
Mining Anchor Text for Query Refinement

Reiner Kraft and Jason Zien
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

{rekraft, jasonz}@almaden.ibm.com

ABSTRACT
When searching large hypertext document collections, it is often
possible that there are too many results available for ambiguous
queries. Query refinement is an interactive process of query modi-
fication that can be used to narrow down the scope of search results.
We propose a new method for automatically generating refinements
or related terms to queries by mining anchor text for a large hy-
pertext document collection. We show that the usage of anchor
text as a basis for query refinement produces high quality refine-
ment suggestions that are significantly better in terms of perceived
usefulness compared to refinements that are derived using the doc-
ument content. Furthermore, our study suggests that anchor text
refinements can also be used to augment traditional query refine-
ment algorithms based on query logs, since they typically differ in
coverage and produce different refinements. Our results are based
on experiments on an anchor text collection of a large corporate
intranet.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Query Formulation, Search Process; H.3.1 [Infor-
mation Storage and Retrieval]: Content Analysis and Indexing

General Terms
Algorithms

Keywords
anchor text, Web search, query refinement, rank aggregation, query
logs, searching and ranking, data mining

1. INTRODUCTION
The popularity of search engines on the Internet has led to a

nearly uniform interface for searching: a single input box that ac-
cepts keywords. This simple interface has pushed the burden of
inferring the intent of the user’s information need down into the
search engine. One of the most important classes of queries that
must be answered are ambiguous queries - broad queries that have
many results in possibly many different domains of knowledge, for
instance, “research” or “java”. In fact, short single word queries are
quite commonly used [23]. Over 22.5% of web queries studied in
[26] were single term queries. Because of this, there are potentially
many matches, most of which are not relevant to the user’s actual
information need. The specific form of query refinement that we

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

examine is one where the user’s query is expanded with additional
terms using an algorithm that automatically tailors its results to the
information in the document collection.

A recent study [13] examined several aspects of anchor text (e.g.,
their relationship to titles, the frequency of queries that can be sat-
isfied by anchor text alone) in a large intranet. They showed evi-
dence that anchor text summaries, on a statistical basis at least, look
very much like real user queries. This is because most anchor texts
are succinct descriptions of the destination page. This similarity
between search queries and anchor texts can be exploited with an
algorithm that automatically completes, refines, or shows related
queries, and helps users find relevant search results. Furthermore,
the refinements help to better explore a knowledge domain in more
depth in cases where a user has only partial domain knowledge.

The paper first defines the terminology used and describes the
proposed anchor text mining techniques in more detail. Our ap-
proach is experimental, based on a study of a large corporate in-
tranet comprising a document corpus of 4 million unique HTML
documents.

We discuss the problem itself, possible solutions to it, and our so-
lution to the problem, including details on how we collect and sort
anchor text, preprocess and clean it to remove noise, perform qual-
ity analysis to obtain a static rank using rank aggregation method-
ologies, and develop tooling so that it can be integrated into a Web
search engine to produce query refinements during query execu-
tion.

Then we explain how we built and used a quality benchmark,
which allowed us to further tune the presented mining algorithms
and experiment with different preprocessing, filtering steps, and
relevancy ranking methods.

We then describe how we conducted a user study to evaluate the
usefulness and usability of the proposed approach. The goal of
this user study was to qualitatively compare our query refinement
algorithms based on anchor text to techniques that are based solely
on text obtained from a document corpus or a query log. We discuss
the results obtained from the user study in detail.

At the end we compare the proposed methods with related work,
and discuss future work.

We show that for the particular application of providing query
refinements or suggesting related queries, our algorithms based on
mining anchor text outperformed algorithms based on mining the
document corpus. Furthermore, our anchor text refinements can
also be used to augment traditional query refinement algorithms
based on query logs, since they typically differ in coverage and
produce different refinements.

666

The paper focuses on query refinement on a large corporate in-
tranet, but we are confident that the proposed mining methodology
for anchor text mining represents a general framework with other
applications to Web search.

The main contribution of this paper is a novel use of anchor text
for query refinement and its integration into a search engine so that
it can be efficiently used during query execution.

We hope to stimulate more research to further enhance these
mining algorithms, and build new applications that can help to im-
prove the overall Web search experience and quality.

2. TERMS AND DEFINITIONS
First, we need to define whatanchor text is. We define anchor

text to be the “underlined or highlighted clickable text” that is dis-
played for a hyperlink in an HTML page when rendered in a Web
browser (the text that appears within the bounds of an<a>
HTML tag). For instance, for a tag of the form:

foo

we would say that the anchor text is “foo”, which is associated
with the document “index.html”.

All of the anchor text in a document corpus pointing to a target
document is referred to asanchor text documentfor that docu-
ment. So for each document with hyperlinks pointing to it (e.g.,
“index.html”) we have an“about” document or simplyanchor text
documentthat comprises all anchor texts for that target.

We also use the synonymanchor text summarythat refers to an-
chor text. However, an anchor text summary may also include some
text before or after the anchor text to better capture the context of
the anchor text.

3. REFINING QUERIES USING ANCHOR
TEXT

Based on the observation by Eiron and McCurley [13] anchor
texts and queries are very similar. A naive algorithm for query
refinement would therefore just need to look at the original user
query, find all anchor texts that are similar, and present these to the
user as query refinements or related queries.

3.1 Problems with using raw anchor text
However, there are many difficulties that make this simple algo-

rithm fail quickly: For popular queries, there are typically too many
anchor texts that match a single term query. Furthermore, a large
portion of anchor texts are automatically generated by Web author-
ing tools, or are for other reasons useless. We need to rank the
importance of anchor text summaries according to the user’s orig-
inal search query to obtain a small list of high quality anchor texts
that are similar and semantically related to the query, but should
contain additional useful query terms. The anchor text summaries
from this ranked list itself can then be used as subsequent queries.

One approach to the problem would be to cast this problem as a
traditional document retrieval problem. We could index the anchor
texts, treating each unique anchor text as a document, and then rank
and return the documents using a normal search engine’sTF ∗
IDF scoring. This approach has a number of limitations:

1. Treating each unique anchor text as a document does not take
into account the multiplicity of that anchor text.

2. Documents with highTF (term occurrence count in a docu-
ment) have no bearing on the quality of the refinement.

3. Repetitions of a term in a document may produce unnatural
queries for refinement.

4. TheIDF (inverted document frequency) is not relevant, since
a large fraction of the queries we wish to refine are single
term queries.

3.2 Using rank aggregation methods to select
query refinements

Instead, we need a ranking method which can take multiple fac-
tors into account, and can incorporate the factors that are relevant to
producing good query refinements. In fact, there is recent work [14]
which shows that median rank aggregation is an efficient, flexible
ranking algorithm for combining multiple factors which provides
nice theoretical properties.

In median rank aggregation, givenn elements (in our case, an
element is a unique anchor text), andk lists of cost values over
those elements, a final ranking is produced. To produce the final
ranking, each list,Li (1 ≤ i ≤ k) is sorted to obtain a ranked
ordering of the elements in each list. The final rank is generated by
computing the median of the ranks of each element. We then sort
the elements using that median value to obtain the final rank of the
element (we break ties arbitrarily). Obviously, for large lists, this
would be prohibitively expensive to compute at query time. Our
system pre-computes the ranks of all of our query refinements once
at index build time so that they are available at almost no cost at
query execution time.

In our method, we used median rank aggregation over three fac-
tors:

1. The weighted number of occurrences of an anchor text
WCOUNT . Our weighting was based on the particular
type of anchor text (if the anchor was pointing to something
in the same directory, on the same site, or a different site).

2. The number of terms in the anchor text. We would like query
refinements to have few terms, since we wish to only slightly
narrow the scope of a query.

3. The number of characters in the anchor text. We wished to
have short, concise query refinements.

3.3 Benefits of anchor text
By making use of anchor text instead of generating refinements

using document contents, we obtain a number of significant bene-
fits:

• Anchor text data is typically an order of magnitude less than
the total document collection data. Thus, processing it is
much faster than processing the document collection.

• Pages with a large amount of anchor text pointing to it tend
to have higher indegree (number of links pointing to it) and
higher ranks based on link analysis. Thus, using these an-
chors as refinements leads to results that are relevant to the
document collection.

• The use of anchor text summaries as candidates for refine-
ment has another potential benefit. Since these refinements
occur frequently in anchors, it is likely that these point to
popular sites. Thus, the refinements capture a view of the
popularly linked-to information in the data set. In addition,
selecting one of the refinements then causes the search en-
gine to retrieve results that contain these frequently occurring
anchors, leading to good results.

667

3.4 Incorporating Refinements into a Search
Engine

We integrated query refinements into theTrevi intranet search
engine. Trevi is used to search the IBM intranet and serves all IBM
employees worldwide. In Trevi, a query is sent down two paths.
The primary path goes to the main index, where documents are
ranked using aTF ∗ IDF scoring function combined with other
factors such as lexical affinities and static ranks.

The other path is a mechanism called“QuickLinks” where a set
of result values is returned based on a key lookup. The user’s parsed
query is looked up using an exact match on the quicklink keys and
the results are returned in the order given by the quicklink phrase’s
pre-assigned static rank. This mechanism was designed to allow
administrators to hardwire known good results to common or im-
portant queries for display at the top of the search results. Further-
more, this mechanism can also be used to search other data that
conforms to a file-based key/value specification format.

When implementing our interactive tool for query refinements
we decided to use this QuickLinks mechanism, since it represents
a convenient interface for prototyping and experimenting with the
refinement algorithms. Our main task essentially in implement-
ing our anchor text query refinement method was in generating a
list of index terms and phrases associated with each anchor text
summary and associating a static rank to it. The way we mapped
refinements into this framework was as follows: For each anchor
text summary, we used a sliding window of size from one to the
number of terms minus one in the summary, and we output each
anchor phrase as a quicklink key. For instance, suppose we had the
anchor: “IBM Almaden Research Center”. This would generate
the following quicklink keys:

• IBM

• Almaden

• Research

• Center

• IBM Almaden

• Almaden Research

• Research Center

• IBM Almaden Research

• Almaden Research Center

Any query that contains one of the above quicklink keys would
cause the anchor text summary“IBM Almaden Research Center”
to be generated as a potential query refinement. At query time, the
top k = 5 ranked quicklinks with a key matching the query are
then returned and displayed to the user.

4. MINING ANCHOR TEXT

4.1 Data Set
Our crawl of the IBM intranet consisted of over 33 million an-

chor texts (2.8 GB of parsed anchor text data) and over 4.0 million
unique documents (totaling 60GB of parsed document data) after
duplicate elimination.

We plotted the distribution of the length of the the anchor texts
(using the number of terms as the length) on thex axis and the
number of occurrences of anchor texts having that length on the

y axis on a log-log scale in Figure 1, and, as expected, we see it
is a Zipfian distribution. On that same graph, we also plotted the
distributions for a query log of349, 471 intranet searches, and it
shows the same characteristics. The reason why it is shifted down
is because the number of items in that log processed is two orders
of magnitude less than the number of anchor texts. This anchor text
data was used as the basis for all our experiments and user studies.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000

c
o
u
n
t

of terms

’queries.dat’
’anchors.dat’

Figure 1: Histogram over our anchor text collection and a
query log

4.2 Benchmark
To validate our approach we first built a benchmark consisting

of 29 broad queries and manually rated roughly 5000 query refine-
ments that were derived from our anchor text mining algorithms.
See Appendix A for the list of these queries. Given a query, the
rating was whether a given query refinement in our opinion was
considered to be useful in refining the query or not. We then used
this benchmark as a basis to further tune our anchor text mining
algorithms. As a quality metric we chose to measure precision at
five (P@5), because we want to measure the quality of the top five
refinement suggestions displayed to the user.

4.3 Preprocessing anchor text summaries
A query refinement with too many terms might be too restrictive

and too specific. We sought to determine the number of anchor
terms needed to produce good query refinements by varying the
number of terms allowed in anchor text summaries. We therefore
introduced two parametersMINCOUNT andMAXCOUNT .
Anchor texts with too few (less thanMINCOUNT) or too many
terms (greater thanMAXCOUNT) were discarded. We typically
setMINCOUNT to be two since refinements with smaller size
are not useful in our scenario. We experimented then with limiting
the maximal number of terms between2 ≤ MAXCOUNT ≤ 5.
In the experiments when using our benchmark it turned out that
MAXCOUNT = 3 produced the best refinements.

We define the termwindowto be a number of consecutive terms.
When we say we are using awindow sizeof k this means we are
looking atk consecutive terms.

The window sizewas used as a parameter for our algorithms.
For instance, we investigated the effect of counting stop words (see

668

Appendix B for the list) or not for choosing good refinements by
considering the window size parameter. For instance, suppose we
choose a window of size two. If we count stop words, the an-
chor text “the research center ” has a count of three terms.
If we are not counting stop words, it would have a count of two
terms (since “the” is considered to be a stop word). Using the
count and thewindow size, we determine if a anchor text refine-
ment would pass the filter (e.g.,count ≥ MINCOUNT and
count ≤ MAXCOUNT .

We need to point out that we did not eliminate anchor texts that
contained stop words from the anchor text collection. Instead we
relied on the window size to eliminate useless anchors. For in-
stance, considerMINCOUNT = 2, and an anchor text “the
solution ”. If we do not count stop words the number of counted
terms for this anchor text would be one (since we ignore the term
“ the ”), and therefore it would not pass the filter. However, the an-
chor text “cats and dogs ” would have a count of two “(and ”
is stop word), and therefore it would pass the filter. The advantage
of this method is that we keep the original annotation of the user
who authored the anchor text, which leads to more natural-looking
queries. If we would eliminate stop words the anchor text in the
previous example would be converted to “cats dogs ”, which
does not reflect the original intention of the author.

The best results were found with a window size of three, as
shown in Figure 2. In addition, our experiments showed that count-
ing stop words (the.SW curves) was generally slightly inferior to
not counting them, though the results are very close in many cases.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5

Pr
ec

isi
on

 a
t 5

Max Number of Terms in Refinement

’MedianRank.dat’
’WCountRank.dat’

’MedianRank.SW.dat’
’WCountRank.SW.dat’

Figure 2: Precision @5 using various anchor text mining algo-
rithms

4.4 Ranking of anchor text summaries
We compared two methods for generating the static ranks. In the

WCOUNT ranking style, we assigned a rank to each anchor text
based on the following formula:

WCOUNT = UINT MAX −
(anchorCount ∗ 1000000

+anchorSameHostCount ∗ 1000

+anchorSameDirCount)

Each of the values,anchorCount , anchorSameHostCount ,
andanchorSameDirCount were limited to maximum values of
4000, 999, and 999 respectively in order to fit them intoWCOUNT ,
which was represented as a 32-bit number (UINT MAX is the
maximum unsigned integer value for this 32-bit number)

In the median rank aggregation style, we use several ranking cri-
teria:

1. theWCOUNT (lower is better)

2. the number of terms in the anchor text summary (lower is
better)

3. the number of characters in the anchor text summary (lower
is better)

Each of these criteria essentially represents a cost function, and
an anchor text will probably rank differently for each of these. For
instance, an anchor text could have a lowWCOUNT cost, but too
many terms. Rank aggregation will combine these different costs
for each anchor text by calculating the median rank, and assigning
this rank to be the static rank for this anchor text. With such a
flexible scheme, one can easily incorporate other cost functions to
influence the results.

We calculate the cost of each anchor text with all cost functions.
This results in three lists of anchor texts, each of these lists ranked
according to the corresponding cost function. Then we sort each list
by its cost and compute the median rank based on the ordinal rank
of those sorted factors for each anchor text summary to produce its
final rank.

On empirical benchmarks we found that the median rank pro-
duced the best results, shown in Figure 2. In addition, we note that
those methods which counted stopwords (the curves labelled with
names ending in.SW) performed worse than those that did not, al-
though for three or more maximum terms, they were all extremely
close.

4.5 Performance
Since we generate all of the possible refinements at index build

time, the large sorts needed to produce the median rank aggregation
values have no impact on the query runtime. Generating all of the
quicklinks for our anchor text took about 12 minutes on a 2.4Ghz
IBM X345 server, so it was not prohibitively expensive.

The performance impact of the quicklinks feature on queries is
negligible (in the tens of milliseconds), because typically there are
very few quicklinks retrieved for each query, and there is usually
only one disk access needed per query.

5. USER STUDY I: VALIDATION OF
EVALUATION BENCHMARK

To validate the usefulness and quality of our algorithms, we con-
ducted two user studies. The focus of the first study was to compare
our query refinement algorithms based on anchor text mining to two
similar mining methods that are based on the document collection
text, and measure the qualitative differences using the queries from
our quality benchmark. Then in the second user study we use dif-
ferent queries to see how the algorithms generalize and also include
query log data for comparison.

669

Overall we had 37 users participating in user study I. Each user
had to evaluate the usefulness of query refinements for a list of
twenty queries. For each query we presented up to 25 query refine-
ments. Overall we collected 8,904 user ratings.

5.1 Algorithms
The purpose of the first user study was to compare the quality of

query refinement suggestions of three algorithms:

1. ANCHORWe picked the anchor text refinement algorithm
that was the best from our quality benchmark. For further ref-
erence we will refer to this refinement algorithm asANCHOR.
TheANCHORmethod used median rank aggregation described
in Section 4.4 and did not count stop words.

2. DOC.SWThe first document collection based method which
we wanted to compare against, which we will refer to as
DOC.SW, gathers all of the most frequently occurring two
and three term phrases (using the number of documents they
occur in, not their total occurrences). The phrases were gath-
ered by counting occurrences of all phrases using a sliding
window through the full text of all of the documents in the
collection. We then ranked these phrases using a median rank
based on the document occurrence count (higher being bet-
ter), the number of terms in the phrase (fewer being better),
and the number of characters in the phrase (fewer being bet-
ter).

3. DOCThe second document collection based method we com-
pared to was based onDOC.SW, except that stop words were
not counted when evaluating a phrase’s word count (so, for
instance, “the thinkpad” would not be considered since it did
not contain two or three valid words). We will refer to this
method asDOC.

As a corpus we used the same large document collection that was
used to tune the mining algorithms comprising roughly 4 million
unique HTML documents collected from the IBM intranet. Since
the total document data set is an order of magnitude larger than the
anchor text data, it is not surprising that one of the disadvantages
of theDOCandDOC.SWmethods is the substantial processing time
needed to produce the query refinements.

Since we wanted to focus on the effect of the used document cor-
pus we made sure that the basic mining algorithm used forANCHOR,
DOC.SW, andDOC.SWwas as similar as possible to allow for a fair
comparison.

5.2 Conducting the User Study
We picked twenty broad topics (a subset of our benchmark topic

set). See Appendix C for the complete list.
For each of these topics we generated five query refinements

per algorithm: We picked the five top ranked suggestions from
ANCHOR, DOC.SW, andDOCand mixed them randomly into one
list. Duplicate refinements were collapsed into one. We then pre-
sented the broad topic along with the list of refinements, and asked
the users to rate the usefulness of these refinements.

The instructions we presented to the users before were as fol-
lows:

Over the next pages we will show you various search
queries or topics. Imagine that for a specific topic you
want to learn more about it and explore what is out
there on the IBM intranet. We show you a list of poten-
tially related queries for each topic. We ask you then to

rate each of these related search queries whether you
think it is helpful in learning more about the original
topic or not. You can ask yourself the question “If I
want to learn more about that topic, would I issue the
presented query to a search engine in hope of learning
more about that topic? Or, do I think that the pre-
sented query is useless to further explore the topic?”
Also, does the query suggestion help to refine or nar-
row down the scope of a broad topic?

We then asked the users to rate each refinement as

useful or helpful to explore, learn more about, or refine the topic
on the IBM intranet.

not useful or helpful to explore, learn more about, or refine the
topic on the IBM intranet.

don’t know in case the user was uncertain.

and provided an example for each of these ratings.
We present one example for the topic “java” to better illustrate

what the generated refinements look like:

• java client

• java education

• v8 java

• the java

• tool java

• java 1

• developer java

• visualage for java

• using java

• java xml

• for java

• regex for java

5.3 Results

Rating ANCHOR DOC DOC.SW

Useful 0.76 0.55 0.36
Not Useful 0.17 0.36 0.58

Don’t Know 0.07 0.09 0.06

Figure 3: Fraction of votes for each method

The user study (Figure 3) conclusively confirmed that our min-
ing techniques for anchor texts outperform similar techniques that
are based on document texts in the quality of the suggested refine-
ments: The precision at five for theANCHORmethod was 0.76,
which was 38% better than theDOCmethod, and 111% better than
theDOC.SWmethod.

Manually examining the refinements generated byDOC.SW, we
found that it suffered from poor precision because it often included
stop words and prepositions in its refinements.
The DOCmethod was much better, because stop words were not
counted. However, this method often generated refinements, which
were unnatural, or that were not general concepts. In contrast, the
ANCHORmethod was able to produce excellent refinements which
expressed the concepts reflected by the corpus.

670

6. USER STUDY II
Since User Study I used queries from our evaluation benchmark,

one question which comes to mind is, was our method tuned and
overspecialized to our training set? User Study II performs exactly
the same study as User Study I, however, we instead used a different
set of 22 queries to show that our method generalizes to queries not
in our training set.

In addition, we added another data set for query refinement for
comparison: query logs. Based on the similarity between anchor
text and search queries we expected query logs to be quite valuable
as an additional source to possibly augment anchor text data.

We processed and ranked queries in the query logs in a manner
as similar to our anchor text algorithm as possible, to see if real user
queries would be useful as queries for refinement. Our query log
contained 349,471 real user queries that were collected over a four
month period. The processing steps comprised using the median
rank of their frequency (higher is better), number of terms (lower
is better), and number of characters (lower is better). We refer to
this method asQUERYLOG. In QUERYLOGstop words were not
counted. In addition, we introduced theQUERYLOG.SWmethod
where stop words were counted.

Useful Not Useful Don’t Know

ANCHOR.SW 0.64 0.25 0.11
ANCHOR 0.63 0.27 0.10

QUERYLOG 0.63 0.24 0.12
QUERYLOG.SW 0.63 0.25 0.12

DOC 0.51 0.40 0.09
DOC.SW 0.30 0.64 0.06

Figure 4: Fraction of votes for each method

User Study II received 13,177 total ratings from 30 unique par-
ticipants. From Figure 4, we see that the anchor text-based methods
and query log-based methods were nearly identical. Both sources
of data produced queries that were judged useful for refinement by
users. Since the query log data consists of actual user queries, we
expected that users in the study would judge them as good can-
didates for refinement, so we were pleased that our anchor-based
method generated candidates were just as good or better. Does that
mean that one of the data sources (anchors or query logs) is irrele-
vant?

We examined the overlap of anchor texts and query logs to an-
swer this question. If there is a significant overlap, then one of the
data sources would be redundant. We first processed the query logs,
and broke them down into two halves (QL1 andQL2). In order
to get a baseline number, we compared the overlap betweenQL1
andQL2. We took all unique queries with at least two terms, and
found thatQL1 had 47,405 queries andQL2 had 47,915 queries,
and there were 6,577 that were common to both. Next, we gath-
ered all of the unique anchor texts with at least two terms (there
were 457,288 of them), and found that there were only 2,180 that
overlapped withQL1. Similarly, when comparing toQL2, the an-
chor texts overlapped only in 2,287 queries. In both cases, this is
substantially fewer than the overlap betweenQL1 andQL2.

We conclude that the coverage of anchor texts and query logs
differs substantially enough that both are useful for query refine-
ments. However, as we have pointed out earlier, anchor texts have
advantages in that they are derived from the actual data, and thus
reflect the document collection’s actual content. In contrast, query
logs reflect the exploration of users. In some cases they may reflect
the data set, in other cases, they may just reflect the users’ hopes
about what the data set contains.

In summary, our anchor text based methods have produced good
query refinements, substantially outperforming document-based
methods. In addition, we found that using our median rank ag-
gregation method over query logs perform equally well, though the
coverage differs, leading to different refinements that can be used
to augment anchor text based refinements.

7. RELATED WORK
Related work can be broken down into three broad categories:

First, work related to anchor text processing. Second, ranking and
rank aggregation methodologies for Web search. Third, research
related to query refinement.

7.1 Anchor Text Processing
The idea of propagating anchor text to the page it refers to was

published and implemented by McBryan [20] in 1994. Later Brin
and Page [3] implemented the first prototype of the Google search
engine. They pointed out that one of the useful properties of an-
chor text is that it often provides more accurate descriptions of
web pages than the pages themselves. Second, anchor text exists
for pages or content that could not be otherwise indexed by a text
search engine (e.g., images). In these scenarios anchor text was
mostly used to improve indexing and retrieval of a hypertext docu-
ment collection. Our proposed mining and ranking algorithms take
anchor text processing to a higher level. The proposed rank ag-
gregation methods can use application specific ranks, which make
them possibly suitable for a variety of Web search related tools ap-
plications (e.g., spell checking).

In [9] ARC (Automatic Resource Compiler) was developed as
part of the CLEVER project to automatically generate lists of hubs
and authorities related to ambiguous queries. They used the anchor
text as well as a window of terms around the anchor text to deter-
mine if a destination was on topic or not, and adjusted the weights
of the links in their web graph accordingly.

Other applications of anchor text are in the area of cross-language
information retrieval where mining of anchor texts and link struc-
tures is used for automatically extracting translations of Web query
terms [19].

Overall our mining algorithms are more general: We first pre-
process all anchor texts to remove noise and low-quality content.
Then we perform a ranking of this anchor text collection using rank
aggregation methodologies. Depending on the application, we can
plug-in different cost functions. Furthermore, the algorithms take
various parameters that can be adjusted to specific needs. That re-
sults in an application specific tuned anchor text collection, which
can then be used for different purposes. It would be interesting to
investigate how cross-language information retrieval would benefit
from our mined anchor text collection.

Craswell and Hawking [11] studied anchor text in the context of
finding specific Web sites (the site finding task). Queries of this
nature are also referred to asnavigational queries[4]) or home
page finding queries. In their experiments they did a comparison
between using a document collection versus using an anchor text
collection. The retrieval methods and ranking algorithms used in
both cases were exactly the same. In their results they pointed out a
strong advantage of using the anchor text based method to find spe-
cific Web sites. They concluded that anchor information is more
useful than content for the site finding task, even if it is not fur-
ther pre-processed or tuned. Our experiments also suggests that an
anchor text collection is more useful for query refinement than a
document collection. Furthermore, they point out another strength
of the anchor text collection: Anchor text can enable retrieval with
common misspellings or alternate names. This property enables

671

our refinement algorithms to suggest refinements when traditional
content based refinement techniques would fail: Our refinements
are based on the collective input of possibly many different authors
expressing the same topic in a variety of styles and different word-
ings (including errors and typos).

Furthermore, Eiron and McCurley [13] provide very interesting
insights and findings related to anchor text. They argue that anchor
text is typically very short, and provides a summarization of the
target document in context of the source document. They studied
a search query log and confirmed that search queries are typically
only a few words long, and express a summary of a subject that
the user is interested in. One of their key observations is that (on
a statistical basis at least) anchor texts and real user search queries
are very similar. These observations initially motivated us to in-
vestigate whether we can leverage this similarity between anchor
text and search queries and use it as a basis for query refinement.
However, we realized that the proposed mining techniques can be
applied in a more general context, and may be used possibly for
various other Web search tools and applications.

7.2 Rank Aggregation Methodologies
There are a plethora of different ranking methodologies for Web

information retrieval available [16], [17]. We can break them down
into two categories:staticanddynamicschemes. A static cost rep-
resents a global quality assessment of a document based on some
criteria independent of the search query, whereas a dynamic cost
(e.g., TF*IDF) is calculated during query execution and takes the
search query itself into consideration. For instance, a popular static
ranking cost function is Pagerank [21], which is used by major Web
search engines. In between there are hybrid approaches that com-
bine static and dynamic ranks (e.g., GURU [5]).

The problem we were facing after pre-processing the anchor text
collection was that many terms would appear often in different an-
chor texts. Given a broad query term this will lead to an unmanage-
able number of refinements suggestion for a user. It was clear that
we need to have at least one scoring method that evaluates the qual-
ity of an anchor text for being a “good” refinement. Since there are
many desirable properties for refinements (e.g., length, number of
terms) we required a method that systematically combines different
static cost functions in a fair way.

Rank aggregation methods as proposed by Dwork et al. [12]
address exactly this problem. These methods are based on social
choice theory. They are typically computationally expensive and
are targeted at small lists. In our work we also need to rank and
prioritize large lists of anchor texts. In addition, we may have many
different static ranks as described earlier, which makes it difficult
to apply these techniques. However, more recent rank aggregation
work [14] addresses this scaling problem. Therefore we adopted a
similar static rank aggregation using the median rank for large lists
to obtain one static rank per anchor text. This rank is then used to
prioritize anchor text during query processing.

Overall the topic of ranking is highly subjective. There may be
other static factors or features for query refinement that we have
not considered yet. We have chosen the rank aggregation architec-
ture, because it is quite flexible and extensible: It makes it easy to
experiment with different scoring functions (e.g. add, remove, or
replace a new scoring function).

7.3 Query Refinement
Query refinement is a well-known and important information re-

trieval tool (see Kobayashi and Takeda [17] for a survey on Web
information retrieval).

Query refinement comprises query modification or expansion

techniques [7], [22] as well as relevance feedback [6]. We briefly
describe related work and how it differs from our approach. For the
purpose of our paper we are mostly concerned with work related to
query expansion or query refinement in general.

Besides the application of relevance feedback, query expansion
or modification is typically based on either local [25] (i.e., results
sets) or global [16] (i.e., thesauri) document analysis. Instead, our
work is focused on an anchor text collection derived from a hyper-
text document collection (e.g., HTML corpus). Looking at anchor
text, instead of using local or global document analysis represents
a major contribution of this paper.

A recent example where a major search engine started to in-
corporate query refinement in its search application is AltaVista’s
PrismaTM tool [1]. This tool enables interactive narrowing of search
result sets. Anick analyzed users’ session logs to investigate their
Web search behavior when offered a simple form of interactive
query refinement using PrismaTM . We implemented a similar in-
teractive query refinement tool that is based on our anchor text
mining algorithm and integrated it into our Trevi intranet search
engine. Our motivation was to collect usage data on how users are
accepting the tool. Over a period of roughly three months we col-
lected 119,042 queries. Only 1,707 of them were derived from our
interactive refinement tool(∼ 1.4%). This confirms Anick’s re-
sults where also the vast majority of reformulations were still done
manually. We intend to conduct more research on how to further
improve interactive tools to increase the tool usage.

Carmel et al. [8] proposed a method of using lexical affinities in
which lexical affinities were used to automatically refine queries.
Their work differs from ours in that they do not show the users
the lexical affinities, but instead, use them to reorder the results
returned, and also, they do not make special use of anchor text.

Cooper and Byrd [10] developedOBIWAN, a Java based system,
which is able to recognize domain-specific multi-word names and
terms. This system comprises aContext Thesaurus, which allows
users to look up vocabulary items that are related to the original
query terms. Again, the difference to our method is that we have
chosen anchor text as a basis to produce refinement suggestions,
whereas OBIWAN usespseudo-documentsthat are derived from
the original document collection. For each vocabulary item there is
one pseudo document, and it contains context information in which
the item occurs in the collection. Similarly, our anchor text com-
prises context information for the query terms. There are different
approaches to query refinement [2] and finding related topic terms
[18] but all share in common that they are based on a document
corpus. Our user study showed that the quality of our anchor text
refinement suggestions outperforms document based suggestions.

Vélez et al. [24] introduce the notion ofconcept recall, an exper-
imental measure of an algorithm’s ability to suggest terms humans
have judged to be semantically related to an information need. We
set up our user study to achieve something similar to concept recall:
We asked whether a refinement suggestion isuseful, or helpful to
explore, learn more about, or refine a broad topic. The empha-
sis really was on validating that the algorithms produce good and
useful query refinements, which they did.

In addition, V́elez et al. measure the precision improvement of
their refinement algorithms. The idea is to measure the effect of
adding suggested terms to the original query. In our experiments we
manually investigated the precision (P@10) of the original query,
and some queries with added query terms that were suggested by
our algorithm. We rated each search result item either to be good
or useful, or not useful and compared the precision. However, we
realized quickly that both the original query, as well as refinement
queries produced good results. It all really depends on the infor-

672

mation need of the user and what he/she deems to be relevant for
a certain topic: For one broad topic there can be many different
refined topics that are relevant.

We therefore have chosen to not measure precision improvement
of the resulting documents from a refined query, but measure in-
stead the precision of the list of suggested refinement terms (P@5).
Our rationale is that the goal of query refinement should be to assist
users in articulating the appropriate query to satisfy their informa-
tion need with the assumption that the underlying search engine
already returns highly relevant results for a given query. Therefore
if our algorithms produce a good list of refinement terms that are
useful to the user and capture their information need, we helped the
user to articulate a good query that satisfies their information need.

The usage of query logs as a basis for query refinement was stud-
ied by Fitzpatrick and Dent [15]. The advantage of using query logs
as a basis for query refinement algorithms is that they are relatively
easy to get even if there is no link information available. In general
we think that query refinement that is using query logs represents
a complementary approach that can be used to augment our anchor
text based approach. The results obtained from the user study fur-
ther support that query logs also represent a valuable data source
that can help in the refinement process. One clear advantage of an-
chor text over query logs is one of bootstrapping: Obtaining large
and useful query logs requires some initial effort where the time
to obtain these depends on the search engine traffic. Whereas our
anchor text refinements can be generated during indexing and are
available to be used for refinement algorithms instantly after the
index build process.

8. CONCLUSIONS AND FUTURE WORK
We devised a simple and elegant approach to automatic query

refinement using anchor text and median rank aggregation. Our
method and implementation worked remarkably well in practice.
Our experiments and the conducted user studies which showed that
the proposed mining techniques quantitatively outperformed sim-
ilar methods using document collections for suggesting query re-
finements or related queries. Furthermore, by exploiting the sim-
ilarity between anchor text and search queries the discussed al-
gorithms provide high quality refinements for one and two term
queries, which represent most of typical Web search engine’s traf-
fic.

There are more potentially interesting applications (e.g., spell
checking) that can leverage from the proposed anchor text mining
techniques. We want to investigate in future work how the pro-
posed mining and tuning methods for anchor text can be used and
integrated into a spell checker for Web search.

Another interesting aspect is the usage of lexical affinities which
we have not investigated yet. Can LAs be used to further tune and
improve the anchor text mining process?

Instead of narrowing a broad query, we can use Query refine-
ment also to broaden a query with only a few results. This is often
useful if the user types in a very restricted query and retrieves only
one or two results. We can envision doing a similar technique for
broadening queries using the proposed anchor text based refine-
ment algorithm. Based on the number of returned search results
the search engine could then pick which direction the refinement
should work.

In our experiments we focused on anchor text, and did not in-
clude additional pre-anchor or post-anchor text, although it might
be interesting to investigate on whether this would further improve
our mining algorithms.

We hope that the paper stimulates interest to develop interesting
applications for anchor text mining, and that Web search engines
start integrating some of the ideas to further improve their overall
search experience.

9. ACKNOWLEDGMENTS
We are grateful to Nadav Eiron, Marcus Fontoura, David Gib-

son, Tapas Kanungo, Jörg Meyer, Kevin McCurley, Andreas Neu-
mann, Sridhar Rajagopalan, and Eugene Shekita for their helpful
comments and discussions.

10. REFERENCES
[1] P. Anick. Using terminological feedback for web search

refinement: a log-based study. InProceedings of the 26th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 88–95.
ACM Press, 2003.

[2] P. G. Anick and S. Tipirneni. The paraphrase search
assistant: terminological feedback for iterative information
seeking. InProceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 153–159. ACM Press, 1999.

[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine.Computer Networks and
ISDN Systems, 30(1–7):107–117, 1998.

[4] A. Z. Broder. A taxonomy of web search.SIGIR Forum,
36(2), 2002.

[5] E. W. Brown and H. A. Chong. The GURU system in
TREC-6. InText REtrieval Conference, pages 535–540,
1997.

[6] C. Buckley, G. Salton, and J. Allan. The effect of adding
relevance information in a relevance feedback environment.
In Proceedings of the Seventeenth Annual International
ACM-SIGIR Conference on Research and Development in
Information Retrieval. Springer-Verlag, 1994.

[7] C. Buckley, G. Salton, J. Allan, and A. Singhal. Automatic
query expansion using SMART: TREC 3. InText REtrieval
Conference, pages 69–80, 1994.

[8] D. Carmel, E. Farchi, Y. Petruschka, and A. Soffer.
Automatic query refinement using lexical affinities with
maximal information gain. InProceedings of the 25th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 283–290.
ACM Press, 2002.

[9] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,
P. Raghavan, and S. Rajagopalan. Automatic resource
compilation by analyzing hyperlink structure and associated
text.Proceedings of the 7th World Wide Web Conference,
1998.

[10] J. Cooper and R. Byrd. OBIWAN a visual interface for
prompted query refinement.H1CSS31, Hawaii, USA,
2:277–285, January 1998.

[11] N. Craswell, D. Hawking, and S. Robertson. Effective site
finding using link anchor information. InResearch and
Development in Information Retrieval, pages 250–257, 2001.

[12] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. InProceedings of the Tenth
International Conference on World Wide Web, pages
613–622. ACM Press, 2001.

[13] N. Eiron and K. S. McCurley. Analysis of anchor text for
web search. InProceedings of the 26th Annual International

673

ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 459–460. ACM Press, 2003.

[14] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity
search and classification via rank aggregation. In
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pages 301–312. ACM
Press, 2003.

[15] L. Fitzpatrick and M. Dent. Automatic feedback using past
queries: social searching? InProceedings of the 20th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 306–313. ACM
Press, 1997.

[16] W. B. Frakes and R. Baeza-Yates.Information Retrieval:
Data Structures & Algorithms. Prentice Hall, Englewood
Cliffs, New Jersey, 1992.

[17] M. Kobayashi and K. Takeda. Information retrieval on the
web.ACM Comput. Surv., 32(2):144–173, 2000.

[18] D. Lawrie, W. B. Croft, and A. Rosenberg. Finding topic
words for hierarchical summarization. InProceedings of the
24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages
349–357. ACM Press, 2001.

[19] W.-H. Lu, L.-F. Chien, and H.-J. Lee. Translation of web
queries using anchor text mining.ACM Transactions on
Asian Language Information Processing (TALIP),
1(2):159–172, 2002.

[20] O. A. McBryan. GENVL and WWWW: Tools for taming the
web.In World Wide Web Conference (WWW’94), Geneva,
Switzerland, 1994.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library Technologies
Project, 1998.

[22] Y. Qiu and H.-P. Frei. Concept-based query expansion. In
Proceedings of SIGIR-93, 16th ACM International
Conference on Research and Development in Information
Retrieval, pages 160–169, Pittsburgh, US, 1993.

[23] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz.
Analysis of a very large web search engine query log.SIGIR
Forum, 33(1):6–12, 1999.

[24] B. Vélez, R. Weiss, M. A. Sheldon, and D. K. Gifford. Fast
and effective query refinement. InProceedings of the 20th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 6–15.
ACM Press, 1997.

[25] J. Xu and W. B. Croft. Query expansion using local and
global document analysis. InProceedings of the Nineteenth
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 4–11,
1996.

[26] J. Zien, J. Meyer, J. Tomlin, and J. Liu. Web query
characteristics and their implications on search engines.IBM
Research Report, RJ 10199, November 2000.

APPENDIX

A. BENCHMARK TOPICS
In our benchmark we used the following (broad) queries and top-

ics:

almaden hr
developerworks research
health care pension
travel intranet password
db2 xml
linux java
sales storage
quantum computing export regulations
open source san francisco
lotus lotus notes
alphaworks thinkpad
human resources global services
stock websphere
stock options travel reservations
knowledge management

B. ANCHOR TEXT STOP WORDS
We used the following stop words for anchor text:

ibm web site website websites
link next topic domain prev
previous page to the for
and of an or not
a click here - &

C. USER STUDY TOPICS
These were the topics we used in the evaluation benchmark and

user study I:

almaden hr alphaworks
thinkpad pension stock
db2 xml linux
storage lotus rational
research developerWorks award
travel human resources technology
java websphere

These were the topics we used in user study II:

transcoding mq consulting
patents retirement security
portal researchers publishing
analyst conference odis
savings websphere hotel
tivoli journal drive
badge learning executive
library

674

