj is the total number of joints.

Suppose we have training pairs (x(j), t(j)). In order

to determine how discriminative each individual joint is, a

SVM model is trained on feature Gi of each joint i. For

each training sample x(j) and the SVM model on the joint

i, the probability that its classification label y(j) is equal to

an action class c is denoted as Pi(y
(j) = c|x(j)), which

can be estimated from the pairwise probabilities by using

pairwise coupling approach[21].

Since an actionlet takes a conjunctive operation, it pre-

dicts y(j) = c if and only if every joint i ∈ S predicts

y(j) = c. Thus, assuming the joints are independent, the

probability that the predicted label y(j) is equal to an ac-

tion class c given an example x(j) for an actionlet S can be

computed as:

PS(y
(j) = c|x(j)) =

∏

i∈S

Pi(y
(j) = c|x(j)) (3)



Define Xc as {j : t(j) = c}. For an actionlet to be dis-

criminative, the probability PS(y
(j) = c|x(j)) should be

large for some data in Xc, and be small for all the data that

does not belong to Xc. Define the confidence for actionlet

S as

ConfS = max
j∈Xc

logPS(y
(j) = c|x(j)) (4)

and the ambiguity for actionlet S as

AmbS =
∑

j /∈Xc

logPS(y
(j) = c|x(j)) (5)

We would like a discriminative actionlet to have large con-

fidence ConfS and small ambiguity AmbS . An actionlet

S is called an l-actionlet if its cardinality |S| = l. One

important property is that if we add a joint i /∈ S to an

(l − 1)-actionlet S to generate an l-actionlet S ∪ {i}, we

have ConfS∪{i} ≤ ConfS , i.e., adding a new joint into one

actionlet will always reduce the confidence. As a result, the

Aprior mining process [2] can be applied to select the ac-

tionlets with large ConfS and small AmbS . If ConfS is less

than the threshold, we do not need to consider any S′ with

S′ ⊃ S. The outline of the mining process is shown in Alg.

1. For each class c, the mining algorithm outputs a discrim-

inative actionlet pool Pc which contains the actionlets that

meet our criteria: AmbS ≤ Tamb and ConfS ≥ Tconf.

1 Take the set of joints, the feature Gi on each joint i,
the number of the classes C, thresholds Tconf and Tamb.

2 Train the base classifier on the features Gi of each

joint i.
3 for Class c = 1 to C do

4 Set Pc, the discriminative actionlet pool for class c
to be empty : Pc = {}. Set l = 1.

5 repeat

6 Generate the l-actionlets by adding one joint

into each (l − 1)-actionlet in the

discriminative actionlet pool Pc.

7 Add the l-actionlets whose confidences are

larger than Tconf to the pool Pc.

8 l = l + 1

9 until no discriminative actionlet is added to Pc in

this iteration;

10 remove the actionlets whose ambiguities are larger

than Tamb in the pool Pc.

11 end

12 return the discriminative actionlet pool for all the

classes

Algorithm 1: Discriminative Actionlet Mining

4.2. Learning Actionlet Ensemble

For each actionlet Sk in the discriminative actionlet pool,

an SVM model on it defines a joint feature map Φk(x, y) on

data X and labels Y as a linear output function fk(x, y) =
⟨wk,Φk(x, y)⟩ + bk, parameterized with the hyperplane

normal wk and bias bk. The predicted class y for x is cho-

sen to maximize the output fk(x, y).
Multiclass-MKL considers a convex combination of p

kernels, K(xi,xj) =
∑p

k=1 βkKk(xi,xj), where each

kernel corresponds to an actionlet. Equivalently, we con-

sider the following output function:

ffinal(x, y) =

p∑

k=1

[βk⟨wk,Φk(x, y)⟩+ bk] (6)

We aim at choosing w = (wk) , b = (bk) ,β =
(βk) , k = 1, . . . , p, such that given any training data pair

(x(i), y(i)), ffinal(x
(i), y(i)) ≥ ffinal(x

(i), u) for all u ∈
Y − {y(i)}. The resulting optimization problem becomes:

min
β,w,b,ξ

1

2
Ω(β) + C

n∑

i=1

ξi

s.t. ∀i : ξi = max
u ̸=yi

l(ffinal(x
(i), y(i))− ffinal(x

(i), u))

(7)

where C is the regularization parameter and l is a convex

loss function, and Ω(β) is a regularization parameter on the

β. Following the approach in [8], we choose Ω(β) = ∥β∥21
to encourage a sparse β, so that an ensemble of a small num-

ber of actionlets is learned.

This problem can be solved by iteratively optimizing β

with fixed w and b through linear programming, and opti-

mizing w and b with fixed β through a generic SVM solver

such as LIBSVM.

5. Experimental Results

We choose CMU MoCap dataset [1], MSR-Action3D

dataset [14] and MSRDailyActivity3D dataset to evaluate

the proposed action recognition approach. In all the exper-

iments, we use three-level Fourier temporal pyramid, with

1/4 length of each segment as low-frequency coefficients.

The empirical results show that the proposed framework

outperforms the state of the art methods.

5.1. MSR­Action3D Dataset

MSR-Action3D dataset [14] is an action dataset of depth

sequences captured by a depth camera. This dataset con-

tains twenty actions: high arm wave, horizontal arm wave,

hammer, hand catch, forward punch, high throw, draw x,

draw tick, draw circle, hand clap, two hand wave, side-

boxing, bend, forward kick, side kick, jogging, tennis swing,

tennis serve, golf swing, pick up & throw. Each action was

performed by ten subjects for three times. The frame rate is

15 frames per second and resolution 640×480. Altogether,

the dataset has 23797 frames of depth map for 402 action



Figure 3. Sample frames of the MSR-Action3D dataset.

Method Accuracy

Recurrent Neural Network [16] 0.425

Dynamic Temporal Warping [17] 0.54

Hidden Markov Model [15] 0.63

Action Graph on Bag of 3D Points [14] 0.747

Proposed Method 0.882

Table 1. Recognition Accuracy Comparison for MSR-Action3D

dataset.

samples. Some examples of the depth sequences are shown

in Fig. 3.

Those actions were chosen to cover various movement

of arms, legs, torso and their combinations, and the subjects

were advised to use their right arm or leg if an action is

performed by a single arm or leg. Although the background

of this dataset is clean, this dataset is challenging because

many of the actions in the dataset are highly similar to each

other.

The 3D joint positions are extracted from the depth se-

quence by using the real time skeleton tracking algorithm

proposed in [20]. Since there is no human-object interac-

tion in this dataset, we only extract the 3D joint position

features.

We compare our method with the state-of-the-art meth-

ods on the cross-subject test setting [14], where the samples

of half of the subjects are used as training data, and the rest

of the samples are used as test data. The recognition ac-

curacy of the dynamic temporal warping is only 54%, be-

cause some of actions in the dataset are very similar to each

other, and there are typical large temporal misalignment in

the dataset. The accuracy of recurrent neural network is

42.5%. The accuracy of Hidden Markov Model is 63%.

The proposed method achieves an accuracy of 88.2%. This

is a very good performance considering that the skeleton

tracker sometimes fails and the tracked joint positions are

quite noisy. The confusion matrix is illustrated in Fig. 4.

For most of the actions, our method works very well. The

classification errors occur if two actions are too similar to

each other, such as “hand catch” and “high throw”, or if

the occlusion is so large that the skeleton tracker fails fre-

quently, such as the action “pick up and throw”.

The comparison between the robustness of the Fourier
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Figure 5. The relationship between the relative accuracy and the

noise or temporal shift.

Temporal Pyramid features and that of Hidden Markov

Model is shown in Fig. 5(a). In this experiment, we add

white Gaussian noise to the 3D joint positions of all sam-

ples, and compare the relative accuracies of the two meth-

ods. For each method, its relative accuracy is defined as

the accuracy under the noisy environment divided by the

accuracy under the environment without noise. We can see

that the proposed Fourier Temporal Pyramid feature is much

more robust to noise than the Hidden Markov Model.

The robustness of the proposed method and the Hid-

den Markov model to temporal shift is also compared. In



Figure 6. Sample frames of the DailyActivity3D dataset.

this experiment, we circularly shift all the training data,

and keep the test data unchanged. The relative accuracy

is shown in Fig. 5(b). It can be seen that both methods are

robust to the temporal shift of the depth sequences, though

the Fourier Temporal Pyramid is slightly more sensitive to

temporal shift than the Hidden Markov Model.

5.2. MSRDailyActivity3D Dataset

DailyActivity3D dataset1 is a daily activity dataset cap-

tured by a Kinect device. There are 16 activity types: drink,

eat, read book, call cellphone, write on a paper, use lap-

top, use vacuum cleaner, cheer up, sit still, toss paper, play

game, lay down on sofa, walk, play guitar, stand up, sit

down. If possible, each subject performs an activity in two

different poses: “sitting on sofa” and “standing”. The to-

tal number of the activity samples is 320. Some example

activities are shown in Fig. 6.

This dataset is designed to cover human’s daily activities

in the living room. When the performer stands close to the

sofa or sits on the sofa, the 3D joint positions extracted by

the skeleton tracker are very noisy. Moreover, most of the

activities involve the humans-object interactions. Thus this

dataset is more challenging.

Table 2 shows the accuracies of different methods. By

employing an actionlet ensemble model, we obtain a recog-

nition accuracy of 85.75%. This is a decent result consid-

ering the difficulties in this dataset. If we directly train a

SVM on the Fourier Temporal Pyramid features, the accu-

racy is 78%. When only the LOP feature is employed, the

recognition accuracy drops to 42.5%. If we only use 3D

joint position features without using LOP, the recognition

accuracy is 68%.

Fig. 7 shows the confusion matrix of the proposed

method. Fig. 8 compares the accuracy of the actionlet en-

semble method and that of the support vector machine on

the Fourier Temporal Pyramid features. We can observe

that for the activities where the hand gets too close to the

body, the proposed actionlet ensemble method can signifi-

cantly improve the accuracy. Fig. 9 illustrates the actionlets

with high weights discovered by our mining algorithm.

5.3. CMU MoCap Dataset

We also evaluate the proposed method on the 3D joint

positions extracted by a motion capture system. The dataset

1http://research.microsoft.com/∼zliu/ActionRecoRsrc
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Figure 7. The confusion matrix of the proposed method on Daily-

Activity3D dataset.

0

10

20

30

40

50

60

70

80

90

100

d
ri

n
k

e
a

t

re
a

d
B

o
o

k

ca
ll

C
e

ll
p

h
o

n
e

w
ri

te

u
se

La
p

to
p

v
a

cc
u

m
C

le
a

n
e

r

ch
e

e
rU

p

si
tS

 
ll

to
ss

P
a

p
e

r

p
la

y
G

a
m

e

la
y

D
o

w
n

w
a

lk

p
la

y
G

u
it

a
r

st
a

n
d

U
p

si
tD

o
w

n

SVM on Fourier Features

Ac onlet Ensemble

Figure 8. The comparison between the accuracy of the proposed

actionlet ensemble method and that of the support vector machine

on the Fourier Temporal Pyramid features.

(a) (b) (c) (d) (e) (f)

Figure 9. Examples of the mined actionlets. The joints contained

in each actionlet are marked as red. (a), (b) are actionlets for

“drink” (c), (d) are actionlets for “call”. (e), (f) are actionlets for

“walk”.

we use is the CMU Motion Capture (MoCap) dataset.

Five subtle actions are chosen from CMU MoCap

datasets following the configuration in [9]. The five ac-

tions differ from each other only in the motion of one or

two limbs. The actions in this dataset include: walking,

marching, dribbling, walking with stiff arms, walking with

wild legs. The 3D joint positions in CMU MoCap dataset

are relatively clean because they are captured with high-



Method Accuracy

Dynamic Temporal Warping [17] 0.54

Only LOP features 0.425

Only Joint Position features 0.68

SVM on Fourier Temporal Pyramid Features 0.78

Actionlet Ensemble 0.8575

Table 2. Recognition Accuracy Comparison for DailyActivity3D

dataset.

Method Accuracy

CRF with learned manifold space [9] 0.9827

Proposed Method 0.9813

Table 3. Recognition Accuracy Comparison for CMU MoCap

dataset.

precision camera array and markers. This dataset is em-

ployed to evaluate the performance of the proposed 3D joint

position-based features on 3D joint positions captured by

Motion Capture system.

The comparison of the performance is shown in Table 3.

Since only the 3D joint positions are available, the propose

method only utilizes the 3D joint position features. It can be

seen that the proposed method achieves comparable results

with the state of the art methods on the MoCap dataset.

6. Conclusion

We have proposed novel features and an actionlet ensem-

ble model for human action recognition with depth cameras.

The proposed features are discriminative enough to classify

human actions with subtle differences as well as human-

object interactions and robust to noise and temporal mis-

alignment. The actionlet ensemble model is capable of bet-

ter capturing the intra-class variations and is more robust to

the noises and errors in the depth maps and joint positions.

The experiments demonstrated the superior performance of

the proposed approach to the state of the art methods. In the

future, we aim to exploit the effectiveness of the proposed

technique for the understanding of more complex activities.
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