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In this paper we extend previous work in mining recommendation spaces based on symbolic
problem features to PDE problems with continuous-valued attributes. We identify the re-
search issues in mining such spaces, present a dynamic programming algorithm from the
data-mining literature, and describe how a priori domain metaknowledge can be used to
control the complexity of induction. A visualization aid for continuous-valued recommendation
spaces is also outlined. Two case studies are presented to illustrate our approach and tools: (i)
a comparison of an iterative and a direct linear system solver on nearly singular problems,
and (ii) a comparison of two iterative solvers on problems posed on nonrectangular domains.
Both case studies involve continuously varying problem and method parameters which
strongly influence the choice of best algorithm in particular cases. By mining the results from
thousands of PDE solves, we can gain valuable insight into the relative performance of these
methods on similar problems.
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1. INTRODUCTION

The algorithm selection problem was first seriously formulated and ana-
lyzed by John R. Rice nearly 25 years ago [Rice 1976]. Having posed the
problem of selecting a good method for a particular problem instance as a
scientific problem itself, Rice and coworkers, along with many others, have
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long worked to address this problem using the tools of the scientific
method. Hence, they have used traditional theoretical and mathematical
tools (e.g., theorems, convergence rates) as well as empirical and experi-
mental approaches. Rice has been a leader in building frameworks in which
large performance-evaluation studies could be conducted and from which
new insights into the algorithm selection problem could be gained, e.g., an
early PDE solving performance evaluation system [Boisvert et al. 1979],
the ELLPACK system [Rice and Boisvert 1985], a population of parameter-
ized test problems [Rice et al. 1981], and a population of parameterized
PDE domains and solutions [Rice 1984; Ribbens and Rice 1986]. More
recently, approaches to solving the algorithm selection problem whose roots
are in the artificial intelligence community have been developed [Addison
et al. 1991; Lucks and Gladwell 1992; Kamel et al. 1993; Weerawarana et
al. 1996; Houstis et al. 2000]. A particular recent emphasis has been on the
implementation of algorithm recommender systems in specialized domains.

One of the main results of this work is PYTHIA [Houstis et al. 2000]—a
design framework that supports the rapid prototyping of algorithm recom-
mender systems [Ramakrishnan 1999]. PYTHIA works in conjunction with
problem-solving environments (PSEs) such as ELLPACK [Rice and Bois-
vert 1985] and PELLPACK [Houstis et al. 1998], and provides layered
subsystems for problem definition, method definition, experiment manage-
ment, performance data collection, statistical analysis, knowledge discov-
ery (for recommendation rules), and an inference engine. PYTHIA also
supports the incorporation of new learning algorithms that facilitate alter-
native methods of data analysis and mining.

1.1 Contributions of this Paper

We show how the basic PYTHIA framework presented in Houstis et al.
[2000] can be extended to mining recommendation spaces for PDE problems
with continuous-valued attributes. Traditionally, continuous-valued at-
tributes have been handled by one of two approaches: (i) using function
approximations to model mappings (e.g., neural networks, regression,
polynomial networks), or (ii) using techniques such as decision trees that
perform sampling or discretization (of the feature space) to design new
(symbolic) features that can be subsequently utilized in the induced gener-
alizations. In Ramakrishnan and Valdés-Pérez [2000] we showed why both
these approaches are inadequate for profiling mathematical algorithms and
mining recommendation spaces. In this paper, we identify the research
issues in mining such spaces, present a dynamic programming algorithm
from the data-mining literature, and demonstrate how a priori domain
metaknowledge is factored to control the complexity of induction. A visual-
ization aid for recommendation spaces is also outlined.

Two case studies are presented to illustrate the use of our approach and
tools:

(1) a comparison of the performance of an iterative and a direct linear
system solver on nearly singular problems and
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(2) a comparison of two iterative solvers on problems posed on nonrectan-
gular domains.

Both case studies focus on algorithm selection for the problem of solving
linear systems, the dominant step in a typical numerical PDE computation.
The problem of choosing good algorithms and software for linear system
solving can be approached from a variety of directions. Proposers of new
methods typically demonstrate their advantages by using mathematical
analysis and illustrative examples on model problems. For example, Green-
baum [1997] and Saad [1996] survey the state of the art in iterative solvers
and preconditioners primarily from this perspective. Others have executed
performance evaluation studies or modeling of solvers on problems arising
from particular application domains [Schmid et al. 1995; Zhang 1996], or in
the presence of certain architectural features [Pommerell and Fichtner
1994; de Sturler 1996]. Here, we propose and illustrate another, comple-
mentary approach, which applies data-mining techniques to the problem.
Both our case studies involve continuously varying problem and method
parameters which strongly influence the choice of best algorithm in partic-
ular cases. By mining data sets containing the results from thousands of
PDE solves, we gain valuable insight into the likely relative performance of
these methods on similar problems.

1.2 Organization of the Paper

Section 2 presents a quick overview of a class of techniques appropriate for
mining recommendation spaces with continuous attributes. Section 3 iden-
tifies various practical considerations and implementation details for the
effective application of these techniques. It also emphasizes the role of domain
metaknowledge in data mining. The case studies are presented in Section 4.
Population definition, experiment processing, and postprocessing are covered
in detail here. Section 5 identifies various directions for future research.

2. MINING AS SEARCH

The use of data mining to induce generalizations is an active area of current
research. In this section, we present the basics of an important class of
single-table data-mining algorithms called association rule mining. The asso-
ciations mined by such algorithms refer to connections between (sets of)
entities that occur together (frequently) in a given database. For example,
associations in a business context refer to items frequently purchased together
in a supermarket, while associations in an algorithm recommender system
refer to connections between features of PDE problem instances and the
algorithm(s) that performed best (or well) on such instances. Barring any
specific constraints on the nature of such associations, one way to generate
them is to systematically explore and analyze the space of possible patterns.
This idea of “generalization as search” was first proposed in Mitchell [1982],
and the specific emphasis on mining database tuples is due to Agrawal et al.
[1993]. We present here the salient features of the technique. For more details,
we refer the interested reader to Agrawal et al. [1993].
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Definition 2.1. An instance of an association rule problem is

—a finite set of features, F 5 { f1, f2, . . . , fm},

—a finite set of algorithms, A 5 {a1, a2, . . . , an},

—a finite set of experiments, E 5 {e1, e2, . . . , et} where @i [ [1 . . . t],
?j [ [1 . . . n] such that ei 5 (Si, a j), S i , F. In the above formulation,
a feature corresponds to a property such as “Operator is Laplace,”
“Boundary Condition is Dirichlet,” etc.; an experiment corresponds to the
solution of a PDE problem and the algorithm that was declared the
“winner” in the experiment with respect to some performance measure(s)
(details of performance evaluation are provided in future sections). Ties
between, say two, algorithms are processed either (i) by declaring no
winners, or (ii) indicating that both algorithms are winners. The latter
case is typically encoded as two different experiments.

For example, Figure 1 describes an RDBMS (relational database manage-
ment system) table where each experiment is assigned a tuple, and the
individual a j entries denote the choice of an algorithm that best satisfies a
performance constraint. We assume, for the moment, that F contains only
discrete features, and that algorithms do not have features. The goal of the
mining algorithm is two-fold:

—Find all sets I , F such that I occurs in at least h% of the tuples, where
h is a user-defined support level. These are referred to as frequent

itemsets in Agrawal et al. [1993], a name derived from the original
application of data mining to commercial market basket data, since each
customer’s transaction is modeled as a set of items. Notice that frequent
itemsets only contain problem features, not algorithms.1

—For all such frequent itemsets I, output a rule I 3 J; J [ A, if the
number of tuples that contain I ø J (as a fraction of the number of tuples
that contain I) is at least u% where u is a user-defined confidence level.

1The reader will note that our definition of support is more restrictive than the definition used
in the data mining community. As mentioned before, we have adapted it to mining recommen-
dation spaces for algorithms.

Fig. 1. An RDBMS table that describes an instance of an association rule-mining problem.
Each tuple in the table records an experiment and identifies a problem instance, its features,
and the algorithm that performed best on that instance.
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Notice that support and confidence denote different measures on the nature
of the induced patterns. Support determines how representative the fre-
quent itemset is in the experiment database whereas confidence reflects
the strength of the implication induced in the second step. A rule can have
extremely high confidence but might have been derived from an itemset of
low support. For example, algorithm Z might perform well whenever
feature X is present, but X might be a very infrequent entry in the
database, leading to low support. Conversely, a rule can have low confi-
dence with high/moderate support. For example, features X and Y might
occur together in 90% of the tuples, but it might not be possible to obtain a
rule with more than 10% confidence that has X ø Y in its antecedent.
Thus, data-mining applications typically exhibit a support-confidence
trade-off. For example, one study [Steinacher 1998] cites that mining
transactional data on the Internet never results in itemsets with more than
5% support. There are applications where support is more important
(business data, since it is required to justify actionability), and there are
others where confidence is more important (as in building recommender
systems for scientific software). As a result, researchers have explored
various linear combinations of these two measures as evaluation criteria
for data-mining systems [Fukuda et al. 1996].

To illustrate how an association rule algorithm functions, consider the
lattice induced by the subset relation on F. The lattice diagram for the data
in Figure 1 is shown in Figure 2 and can be used as the basis to find the

Fig. 2. Lattice induced by the subset relation on the set {f,g,h,i,j,k,m}. The darkened lines
indicate the sublattice for the subset {f,g,h} (and, by definition, for {f}, {g}, {h}, {f,g}, {f,h}, and
{g,h}).
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frequent itemsets. One could systematically try either a top-down or a
bottom-up approach and explore this space to find the frequent itemsets.
However, as identified in Agrawal et al. [1993], the definition of the
support function above provides a useful pruning criterion that can be
effectively utilized in a bottom-up process. For example, if a given subset of
size s does not have support, then no superset of this subset can have
support in future generations. Conversely, for a set of size s to have
support, all subsets of size (s 2 1) must also be frequent itemsets. This is
also referred to as antimonotonicity in the database literature [Han et al.
1999]. Thus, the lattice framework provides both (i) a means to systemati-
cally generate candidate itemsets, and (ii) a pruning criterion for the
exploration of this space. The worst-case complexity of this approach is
O(X z uE u) where X denotes the sum of the sizes of all itemsets considered
by the technique (which is exponential in uF u). (Many database algorithms
such as closure checking and dependency verification require time propor-
tional to the sum of the sizes of sets considered.) In experimental studies,
this is not a bottleneck due to (i) the number of frequent itemsets in higher
generations decreases substantially, even for moderate values of support;
(ii) database systems provide various primitives for the efficient implemen-
tation of this technique: sampling [Agrawal et al. 1996], “pushing algo-
rithms into the database address space” [Sarawagi et al. 1998], constraint-
based checking [Han et al. 1999], efficient hash-based indexing data
structures for implementing the subset function [Park et al. 1995], and
specialized query languages that can selectively reorder operations for
higher efficiency [Imielinski and Mannila 1996]; and (iii) efficient online
reformulations of the basic technique also exist [Hidber 1999] that can
terminate early, once results of the desired quality are achieved, and can be
viewed as anytime algorithms [Ramakrishnan and Grama 1999] due to
their interruptibility and the monotonic improvement of the quality of the
answer with time.

Example 1. We now illustrate the operation of the mining technique by
application to the data in Figure 1. The first stage involves the computation
of the frequent itemsets, and the second stage augments these itemsets to
obtain rules that achieve a desired level of confidence. At the end of the
first iteration of the first stage, the individual itemsets and their support
are given in Figure 3. Assume that we prune subsets at the 50% support
level. Thus, only the sets { f}, { j}, and {k} are considered for computing the
itemsets in the next generation. Continuing in this manner, the final
frequent itemsets are

$ f%, $ j%, $k%, $ j, k%

The next stage augments these itemsets (with algorithms) to form rules
that can be used in deductive inference. We thus mine the rules shown in
Figure 4. The confidence measure is provided alongside the rules.
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2.1 Numeric Attributes

The above example utilized only symbolic attributes defined on problem
properties. However, many real-world applications involve continuous-
valued problem and algorithm parameters which have significant implica-
tions for performance. For example, geometric features such as holes,
interfaces, and corners can have a significant influence on the performance
of discretization methods. Similarly, difficult PDE operator or solution
features such as point singularities, boundary layers, and shocks are often
present in real-world problems. The relative importance of these features is
better represented by continuous parameters than by symbolic or discrete
ones. The performance of algorithms is also heavily dependent on continu-
ous-valued method parameters, e.g., acceleration parameters, Krylov sub-
space dimension, convergence criteria, fill-in levels for incomplete factor-
ization-based preconditioners, etc. (Note: We use the term “continuous-
valued” to encompass numeric attributes that can be grouped into ranges.)

The analysis presented above fails when we allow database tuples and
attributes to take numeric values in a continuous range. This is due to the
lack of an effective pruning criterion for continuous valued attributes.
Assume that we preprocess numeric-valued attributes by (i) first sorting
and bucketing the measured values of the feature, and (ii) subsequently
designing tests (with a boolean/symbolic value) based on the class distribu-
tion and the subsets induced by the test. For example, we could design new
features such as “in the range [a, b],” for varying values of a and b. When
operating with such ranges, however, constructing a lattice according to the
partial order is-contained-in does not allow us to use the same partial order
as a pruning criterion. As an example, consider the case when one of the
features can take values in the range [1 . . . 10]. If a given part of this range
[3 . . . 5] does not have support, we will still need to consider ranges
containing this range, such as [2 . . . 6], [1 . . . 5], [1 . . . 9], and so on. In the

Fig. 3. First generation of frequent itemsets determined by the first step of the association-
mining technique.

Fig. 4. Rules induced by the association rule-mining algorithm for the sample database in
Figure 1.
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absence of an effective greedy strategy, Fukuda et al. [1996] showed that
the only efficient technique for mining association rules with numeric
feature ranges is via dynamic programming by exhaustively checking the
space of possible ranges.

Example 2. We now present an example where the database involves a
single continuous-valued problem feature f and multiple algorithms. To
simplify the analysis, we assume a discretization of the original data into
equidepth buckets such that each bucket satisfies the support constraint
(which implies that all sequences of buckets will also satisfy the con-
straint). We then proceed to find the range that maximizes the confidence
measure. For example, Figure 5 indicates a continuous attribute dis-
cretized into eight buckets of size 20 with each entry denoting the number
of times a certain algorithm was best (the support fraction is thus 20/160,
or 12.5%). As discussed in Fukuda et al. [1996], Bentley’s linear-time
algorithm [Bentley 1986] can be used to find a contiguous range that
maximizes the confidence. It scans the data from left to right, maintains
both the range ending at the scan point as well as the best range seen so
far, and uses these ranges to incrementally compute the ranges for the next
scan point; see Manber [1992] for a description of this algorithm.

2.2 Two-Dimensional Mining

Extending this scheme to two dimensions (with more than one continuous-
valued feature) is simple if the goal is to find a contiguous rectangular
region. The straightforward extension of the 1D case results in a O(N3)
time algorithm (since there are N2 ways to choose the limits of the
rectangle and within each rectangle, the columns/rows can be collapsed to
yield a 1D problem (which requires O(N) time)). A variation of this
approach, popular in image processing and data mining [Fukuda et al.
1996], is to allow nonrectangular regions whose intersection with a family
of isothetic axes (vertical or horizontal) is continuous. Such regions can be
found in O(N2) time—an improvement over the regular rectangular algo-
rithm. The technique makes use of a monotonicity property of connected
regions2 and is particularly appropriate for mining two-dimensional recom-
mendation spaces, where confidence-optimizing regions are frequently non-
rectangular.

Example 3. Consider a case with two continuous-valued attributes, f1

and f2, where f1 varies in the range [0 . . . 25] and f2 varies in the range

2This is different from the antimonotonicity nature of the constraints used for data mining.

Fig. 5. A uniform bucketing of a continuous attribute. Each entry denotes the number of
times a certain algorithm was best (out of a maximum of 20). The emphasized bucket range
[4, 5] indicates the solution obtained by Bentley’s algorithm with a confidence of 0.6.
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[0 . . . 1000]. The first step is to discretize these ranges into buckets (this
can either be obtained from the process that generated the data or be
achieved by equidepth sampling techniques). The goal of this step is to
ensure that all buckets satisfy a minimum support constraint. Let us
assume that equidepth buckets are obtained for

f1 [ $@0, 5!, @5, 10!, @10, 15!, @15, 20!, @20, 25#%

f2 [ $@0, 1!, @1, 10!, @10, 100!, @100, 1000#%

Table I describes the equidepth bucketing, and Table II describes the
number of hits in each bucket for a certain algorithm X, i.e., these are
regions for which it performed best. The 2D algorithm described in Fukuda
et al. [1996] identifies a connected region, as shown on the right in Figure
6. The mined recommendation space shows that as f1 increases, algorithm
X works well only for correspondingly lower values of f2. This phenomeno-
logical observation can then be used as the basis of a knowledge-based
decision support system (that selects X for such values of ( f1, f2)). We refer
the interested reader to Fukuda et al. [1996] for more details about the
mining algorithm, and to Houstis et al. [2000] for a description of a
recommender system facility.

3. IMPLEMENTATION CONSIDERATIONS

In this section, we outline various implementation decisions and consider-
ations for the successful application of this technique to mining recommen-
dation spaces for PDE problems and solvers.

3.1 Domain-Specific Restrictions

The previous section outlined a bottom-up approach to computing itemsets
and rules. Concurrent with this approach, a top-down scheme that makes

Table I. Number of Experiments Conducted for Various Values of Two Continuous-Valued
Attributes, f1 and f2

Table II. Number of Hits for Algorithm X for the Experiments Presented in Table I
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use of a priori domain metaknowledge can suggest directions to explore and
collect further data. This is the experiment generation problem studied in
Subramanian and Feigenbaum [1986]. Examples of metaknowledge for this
domain include the following:

—Factorization: If the recommendation space can be factored into multi-
ple, independent recommendation subspaces. For example, if we knew
that the effects of feature f1 on algorithm applicability are completely
independent of the effects of feature f2, we can attempt to learn two
different patterns (and combine them later) by a divide-and-conquer
approach. Subramanian et al. refer to such patterns as factorizable

concepts [Subramanian and Feigenbaum 1986]. Factorization can also be
used to a limited extent if the features impose a hierarchical structure. It
can also be applied to the case when both symbolic and numeric feature
attributes are present.

—Subspace Elimination: If the recommendation space contains impossi-

ble subspaces, due to semantic considerations arising from problem
definition. For example, consider domain #20 from the population of
nonrectangular PDE domains defined by Rice [1984]. This domain in-
volves two intersecting circles controlled by two continuous-valued pa-
rameters. The radius of one of the circles is fixed at 1, while the other
radius is allowed to vary (which is the second parameter f2). In addition,
the first parameter ( f1) controls the degree of overlap between the two
circles. This domain poses the constraint that the condition

f2 . Î1 2 f1
2

be satisfied for every valid PDE problem. Thus, data points belonging to
subspaces that do not satisfy this constraint need not even be evaluated.

Fig. 6. (left) The data in Table II modeled by a colormap that associates the confidence
measure in each bucket with the intensity of pixels. Thus, the darker regions reflect a greater
number of hits. (right) The confidence-optimizing region mined by the algorithm of Fukuda et
al. [1996].
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—Constraints: If the application domain poses constraints on the nature
of the induced spaces. Consider again the recommendation space mined
in Figure 6 where f2 has been shown to have a “staircase” effect on the
applicability of algorithm X with respect to feature f1. Modeling this
constraint beforehand can assist in exploring the recommendation space.
There are two main approaches to encoding such knowledge: (i) in the
control flow of the mining algorithm, or (ii) as declarative constraints in
the database environment. We prefer the latter which allows for the use
of active and rule-based elements to aid in interactive exploration. For
instance, the staircase constraint can be modeled via the rule base in
Figure 7. The first line in Figure 7 indicates that if the bucket corre-
sponding to ( f1, f2) is part of the recommendation space but not the one
to its right (( f1 1 1, f2)), then no bucket to the top of ( f1 1 1, f2) can be
part of the recommendation space, and so on.

—Selective Focusing: This facility is most useful when coupled with
incremental computation of recommendation spaces by techniques such
as those described in Hidber [1999]. Assume that we obtain a “coarse”
image of the recommendation space by specifying a moderate level of
support. One could then zoom in to regions that look promising without
evaluating other portions of the space. Selective focusing is also facili-
tated by database-sampling techniques that can dynamically prefetch
data based on user preferences [Hellerstein et al. 1999].

—Bootstrapping: If a recommendation space between features f1 and f2

has been computed for a coarse level of discretization (of the feature
space), the patterns mined from this space can be used to bootstrap the
study for a finer level of discretization. We have actively utilized this
bootstrapping technique for many of the datasets presented in this paper.
For example, if a 5 3 5 bucketing of the feature space reveals a spike
along the y-axis, bootstrapping the mining algorithm with this informa-
tion can narrow down the search space for a higher level of discretization.
Bootstrapping can also be employed when we move from a lower-dimen-
sional feature space to higher dimensions.

3.2 Visualizing Recommendation Spaces

Since the mined recommendation spaces could be of arbitrary shape,
visualization of the induced regions constitutes an important stage in this

Fig. 7. Declarative modeling of a staircase constraint for recommendation spaces, where the
computations are performed w.r.t. bucket numbers. hit(f1, f2) is true if the bucket
corresponding to ( f 1, f 2) is a “hit,” false otherwise.
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experimental mode of investigation (in contrast, purely symbolic attributes
restrict the mined regions to the corners of an m-dimensional feature
hypercube). We have implemented a visualization facility using the Densi-
tyGraphics and RGBColor primitives provided in Mathematica. These
functions enable the creation of colormaps that map regions of the recom-
mendation space to proportions of color components for pixels displayed in
each box. One such design is presented in Fukuda et al. [1996] and uses the
mapping f( x) 5 { x, 1 2 x, 0}, where each component of f( x) reflects the
components according to the RGB model ( x denotes the “hit ratio” for a
certain algorithm). The advantages of this mapping are threefold: (i) it uses
intensity to provide visual clues that aid in human perception of recommen-
dation spaces; (ii) by setting the blue component to zero, it minimizes the
number of colors required to provide acceptable discrimination; and (iii) the
colors are not too saturated that perception of detail is impossible. A
potential disadvantage of this approach is that it limits the number of
different algorithms (choices) that can be represented in a single image.
However, from our experiments, the efficiency of the visual search process
is significantly enhanced by restricting this number to 2. This factor
appears to be heavily application-dependent, and our observation mirrors
many psychophysical studies of the use of color in identification tasks
[Nowell 1997; Smallman and Boynton 1990]. An example of the f( x)
mapping is depicted in the left part of Figure 6. The right part of Figure 6
depicts the region automatically mined by the algorithm of Fukuda et al.
[1996]. We use the mapping g( x) 5 {0, 0, 1} (“blue”) for the subregions
that optimize confidence and g( x) 5 {1, 1, 1} (“white”) otherwise.

4. CASE STUDIES

In this section, we present two case studies which illustrate our approach
to mining and visualizing recommendation spaces for PDEs with continu-
ously varying parameters. The simple examples here do not necessarily
yield significant new insight into the behavior of particular numerical
methods, but rather suggest how this approach can be used in the PDE
problem-solving context. In both examples, we explore data sets involving
linear, second-order, two-dimensional elliptic PDEs, discretized using stan-
dard O(h2) accurate finite differences, with linear systems solved using
Krylov subspace solvers preconditioned with incomplete factorizations. We
consider nonsymmetric problems with features that can often cause diffi-
culties for iterative solvers. The first example explores the influence of one
problem parameter and one method parameter on whether to use an
iterative or a direct method. In the second example, we look for patterns in
the relative performance of two widely used iterative methods on problems
posed on a nonrectangular domain, with one problem parameter controlling
the shape of the domain and one influencing the PDE coefficients.

The framework used to carry out these case studies includes the ELL-
PACK system [Rice and Boisvert 1985], SPARSKIT [Saad 1990], and
several scripts which generate and process the data. A script generates an
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ELLPACK program which defines a particular PDE problem and solution
method. The ELLPACK discretization module “5 point star” is used
throughout. SPARSKIT solvers gmres and bcgstab, and preconditioners
ilut and ilutp, were incorporated into ELLPACK and used as solvers and
preconditioners, respectively. All experiments were carried out on a
500MHz Digital Alpha workstation.

4.1 Iterative or Direct Linear Solver?

One of the attractions of direct solution methods (e.g., Gaussian elimina-
tion or one of its variants) for solving linear systems of equations is that
they are essentially guaranteed to work. This “guarantee” ignores the
possibility of various numerical disasters, of course, as well as significant
performance problems that may stem from the nonzero structure of the
matrix, the data structures used, memory hierarchy, etc. But nonetheless,
it is true, especially for nonsymmetric problems, that iterative methods
introduce a question direct methods do not, namely, “Will it converge?”, and
if so, “In how much time?” Much is known theoretically about the conver-
gence behavior of iterative methods on model problems. But for more
general problems, the choice of a good Krylov solver and preconditioner is
often made in an ad hoc manner. In this case study, we illustrate how
mining a large database of already solved problems can yield helpful
insight into the choice between iterative and direct methods.

Consider the scalar linear elliptic equation

2¹2u 1
a

~b 1 x 1 y!2
ux 1

a

~b 1 x 1 y!2
uy 5 f~ x, y!,

with Dirichlet boundary conditions on the unit square, where b . 0 and
f( x, y) is chosen so that the true solution is the smooth function

u~ x, y! 5 ~cos~ y! 1 sin~ x 2 y!! p ~1 1 sin~ x/ 2!!.

Discretized with centered (“five-point”) finite differences, this problem
results in a linear system that is increasingly ill-conditioned for large a and
small b, respectively. The singularity in the operator is just outside the
domain, along the line b 1 x 1 y 5 0. We observed in preliminary
experiments that the Krylov solvers have difficulty as this problem ap-
proaches the singular case, i.e., as a /b2 grows. What is not so clear is how
quickly the performance will degrade, and how much preconditioning can
help.

We solved this problem using a uniform grid with spacing h 5 1/100,
resulting in 9801 discrete equations and unknowns. We compared the time
taken by the ELLPACK band Gaussian elimination direct solver to the
time taken by a typical Krylov solver with fixed memory requirements,
namely gmres(10) with ilutp preconditioning and a relative residual
reduction of 1026. (The notation gmres(10) indicates gmres with a restart
parameter of 10.) The ilutp preconditioner is a variant of ilut which uses
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partial pivoting [Saad 1996, Chap. 10]. Both ilut and ilutp rely on a dual
thresholding strategy controlled by two parameters, lfill and droptol.
When constructing the preconditioner, these methods drop any element
whose absolute value is less than droptol relative to the size of the
diagonal element. At the same time, only the lfill largest off-diagonal
elements in each row of the factors L and U are kept. In this way, lfill is
used to limit the storage requirements of the preconditioner, while drop-

tol is used to select only the largest elements for inclusion in the
preconditioner. Half of the data in this case study was generated with
droptol 5 0.0 and the other half with droptol 5 0.001. When droptol 5

0, the thresholding procedure essentially disappears, with no matrix ele-
ments being thrown away because they are too small. The method then
reduces to the simple strategy of keeping the largest lfill elements on
each row of the factors L and U. For each of the two choices for droptol we
set

b 5 0.01, 0.02, . . . , 0.05

lfill 5 2, 4, 6, . . . , 30

and let log10(a) vary randomly in [0, 3]. Each combination of the problem
and solution parameters corresponds to a separate PDE solve—45,000 (5
values of b 3 15 values of lfill 3 2 values of droptol 3 300 values of a)
in all for this study. In this and the next study, we set the minimum
support fraction such that every bucket satisfies the requirement.

In Figures 8 and 9 we show the results for a [ [1, 200], for droptol 5 0
and droptol 5 0.001, respectively. The top row in Figure 8 shows the
“hits” for gmres and a direct solve (left and right, respectively), where a
darker shading means a higher percentage of wins for that method. In the
bottom row of Figure 8, we show the results of the confidence-optimizing
region-mining algorithm for each method for a confidence level u 5 0.9. The
importance of the parameter droptol is clearly seen. When droptol 5 0,
lfill must fall within a relatively narrow interval in order for the
iterative method to be preferred, and this is increasingly true as a in-
creases. Eventually, for large enough a, the direct solve is always the best
method. In contrast, we see in Figure 9 that setting droptol 5 0.001
makes ilutp much more robust with respect to changes in both a and
lfill. In this case, as long as lfill is sufficiently large the iterative
method is preferred. There is no penalty for choosing lfill too large
because the droptol parameter ensures that less-important elements are
not kept, no matter how large lfill is. Furthermore, the results give some
guidance regarding what a “sufficiently large” value for lfill might be, for
a given a.

Mining and Visualizing Recommendation Spaces • 267

ACM Transactions on Mathematical Software, Vol. 26, No. 2, June 2000.



4.2 Which Iterative Method?

A second case study considers the relative performance of two well-known
Krylov solvers on problems posed on a nonrectangular region with a step
function in the PDE coefficients. The differential equation solved here is

2~w~ x, y!ux!x 2 ~w~ x, y!uy!y 5 2.0,

with homogeneous Dirichlet boundary conditions on the boundary of the
region V shown in Figure 10. This is Domain 20 from the population
defined in Rice [1984]. Note that V is parameterized by p. The domain
consists of two overlapping circles of radius 1.0 which intersect at x 5 p.
The coefficient w( x, y) is defined as a step function, taking on the value a

if ( x, y) is in the region where the two circles overlap, and returning the
value 1.0 otherwise.

Again we discretize using second-order accurate finite differences, this
time using a 151 3 151 uniform grid. The resulting systems of linear

Fig. 8. Case Study 1 results: relative frequency of hits for gmres (top left) and direct solve
(top right); u 5 0.9 confidence regions for gmres (bottom left) and direct solve (bottom right),
for droptol 5 0. Notice that the intersection of the region on the right with a horizontal or
vertical segment can lead to a discontinuity; it was obtained by two consecutive runs of the
mining algorithm, i.e., once a region is obtained by the algorithm, the data corresponding to
this region is removed and the algorithm run again. The end result is a superposition of the
two regions.
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equations are of dimension approximately 18,500, the size varying slightly
with p. We compare the time taken by SPARSKIT’s gmres(10) and bcgstab,
both preconditioned with ilut. (We select restart parameter 10 for gmres so
that the storage requirements of the two iterative methods are approximately
the same.) For this case study, droptol is fixed at 0.001 while lfill is
allowed to vary. The results shown in Figures 11 and 12 are from a data set
generated by letting p vary randomly in the interval [0.75, 0.95].

Fig. 9. Case Study 1 results: relative frequency of hits for gmres (top left) and direct solve
(top right); u 5 0.9 confidence regions for gmres (bottom left) and direct solve (bottom right),
for droptol 5 0.001.

Fig. 10. Domain for Case Study 2: p 5 0.5 (left) and p 5 0.9 (right).
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Each figure represents 10,000 PDE solves. Figure 11 reflects cases where
lfill is fixed at 20, while log10(a) varies randomly in [0, 3]. The figure
suggests that gmres(10) is only competitive for large values of the domain
parameter p and when a is not large. In other words, bcgstab is more
robust with respect to large jumps in the PDE coefficient w. In Figure 12
we view the results with lfill and p as the varying parameters—lfill

varying uniformly from 2 to 30—and a fixed at 10. Again we see that gmres
is competitive only for large values of p, as long as lfill is sufficiently
large. It is apparent that gmres benefits more from increasing lfill, or
equivalently, that bcgstab does not require as large a value of lfill,
evidence that gmres performs better for the largest values of p, correspond-
ing to the smallest overlap region between the two circles in V.

5. CONCLUDING REMARKS

We have demonstrated the applicability of a region-finding algorithm to
mining and visualizing recommendation spaces for elliptic PDEs with
continuous attributes. While our discussion has been restricted to two-
dimensional spaces (for ease of presentation), the ideas presented in

Fig. 11. Case Study 2 results with lfill 5 20: relative frequency of hits for bcgstab (top
left) and gmres(10) (top right); u 5 0.9 confidence regions for bcgstab (bottom left) and
gmres(10) (bottom right).
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Section 3.1 can be used to scale up to higher dimensions. In addition, most
evaluation criteria for data-mining systems involve limitations that bound
the recommendation space from both above and below. Bayardo and
Agrawal [1999] showed that the computation of the 2D range described
here contains both a positive and a negative border. Thus, one could
maintain two sets of patterns (at the expense of optimality), and update
each set dynamically in opposite directions till the borders are reached.
While we have not utilized this technique in this paper, we believe that this
will be necessary in scaling up to more than two dimensions.

Our future work focuses on automating many aspects of the tools
presented here—dynamic selection of sampling criteria, using augmented
data structures for in-core computations of large datasets, and more
detailed characterization of the scientific datasets that are particularly
amenable to such techniques. The encouraging results presented in this
paper arise from limiting the nature of the induced recommendation
spaces. Various studies are planned to address the important issue of
knowledge compilation—“how to tractably represent/encode application-
specific knowledge without compromising efficiency?”—within this frame-

Fig. 12. Case Study 2 results with a 5 10: relative frequency of hits for bcgstab (top left)
and gmres(10) (top right); u 5 0.9 confidence regions for bcgstab (bottom left) and
gmres(10) (bottom right). Notice again that the region on the right is obtained by two
consecutive runs of the mining algorithm, as described earlier.
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work. Finally, the results of the second case study give a hint that gmres
has an advantage over bcgstab as the outer iteration in an overlapping
domain decomposition (Schwarz) method, for example. Although the study
was designed to study the relationship between nonrectangular geometries
and iterative solvers in a rather general way, it is interesting that we are
led to this possibility for future investigations into the relationship be-
tween subdomain overlap and iterative methods.
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