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Abstract

Background: Adverse drug events (ADEs) often occur as a result of drug-drug interactions (DDIs). The use of data

mining for detecting effects of drug combinations on ADE has attracted growing attention and interest, however,

most studies focused on analyzing pairwise DDIs. Recent efforts have been made to explore the directional

relationships among high-dimensional drug combinations and have shown effectiveness on prediction of ADE risk.

However, the existing approaches become inefficient from both computational and illustrative perspectives when

considering more than three drugs.

Methods: We proposed an efficient approach to estimate the directional effects of high-order DDIs through frequent

itemset mining, and further developed a novel visualizationmethod to organize and present the high-order directional

DDI effects involving more than three drugs in an interactive, concise and comprehensive manner. We demonstrated

its performance by mining the directional DDIs associated with myopathy using a publicly available FAERS dataset.

Results: Directional effects of DDIs involving up to seven drugs were reported. Our analysis confirmed previously

reported myopathy associated DDIs including interactions between fusidic acid with simvastatin and atorvastatin.

Furthermore, we uncovered a number of novel DDIs leading to increased risk for myopathy, such as the

co-administration of zoledronate with different types of drugs including antibiotics (ciprofloxacin, levofloxacin) and

analgesics (acetaminophen, fentanyl, gabapentin, oxycodone). Finally, we visualized directional DDI findings via the

proposed tool, which allows one to interactively select any drug combination as the baseline and zoom in/out to

obtain both detailed and overall picture of interested drugs.

Conclusions: We developed a more efficient data mining strategy to identify high-order directional DDIs, and

designed a scalable tool to visualize high-order DDI findings. The proposed method and tool have the potential to

contribute to the drug interaction research and ultimately impact patient health care.

Availability and implementation: http://lishenlab.com/d3i/explorer.html
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Background
Recent advances in large-scale electronic health record

database techniques provide exciting new opportunities

to the study of drug safety. Drug-drug interactions (DDIs),

a major cause of adverse drug events (ADEs), are a serious

global health concern, and a severe detriment to public

health. In fact, over 500,000 serious medical complica-

tions per year, a portion of which are fatal, result from

multiple drug consumption [1]. The most common cause

of ADEs is DDIs, and more than three-fourths of Amer-

ican elderly citizens take two or more drugs per day [2].

Therefore, studying DDIs is clearly a relevant and pressing

area of research.

The scale of DDIs involving three or more drugs (also

called high-order DDIs) has posed a prohibitory challenge

for molecular pharmacology and clinical research, which

motivates alternative strategies such as mining health

record data. This project aims to develop large-scale com-

putational strategies and effective software tools for min-

ing high-order DDI effects from health record databases,

in order to yield novel discoveries in drug safety, and

ultimately to benefit national health and well being.

Although many research groups have used various sta-

tistical methods or machine learning algorithms to dis-

cover DDIs, most of these efforts have focused on finding

pairwise DDIs [3]. Due to the lack ofmultiple-drug experi-

mental data, a commonmethod to predict high-order DDI

is to piece together multiple pairwise analyses to form

an overall high-order analysis [4]. However, studying high

order DDI through pairwise analysis is a relatively sim-

plistic approach, as it neglects the fact that networked

interactions can change when a third drug enters the

pair. For instance, a three-way combination could lead to

ADEs even when its subsets of pairwise drug combina-

tions do not [5]. DDIs get increasingly complex as more

drugs are involved, and it is also statistically complicated

to aggregate the results of separate pairwise analyses [2].

While investigation of high-order DDIs is still an under-

explored area [2], new methods involving data mining

have appeared to predict high-order DDIs, bypassing the

need for experimental data. Ning et al. demonstrates that

frequent drug combinations and clinical data indicating

patient side effects can be extracted from public health

record databases to find correlations between drug com-

binations and ADEs [3]. Ultimately, this becomes a binary

classification problem of whether certain drug combina-

tions lead to ADEs, like myopathy, a degenerative muscu-

lar condition.

However, high-order DDIs, or DDIs involving three

or more drugs, is a topic that has only recently been

researched. For instance, a recent article by Li [6] dis-

cusses how big data can drive the pharmacology research

space, thus implying that this is a concept that has not

yet been fully taken advantage of. Therefore, a logical next

step in this research area is to improve on methods for

discovering high-order DDIs. As the quantity of pheno-

typic and genomic data increases, we can use this big data

opportunity to fine-tune statistical and machine learning

algorithms to better predict high-order DDI effects. The

research area of computationally finding DDIs is relatively

new, and thus the development of novel approaches and

analyses is a promising research direction. As ADE report-

ing data grows at an increasing rate, we are also facing

challenges to properly analyze large datasets.

With the above observations, the goal of this study

is to identify high-order DDIs via mining the FAERS, a

public health record databases with 4,077,447 drug com-

bination records of 1,763 drugs. The ADE of interest

is myopathy, which is a muscular degenerative disorder.

Our previous study [7] has reported directional effect

of DDIs for myopathy, the results of which were limited

to involve up to three drugs due to both computational

time and space complexities. In this paper, a more effi-

cient data mining strategy is utilized to extract all the

high-order directional DDIs. Given increasing numbers of

co-administrated drugs, the tree-structured visualization

could not effectively show all the DDI findings for a high-

order drug combination. Thus, the second novelty of this

study is that we develop an efficient and scalable method

to visualize high-order directional DDIs in an interactive

and comprehensive manner.

Methods
Materials and data sources

The proposed strategy for detecting high-order direc-

tional DDI effects on ADEs was applied to a publicly

available database, the FDA Adverse Event Reporting

System (FAERS: https://open.fda.gov/data/faers/). Specif-

ically, we apply our method on the myopathy event using

ADE reporting records from FAERS, to investigate the

directional effects of high-order DDI on myopathy.

Myopathy is a relatively frequent (around 3.64% in our

dataset) and clinically important ADE, and has been listed

as a side effect of more than 80 FDA approved drugs.

Given its high frequency and close and complex associ-

ations of myopathy with drugs, it is appropriate to use

myopathy-related events as testbed for investigating the

performance of directional effects of high-order DDIs.

Below, we describe the data preprocessing and present the

summary statistics of the FAERS dataset we used in this

study.

FAERS database

The data used for this analysis included reports from

FAERS collected between Q1 2004 and Q3 2012. The

FAERS is a database that contains information on adverse

event and medication error reports submitted to FDA.

Reports were obtained from the FAERS database, and
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preprocessed as described in [7]. Briefly, the most recent

reports from each individual were extracted and orga-

nized as a list of records, where each record consisted of

an ADE and corresponding administered drugs.

Myopathy-related case-control dataset

As this analysis focused on the myopathy-related ADE, we

firstly derived ADEs grouped under “myopathy”. And then

we assembled a case-control dataset by labeling record as

“case” if the ADE was in “myopathy” group, and other-

wise labeling record as “control”. To avoid the confusion

between causal effect and bystander effect, we included

only drugs with primary or secondary suspects, while

removing the drugs that were concomitant or interacting.

We use T to denote the set of all the records from the

FAERS database, and use Tm and Tnm to denote the sets

of case and control records, respectively. Finally, totally

|T | = 4, 077, 447 records were analyzed, including |Tm| =

136, 860 cases and |Tnm| = 3, 940, 587 controls, and

totally 1,763 unique FDA approved drugs (see Fig. 1a-b).

The number of drugs contained in a single record ranges

from 1 to 103, with a mean of 2.98 drugs in each record

in FAERS. However, the numbers of drugs taken between

two groups are significantly different (independent T-test

p-value < 2.2E-16), with mean of 4.18 drugs taken in

myopathy cases and 2.94 drugs taken in non-myopathy

controls. When focusing on records having more than

three drugs, 25.82% individuals from FAERS dataset are

taking four or more drugs together, while the proportion

changes to 36.27% in myopathy cases and 25.45% in non-

myopathy controls. Significant difference is also observed

between these two groups (independent T-test p-value <

2.2E-16), giving a mean of 8.79 drugs in myopathy group

and 7.30 drugs taken in non-myopathy group.

Methods for mining high-order directional dDI effects

We use DC to denote drug combination, and use

sup(DC,T) to represent the support (i.e., count of occur-

rences) ofDC in dataset T. To evaluate the risk of develop-

ing myopathy by adding drugs to existing drug combina-

tion, for example, taking DC2 = (Di+1, ...,Dn) in addition

to taking DC1 = (D1, ...,Di), we formulate the problem as

follows: 1) the baseline population is defined as those who

take DC1=(D1, ...,Di), regardless of taking other drugs or

not; 2) exposed population is defined as those who take

DC2 in addition toDC1, sayDC3, whereDC3=DC1∪DC2;

and 3) unexposed population is defined as those who take

DC1 but without taking at least one drug from DC2. See

Fig. 1e-f for a schematic example.

Then we employ the odds ratio (OR) to measure the

directional DDI effect of adding DC2 to existing DC1, by

formulating the DDI effect problem to mining the asso-

ciation between myopathy event with exposure to drug

combination. In practice, the OR compares the odds of

exposure to DC2 among cases to the odds of exposure to

DC2 in controls, within the baseline population who all

take DC1. Accordingly, given an interested drug combi-

nation, we need to calculate the number of exposed and

unexposed population in both cases and controls before

the calculation of OR.

In the following sections, we organize and present the

framework as follows. First, we describe the algorithm

for constructing candidate drug combinations. Second, we

present the algorithm for extracting supports of occur-

rence of drug combinations in case and control datasets.

After that, we discuss the calculation of OR for estimat-

ing the directional effect of drug combinations. Finally we

present the novel and scalable tool we developed for visu-

alizing high-order DDIs. Figure 1 shows the workflow of

this study.

Construct candidate drug combinations from T

We first created a set of drug combinations with their sup-

ports from our FAERS dataset T. To avoid the possible

misleading results from low-frequent drug combinations,

we restricted our analysis to the DCs with a minimum

support of MinSup = 250 records in T, named candidate

drug combinations. Algorithm 1 summarized the proce-

dures for constructing candidate drug combinations from

T (see Fig. 1c).

Briefly, we applied Apriori, an influential algorithm

for mining frequent itemsets to T, to discover frequent

DCswith sup(DC,T) > MinSup that involved up to seven

drugs. Apriori has been used in our previous work [7]

for mining the frequent drug combinations from both T

and Tm, using MinSup = 1000 and MinSup = 1 respec-

tively. However, due to time and space complexities, our

previous strategy could not generate drug combinations

containing more than three drugs. Instead of applying

Apriori on both T and Tm, we only employed it on T to

generate candidate DCs.

Computing supports for case records and control records

For each candidate drug combination obtained from

above, we would like to extract their counts of occurrence

in both cases and controls, for constructing contingency

table for OR estimation. As we mentioned before, the

computational time and space of using Apriori onTm to

extract DCs with MinSup = 1 limited our previous work

to involve up to three drugs (see gray part in Fig. 1). In

this work, we develop a more efficient strategy to calcu-

late supports for only candidate DCs instead of mining all

possible drug combinations appeared in Tm. Algorithm 2

describes how to extract the case and control supports

from Tm and Tnm respectively (see Fig. 1d).

Estimating directional dDI effects

Weorganize the results fromAlgorithms 1 and 2, and con-

struct a table of drug combinations (DC); see Fig. 1e. Each
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Fig. 1 The workflow for mining high-order directional DDIs

record in the table stores the counts of the corresponding

DC in the entire studied FAERS set, the case subset and

the control subset respectively. Base on this information,

for each candidate DC, a contingency table is constructed

and then used for OR calculation, where four counts a, b,

c and d can be calculated as shown in Fig. 1f.

Figure 1e-g shows our procedure for estimating the

directional effect of adding DC2 to DC1 on myopa-

thy, including contingency table construction and OR

calculation. The baseline population, exposed popula-

tion and unexposed population are the sets of individ-

uals who take DC1, DC3, and DC1 but without taking

at least one drug in DC2, respectively. The numbers of

exposed individuals with myopathy and non-myopathy

can be directly extracted from Fig. 1e as follows: a = y3
exposed individuals with myopathy and b = x3 − y3
exposed individuals with non-myopathy. The numbers of

unexposed individuals with and without myopathy (i.e.,
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Algorithm 1 Apriori: Mining frequent itemsets

Input:

T, a collection of transactions, i.e., all FAERS records;

λ, a user-specified minimum support threshold;

k, the level of itemset, i.e., the number of items in

itemset.

Output: F, a set of all frequent itemsets with their fre-

quencies.

1: Initialize F ← ∅, k ← 1, C1 ← 1-drug candidate

itemsets;

2: while Ck �= ∅ do

3: For each itemset x ∈ Ck , compute support sup(x,T)

in T ;

4: Fk ← {(x, sup(x,T)) | x ∈ Ck and sup(x,T) ≥ λ};

5: //Generate candidate (k+1)-level itemsets Ck+1, and

prune candidate if there are any infrequent subsets.

6: Ck+1 ← {x ∪ {y} | x ∈ Ck and y /∈ x} − {z | {s | s ⊆

z and |s| = k − 1} �⊆ Ck−1};

7: k ← k + 1;

8: end while

9: return
⋃

k

Fk

c and d) can then be obtained by computing the dif-

ference between baseline and exposed populations. That

is, unexposed individuals with myopathy are the individ-

uals from baseline population but not in exposed pop-

ulation. Based on Fig. 1e, given y1 individuals in the

baseline population with myopathy, the number of unex-

posed individuals with myopathy is c = y1 − a =

y1 − y3. Similarly, the number of unexposed individuals

with non-myopathy is d = (x1 − y1) − b = (x1 − y1)

−(x3 − y3).

With the above calculation, the OR estimation of direc-

tional effect ofDC1 toDC3 onmyopathy can be computed

as follows:

ORDC1→DC3 =
a/b

c/d
=

ac

bd
. (1)

Here ORs of the ADE for adding one to seven drugs are

examined in this study.

Chi-square test is used in this work to evaluate the

significance of associations between drug combination

and myopathy ADE, were p-value and confidence interval

corresponding to each odds ratio are obtained. Multi-

ple comparison correction is further performed using the

Bonferroni strategy.

Sunburst visualization for directional dDI findings

Another important aspect of DDI mining is the visu-

alization. In our previous work, we proposed a tree

structure to visualize the directional DDIs involving up

to three drugs. However, the growth of the tree was

Algorithm 2 Mining high-order itemsets in Myopathy

and Non-Myopathy records

Input:

Tm, a collection of transactions with myopathy, i.e., all

myopathy records;

Tnm, a collection of transactions with non-myopathy,

i.e., all non-myopathy records;

F, a set of all frequent itemsets with their frequencies,

i.e., the results from Algorithm. 1;

K, the maximum level of itemset in F ;

Output:

Fm, a set of itemsets from F with their frequencies in

Tm;

Fnm, a set of itemsets from F with their frequencies in

Tnm.

1: Initialize Fm ← ∅, Fnm ← ∅, k ← 1;

2: for k = 1 to K do

3: Fm,k ← {(x, sup(x,Tm)) | x ∈ Fk};

4: Fnm,k ← {(x, sup(x,T) − sup(x,Tm)) | x ∈ Fk};

5: end for

6: return
⋃

k

Fm,k ,
⋃

k

Fnm,k

exponential, making it infeasible to read for combi-

nations involving four or more drugs. In this paper,

we develop a novel tool to organize and visualize

high-order directional DDIs using D3 sunburst diagram

(https://d3js.org/).

Specifically, given a candidate drug combination S and

a set C of all subsets of S, we organize the pair-wised rela-

tionship of elements C and arrange them into a series of

circles in a hierarchical manner as shown in Fig. 1h. Each

ring sector represents a drug combination, outer ring sec-

tors radiated from which indicate the directional DDIs

from inner to outer. The sector color indicates the effect

size (i.e., OR value). In addition, we include the zooming

function to enable more effective visualization via interac-

tive exploration, where one can select a drug combination

as baseline to (1) zoom in and see the details or (2) zoom

out and see an overall picture.

Results
Data summary

There are totally T = 4, 077, 447 records included in our

processed FAERS dataset, involving 1,736 unique FDA-

approved drugs, of which Tm = 136, 860 records are

myopathy cases and Tnm = 3, 940, 587 records are non-

myopathy controls. UsingMinSup = 250 as the frequency

threshold on T, we obtained 1,032 frequent single drugs,

27,058 frequent two drug combinations, 63,702 frequent

three drug combinations, 33,596 frequent four drug com-

binations, 6,628 frequent five drug combinations, 479 fre-

quent six drug combinations, and 11 frequent seven drug

https://d3js.org/
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combinations after running Algorithm 1 on T (Fig. 1c).

There are no frequent drug combinations that include

more than seven drugs available in our dataset.

Myopathy-associated high-order directional dDIs

We have reported directional DDI results for myopathy

that contained up to three drugs with minimum sup-

port of 1000 in [7]. Given the fact that 25.81% individuals

have taken more than three drugs together and the pro-

portion increases to 36.27% in myopathy cases, in this

paper, we extended our previous work to mining DDIs

with higher-order and reported all the myopathy associ-

ated directional DDI findings based on a less stringent

mininum support of MinSup = 250. As a result, we

discovered higher-order directional DDIs involving up to

seven drugs. We describe our results in the following

subsections.

Effects of high-order drug combinations vs baseline

Tables S1-S7 show the top 10 findings from one to seven

drugs versus the baseline. The top drug from one drug

versus baseline (Table S1) is “fusidic acid”, a bacteriostatic

agent primarily on inhibiting Gram-positive bacteria, with

OR = 27.24. This means the odds of myopathy in indi-

viduals taking fusidic acid is 27.24 times higher than in

individuals not taking it.

Fusidic acid has been reported frequently associated

with myopathy upon co-administration with statins [8].

There is no frequent co-administration of fusidic acid

with other drugs from our results under the threshold of

MinSup = 250. However, we observe that the top two

most frequent drugs taken together with fusidic acid in

myopathy cases are both statins (simvastatin and ator-

vastatin). Specifically, there are 352 myopathy cases that

take fusidic acid, among which 188 cases have taken both

fusidic acid and simvastatin and 141 cases have taken

both fusidic acid and atorvastatin. The counts of taking

fusidic acid with these two stains decrease to 51 and 15 in

non-myopathy controls, ranking as the 4th and 42nd co-

administrated ones with fusidic acid. These indicate the

joint effect of fusidic acid with statins on myopathy.

The use of MinSup = 250 allows us to identify more

myopathy risk DDIs than our prior study [7], conse-

quently to help provide more comprehensive references

for adverse effects of DDIs. For example, in addition

to fusidic acid, another six drugs which have not been

reported in our previous study are identified in this

analysis, including telbivudine, cerivastatin, trabectedin,

terconazole, flucloxacillin and pindolol (see Table S1).

Tables S1-S7 summarize all the top 10 findings.

Directional effects of four-drug combinations

As mentioned above, our findings include the DDIs

involving up to seven drugs. For the sake of conciseness,

as an example, here we focus on reporting the top DDI

results related to four-drug combinations. We calculated

the ORs of the myopathy risk associated with the direc-

tional DDIs of each four drug combination versus all of its

subsets. We obtained 27,112; 85,557; 87,069; and 25,575

significant findings with OR > 1 for 4-drug combination

versus baseline; 1-drug combination; 2-drug combination;

and 3-drug combination, respectively. Shown in Tables 1,

2, 3 and 4 are the top 10 findings for the above four

categories respectively.

Table 1 shows the top 10 findings of directional effects

of adding four drugs to baseline, with OR values ranging

from 42.44 to 49.65. There are twelve unique drugs across

top 10 findings in Table 1, a number of which are indi-

cated for pain relief. Specifically, fentanyl and oxycodone

are opioid analgesics; gabapentin is a non-opioid anal-

gesic and has been used in treatment of neuropathic pain;

pamidronate and zoledronate are both bisphosphonates

which are primarily used in treatment of bone metasta-

sis. The top result illustrates that the risk of myopathy

development would increase to 49.65 when taking fen-

tanyl, gabapentin, levofloxacin and zoledronate together

compared with baseline.

Based on Table 2, adding gabapentin, levofloxacin

and zoledronate on top of fentanyl would result in

43.3 times altered risk of myopathy. Most of the top

findings in Table 2 involve co-administration of zole-

dronate with different types of drugs including antibiotics

(ciprofloxacin, levofloxacin), analgesics (acetaminophen,

fentanyl, gabapentin, oxycodone) and others. Among the

above mentioned drugs, several are reported to increase

myopathy risk as single agents. However, to the best of our

knowledge, no previous reports have indicated the inter-

actions among these drugs. We will discuss these findings

in the next section.

Tables 3 and 4 present the top OR results of compar-

ing four-drug combinations with their subsets of two-

Table 1 Top 10 OR results for 4-drug combination vs. baseline:

with Bonferroni correction, a significant p is 1.50E-6

4-drug combination OR p-value

Fentanyl, Gabapentin, Levofloxacin, Zoledronate 49.65 6.46E-194

Furosemide, Gabapentin, Levofloxacin, Zoledronate 48.43 2.66E-174

Azithromycin, Ciprofloxacin, Levofloxacin, Zoledronate 45.30 2.27E-157

Azithromycin, Gabapentin, Levofloxacin, Zoledronate 44.97 4.17E-159

Gabapentin, Levofloxacin, Omeprazole, Zoledronate 44.76 4.47E-180

Gabapentin, Levofloxacin, Zoledronate, Zolpidem 44.74 2.77E-214

Fentanyl, Levofloxacin, Omeprazole, Zoledronate 44.62 6.06E-181

Gabapentin, Levofloxacin, Pamidronate, Zolpidem 44.37 1.10E-179

Alprazolam, Levofloxacin, Omeprazole, Oxycodone 43.24 1.45E-151

Gabapentin, Levofloxacin, Omeprazole, Oxycodone 42.44 8.54E-160
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Table 2 Top 10 OR results for 4-drug combination vs. 1-drug:

with Bonferroni correction, a significant p is 3.75E-7

4-drug combination 1-drug combination OR p-value

Fentanyl, Gabapentin,
Levofloxacin, Zoledronate

Fentanyl 43.30 6.52E-181

Fentanyl, Levofloxacin,
Omeprazole, Zoledronate

Fentanyl 38.79 2.03E-168

Ciprofloxacin, Fentanyl,
Levofloxacin, Zoledronate

Fentanyl 36.70 1.15E-157

Acetaminophen,
Doxorubicin, Omeprazole,
Zoledronate

Doxorubicin 35.40 4.44E-114

Capecitabine,
Dexamethasone, Fentanyl,
Zoledronate

Capecitabine 34.36 9.61E-100

Alprazolam, Fentanyl,
Levofloxacin, Zoledronate

Fentanyl 34.33 1.19E-146

Acetaminophen,
Doxorubicin, Levofloxacin,
Zoledronate

Doxorubicin 33.53 4.23E-113

Ciprofloxacin, Fentanyl,
Levofloxacin, Oxycodone

Fentanyl 33.40 2.10E-146

Fentanyl, Gabapentin,
Metoclopramide,
Zoledronate

Metoclopramide 33.13 4.86E-117

Docetaxel, Oxycodone,
Prochlorperazine,
Zoledronate

Docetaxel 32.97 1.57E-140

and three-drug combinations. Part of these findings are

similar to those in Tables 1 and 2. For example, adding

zoledronate to the combination of docetaxel, oxycodone

and prochlorperazine increases the risk of myopathy with

OR = 62.64 (see the 6th findings in Table 4). The same

combination of these four drugs gives the estimation of

OR = 32.97 compared to docetaxel (the 10th findings in

Table 2).

Top findings from Table 4 show the effect of adding

either acetaminophen or zoledronate on existing drug

combinations. For example, six findings are from adding

zoledronate and the other four findings are from adding

acetaminophen. This suggests further investigation on

possible interactions between acetaminophen and zole-

dronate with other drugs.

Interactive visualization of DDIs

The complexity of directional effects among high-order

DDIs requires a concise yet comprehensive way to orga-

nize and present the complex relationships among inter-

esting drug sets. We develop a visualization tool using

sunburst diagram, inputting a drug set and visualizing

directional DDIs among all its subsets in an interactive

manner.

Figure 2 shows an example of the visualization of a

four-drug combination including fentanyl, gabapentin,

levofloxacin and zoledronate. Due to the space limita-

tion, we use numbers 1, 2, 3, and 4 to denote these four

drugs. Figure 2a presents an overview the DDIs corre-

sponding to four drugs, showing all paths from base-

line node (i.e., none of drugs 1, . . . , 4 are taken) to all

the subsets of these four drugs. In the plot, circum-

jacent ring sectors present the directional DDI from

inner sector to outer one. For example, the arrow in

Fig. 2a represents the DDI from baseline to drug 1

(i.e., fentanyl), with the color representing the effect

size (OR).

Given a user-interested drug, for example drug 1, we

can zoom in to focus on only directional DDIs on top

of drug 1. Figure 2b shows all the directional DDIs by

adding subsets of other three drugs to drug 1. Iteratively,

from Fig. 2b to c, we can zoom in to a two-drug com-

bination (drug 1 and drug 2) to generate another plot

for showing the local DDI results on top of drugs 1

and 2. Similarly, we can also zoom out from a plot of

local DDIs to a global one, for obtaining a comprehen-

sive overview of the interested sets of drugs (e.g., from

Fig. 2e→ d→c→b→a).

Table 3 Top 10 OR results for 4-drug combination vs. 2-drug: with Bonferroni correction, a significant p is 2.61E-7

4-drug combination 2-drug combination OR p-value

Gadobenate Dimeglumine, Gadodiamide, Gadoteridol, Prednisone Gadobenate Dimeglumine, Prednisone 270.16 8.81E-09

Pamidronate, Sulfamethoxazole, Trimethoprim, Zoledronate Pamidronate, Sulfamethoxazole 85.71 4.87E-23

Doxorubicin, Pamidronate, Vincristine, Zoledronate Doxorubicin, Vincristine 41.74 2.02E-129

Dexamethasone, Doxorubicin, Oxycodone, Vincristine Doxorubicin, Vincristine 36.77 2.59E-92

Dexamethasone, Doxorubicin, Pamidronate, Vincristine Doxorubicin, Vincristine 30.99 5.38E-108

Dexamethasone, Doxorubicin, Vincristine, Zoledronate Doxorubicin, Vincristine 30.52 6.37E-112

Acetaminophen, Diphenhydramine, Prochlorperazine, Zoledronate Diphenhydramine, Prochlorperazine 29.15 7.61E-62

Docetaxel, Oxycodone, Prochlorperazine, Zoledronate Docetaxel, Prochlorperazine 28.95 9.23E-79

Acetaminophen, Cyclophosphamide, Doxorubicin, Pamidronate Cyclophosphamide, Doxorubicin 27.76 1.79E-85

Docetaxel, Furosemide, Oxycodone, Zoledronate Docetaxel, Furosemide 27.32 5.22E-58
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Table 4 Top 10 OR results for 4-drug combination vs. 3-drug: with Bonferroni correction, a significant p is 5.27E-7

4-drug combination 3-drug combination OR p-value

Acyclovir, Dexamethasone, Pamidronate, Zoledronate Acyclovir, Dexamethasone, Pamidronate 126.35 9.82E-29

Dexamethasone, Lorazepam, Thalidomide, Zoledronate Dexamethasone, Lorazepam, Thalidomide 88.15 4.16E-22

Acetaminophen, Azithromycin, Cephalexin, Lorazepam Azithromycin, Cephalexin, Lorazepam 77.91 6.75E-19

Docetaxel, Fentanyl, Oxycodone, Zoledronate Docetaxel, Fentanyl, Oxycodone 75.67 7.06E-20

Pamidronate, Sulfamethoxazole, Trimethoprim, Zoledronate Pamidronate, Sulfamethoxazole, Trimethoprim 70.29 2.35E-19

Docetaxel, Oxycodone, Prochlorperazine, Zoledronate Docetaxel, Oxycodone, Prochlorperazine 62.64 2.99E-36

Acetaminophen, Dexamethasone, Oxycodone, Tramadol Dexamethasone, Oxycodone, Tramadol 57.39 1.31E-14

Dexamethasone, Epoetin Alfa, Omeprazole, Zoledronate Dexamethasone, Epoetin Alfa, Omeprazole 56.20 1.37E-32

Acetaminophen, Alendronate, Omeprazole, Oxycodone Alendronate, Omeprazole, Oxycodone 53.65 2.97E-15

Acetaminophen, Fentanyl, Fluconazole, Oxycodone Fentanyl, Fluconazole, Oxycodone 51.58 1.11E-14

Discussion
This analysis extends our previous work [7] from estimat-

ing DDI directional effects of up to three drugs with min-

imum support of 1000 to a larger scale involving higher-

order combinations with less stringent minimum support

of 250. In this paper, we investigate the risk of adding up

to seven drugs at a time with minimum support of 250 on

the same dataset.We employed an efficient Apriori imple-

mentation in R package “arules”, the same as that used

in our previous work [7], to extract the frequent item-

sets (MinSup = 250) from the total 4,077,447 records.

However, as we also need to extract the itemsets with

MinSup = 1 from myopathy records, the computational

burden for more than three drug combinations would

increase too dramatically to be affordable. In practice, we

tried the previous implementation for extracting itemset

with MinSup = 1 on myopathy cases using Algorithm 1

on a Window 10 Enterprise 64 bit desktop with an Intel

(R) Core(TM) i9-7900X CPU and 32 GB memory. We

were unable to obtain drug combinations involving more

than four drugs due to the huge number of drug combina-

tions. In this work, using the newly proposed Algorithm 2,

we were able to obtain all the drug combinations using

MinSup = 1, which involved up to seven drugs from

Fig. 2 Interactive visualization for all possible directional DDI effects related to the subsets of fentanyl, gabapentin, levofloxacin and zoledronate. a

shows the overall picture of all possible directional DDIs effects. b shows details of DDI effects of taking fentanyl as baseline, by zooming in the

highlighted part of (a). c shows the details of DDI effects of taking both fentanyl and gabapentin as baseline, by zooming in the highlighted part of

(b). d shows the details of DDI effects of taking fentanyl, gabapentin and levofloxacin as baseline, by zooming in the highlighted part of (c). e shows

the DDI effects of taking all four drugs vs. taking the first three ones. The sector color indicates the effect size of DDIs from inner to outer ring sectors
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myopathy cases. The newly designed tool also allows

us to visualize the high-order directional DDI results

effectively.

Tatoneti et al. [9] and Li et al. [10] also analyzed

the FAERS data, but focused on examining either sin-

gle drug effects or two-way drug interaction effects,

without exploring the directional effects proposed here.

As an exploratory study, our work focused on estimat-

ing the ORs of high-order directional DDIs on myopa-

thy using the FAERS data. For validation purpose, we

assessed the sensitivity of our findings using available side

effect databases including OFFSIDES and TWOSIDES

databases from [9] and Side Effect Resource (SIDER)

database [11].

Our comparison withOFFSIDES focused on two events:

myopathy toxic and myopathy steroids. In the OFFSIDES

database, there are 17 drugs with myopathy toxic as event.

Except potassium acetate, all the other 16 drugs exist in

our data. Our method identified 14 out of 16 drugs with

significant p-values, while ethambutol and epinephrine

were not captured. In addition, there are 19 drugs with

myopathy steroid as event in OFFSIDES. Except cetrax-

ate and salina, all the other 17 drugs exist in our data.

Our method identified 14 out of 17 drugs with significant

p-values, and vinorelbine, voriconazole and bortezomib

were not captured.

In the TWOSIDES database, we focused on the 2-

drug combinations associated with muscle weakness,

rhabdomyolysis, muscle disorder, muscle paresis, muscle

spasm, muscle inflammation, musculoskeletal pain, myas-

thenia gravis, muscle strain, and muscle rupture. A total

of 32,304 unique 2-drug combinations linking to events

listed above were reported in the TWOSIDES database,

among which 7,444 were identified in our “2-drug vs.

baseline” results with significant p-values. The ORs of

myopathy risk, based on our analysis, for these two-drug

combinations ranging from 24.95 to 0.05. Specifically,

the OR is 24.95 for (fulvestrant, gabapentin) with p =

3.89E-138, and the OR is 0.05 for (heparin, pancuronium)

with p = 2.05E-07. Both are significant after Bonferroni

correction.

For high-order findings, due to the lack of high-order

DDI databases, we alternatively assessed the individual

drugs from our high-order results with known myopathy-

related drugs. For example, we compared the unique drugs

reported in our “four-drugs vs. baseline” findings with the

SIDER database [11]. In the SIDER database, 97 drugs are

listed withmyopathy as event, among which 75 drugs exist

in our FAERS data. In our result, we have 27,191 four-drug

combinations with significant p-values, which consist of

372 unique drugs. 37 out of 75 SIDER drugs are part of

the identified 372 unique drugs. Of note, since we focus

on identifying high order drug combinations that induce

adverse effect, any individual drug from our reported drug

combinations may not necessarily have an impact on the

adverse effect by itself alone.

Our analysis has uncovered a number of interesting

drug combinations leading to increased risk for myopathy.

Drugs most often appearing in the top results are bis-

phosphonates (zolendronte, pamidronate), chemotherapy

agents (doxorubicin, capecitabine, vincristine, cyclophos-

phamide), opioid analgesics (fentanyl, oxycodone), non-

opioid analgesics (acetaminophen, gabapentin), corti-

costeroids (dexamethasone), and other renally-excreted

drugs (levofloxacin, ciprofloxacin, and gadolidium based

contrast agents). In the top 20 4- vs. 3-drug combinations,

only zolendronate and acetaminophen added on top of

3-drug combinations led to increased risk of myopathy

events. Interestingly, many of the co-prescribed medica-

tions are nephrotoxic or renally cleared, which may lead

to pharmacokinetic-based drug interactions with other

drugs. Additionally, many of drugs have reported myopa-

thy or rhabdomyolysis risk. Thus, it is likely that interac-

tions in pharmacodynamic mechanisms also increase risk

of myopathy. For instance, each of the drugs in the top 4-

way combination (fentanyl, gabapentin, levofloxacin, and

zolendronate) have each individually been associated with

myopathy [12–18].

Zolendronate and pamidronate are bisphospho-

nates used to treat osteoporosis, hypercalcemia of

malignancy, Paget’s disease, and metastatic bone

metastases. It is primarily cleared through renal

excretion. Myalgia following infusion is reported

in 65–70% of postmenopausal women but is typ-

ically self-limiting [12, 13]. While acetaminophen

would most likely be associated with myopathy due

to its use in treating pain, there are several reports

of rhabdomyolysis as a symptom of acetaminophen

overdose [19–21].

A limitation to the structured FAERS data is that it does

not report timing of drug administration with respect to

the adverse event. Thus, it is difficult to distinguish drugs

used to treat myopathy from those that cause myopa-

thy. Some drugs, such as opioid and non-opioid anal-

gesics, muscle relaxers, and corticosteroids may have been

used for treatment of myopathy. Thalidomide, cyclophos-

phamide and dexamethasone have been used in combi-

nation to treat sporadic late-onset nemaline myopathy

with monoclonal gammopathy of undetermined signifi-

cance (SLONM-MGUS) [22]. Thalidomide has also been

reported as a treatment for scleromyxedema with myopa-

thy [23]. However, glucocorticoids such as prednisone

and dexamethasone are well-known as a cause of drug-

induced myopathy, especially at high doses [24]. Opioids

(e.g. fentanyl, oxycodone) are also associated with myopa-

thy events and non-opioid analgesics such as celecoxib

and ibuprofen are nephrotoxic, which could increase risk

of myopathy due to other myotoxic drugs. Thus, it is
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difficult to distinguish whether these agents instigated the

myopathy adverse events or were used in its treatment.

Conclusions
We have proposed a high-order directional DDI mining

strategy for identifying myopathy associated drug inter-

actions from large-scale ADE reporting database. We

have demonstrated its efficiency using real data from the

public health record database FAERS. Our method con-

firms several prior drug or DDI effects on myopathy, as

well as suggests novel interactions involving more than

three drugs. We have also developed a more effective and

scalable visualization tool for easy interpretation of DDI

findings. However, the absence of report timing of drug

administration with respect to the adverse event limits

our capability to distinguish DDI findings from causal to

treatment. Given this limitation, this work can be further

expanded towards including temporal relation informa-

tion between drug administration and event, to improve

the inference of causal DDI effects.
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