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Abstract

This paper reformulates the theory of graph mining on

the technical basis of graph matching, and extends its s-

cope of applications to computer vision. Given a set of

attributed relational graphs (ARGs), we propose to use

a hierarchical And-Or Graph (AoG) to model the pat-

tern of maximal-size common subgraphs embedded in the

ARGs, and we develop a general method to mine the

AoG model from the unlabeled ARGs. This method pro-

vides a general solution to the problem of mining hi-

erarchical models from unannotated visual data without

exhaustive search of objects. We apply our method to

RGB/RGB-D images and videos to demonstrate its gener-

ality and the wide range of applicability. The code will be

available at https://sites.google.com/site/

quanshizhang/mining-and-or-graphs.

1. Introduction

In this paper, we redefine the concept of graph mining,

which was originally developed for discovering frequent en-

tity relations from tabular data, and reformulate its theory

in order to solve problems in computer vision. Our theory

aims to discover a hierarchical pattern to represent common

subgraphs embedded in a number of unannotated Attribut-

ed Relational Graphs (ARGs). A theoretical solution to this

graph-mining problem can have broad applications in dif-

ferent vision tasks, such as object discovery and recogni-

tion, scene understanding, etc.

A variety of visual data (e.g. RGB/RGB-D images and

videos) can be represented as ARGs. Each ARG node may

contain different unary attributes to represent different high-

dimensional local features. Pairwise attributes on edges

measure spatial relationships between object parts.

We define a hierarchical And-Or Graph (AoG) model to

represent the common subgraphs in a set of ARGs, as shown

in Fig. 1. The top AND node is a composition of a set of OR

nodes. Each OR node describes a local part and has several

alternative terminal nodes as local pattern candidates.

Task: In this study, we aim to mine (learn) the AoG

(the model) from a number of ARGs (unlabeled data). Giv-
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Figure 1. And-Or graph (AoG). The AoG models the regulari-

ties and variabilities of the common subgraphs embedded in the

ARGs. The top AND node has several OR nodes as different ob-

ject parts. Each OR node has several terminals to represent alter-

native local patterns. The AoG model can represent a variety of vi-

sual data, and we present an example for RGB images. Node/edge

colors denote high-dimensional unary/pairwise attributes.

en the ARGs and an initial graph template, our method

gradually modifies this template into the target AoG with

the maximal number of OR nodes. During the graph-mining

process, we discover new OR nodes and terminal nodes,

delete redundant nodes, update attributes, and train match-

ing parameters for the AoG. The mined AoG has stable

graph-matching performance, and can be used for objec-

t inference in previously unseen ARGs (images or videos).

This study extends the concepts from both the fields of

graph matching/mining and unsupervised learning, which

are outlined below.

Graph matching & mining: As shown in Fig. 1, graph

matching can be regarded as object inference. It maps nodes

in a small graph template (a model) to a target ARG (e.g. an

image) via a global optimization.

In contrast, graph mining is presented from the opposite

perspective: When we use ARGs to represent images, com-
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mon subgraphs in the ARGs correspond to the common ob-

jects inside. Graph mining is developed as a theoretical so-

lution to the problem of discovering the common subgraph-

s and modeling their prototype pattern for good matching

performance. Therefore, this can be regarded as a general

method of learning deformable models from unlabeled data.

Unlike conventional single-layer patterns, in this study,

we define a hierarchical AoG for modeling the regularities

and variabilities of the subgraph pattern. Each OR node

contains a number of alternative terminal nodes as local pat-

tern candidates. In addition, we also incorporate the con-

cept of negative (background) ARGs in the scope of graph

mining. We discriminatively learn the AoG model to be ex-

clusively contained inside positive ARGs.

Advantages: generality, applicability, & efficien-

cy In terms of knowledge discovery, our method has the

following advantages. Generality: unlike techniques ori-

ented towards some particular types of data, our method can

be applied to various kinds of visual data (e.g. RGB/RGB-

D images and videos). People can use their own ARG at-

tributes (features) to represent these visual data.

Applicability: it is necessary to develop a technique to

simultaneously deal with all types of visual variations for

broad applicability, which presents great challenges to the

state-of-the-art unsupervised approaches. In our method,

object occlusions are considered, and intra-category vari-

ations in texture, roll rotation, scale, and pose can all be

automatically mined and formulated as attribute variations

among ARGs.

Efficiency: in the era of big data, the mining efficiency

has gradually become a new bottleneck. We propose an ap-

proximate but efficient method to directly discover the AoG

model without enumerating AoG nodes from ARGs.

The contributions can be summarized as follows: 1) We

reformulate the graph-mining theory for the field of com-

puter vision. In particular, we propose a hierarchical AoG

for modeling the subgraph pattern. 2) We require the pat-

tern to be exclusively contained by positive ARGs to en-

sure its distinguishing capability. 3) For the purpose of

visual knowledge discovery, we propose a general graph-

mining method that can automatically extract the maximal-

size AoG without applying an enumeration strategy. 4) Our

method can be applied to various types of visual data.

2. Related work

Graph mining: Originally, the concept of “mining

the maximal-size subgraph patterns” was developed in the

domain of “labeled graphs,” such as maximal frequen-

t subgraph (MFS) extraction [29] and maximal clique min-

ing [33, 36]. However, these methods require people to

manually assign each node/edge in the graph with a cer-

tain label or determine some inter-graph node correspon-

dence candidates based on local consistency. In addition,

they usually apply time-consuming node enumeration for

graph mining. Therefore, these methods are oriented to-

wards tabular data.

However, for the ARGs representing visual data, the

mining theory should be reformulated on the technical ba-

sis of graph matching1. The visual ARGs usually have

large variations in attributes, and cannot provide node label-

s/correspondences in a local manner. Instead, the matching

between two ARGs should be computed as a quadratic as-

signment problem (QAP) via a global optimization. [19, 1]

estimated common objects or graph structures from images,

but they did not provide a general solution in terms of graph

theory. Zhang et al. [39, 41] did a pioneering study of graph

mining for visual ARGs. In contrast, our method is more

suitable for visual data. Unlike the single-layer pattern in

[39, 41], we define a hierarchical AoG to represent object

knowledge. Moreover, we introduce the concept of negative

ARGs to ensure the pattern’s discriminative capability.

Learning graph matching: Graph/image matching

theories have been developed for decades [24, 5, 6, 35,

12, 28, 4]. Given a graph template, methods for learn-

ing graph matching usually train parameters or refine the

template to achieve stable matching performance. Most of

them [3, 2, 18, 30] are supervised methods, i.e. the match-

ing assignments must be labeled for training. In contrast,

unsupervised methods are more related to graph mining.

Leordeanu et al. [20] trained attribute weights, and Zhang

et al. [40] refined the template structure in an unsupervised

fashion. These methods cannot discover new nodes from

unlabeled graphs. Yan et al. [35] discovered common node

correspondences between graphs without learning a model.

Weakly supervised learning, co-segmentation, & ob-

ject discovery: Two issues in theories of weakly su-

pervised model learning have long been ignored. First,

the two interdependent terms—object similarity and part

similarity—usually cannot be simultaneously measured in

object discovery process. [22, 7] first exhaustively searched

object candidates from unlabeled images, and then trained

part-based models using a cluster of object-level similar

candidates. [27] first extracted frequently appearing parts

from images in a local manner, and then use them to define

common objects. In contrast, our theory discovers objects

in a more convincing way, i.e. simultaneously considering

both part similarities and global object structure.

Second, other methods usually simplify the visual-

mining problem by selectively modeling some visual

variations and neglecting others. For example, co-

segmentation [14] and object discovery [32] are mainly

based on texture information and find it difficult to encode

structural knowledge appropriately, whereas contour mod-

1Unlike graph mining oriented to labeled graphs, mining techniques for

visual ARGs (as in [39, 41] and ours) usually label an inaccurate fragmen-

tary pattern as an initial graph template to start the mining process.
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Figure 2. Representation of ARG attributes for a variety of visual data. For clarity, we show sub-ARGs that may not contain all the nodes.

els [16, 34] focuses on geometric shapes and ignores tex-

tures. In contrast, our hierarchical AoG model can encode

different variations in visual data.

And-Or graph: Compared deformable part models

(DPMs), the hierarchical AoG model has more expressive

power and more transparency in its description of objects.

Pioneering studies [25, 31] all trained the AoG in a super-

vised fashion. In contrast, we propose to directly mine such

AoGs without labeling object bounding boxes.

3. And-or graph representation

ARG: As shown in Fig. 3, an ARG G is a three-tuple

G = (V,FV ,FE), where V and E denote the node and

edge set, respectively. All pairs of nodes are fully con-

nected to form a complete graph. FV = {Fx
i |x ∈ V, i =

1, 2, ..., Nu} denotes the set of unary attributes. Each node

x has Nu unary attributes. The set of pairwise attributes

FE = {Fx1x2
j |x1, x2 ∈ V , x1 6= x2, j = 1, 2, ..., Np} as-

sign each edge 〈x1, x2〉 with Np pairwise attributes. Each

attribute corresponds to a feature vector.

Attributes (features): For different visual data, we can

use different unary and pairwise attributes to represent local

features and spatial relationships.

For example, in our experiments, we use four types of

ARGs to represent three kinds of visual data, including

RGB-D images, RGB images, and videos. We illustrate the

attribute design for three types of ARGs in Fig. 2. In these

ARGs, we use 1) line segments of object edges, 2) automat-

ically learned middle-level patches, and 3) SIFT points as

graph nodes. Thus, their unary attributes can be defined as

1) a combination of HoG features extracted at line terminals

and line lengths, 2) HoG features of middle-level patches,

and 3) 128-dimensional SIFT features, respectively.

Accordingly, the pairwise attributes between each pair

of nodes x1 and x2 can be defined as a combination of 1)

the angle between the own orientations of x1 and x2, 2) the

orientation of the line connecting x1 and x2 (namely, the

centerline of x1 and x2), 3) the angle between the centerline

and each of x1 and x2, 4) the ratio between the scales of x1
and x2, and 5) the ratio between the centerline length and

the scale of each node. In addition, people can design their

own attributes for each specific task.

AoG: Similarly, a hierarchical AoG is defined as a five-

tuple G= (V,Ω,FV ,FE ,W). The AoG has three layers.

The top AND node has a set of OR nodes s ∈ V . Each OR

node s has a set of terminal nodes ψs ∈Ωs. Each terminal

node ψs has Nu unary attributes FV = {Fψsi |s ∈ V, ψs ∈
Ωs, i = 1, 2, ..., Nu}. Ω =

⋃

s∈V Ωs denotes the overall

set of terminal nodes. We connect all pairs of OR nodes to

form a complete graph. Each edge 〈s, t〉 ∈ E contains Np
pairwise attributes FE = {F stj |s 6= t ∈ V, j = 1, 2, ..., Np}
(〈s, t〉 and 〈t, s〉 denote two different edges). W is a set of

matching parameters, which will be introduced later.

4. Inference: Graph matching for the AoG

The matching between an AoG G and an ARG G is de-
noted by G 7→G|Ψ,x. It selects a terminal node ψs ∈ Ωs
under each OR node s ∈ V and maps ψs to an ARG
node xs ∈ V , which is given as s 7→G|ψsxs . All map-
ping assignments are represented by x = {xs|s ∈ V } and
Ψ={ψs|s ∈ V }. The matching process can be formulated
as the maximization/minimization of the following proba-
bility/energy function w.r.t. Ψ and x:

P (G 7→G) ∝ exp
[
− E(G7→G)

]

E(G 7→G) =
∑

s∈V
E(s 7→G) +

∑

〈s,t〉∈E
E(〈s, t〉7→G)

(1)

where P (G 7→G) and E(G 7→G) denote the matching proba-
bility/energy of G 7→G, respectively. The overall matching
energy consists of unary and pairwise matching energies,
i.e. E(s 7→G) and E(〈s, t〉7→G). To simplify notations, we use
G 7→G, s 7→G, and 〈s, t〉7→G to represent G 7→G|Ψ,x, s 7→G|ψsxs ,

and 〈s, t〉7→G|ψsψtxsxt without ambiguity. The matching en-
ergies can be defined using squared attribute differences:

E(s 7→G)=

{∑Nu
i=1w

u
i ‖F

ψs
i −Fxs

i ‖2, xs∈V
unone, xs=none

(2)

E(〈s, t〉7→G)=







∑Np
j=1

w
p
j
‖Fstj −F

xsxt
j

‖2

|V |−1
, xs 6=xt∈V

+∞, xs = xt ∈ V
1

|V |−1
pnone, xs orxt=none

where ‖ · ‖ measures the Euclidean distance. We design a

dummy node “none” for occlusion. ψs is assigned to none,

when its corresponding node in G is occluded. unone and

pnone denote the energies of matching to none. wui , w
p
j > 0

represent weights for attributes Fψs
i and Fst

j , respective-

ly. The matching parameters are set as W = {wui |i =
1, ..., Nu} ∪ {wpj |j=1, ..., Np} ∪ {unone, pnone}.
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Figure 3. Notations for graph matching

We use the marginal matching energy of OR node s, de-
noted by EG

s to evaluate the local matching quality of s.

EG
s =E(s 7→G)+

∑

t:〈s,t〉∈E

E(〈s, t〉7→G) ⇒ E(G 7→G)=
∑

s∈V

EG
s (3)

For each OR node s, we apply a standard inference strat-

egy for OR nodes [25, 31], i.e. matching its best terminal

ψs ∈ Ωs to xs that minimizes its unary matching energy,

argminψsE(s 7→G).
Therefore, node correspondences (x,Ψ) are comput-

ed by min
x,Ψ

E(G 7→G) = minx{
∑

s∈V min
ψs

E(s 7→G) +
∑

〈s,t〉∈E E(〈s, t〉7→G), which is a typical QAP. The opti-

mal terminals Ψ are selected in a local manner. The match-

ing assignments x can be estimated via energy minimiza-

tion of an MRF w.r.t {xs}. We use the TRW-S [15] for

energy minimization.
Average marginal energy: Given a set of ARGs Λ=

{Gk} and an AoG G, we match G to each Gk, and obtain its

matching assignments x̂k={x̂ks |s ∈ V }, Ψ̂k={ψ̂ks |s ∈ V }
via argmin

xk,ΨkE(G 7→Gk). The average matching quality
for each OR node s in G can be measured by its average
marginal energy:

Es = meanGk∈ΛE
Gk
s (4)

5. Learning: Graph mining

5.1. Objective

In this subsection, we define the objective of graph min-
ing, which describes the optimal states of the AoG and is
used to guide all the mining operations. Given a set of pos-
itive ARGs Λ+={G+

k |k=1, ..., N+} and a set of negative

ARGs Λ−={G−
l |l=1, ..., N−}, the objective is defined as

G
∗ = argmax

G

{
P (Λ+|G)

P (Λ−|G)
· e−λComplexity(G)

}

(5)

We aim to maximize the gap between the probability of
positive matches P (Λ+|G) and that of negative matches
P (Λ−|G). Meanwhile, we also consider the complexity of
the AoG to avoid overfitting. The probability of positive
matches can be given as

P (Λ+|G) ∝
∏N+

k=1
P (G 7→G+

k )
1
N+ (6)

Because substantial terminal divisions for OR nodes will

increase the risk of overfitting, we use the graph size to de-

fine the AoG complexity, which is similar to [31].

Complexity(G) = |Ω|+ β|V | =
∑

s∈V
(|Ωs|+ β) (7)

Therefore, we can re-write the objective in (5) as

G∗=argmax
G

log
{
P (Λ+|G)

P (Λ−|G)
· e−λComplexity(G)

}

(8)

= argmin
G

{ ∑

s∈V
(E+
s − E−

s )
︸ ︷︷ ︸

generative loss; we hope E+
s ≪E−

s .

+
∑

s∈V
λ(|Ωs|+ β)

︸ ︷︷ ︸

complexity loss

}

where for each OR node s, E+
s and E−

s denote its marginal

energies among positive and negative matches, respective-

ly. The generative loss represents the gap between marginal

energies, which describes the discriminative power of G.

The comprehensive mining of the AoG includes 1) de-

termination of the corresponding subgraphs in ARGs, 2)

discovery of new OR nodes and terminal nodes, 3) elimi-

nation of redundant nodes, 4) attribute estimation, and 5)

training of matching parameters. Therefore, we propose

the following sub-objectives, namely Objs.(a–d), to train

each of these terms. Objs.(a–d) alternatively maximize the

above logarithmic form of the objective in (5)2.

First, Obj.(a) presents an object-inference procedure us-

ing the current pattern. It estimates the most probably ob-

ject in each positive/negative image, i.e. computing the

best matching assignments to each positive/negative ARG

G+
k /G−

l via graph matching. Marginal energies {E+
s } and

{E−
s } are defined using these matching assignments.

Obj.(a): argmin
x̂k,Ψ̂kE(G7→G+

k ), argmin
x̌l,Ψ̌lE(G7→G−

l )

Second, for each OR node s, we use the following equa-

tion to uniformly optimize its unary and pairwise attributes

and the division of its terminal nodes.

Obj.(b): argmin
Ω,FV ,FE

∑

s∈V (E
+
s − E−

s + λ|Ωs|)

This is similar to sparse representation. First, we minimize

the generative loss by enlarging the matching-energy gap

between positive and negative matches, so that the AoG

attributes can represent the pattern that is exclusively con-

tained by positive ARGs. Second, we use the complexity

loss to limit the terminal number. We simply set λ=1.0 for

all the categories in all the experiments.

Third, we need to grow the current pattern to the maxi-

mal size, i.e. extracting an AoG with the maximal number

of OR nodes |V | by discovering new OR nodes and delet-

ing redundant OR nodes. Thus, we apply a threshold τ to

control both the node discovery and elimination.

Obj.(c): argmax|V | s.t. ∀s∈V, E+
s − E−

s + λ|Ωs| ≤ τ

Finally, we use a linear SVM to train the matching pa-

rameters W, which is an approximate solution to the mini-

mization of the generative loss in (9).

Obj.(d): min
W

‖w‖2 + C

N+

∑N+

k=1 ξ
+
k + C

N−

∑N−

l=1 ξ−l ,

∀k = 1, 2, ..., N+,−[E(G 7→G+
k ) + b]≥1−ξ+k ,

∀l = 1, 2, ..., N−, E(G 7→G−
l ) + b≥1−ξ−l

2Please see the supplementary materials for proofs.



Op.1 graph 
matching

(using Obj.(a))

Op.3 deletes a redundant OR 
node (using Obj.(c))

Next iteration

G
iter

Op.2 modifies 
attributes

(using Obj.(b))
Op.4 discovers a new OR node 
y with matching assignments 
(using Objs.(b,c))

Op.5 updates 
terminals

(using Obj.(b))

Op.2 modifies 
attributes

(using Obj.(b))

Op.6 trains 
parameters

(using Obj.(d))
G
iter+1

Initial template AoG model

Figure 4. Flowchart of an approximate solution to graph mining

5.2. Flowchart

As shown in Fig. 4, we design an EM flowchart to mine

the optimal AoG defined in (5). In the beginning, we need to

label an initial graph template G0 that roughly corresponds

to an object fragment. Then, the algorithm recursively opti-

mizes the graph pattern and grows the number of OR nodes

to the maximum G0→G1→ ...→Gn=AoG. On the basis of

Objs.(a–d), we define a total of six operations to construct

the EM flowchart. We can demonstrate2 that these opera-

tions lead to an approximate but efficient solution to (5).

Initialization: We label the object in a positive ARG

to initialize the graph template G0. G0 is a special AoG,

in which each OR node contains a single terminal node.

Even bad labeling, e.g. an object fragment mixed with back-

ground area, is acceptable. We then initialize parameters in

W as unone=pnone=+∞ andwui=1,...,Nu=w
p
j=1,...,Np

=1.

Operation 1, graph matching: We use Obj.(a) to

match G to each of the positive and negative ARGs.

Operation 2, attribute estimation: This is based on

Obj.(b). We approximate2 the unary/pairwise attribute on

each terminal/edge as the average attribute among its corre-

sponding nodes/edges in the positive ARGs.

Operation 3, node elimination: Given the matching

results, we use Obj.(c) to identify the worst OR node as

Sworst = argmaxs(E
+
s −E−

s +λ|Ωs|). If E+
Sworst

−E−
Sworst

+
λ|ΩSworst | > τ , node Sworst and all its terminals will be

deleted from G; otherwise, they are not.
Operation 4, node discovery: Node discovery aims

to discover a new OR node y for G. We use Objs.(b,c)
to simultaneously 1) determine y’s terminal nodes Ωy , 2)

estimate its attributes ({F
ψy
i }, {F ytj }), and 3) compute it-

s matching assignments ({x̂ky}, {ψ̌
l
y}). As the new node y

should be well matched to most of the positive ARGs in Λ+,
to simplify the calculation, we ignore the small possibili-
ty of y being matched to none. Based on this assumption,
we have proved2 an approximate solution that 1) provides a
rough estimation of y’s positive matching assignments {x̂ky}
and 2) minimizes uncertainty of other parameters:

min{x̂ky}

{
∑N+

k=1Φ(x̂
k
y) +

∑N+

k1=1

∑N+

k2=1Φ(x̂
k1
y , x̂k2y )

}

(9)

Φ(x̂ky)=−
N−
∑

l=1

min
x̌ly

[
∑

t∈V

1(x̂kt )E(〈x̂ky ,x̂
k
t 〉7→〈x̌ly ,x̌

l
t〉)

|V |(N−)
∑
j 1(x̂

j
t )

+
E(x̂ky 7→x̌ly)

(N−)(N+)

]

Φ(x̂k1y , x̂k2y )=
E(x̂

k1
y 7→x̂

k2
y )

(N+)2
+

∑

t∈V

(
[1−1(x̂

k1
t )1(x̂

k2
t )]pnone

|V |(N+)[(N+)+
∑
j 1(x̂

j
t )]

+
1(x̂

k1
t )1(x̂

k2
t )(

∑
j 1(x̂

j
t )+N

+)

2|V |(N+)[
∑
j 1(x̂

j
t )]

2
E(〈x̂k1y , x̂

k1
t 〉7→〈x̂k2y , x̂

k2
t 〉)

)

where 1(x) returns 0, if x=none; otherwise, 1.E(x1 7→x2)

=
∑Nu
i=1w

u
i ‖F

x1
i −Fx2

i ‖2; E(〈x11, x12〉7→〈x21, x22〉) =
∑Np
j=1w

p
j ‖F

x11x12
j −Fx21x22

j ‖2/|V | − 1. Thus, {x̂ky} can be

directly estimated via energy minimization of an MRF [15].

Then, given {x̂ky}, other parameters ({ψ̂ky}, Ωy , {F
ψy
i }, and

{F ytj }) can be consequently determined and iteratively re-

fined (see the flowchart in Fig. 4).
Operation 5, terminal determination: Given match-

ing assignments {x̂ks} and {x̌ls} of each OR node s, this
operation uses Obj.(b) to modify the terminal number of

s, |Ωs|, and meanwhile refine terminal assignments {ψ̂ks }.
This operation can be approximated2 as a hierarchical clus-
tering: For each node s, we use a set of feature points

{f x̂
k
s |1 ≤ k ≤ N+,1(x̂ks) = 1} to represent its corre-

sponding nodes in positive ARGs {x̂ks}, each as f
x̂ks =

[
√

wu1 (F
x̂ks
1 )T,. . . ,

√

wuNu(F
x̂ks
Nu

)T]T . We group these points

to several clusters via a hierarchical clustering. In this way,
we can construct the terminal set Ωs and use each terminal
node ψs ∈ Ωs to represent a cluster, i.e. each ARG node x̂ks
in this cluster is matched to ψs, ψ̂

k
s =ψs. Unary attributes

of ψs, {F
ψs
i }, correspond to the cluster center. We need to

keep merging the nearest clusters, until the following ener-
gy is minimized2.

min
Ωs,{ψ̂ks }

{

C
∑

ψs∈Ωs

∑

1≤k1≤N
+:

ψ̂
k1
s =ψs,1(x̂

k1
s )=1

‖f x̂
k1
s −mean

1≤k2≤N
+:

ψ̂
k2
s =ψs,1(x̂

k2
s )=1

f
x̂
k2
s ‖2 + λ|Ωs|

}

(10)

where C=1/N++
∑

j 1(x̌
j
s)/[(N

−)
∑

j 1(x̂
j
s)].

Operation 6, parameter training: This is defined in

Obj.(d). Given the current matching assignments, we apply

the technique in [43] to train parameters in W.

6. Experiments

Our method provides a visual-mining solution that can

be applied to a variety of visual data. Therefore, to test

the generality of the algorithm, we applied our method to

three kinds of visual data (i.e. RGB-D images, RGB im-

ages, and videos) in four experiments. In these experiments,

we mined object models (i.e. AoGs) for 38 categories from

these visual data. The mined models can be used to 1) col-

lect object samples from the unlabeled training data and 2)

match objects in perviously unseen video frames/images.

Thus, we evaluate our method in both terms of graph match-

ing and object discovery.

Because our method extends concepts ranging across

the fields of graph matching, graph mining, and weakly-

supervised learning, we comprehensively compared our

method with a total of 13 competing methods. These meth-

ods include image/graph matching approaches, unsuper-

vised learning for graph matching, the pioneering method
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Figure 5. The average pattern size of the mined AoGs monotoni-

cally increases with increasing values of τ in Experiment 1.

of mining from visual ARGs, object discovery, and co-

segmentation methods.

6.1. Settings for the four experiments

The inputs are the unlabeled RGB-D/RGB images and

videos. In the four experiments, we used four types of

ARGs, respectively, to represent these data. Each RGB-

D/RGB image or video frame is represented as an ARG.

Then, we mined AoGs as category models from these

ARGs. In Experiments 1, 2, and 4, the AoGs were used to

match objects in testing images and videos, and in Exper-

iment 3, we focused on the object-discovery performance

during the mining process. Detailed experimental settings

are introduced as follows.

Experiment 1, Mining from RGB-D images: We ap-

plied our method to five categories in the Kinect RGB-

D image database [40]—notebook PC, drink box, basket,

bucket, and dustpan, which is widely used [40, 39, 41, 42]

as a benchmark dataset to evaluate graph matching perfor-

mance. As shown in Fig. 2, the ARGs for RGB-D images

were designed by [40], which were robust to rotation and

scale variations in graph matching. [40] extracted objec-

t edges from images, and divided them into line segments.

These line segments were used as nodes of the ARGs.

We tested the graph-mining performance of our method

under different settings of parameter τ . As in [41, 40], given

each value of τ , we followed the process of leave-one-out

cross-validation to evaluate the mining performance: [41]

has labeled a set of initial graph templates G0 for each cat-

egory, and we performed an individual model-mining pro-

cess to produce an AoG using each of these templates. The

overall graph-mining performance was evaluated by the av-

erage performance among all the mined AoGs.

Experiment 2, Mining from unlabeled RGB im-

ages: We use the second type of ARGs introduced in [40]

to represent RGB images. Just like the ARGs for RGB-D

images, the ARGs for RGB images also take edge segments

as nodes. We used the ETHZ Shape Class dataset [11],

which contains five classes, i.e. apple logos, bottles, gi-

raffes, mugs, and swans. We randomly select 2/3 of the

images for training and leave the other 1/3 for testing.

Experiment 3, Mining from ARGs based on middle-

level patches: We mined models in 25 categories from the

SIVAL dataset [23] and 12 categories from the PASCAL07-

6×2 (training) dataset [8]. We applied the ARGs designed

by [43] for more general RGB images. We used [26] to
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Figure 6. Average error matching rates. In Experiments 1 and 2,

we mine edge-based subgraph patterns from RGB-D and RGB im-

ages. Our method has lower error rates than other baselines.

extract middle-level patches as ARG nodes3 (see Fig. 2).

In this experiment, we learned a mixture model with

three AoG components for each category. Thus, we labeled

three initial templates to start the mining process. In addi-

tion, we modified the Operation 1 to separate the ARGs in-

to the three AoGs in each mining iteration, which assigned

each ARG with its best matched AoG.

Experiment 4, Mining from video sequences: We

collected three video sequences (containing a cheetah,

swimming girls, and a frog) from the Internet, and used our

method to mine AoGs for deformable objects from these

videos. In this experiment, each video frame was represent-

ed as an ARG. We applied the ARGs designed by [43] to

represent the video frame (see Fig. 2). These ARGs take

SIFT feature points as nodes.

6.2. Baselines

We used a total of thirteen competing methods. In terms

of graph matching and mining, seven methods followed the

scenario of “learning models or matching objects with a s-

ingle template.” The other six methods were state-of-the-art

object discovery and co-segmentation approaches.

Graph matching & mining: All the seven method-

s were provided with the same initial graph templates, as

well as the same sets of training ARGs and testing ARGs to

ensure a fair comparison.

First, we compared our method to three image/graph-

matching methods. These methods directly matched the

graph template to the testing ARGs without training. In

general, there are two typical paradigms for image match-

ing. The competing method MA was designed to repre-

sent the first paradigm, i.e. the minimization of match-

ing energy. MA used TRW-S [15] to minimize the match-

ing energy in (1)4. Then, we used competing meth-

ods MS and MT to represent the second paradigm, i.e.

the maximization of matching compatibility. As in [17,

3For images from the PASCAL07 dataset, [26] selected middle-level

patches from a number of region candidates that were provided by [21].
4This matches two single-layer graphs without hierarchical structures,

which is a special case for the energy in (1) where Ψ ≡ 1.
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Figure 7. APs of object detection in Experiment 1. Our method

performed better in mining models from RGB-D images.

20], the matching compatibility was defined as C(x) =
∑

s,te
−E(s 7→G)−E(t 7→G)−E(〈s,t〉7→G), where they used abso-

lute attribute differences to define matching energies. MS

and MT used spectral techniques [17] and TRW-S [15], re-

spectively, to compute argmaxx C(x).
Second, we compared our method to the benchmark

of unsupervised learning for graph matching proposed by

Leordeanu et al. [20]. Two competing methods, i.e. LS and

LT, were implemented to learn attribute weights based on

[20]. LS and LT used [17] and [15], respectively, to solve

the matching optimization during the learning procedure.

Third, we compared our method to [40], denoted by SR.

SR refines the structure of the graph template by deleting

“bad” nodes, but does not involve the key component for

graph mining, i.e. the discovery of new pattern nodes.

Finally, we compared the proposed method to the earlier

method that mines the soft attributed patterns (SAP) from

visual ARGs [41]. We initialized unone, pnone, and w for

[41] as our initializations to enable a fair comparison.

Object discovery & co-segmentation: Operation 1 in

each model-mining iteration can be regarded as a process

of object discovery; therefore, we compared the object dis-

covery performance between the mined AoG and six re-

cent methods for object discovery and co-segmentation:

saliency-guided multiple class learning (bMCL) [44]; a

state-of-the-art object-discovery approach [13] (UnSL) that

achieves top performance (approximately 98% measured in

purity) on a subset of Caltech-101 [9]; a foreground co-

segmentation method [14] (MFC); two multiple instance

clustering approaches, BAMIC [38] (with the best distance

metric) and M3IC [37]; and a K-means clustering of the

most “salient” window obtained with [10] in each image

(called SD and implemented by [44]).

6.3. Evaluation metrics, results, & analysis

We used the mined AoGs to match target objects in the

four experiments. Fig. 9 illustrates the matching results.

The parameter τ controls the pattern size5. Fig. 5 shows

how the pattern size changes with the value of τ in Experi-

ment 1. A greater value of τ would produce a larger AoG.

5For single-layer graph models used in baselines, this is the total node

number. For our hierarchical AoG, this is the number of OR nodes.
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Figure 8. APs of object detection in Experiments 2 and 4. Our

method mined better models from RGB images and videos.

Comparisons in terms of image/graph matching and

mining: We used the following two metrics to evaluate the

graph-matching performance of the mined AoGs. First, as

in [42], the error matching rate (EMR) was used to mea-

sure the matching accuracy. When we matched an AoG to a

positive ARG, its error rate was defined as the proportion of

the ARG nodes that were matched by the AoG but located

in the background, i.e. |VM \ VO|/|VM |, where VM de-

notes the set of ARG nodes that were matched by the AoG,

and VO ⊆ VM represents the subset of nodes that were cor-

rectly localized on the target object. Thus, given an AoG,

its EMR was computed across all its positive matches.

Second, we used the AoG to detect (match) target objects

among a number of previously unseen positive and negative

ARGs. We used the simplest means of identifying the true

and false detections: given a threshold, if the matching en-

ergy is less than the threshold6, we consider this to be a true

detection; otherwise, it is a false detection. Thus, we can

draw an object detection precision-recall curve by choos-

ing different thresholds. The average precision (AP) of the

precision-recall curve was used as a metric to evaluate the

matching-based object detection.

Fig. 6 compares error rates of our method with seven

competing methods in the first two experiments. Note that

the matching performance is a function of the pattern size5.

A pattern with too few nodes may lack sufficient informa-

tion for reliable matching, while a too large pattern may

contain unreliable nodes, which decreases the performance.

The SR method cannot produce large patterns, because it

simply deletes redundant nodes without the capability for

discovering new nodes. In general, our method exhibit-

s lower matching rates than competing methods. Figs. 7

and 8 show the APs of the mined patterns in Experiments 1,

2, and 4. Except SR, SAP, and our method, other compet-

ing methods cannot change the pattern size. As mentioned

in Experiment 1, we used different initial templates to pro-

duce a number of models for each category. Thus, in Figs. 7,

both the pattern size and the ER were computed via cross-

validation. Our method shows superior performance to the

competing methods.

6For competing methods MS, MT, LS, LT, and SR, a true detection is

identified if the matching compatibility is greater than the threshold.
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Figure 9. Matching results based on AoGs. We draw edge connections of the frog and cheetah models to show their structure deformation.

Ours bMCL SD M3IC BAMIC UnSL MFC

SIVAL1 89.0 95.3 80.4 39.3 38.0 27.0 45.0

SIVAL2 93.2 84.0 71.7 40.0 33.3 35.3 33.3

SIVAL3 88.4 74.7 62.7 37.3 38.7 26.7 41.3

SIVAL4 87.8 94.0 86.0 33.0 37.7 27.3 53.0

SIVAL5 92.7 75.3 70.3 35.3 37.7 25.0 48.3

Average 90.2 84.7 74.2 37.0 37.1 28.3 44.2

Table 1. Average purity of object discovery in the SIVAL dataset

Pose aero. bicy. boat bus horse moto. Avg.

L
ef

t MA 16.1 18.5 10.6 42.9 11.3 27.7 21.3

Ours 73.2 64.6 29.8 71.4 58.1 80.9 63.2

R
ig

h
t

MA 13.5 10.7 17.3 57.9 8.20 20.5

Ours 75.0 66.1 42.3 73.7 45.9 77.3

Table 2. Average localization rate in PASCAL07-6×2 dataset

Comparisons in terms of co-segmentation & object

discovery: First, we compared our method with six objec-

t discovery and co-segmentation approaches in Experiment

3. The automatically mined category models can be used

to collect object samples from the SVIAL dataset, which

can be considered object discovery. As in object-discovery

work [16, 44], such an object collection was understood as a

clustering of unannotated objects, and the clustering purity

was chosen as the evaluation metric. We took the model-

s in different categories as cluster centers. For each image

in the dataset, we used all the models to match target ob-

jects in this image. We regarded the object with the lowest

matching energy as a true detection, and assigned it to its

corresponding cluster. The clustering purity was comput-

ed for each cluster (background objects were considered as

incorrect samples). Note that [44] partitioned the 25 cate-

gories in the dataset into 5 sub-groups, respectively; name-

ly, SIVAL1 to SIVAL5. We measured the average cluster-

ing purity within each of these sub-groups for evaluation.

Please see Table 1 for comparison. Our method exhibits

better performance.

Second, object discovery performance in the

PASCAL07-6 × 2 training dataset was evaluated using

the average localization rate. Just like the “IOU > 50%”

criterion in [22, 7], we regarded an object as being correctly

localized, if more than 50% of the detected patches had

their centers within the true object bounding box. Table 2

shows the average localization rate. Our method performed

better than MA (MA had same parameters W as ours).

7. Discussion and conclusions

In this paper, we extend the graph-mining theory by

defining a hierarchical AoG model in a general form, which

represents the common subgraphs that are exclusively em-

bedded in positive ARGs. We develop an iterative frame-

work to mine such AoG models without node enumera-

tion. Our method discovers new OR nodes and terminal

nodes, deletes redundant nodes, estimates attributes, and

trains matching parameters. The generality and broad ap-

plicability of our method are demonstrated in a series of

experiments.

From the view of model learning, our graph-mining the-

ory has the following three advantages: 1) The AoG rep-

resents a hierarchical deformable template that has strong

expressive power in modeling objects. 2) The AoG can be

mined without labeling object positions. 3) We do not use

sliding windows to enumerate object candidates for model

mining.

In this paper, we seek to explore a general theoretical

solution to this new type of graph mining, without a so-

phisticated design for specific visual tasks. However, task-

specific techniques can be further added to this mining plat-

form to improve its performance. For example, we can de-

sign a root template for the AoG and combine it with a non-

linear SVM. Just like in [27], we can extract CNN features

for local parts as unary ARG attributes. Tracking informa-

tion can be used to guide the mining from videos.
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