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Abstract Traditional classification methods assume that the training and the test data arise
from the same underlying distribution. However, in several adversarial settings, the test set
is deliberately constructed in order to increase the error rates of the classifier. A prominent
example is spam email where words are transformed to get around word based features
embedded in a spam filter.

In this paper we model the interaction between a data miner and an adversary as a Stack-
elberg game with convex loss functions. We solve for the Nash equilibrium which is a pair
of strategies (classifier weights, data transformations) from which there is no incentive for
either the data miner or the adversary to deviate. Experiments on synthetic and real data
demonstrate that the Nash equilibrium solution leads to solutions which are more robust to
subsequent manipulation of data and also provide interesting insights about both the data
miner and the adversary.

Keywords Stackelberg game · Nash equilibrium · Loss minimization

1 Introduction

Conventional supervised learning algorithms build classification models by learning rela-
tionships between the independent (features) and dependent (class) variables from a given
input data. Typically, the underlying, though often unstated, assumption is that the relation-
ship between the features and the class remain unchanged over time. However, in many real
world applications, such as email spam detection systems, there often exist adversaries who
are continuously modifying the underlying relationships in order to avoid detection by the
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classifier. Therefore, in order to minimize the effects of the adversaries, data miners should
not only learn from the data in the past, but also learn from potential data manipulations
that adversaries are likely to make in future. As a result, the problem of “adversarial data
mining” has attracted significant interest in the machine learning and data mining com-
munity (Dalvi and Domingos 2004; Lowd and Meek 2005; Globerson and Roweis 2006;
Globerson et al. 2008; Kołcz and Teo 2009; Kantarcioglu et al. 2009; Liu and Chawla 2009).

Dalvi et al. (2004) modeled adversarial scenarios under the assumption that both the ad-
versary and the data miner have perfect information of each other. In their formulation, the
adversary is fully aware of the parameter settings of the classifier, and uses the classifier’s
decision boundary to undermine the classifier. The data miner in turn periodically retrains
the classifier based on the adversary’s modifications. This “perfect knowledge” is unrealis-
tic in practice. In Lowd and Meek (2005) the perfect knowledge assumption is relaxed by
assuming that the adversary has the ability to issue a polynomial number of membership
queries to the classifier in the form of data instances which in turn will report their labels.
They refer to their approach as Adversarial Classifier Reverse Engineering (ACRE). The
ACRE learning quantifies the “hardness” of attacking a (linear) classifier system, but it is
unclear how the data miner should respond to the adversary’s ACRE learning attacks, and
what state the adversary and the data miner will proceed to eventually.

Globerson et al. (2006, 2008) use deletions of features at test time to approximate the
strategies of adversaries. Taking their experiment on handwritten digit classification as an
example, their algorithm deletes pixels of “heavy weights” from an image of digit “9”, so
that it can be confused with a normal image of “7”. However, a disadvantage of this feature
deletion algorithm is that it fails to simulate scenarios where the adversary is more interested
in adding features or generally in linear transformation of features. Using the same example,
it is not possible to make a “7” look like a “9” by deleting pixels. Furthermore, the work
in Globerson and Roweis (2006) and Globerson et al. (2008) are both “one-shot” games
(i.e. the game is played only once) and do not give any considerations to the data miners’
responses.

Recently, Kantarcioglu et al. (2009) and Liu et al. (2009) have proposed approaches
that model the competing behavior between the adversary and the data miner as a sequen-
tial Stackelberg game. They use simulated annealing and genetic algorithm respectively to
search for a Nash equilibrium as the final state of play. While Kantarcioglu et al. (2009)
assume the two players know each other’s payoff function, Liu and Chawla (2009) relaxe
this assumption and only the adversary’s payoff is required in achieving the equilibrium.
But a common problem for Kantarcioglu et al. (2009) and Liu and Chawla (2009) is that
the strategies of the adversary are stochastically sampled (e.g., Monte Carlo integration in
Kantarcioglu et al. 2009) and then among the samples the best fit is selected (e.g., genetic
algorithm in Liu and Chawla 2009). This stochastic optimization process is not realistic for
rational adversaries in practice, since rational adversaries rarely make “random” moves, but
instead always try to optimize their payoff at each step of play. Another common limitation
of Kantarcioglu et al. (2009) and Liu and Chawla (2009) is that they both assume that data
was generated from a normal distributions which can potentially restrict their applicability.

In this paper, we propose an approach based on a Stackelberg game model. However, the
method we propose to search Nash equilibrium is fundamentally different from those based
on stochastic optimization. More specifically, the contributions of this paper are as follows:

1. We model the interactions between the adversary and the data miner as a two-player
sequential Stackelberg game, where for each player we design a regularized loss function
as the payoff;
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2. The game is cast as a maxmin optimization problem whose solution is the most rational
strategy at each play;

3. We propose an algorithm which efficiently solves the maxmin optimization problem
without making distributional assumptions on data features;

4. We perform comprehensive empirical evaluations on spam email and handwritten digit
data sets which testify the superiority of our approach.

The rest of the papers is as follows. In Sect. 2 we introduce basic game theory concepts
and formulate the maxmin problem in general. We define the players’ payoff functions from
the perspective of a classification problem and present a sequential Stackelberg algorithm
to solve the maxmin problem in Sect. 3. Experiments on synthetic and real data sets are
reported in Sect. 4. We conclude in Sect. 5 with a summary and directions for future research.

2 Sequential Stackelberg games

In a Stackelberg game, two players are distinguished as a leader (L) and a follower (F ), and
it is the leader who makes the first move. In our case the adversary is the leader and the data
miner is the follower, since it is always the adversary who proactively attacks her1 opponent.
We call an “attack” from the adversary and “defence” from the data miner as plays/moves
of the game.

Each player is associated with a set of strategies, U and V for L and F respectively,
where a strategy means a choice of moves available to each player. In this paper, strategy
spaces U and V are finite dimensional vector spaces. The outcome from a certain combi-
nation of strategies of a player is determined by that player’s payoff function, JL and JF .
Rational players aim to maximize their corresponding payoff functions using their strategy
sets. So given an observation v the best strategy of L is

u∗ = arg max
u∈U

JL(u, v) (1)

Similarly, if L’s previous move is u, the reaction of F is

v∗ = arg max
v∈V

JF (u, v) (2)

In the context of supervised learning, a classified data set is conventionally represented
by: true positives (tp), true negatives (tn), false positives (fp) and false negatives (fn), where
tp + fn and tn + fp always have constant sums (i.e. the actual number of positives and neg-
atives respectively). While the data miner’s payoff is maximized via accurate classification
(i.e. tp + tn), the adversary’s profit relies on the failure of the classifier (i.e. n− tp− tn, where
n is the total number of instances). This situation suggests the application of “constant-
sum” game: in a “constant-sum” game, two players divide up a fixed amount of profit
gains, so that one player’s winnings are the other’s losses (Dixit and Skeath 1999). This
notion of a “constant-sum” forms the basis of deriving each players’ payoff functions in
Sect. 3.

As each player seeks to achieve as high a payoff as possible in each of their moves, they
will arrive in a state of Nash equilibrium when their rational strategies interact: the state

1For ease of interpretations, in this paper we call the data miner a male (i.e. “he/his”) player, and the adversary
a female (i.e. “she/her”) player.
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of Nash equilibrium means that simultaneously each player is using the strategy that is the
best response to the strategies of the other player, so that no player can benefit from chang-
ing his/her strategy unilaterally (Fudenberg and Tirole 1991). Thus the problem reduces to
efficiently determining the state of the Nash equilibrium.

2.1 Formulation of the maxmin problem

In the formulation of our sequential Stackelberg game, a Nash equilibrium is the strategy
pair (u∗, v∗) that simultaneously solves the optimization problems in (1) and (2). Because
this Stackelberg game is also a “constant-sum” game, we have JF = φ − JL, where φ is
a constant number standing for the total amount of profits in the game. Then (2) can be
rewritten as:

v∗ = arg max
v∈V

φ − JL(u, v)

= arg max
v∈V

−JL(u, v)

= arg min
v∈V

JL(u, v) (3)

where we ignore the constant number φ, and transform the equation in to a minimization
problem which removes the negative sign. By combining (3) with (1), we obtain the follow-
ing maxmin problem:

Maxmin: (u∗, v∗) = arg max
u∈U

JL

(
u, arg min

v∈V

JL(u, v)
)

(4)

The solution to the maxmin problem maximizes the leader’s profit under the worst pos-
sible move of her opponent. In the next section, we derive the payoff functions JL and JF in
classification problems and design an algorithm to solve the maxmin problem in (4).

3 The Stackelberg model in adversarial classification

Given a labeled training data (xi , yi ) (i = 1, . . . , n), where xi ∈ R
d are feature vectors, d is

the number of features and yi ∈ {−1,1} are binary class labels, many machine learning
algorithms build classifiers by minimizing a regularized loss function:

w∗ = arg min
w

λwT w + C

n∑
i=1

Loss(yi,wT xi ) (5)

where w is the weight vector including the bias b (and hence x by default has an added
feature xd+1 ≡ 1), λ and C are positive parameters to balanced the two terms in (5), wT xi

represents the Euclidean dot product of w and xi , and Loss(yi,wT xi ) is the loss function
that a data miner minimizes. The regularization term wT w is added so that the classifier has
good generalization properties (Lin et al. 2008).

Different settings of loss functions yield different types of classifiers, such as
ln(1 + e−ywT x) in logistic regression (Collins et al. 2002) and max(0,1 − ywT x) as the
binary hinge loss in linear support vector machines (SVMs) (Keerthi and DeCoste 2006).
One important requirement for valid loss functions is that they must be convex and sub-
differentiable, but not necessarily differentiable, as in the hinge loss function.
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Fig. 1 (Color online) An example of the states of the Stackelberg game model in a classification scenario.
The line in the middle of the data clouds represents the classification boundary. Based on the initial state
of the game (a), the adversary moves positive instances towards negative samples and produces more false
detections (b); the data miner then reacts by shifting the classification boundary (c)

3.1 Payoff functions in classification problem

Recall that a player’s objective in each of his plays is to ultimately maximize his payoff.
Since data miners seek to minimize their loss functions in supervised learning, their payoffs
are closely related to their specific loss functions. To this end, we define the payoff function
of the data miner as the negative (additive inverse) of their loss function:

JF (w) = −Loss(y,wT x) (6)

Then from (5) we know that the data miner’s optimal strategy w∗ on original training data
is:

w∗ = arg min
w

λwT w + C(−JF ) (7)

The data miner’s optimal strategy on original data constitutes the initial state of our
game theoretical model when there are no moves made by the adversary. Figure 1a shows
an example of such initial state: without malicious modifications on positive samples (blue
asterisks), the (solid red) boundary line learned from (7) separates the two classes of data
samples and defines the optimal initial classification boundary. Settings of the data samples
and loss function used in Fig. 1 are introduced in Sect. 4.1.

Although data miners are able to obtain optimal feature weights from solving (7), these
initial feature weights become ineffective when adversaries change their input feature vec-
tors. We assume the adversaries modify feature vectors by introducing a transformation
vector α, so that a feature vector xi in training is shifted to xi + α during the test phase.
From the analysis of (3), we obtain the payoff function of the adversary:

JL(α) = −JF (w) = Loss(y,wT (x + α)) (8)

Now, the further the original positive instances are transformed the higher the cost the
adversary has to pay, and when positive instances are transformed to the same as negatives
the adversary pays the highest cost, since such positive instances bring no profit to the adver-
sary even if they are undetected by the classifier. Therefore at the same time of maximizing
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her payoff, a rational adversary also attempts to minimize the step size of transformations.
So we propose that the adversary’s movement is determined by the following optimization
problem:

α∗ = arg max
α

−λ′αT α + C ′JL(α)

= arg max
α

−λ′αT α + C ′
n∑

i=1

Loss(yi,wT (xi + α)) (9)

where λ′ and C ′ are constant numbers different from λ and C in (5). The maximization
problem in the function of (9) is concave since it is a polynomial of degree 2 with respect
to α and the second derivative of this function to α is always negative. The best move for
the adversary based on the positive samples of Fig. 1a is show in Fig. 1b: the adversary
transforms positive samples towards the direction of negatives; this direction and the length
of transformation are acquired from the solution of (9). As in a sequential game, after ob-
serving the transformed data, the data miner relearns from his observation of the adversary’s
movement and rebuilds the classifier as shown in Fig. 1c.

3.2 Solving for the Nash equilibrium

By combining (7) with (9) we obtain the following maxmin optimization problem for the
Stackelberg game of adversarial classification:

Maxmin: max
α

min
w

−λ′αT α + λwT w + C ′
n∑

i=1

Loss(yi,wT (xi + α)) (10)

The target function in this maxmini problem is concave with respect to α and convex
with respective to w. As explained in Sect. 2.1 by the pair of strategy (u∗, v∗), the strategy
pair (α∗, w∗) that solves the maxmin problem of (10) is the optima for the adversary in
inflicting maximally high costs on the data miner. It is possible to directly solve (10) under
the assumption that each player of the game has the control of future moves of the other
player, and hence is able to calculate his/her optimal equilibrium strategy by a “one-shot”
game (Globerson and Roweis 2006; Globerson et al. 2008). However, here we relax this
unrealistic assumption and use a repeated Stackelberg model, so that each player’s next
move is based only on the observation of his/her opponent’s last play. Algorithm 1 lists our
method of solving (10). In the interpretations of the algorithm, a line starting with “//” is the
comment for its adjacent next line.

The initial state of the Stackelberg model is built via Line 4 of the algorithm, which is
the same as the situation of Fig. 1a. After that the adversary iteratively attacks the classifier
by her best strategy of transforming the original training data (Line 7), followed by the data
miner’s reactions that rebuild classifiers though his regularized loss function (Line 9). Note
that the readjustments of classifiers are based on the data miner’s observations (i.e. xi +αtmp)
of the adversary’s modifications on the training data, and the adversary’s strategy of play is
fully determined by herself. This observation-based algorithm makes the game theoretical
model more realistic than a“one-shot” game.

The game is repeated until the adversary’s payoff does not increase (Line 23) or the
maximum number of iterations is reached (Line 26), and we only consider moves of the
adversary are valid when her payoff has nontrivial increases (Line 13 to 20). In addition, the
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Algorithm 1 Solving Stackelberg equilibrium
Input: Training data x and labels y; maximum number of iterations MaxIter; adversarial
payoff improvement threshold ε; loss function of the classifier Loss(y,wT x)

Output: Stackelberg equilibrium strategy pair (α∗, w∗)
———————————————————————————————–

1: Initiate the highest adversarial payoff HighestPayoff ← 0;
2: Iter ← 0;
3: // Build the initial classifier from training data:
4: wtmp ← arg minw λwT w + C

∑n

i=1 Loss(yi , wT xi )
5: repeat
6: // The adversary moves as the leader of the game:
7: αtmp ← arg maxα − λ′ αT α + C ′ ∑n

i=1 Loss(yi , wT
tmp(xi + α))

8: // The data miner reacts as the follower of the game:
9: wtmp ← arg minw λwT w + C

∑n

i=1 Loss(yi , wT (xi + αtmp))
10: // Update the adversary’s payoff:
11: JL ← ∑n

i=1 Loss(yi , wT
tmp(xi + αtmp))

12: if JL > HighestPayoff then
13: if JL − HighestPayoff > ε then
14: HighestPayoff ← JL;
15: α∗ ← α∗ + αtmp ;
16: w∗ ← wtmp;
17: else
18: // Exit current iteration:
19: continue;
20: end if
21: else
22: // Terminate the loop:
23: break;
24: end if
25: Iter ← Iter + 1;
26: until Iter = MaxIter.
27: Return (α∗, w∗);

final movement of the adversary is the sum of each previous valid play, since the modifica-
tion of transformed positives should be calculated from the very original positive instances
(Line 15). In Sect. 4, we provide experimental results that suggest Algorithm 1 converges
quickly in practice.

3.3 Convex optimization

In this section, we describe how we solve the convex optimization problem in (5) and (9)
(Line 4, 7 and 9 of Algorithm 1) via trust region methods—a powerful yet simple technique
for solving convex optimization problems (Moré and Sorensen 1983; Steihaug 1983; Byrd
et al. 1988). The following unconstrained minimization problem is an abstraction of (5)
and (9):

z∗ = arg min
z

f (z) (11)
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where z are vectors. For solving (5), one can define function f as:

f (z) = λzT z + C

n∑
i=1

Loss(yi, z
T xi )

and for solving (9) function f can be defined as:

f (z) = λ′zT z − C ′
n∑

i=1

Loss(yi,wT (xi + z))

Note that both of the above f functions are convex with respect to z. Suppose we are at
the point z0 of function f , and we want to move to another point with a lower value of f .
The main idea of trust region method is to approximate f with a simpler function q , which
mirrors the behavior of function f in a neighborhood Ω around the point z0. This neighbor-
hood is the so-called trust region (Moré and Sorensen 1983). Then instead of minimizing f

on the unconstrained range as in (11), the trust region method minimizes q in the constrained
neighborhood Ω :

s∗ = arg min
s

q(s)

subject to s ∈ Ω

(12)

and the next point is determined as z0 + s∗ if it has a lower f value. The approximation
function q by convention is defined though the second order Taylor expansion of f at z0,
and the neighborhood Ω is usually a spherical or ellipsoidal in shape (Byrd et al. 1988). So
the problem in (12) is reduced to:

s∗ = arg min
s

1

2
sT Hs + sT g

subject to ‖Ds‖ ≤ 	
(13)

where g and H are the gradient and the Hessian matrix of f , D is a diagonal scaling matrix,
and 	 is a positive number. The problem in (13) is also known as the trust region sub-
problem (Steihaug 1983). While there many ways to avoid the expensive computation on H ,
we reuse the straightforward subspace approximation (Branch et al. 2000), which restricts
the problem in (13) to a two-dimensional subspace S. In this subspace, the first dimension s1

is in the direction of the gradient g, and the second dimension s2 is an approximated Newton
direction (i.e. the solution to H · s2 = −g). Within the subspace S, (13) becomes easy and
efficient to solve since it’s always in a two-dimensional space.

3.4 Feature selection through Nash equilibrium

The weights learned from (5) have been used to suggest the significance of features in train-
ing data (Hastie et al. 2001). For example, in a typical logistic regression, the optimal vector
of weights are obtained from:

min
w

λwT w + C

n∑
i=1

ln(1 + e−ywT x) (14)
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Since each feature weight (aka. “regression coefficient”) describes to what extent that
feature contributes to the class of interest, only the features whose weights have large ab-
solute values are considered important. However, since data is transformed by the adversary,
weights learned from original data turn unreliable as time proceeds. Thus when facing an
adversary with transformation α on test set, the following optimization problem is more
robust to learn the logistic regression coefficient:

min
w

λwT w + C

n∑
i=1

ln(1 + e−ywT (x+α))

subject to α = arg maxJL(α)

(15)

Note that (15) is equivalent to (10) with Lagrange multiplier λ′. And this is why we
believe the weights obtained from Nash equilibrium (w∗ returned by Algorithm 1) are better
indicators for feature selection. The differences of feature weights learned from (14) and
(15) are shown in Sect. 4.3.

4 Experiments and analysis

In this section we report on the outcome of three experiments to test the efficacy of the
Stackelberg model introduced above. The experiments are carried out on both synthetic
and real data sets.2 We shall specifically focus on the performance of classifiers trained on
data sets obtained from the Nash equilibrium. In all the experiments we have set both the
Lagrange multipliers λ and λ′ to 1

2 , and C and C ′ to 1
n

. The convergence threshold ε is set
to 1e–4.

4.1 Rational behavior on synthetic data

We first report on an experiment carried out to ensure that the classifier and the adversary
do behave in a rational manner under the Stackelberg model. For this experiment we have
used SVM’s binary hinge loss function and so the maxmin problem in (10) is:

Maxmin: max
α

min
w

−λ′αT α + λwT w + C ′
n∑

i=1

max(0,1 − yiwT (xi + α))

We generated a two-dimensional data set using a normal distribution. The positive and
the negative class data was generated from a normal distribution with mean [μp

1 ,μ
p

2 ] = [1,4]
and [μn

1,μ
n
2] = [4,1] respectively and a common standard deviation I (the identity matrix).

We would expect a rational adversary to transform the data so that the positive class elements
are displaced towards the negative class and prevent the two classes overlap. Thus we expect
that the transformation in the first dimension to be in the range (0,3) and second dimension
in (−3,0). The data miner on the other hand is re-classifying at each step and moving the
separating hyperplane in order to minimize the false positive and false negative rates. Note
that the normal distribution has been used only to generate the data and not for the purpose
of solving for the Nash equilibrium.

2All source code and data sets used in our experiments can be obtained from http://www.cs.usyd.edu.au/
~weiliu/.

http://www.cs.usyd.edu.au/~weiliu/
http://www.cs.usyd.edu.au/~weiliu/
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Table 1 Iterations of Stackelberg model on synthetic data. w0 in the data miner’s reaction is the coefficient
of the intercept. The manipulations α1 and α2 made by the adversary are always in the range of (0,3) and
(−3,0) respectively

Iterations Adversary’s move Modified positives Data Miner’s reaction Adversary’s

α1 α2 μ
p
1 μ

p
2 w0 w1 w2 payoff

0 (initial) 0 0 1 4 0 −0.2962 −0.2955 0

1 1.1729 −0.5356 2.1729 3.4644 0 −0.2710 0.3715 0.0493

2 1.2219 −0.6505 2.2219 3.3495 0 −0.2700 0.3814 0.0508

3 1.2825 −0.8065 2.2825 3.1934 0 −0.2682 0.3943 0.0750

4 1.3533 −1.0221 2.3533 2.9778 0 −0.2646 0.4104 0.0852

5 1.4251 −1.3221 2.4251 2.6778 0 −0.2569 0.4278 0.1142

6 1.4595 −1.7262 2.4595 2.2737 0 −0.2412 0.4356 0.1608

7 1.4096 −2.2063 2.4096 1.7936 0.0347 −0.2265 0.4142 0.2294

8 (final) 1.4143 −2.4282 2.4143 1.5857 0.1322 −0.2287 0.3744 0.2696

Fig. 2 Detailed information of the iterations of Stackelberg model on synthetic data. The global maxima of
adversary’s payoff is observed at the 8th iteration

Figure 1a shows the initial data distribution of the two classes. The results of each itera-
tion of the algorithm are shown in Table 1. We can make the following observations: (1) the
algorithm converges at the eight iteration with the adversary’s payoff increasing from 0
to 0.2696; (2) The transformations made by the adversary (α1 and α2) are always in the
range (0,3) and (−3,0) for each of the two dimensions and we can conclude that the adver-
sary has acted in a rational manner; (3) Finally, as shown in Fig. 2, the adversary’s payoff
never increases after the eighth observation and the false negative rate is always higher than
the false positive rate as the adversary always moves positive instances towards the negative
instances. This results in more false detections than false alarms.

4.2 Email spam filtering

We have evaluated the Stackelberg model on a data set consisting of evolving email spam.
The objective was to compare the performance of classifiers built on a normal training data
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Fig. 3 Classification performance comparisons of models learned from original data (SVM and LogReg)
and equilibrium data (SVMeq and LogRegeq)

and on a training data set obtained at equilibrium after the application of the Stackelberg
algorithm.

The real data set consists of fifteen months of email obtained from an anonymous indi-
vidual’s mailbox (Delany et al. 2005). The data has 166 thousand unique features and the
feature types are words, characters and structure formats. The first three months of data was
used for training and the remaining twelve months for testing. We further split the test data
into twelve bins—one for each month. Since at any given time spam can be received from
diverse sources and spammers have different goals, the intrinsic nature of spam evolves over
time. A feature ranking process using information gain was carried out and the top twenty
features were selected to build the classifier (Witten and Frank 2002). In the comparisons
of classification performance between original data and the data obtained from equilibrium,
we use both linear SVMs and logistic regression which is in the form of:

Maxmini: max
α

min
w

−λ′αT α + λwT w + C ′
n∑

i=1

ln(1 + e−yiwT (xi+α))

The convergence of the maxmin problem above is similar to that of Fig. 2, and the game
reaches the Nash equilibrium at the 19th iteration. Here we focus on the performance of the
classifiers learned separately from the original data (x) and the equilibrium data (x+α∗). We
call the linear SVM and logistic regression model trained on original data as “SVM” and
“LogReg”; and those trained on equilibrium data as “SVMeq” and “LogRegeq”. Figure 3
shows the error rate of the four classification models on the test set split into twelve months.
It can be seen that the test error rates of the classifiers are lower for models based on training
on the equilibrium data (SVMeq/LogRegeq) than on the original data (SVM/LogReg). Espe-
cially in month 1 and 8 of Fig. 3a, SVMeq has almost zero error rate while SVM has an error
rate around 10%. To determine whether the differences between the two sets of classifiers
are significant we performed the Friedman test (Demšar 2006) with 95% confidence, under
the hypothesis that the error rates from the two types of classifiers are not significantly dif-
ferent. This hypothesis is rejected if the p-value of test is lower than 0.05. Table 2 shows the
statistics of the test.

From the low p-values of the Friedman test we can conclude that the error rates from
equilibrium classifiers are significantly lower than those of the normal classifiers. The rela-
tive success of the equilibrium classifiers vis-a-vis the normal classifiers is due to the a pri-
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Table 2 Friedman tests on the improvements of equilibrium classifiers over normal classifiers. A p-value
lower than 0.05 rejects with 95% confidence the hypothesis that the sequences of error rates in comparison
are not significantly different

Classifiers Error rate on each month’s emails p-value

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SVM 0.073 0.355 0.335 0.122 0.311 0.389 0.143 0.122 0.107 0.197 0.373 0.273 0.0044

SVMeq 0.00 0.236 0.207 0.056 0.202 0.253 0.089 0.031 0.067 0.133 0.251 0.178

LogReg 0.091 0.364 0.343 0.126 0.373 0.395 0.157 0.133, 0.123, 0.223, 0.387 0.287 0.0044

LogRegeq 0.062 0.242 0.231 0.082 0.251 0.262 0.107 0.089 0.084 0.151 0.267 0.193

ori prediction of the adversary’s possible movements under the Stackelberg model. Since
the data miner already takes into account the adversary’s future behavior, the knowledge
learned from the rational adversarial movements places the equilibrium classifier in an ad-
vantage compared with a normal classifier.

4.3 Handwritten digit recognition

In this section we examine the influence of equilibrium feature weights on the problem of
feature selection. We use the classic US Postal Service (USPS) dataset which was created
for distinguishing handwritten digits on envelopes (Hastie et al. 2001). This dataset consists
of gray-scale images of digit “0” through “9” where each image consists of 16 × 16 = 256
pixels or features in the classification problem. We assume that the data was generated in an
i.i.d. manner and the objective of the data miner is to separate the digits while that of the
adversary is to transform an image so that one digit can be confused with another. We use
logistic regression in this experiment to examine feature weights as explained in Sect. 3.4.

Each digit has 2200 images, and we divide them equally into training and test set. All
combinations of pairs of digits from “0” to “9” are tested and we select the ones whose false
positive rates are higher than 0.02 in the initial game state. These are (2,6), (2,8), (3,8),
(4,1), (5,8), (7,9). We then apply the Stackelberg algorithm on these six pairs. In this
experiment the first digit of a pair is the class of interest for the adversary (i.e. the positive
class).

For all the six pairs the Nash equilibrium is reached within 50 iterations of play. Here
we ignore the details of reaching the equilibria, since these patterns are similar to what we
have analyzed previously. To demonstrate the reliability of feature weights learned from the
original data, we check the logits (i.e. the z in a logistic function 1

1+e−z ) on predicting test sets
with different adversarial transformations. Figure 4 shows an example on the classification
of “2” against “6”. Note that an instance is classified as negative if its logit is below zero.
As we can see from Fig. 4a, in the initial state of the game, most of the actual positives have
their logits around the value of 1 (the positive class label) and very few of them are below
zero. But as soon as the adversary starts to move (Fig. 4b), the performance of the initial
feature weights drops discernibly. When the adversary plays her equilibrium strategy, there
are substantially more false detections (Fig. 4c) and some of the logits are even below −1
(the negative class label). This is a situation where equilibrium weights should be applied.
We choose several of the undetected transformed positive images and show them in Fig. 5
in comparison with their original images. While the transformations from Fig. 5a to 5b
and 5c to 5d is carried out by adding values to pixels and of Fig. 5e to 5f by subtracting
values of pixels, the modification on Fig. 5g contains both additions and subtractions for
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Fig. 4 Comparisons of logits targeting on positive class on differently transformed test sets from the experi-
ments of handwritten digit pair (2,6). Among the 1100 test images, the first 550 are actual positives and the
rest 550 are actual negatives. A positive instance is undetected if its logit is below zero

Fig. 5 Examples of transformed images from Stackelberg Nash equilibrium. To confuse with the digit in
negative class, the adversary adds values of pixels on (a) and (c), removes values from pixels of (e), and does
both additions and deletions on (g)

manipulation. The difference of initial weight w0 and equilibrium weight w∗ results from
training processes where (for example) the former is learned from Fig. 5a, 5c, 5e, and 5g, and
the latter from Fig. 5b, 5d, 5f, and 5h. To gain a better understanding of the differences, we
discard the intercept weight, and plot the weights of the 16 × 16 pixels in a graph, as shown
in Fig. 6. Due to space limitation, here we only present the weights from the classification
of “2” vs. “6” (the weights from other digit pairs have similar observations).

The gray-scale color-bars in Fig. 6 shows the weights of features contributing to the two
classes: the pure white pixels contribute the most to the digit “2”, the pure black ones con-
tribute most to the digit “6” and the ones whose degrees of color are between pure white and
pure black (i.e. weights are close to zero) are features that are less important. The robustness
of w∗ can be seen from the difference of Fig. 6a and 6b. For example, w0 (Fig. 6a) considers
the pixel on the very upper right corner as a significant indicator of “6” (as it is pure black),
which results in the misclassification of Fig. 5h. However, w∗ (Fig. 6b) treats that pixel as
an unimportant feature, and instead gives heavy negative weight to the pixel on the upper
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Fig. 6 Comparison of feature weights obtained from initial game state w0 and Nash equilibrium w∗ in the
classification of digit pair (2,6). The color-bars besides the figure shows the relationship between the colors
and feature weights. The pure white pixels contribute the most to the digit “2”, the pure black ones contribute
the most to “6”

left corner which can not be manipulated to confuse with “6”. Similar patterns can also be
observed from other pixels. These types of characteristics of w∗ make equilibrium weights
more reliable in the selection of features in an adversarial setting.

5 Conclusions

In this paper we have studied the classification problem in the presence of adversaries. In
this scenario data miners produce classification models and adversaries transform the data
to deceive the classifier. We have modeled the interaction of a data miner and an adver-
sary using a sequential non-cooperative Stackelberg model, where the two players compete
within a constant-sum game. The payoff function of the adversary is derived from the data
miner’s regularized loss function, which is formulated into a maxmin optimization problem.
We also show that the solution of the maxmin problem is the equilibrium strategy pair where
the game achieves highest false negative rate and lowest transformation cost simultaneously.

We have demonstrated that classifiers trained on equilibrium data significantly outper-
form normal classifiers against adversary’s data manipulations. This is due to the fact that
the data miner learns not only from the original data, but also from the predictions of the
adversary’s possible future rational movements. This leads to more robust classification
boundaries at test time. We have also illustrated that feature weights obtained from Nash
equilibrium are more reliable for the selection of features which are more robust to adver-
sarial manipulation. It is important to identify the features that a rational adversary will
most likely modify to deceive the classifier, and this information can be obtained from the
equilibrium weight vector.

In future we plan to investigate the use of coalition games to model scenarios in which
multiple adversaries exist and collaborate against one data miner.
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