
MINERAÇÃO DE VIOLAÇÕES ARQUITETURAIS

USANDO HISTÓRICO DE VERSÕES

CRISTIANO AMARAL MAFFORT

MINERAÇÃO DE VIOLAÇÕES ARQUITETURAIS

USANDO HISTÓRICO DE VERSÕES

Tese apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da
Universidade Federal de Minas Gerais
como requisito parcial para a obtenção do
grau de Doutor em Ciência da Computação.

Orientador: Marco Túlio de Oliveira Valente

Coorientadora: Mariza Andrade da Silva Bigonha

Belo Horizonte

Outubro de 2014

CRISTIANO AMARAL MAFFORT

MINING ARCHITECTURAL VIOLATIONS FROM

VERSION HISTORY

Thesis presented to the Graduate Program
in Computer Science of the Universidade
Federal de Minas Gerais in partial
fulfillment of the requirements for the
degree of Doctor in Computer Science.

Advisor: Marco Túlio de Oliveira Valente

Co-Advisor: Mariza Andrade da Silva Bigonha

Belo Horizonte

October 2014

c© 2014, Cristiano Amaral Maffort.
Todos os direitos reservados.

Maffort, Cristiano Amaral

M187m Mining Architectural Violations from Version
History / Cristiano Amaral Maffort. — Belo
Horizonte, 2014

xxi, 109 f. : il. ; 29cm

Tese (doutorado) — Universidade Federal de Minas
Gerais

Orientador: Marco Túlio de Oliveira Valente
Coorientadora: Mariza Andrade da Silva Bigonha

1. Computação - Teses. 2. Engenharia de software -
Teses. 3. Software - Verificação - Teses. I. Orientador.
II. Coorientador. III. Título.

CDU 519.6*32.(043)

Agradecimentos

Agradecer não é, de modo algum, uma tarefa trivial. São tantas pessoas a agradecer

que sempre se corre o risco de, equivocadamente, não se fazer devida menção a alguém.

Então, objetivamente, começarei por agradecer a todos que de alguma forma me

ajudaram, direta ou indiretamente. Assim, ninguém estará completamente esquecido.

De forma especial, inicialmente, agradeço ao CEFET-MG e ao Departamento de

Computação por terem concedido liberação das minhas atividades docentes para que

eu pudesse me dedicar integralmente ao doutoramento.

Ao Programa de Pós-Graduação em Ciência da Computação e à CAPES/CNPq

pelo apoio financeiro.

Aos funcionários da Secretaria do PPGCC, sempre prestativos e competentes.

Aos amigos do LLP pelo companheirismo e amizade. Sentirei falta das agradáveis

divagações diárias sobre os mais variados assuntos durante o almoço no "bandeco".

Aos meus familiares pelo apoio incondicional e por estarem sempre ao meu lado,

especialmente aos meus irmãos Leandro e Patrícia, à minha filha Amanda, à minha

namorada Letícia, à minha avó Terezinha e aos meus tios Ronaldo e Neide.

À Professora Mariza, minha coorientadora, pelas incontáveis contribuições para

realização desse trabalho.

Finalmente, agradeço especialmente ao Professor Marco Túlio, pela paciência,

comprometimento, disponibilidade e dedicação. Um profissional exemplar. Um amigo

por quem tenho eterna gratidão.

ix

Resumo

Verificação de conformidade arquitetural é uma atividade chave para controle da

qualidade de sistemas de software, tendo como objetivo central revelar diferenças entre

a arquitetura concreta e a arquitetura planejada de um sistema. Entretanto, especificar

a arquitetura de um software é uma tarefa difícil, já que ela deve ser realizada por um

especialista. Nesta tese de doutorado, propõe-se uma nova abordagem para verificação

de conformidade arquitetural baseada na combinação de técnicas de análise estática

e histórica de código fonte. Propõem-se quatro heurísticas para detectar ausências

(dependências esperadas, mas inexistentes) e divergências (dependências proibidas, mas

presentes) no código fonte de sistemas orientados por objetos. A abordagem proposta

também inclui um processo iterativo para verificação de conformidade arquitetural,

o qual foi utilizado para avaliar a arquitetura de dois sistemas de informação de

grande porte, tendo sido capaz de identificar 539 violações, com precisão de 62,7%

e 53,8%. Além disso, foram avaliados dois sistemas de código aberto, nos quais foram

identificadas 345 violações, com precisão de 53,3% e 59,2%. De forma complementar,

apresenta-se um estudo exploratório sobre a aplicação de uma técnica de mineração

de dados, chamada mineração de itens frequentes, para detectar padrões arquiteturais

a partir de informações estáticas e históricas extraídas do código fonte. Em seguida,

esses padrões foram usados para detectar ausências e divergências no código de um

sistema. Neste segundo estudo, foram detectadas 137 violações arquiteturais, com

precisão global de 41,2%.

Palavras-chave: Arquitetura de Software, Erosão Arquitetural, Conformidade

Arquitetural, Análise Estática, Mineração de Repositórios de Software.

xi

Abstract

Software architecture conformance is a key software quality control activity that aims

to reveal the progressive gap normally observed between concrete and planned software

architectures. However, formally specifying software architectures is not a trivial task,

as it must be done by an expert on the system under analysis. In this thesis, we

present an approach for architecture conformance based on a combination of static

and historical source code analysis. The proposed approach relies on four heuristics

for detecting both absences (something expected was not found) and divergences

(something prohibited was found) in source code based architectures. We also present

an architecture conformance process based on the proposed approach. We followed this

process to evaluate the architecture of two industrial-strength information systems,

when 539 architectural violations were detected, with an overall precision of 62.7%

and 53.8%. We also evaluated our approach in two open-source systems, when

345 architectural violations were detected, achieving an overall precision of 53.3%

and 59.2%. Additionally, this thesis presents an exploratory study on the application

of a data mining technique called frequent itemset mining, which was used to detect

architectural patterns using static and historical information extracted from source

code. Furthermore, the detected architectural patterns are used to identify absences

and divergences in the code. We evaluated the proposed approach in an industrial-

strength information system, founding 137 architectural violations, with an overall

precision of 41.2%.

Keywords: Software Architecture, Architectural Erosion, Architectural Conformance,

Static Analysis, Mining Software Repositories.

xiii

List of Figures

1.1 Proposed approach to architectural conformance checking 4

2.1 DSM example (class B depends on class A) 11

2.2 Database representations . 21

2.3 Formal context of “famous animals” [Priss, 2006] 23

2.4 Concept lattice of Figure 2.3 [Priss, 2006] 24

3.1 Input and output of the proposed heuristics 30

3.2 Example of absence (C2 does not depend on TargetClass). The label Ins

denotes a dependency inserted later in the class 31

3.3 Example of divergence (C2 depends on TargetModule). The label Del

denotes a dependency removed in a previous version of the class 34

3.4 Example of divergence (C2 depends on TargetClass). The label Del denotes

a dependency removed in a previous version of the class 35

3.5 Divergences due to asymmetrical cycles . 37

3.6 ArchLint architecture . 44

3.7 Architecture conformance using the proposed heuristics 46

3.8 Initial thresholds values and thresholds adjustment procedures for each

heuristic . 48

4.1 Enriched high-level model for the SGA system 59

4.2 Absences and divergences detected by RM and the proposed heuristics . . 59

4.3 Distribution of the refactoring operations by year 62

4.4 Thresholds distribution in heuristic #2 for divergences 76

4.5 Warnings raised by more than one heuristic for detecting divergences . . . 77

5.1 Data Mining proposed approach . 84

5.2 Example of absence (DTO must use JPA) 86

5.3 Example of divergence (BO cannot use JPA) 89

xv

List of Tables

2.1 Techniques for detecting programming anomalies 26

2.1 Techniques for detecting programming anomalies 27

2.1 Techniques for detecting programming anomalies 28

3.1 Dependency types, assuming that C1 depends on C2 32

4.1 High-level components in the SGA system 51

4.2 Detecting absences in the SGA system . 53

4.3 Detecting divergences in the SGA system using Heuristic #1 55

4.4 Detecting divergences in the SGA system using Heuristic #2 56

4.5 Detecting divergences in the SGA system using Heuristic #3 57

4.6 Precision considering the warnings evaluated for three heuristics for

divergences . 58

4.7 Historical analysis results . 61

4.8 High-level components in the M2M system 63

4.9 Precision considering the warnings raised in M2M system 64

4.10 Detecting absences in the M2M system . 65

4.11 Detecting divergences in the M2M system using Heuristic #2 66

4.12 Detecting divergences in the M2M system using Heuristic #3 67

4.13 High-level components in Lucene . 67

4.14 Precision considering the warnings raised in Lucene system 68

4.15 Detecting divergences in Lucene using Heuristic #1 69

4.16 Detecting divergences in Lucene using Heuristic #2 70

4.17 Detecting divergences in Lucene using Heuristic #3 70

4.18 High-level components in ArgoUML . 71

4.19 Precision considering the warnings raised in ArgoUML system 72

4.20 Detecting divergences in ArgoUML using Heuristic #1 73

4.21 Detecting divergences in ArgoUML using Heuristic #2 74

xvii

4.22 Detecting divergences in ArgoUML using Heuristic #3 74

4.23 Most common dependency types in the SGA system 78

5.1 Absences thresholds . 91

5.2 Divergences thresholds . 92

5.3 Architectural violations in the SGA system 92

xviii

Contents

Agradecimentos ix

Resumo xi

Abstract xiii

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Problem . 1

1.2 Thesis Statement . 3

1.3 An Overview of the Proposed Approach 4

1.4 Outline of the Thesis . 5

1.5 Publications . 6

2 Background 9

2.1 Software Architecture . 9

2.2 Architectural Erosion . 10

2.3 Architectural Conformance Checking 10

2.3.1 Static Architecture Conformance 11

2.3.2 Critical Assessment . 15

2.4 Detecting Source Code Anomalies . 15

2.4.1 Structural Analysis Techniques 16

2.4.2 Historical Analysis Techniques 18

2.4.3 Static Analysis Techniques . 19

2.4.4 Critical Assessment . 20

2.5 Data Mining Techniques . 20

xix

2.5.1 Frequent Itemset Mining . 21

2.5.2 Formal Concept Analysis . 23

2.6 Final Remarks . 24

3 Heuristics for Detecting Architectural Violations 29

3.1 Overview . 29

3.2 Heuristic for Detecting Absences . 30

3.3 Heuristics for Detecting Divergences . 32

3.3.1 Heuristic #1 . 33

3.3.2 Heuristic #2 . 35

3.3.3 Heuristic #3 . 36

3.4 Formal Definition . 37

3.4.1 Notation . 37

3.4.2 Detecting Absences . 38

3.4.3 Detecting Divergences . 39

3.5 Ranking Strategy . 42

3.6 Tool Support . 43

3.7 A Heuristic-Based Architecture Conformance Process 44

3.8 Final Remarks . 47

4 Evaluation 49

4.1 First Study: SGA System . 49

4.1.1 Study Setup . 49

4.1.2 Results . 52

4.1.3 Comparison with Reflexion Models 58

4.1.4 Historical Analysis . 60

4.2 Second Study: M2M System . 62

4.2.1 Study Setup . 62

4.2.2 Results for the M2M system . 64

4.2.3 M2M Conformance Process . 65

4.3 Third Study: Lucene System . 67

4.3.1 Study Setup . 67

4.3.2 Results for the Lucene system 68

4.3.3 Lucene Conformance Process 69

4.4 Fourth Study: ArgoUML System . 71

4.4.1 Study Setup . 71

4.4.2 Results for the ArgoUML system 72

xx

4.4.3 ArgoUML Conformance Process 72

4.5 Discussion . 74

4.6 Threats to Validity . 78

4.7 Final Remarks . 79

5 Extracting Architectural Patterns 81

5.1 Motivation . 81

5.2 Data Mining Based Approach . 83

5.2.1 Mining for Absences . 85

5.2.2 Mining for Divergences . 88

5.3 Evaluation . 90

5.3.1 Dataset . 90

5.3.2 Thresholds for Absences . 91

5.3.3 Thresholds for Divergences . 91

5.3.4 Results . 92

5.4 Discussion . 92

5.5 Final Remarks . 94

6 Conclusion 97

6.1 Summary . 97

6.2 Contributions . 98

6.3 Limitations . 99

6.4 Further Work . 99

Bibliography 101

xxi

Chapter 1

Introduction

In this initial chapter, we state the problem and present this thesis motivation

(Section 1.1). Next, we present an overview of our approach to tackle the proposed

problem (Section 1.3). Finally, we present the outline of the thesis (Section 1.4) and

the publications derived from our research (Section 1.5).

1.1 Problem

The definition of a well-designed software architectural model plays an important

role in modern software quality control tasks because important internal quality

properties, such as maintainability and evolvability, directly depend on it. There

are many definitions of software architecture. Typically, software architecture

is defined as including the central components of a software system and their

interconnections [Clements, 2003]. Bass et al. define software architecture as

“the structure or structures of the system, which comprise software elements,

the externally visible properties of these elements, and the relationship among

them” [Bass et al., 2003]. Therefore, the architecture of a system prescribes the

structure of its components, their relationships, constraints, principles, and guidelines

that control its design and evolution over time [Garlan, 2000, Garlan and Shaw, 1996,

Fowler, 2002]. An architectural model is a high-level software representation that

supports documenting and communicating key design decisions and principles adopted

by a software development team.

However, even well-designed software architectures can degenerate during the

system evolution due to the introduction of implementation anomalies that correspond

to mismatches between the concrete architecture, as implemented in source code,

and the planned/intended architecture prescribed by the software architects. In

1

2 Chapter 1. Introduction

the more extreme cases, the introduction of architectural anomalies can trigger

a major software reengineering effort or even the discontinuation of a software

system [Hochstein and Lindvall, 2005].

Architectural conformance checking is a fundamental activity for controlling the

quality of software systems, which aims to reveal deviations between the actual and

planned software architectures [Passos et al., 2010]. More precisely, the goal is to detect

the implementation decisions followed by the source code that are not in conformance

with the restrictions prescribed by the planned architecture. The periodical application

of architectural conformance checking aims to prevent the accumulation of incorrect

or inadequate implementation decisions and thus to avoid the phenomena known as

architectural drift or erosion [Perry and Wolf, 1992].

Architectural deviations pose a serious threat to the long term survival of

software systems [Hochstein and Lindvall, 2005, Garcia et al., 2009]. The reason is

that the accumulation of architectural violations in the source code may demand

extra effort even when dealing with simple code changes. For instance, Knodel

et al. applied an architectural conformance checking technique in 15 products from

a software product line, called Testo, targeting climate and flue gas measurement

devices [Knodel et al., 2008]. As a result, they identified more than 6,000 architectural

anomalies in these products. Additionally, Terra and Valente detected, by using

architectural conformance checking techniques, 2,241 architectural anomalies in a

human resource management system, called SGP [Terra and Valente, 2009]. They

report that to fix these anomalies more than 100 hours were necessary. Furthermore,

Sarkar et al. report an experience on remodularizing an application whose size increased

from 2.5 to 25 MLOC. According to the authors, the system’s architecture eroded

to a single monolithic block. They report that the refactoring and reconstruction

of the system, to restore its original architecture, required nearly two years—

approximately 520 person-days for design and 2,100 person-days for programming and

testing activities.

Currently, there are two major techniques for architectural conformance

checking: reflexion models and domain-specific languages [Ducasse and Pollet, 2009,

Passos et al., 2010]. Reflexion models compare a high-level model, manually created

by an architect, with the implemented (or concrete) model, automatically extracted

from the source code [Murphy et al., 1995, Knodel et al., 2006]. Basically, reflexion

models can detect two types of architectural anomalies: absences and divergences. An

absence occurs when a dependency defined by the high-level model is not present in

the implemented one, i.e., it does not exist in the source code. A divergence occurs

when there is a dependency on the source code that is not prescribed by the high-level

1.2. Thesis Statement 3

model. Finally, domain-specific languages allow architects to express in a simple syntax

the constraints defined by the planned architectural model [Terra and Valente, 2009,

Eichberg et al., 2008, Mens et al., 2006].

However, the application of current techniques for architectural conformance

checking requires a considerable effort [Knodel et al., 2008, Terra and Valente, 2009].

On one hand, reflexion models usually require successive refinements of the high-level

model in order to adequately express the full spectrum of absences and divergences

that may be present in complex software systems. On the other hand, domain-specific

languages require a detailed definition of constraints between the classes of a system.

In all cases, the existing techniques for identifying architectural problems heavily

depend on the availability of coherent architectural documents [Eichberg et al., 2008].

However, in most cases, the planned architecture is not formally documented or up-to-

date.

1.2 Thesis Statement

Our thesis statement is as follows:

Architectural conformance checking is a fundamental activity for controlling

the quality of software systems. However, the state-of-the-art architectural

conformance checking techniques usually require a considerable effort to

prescribe the architectural documents, as a list of constraints or as a high-

level model. Therefore, the practice of software architecture conformance

may benefit from a technique that combines static and historical analysis

and that does not require the definition of constraints or model refinements.

Therefore, the main goal of this thesis is to propose adn evaluate an approach that

combines static and historical source code analysis techniques to provide an alternative

technique for architecture conformance checking.

To attend this goal we plan to:

• Propose a technique for architecture conformance based on information gathered

from mining software repository.

• Evaluate the precision of this technique in a real setting, using both open-source

and closed systems.

• Conduct an exploratory study for evaluating the use of data mining techniques

for detecting architectural violations.

4 Chapter 1. Introduction

1.3 An Overview of the Proposed Approach

As stated in the previous section, the application of the current techniques for

architecture conformance checking is a nontrivial task and may require a considerable

effort [Knodel et al., 2008, Passos et al., 2010]. To tackle these issues, this thesis

proposes an approach that combines static and historical source code analysis

techniques to provide an alternative technique for architecture conformance. Figure

1.1 illustrates the proposed approach for detecting architectural erosion symptoms.

As can be observed, the approach relies on two types of input on the target system:

(a) history of versions; and (b) high-level component specification. Basically, this

component model includes information on the names of the components and a mapping

from modules to component names, using regular expressions. Using these inputs, we

propose heuristics to identify suspicious dependencies, or lack of, in source code by

relying on frequency hypotheses and past corrections made on the code.

Evidences of

Architectural

Violations

History of

Versions

High-level

Component

Specification

Heuristics

Figure 1.1. Proposed approach to architectural conformance checking

The proposed approach includes four heuristics to discover suspicious

dependencies in the source code, including dependencies that may denote divergences

(existing unwanted dependencies) or absences (missing expected dependencies). The

common assumption behind the proposed heuristics is that dependencies denoting

architectural violations—at least in systems that are not facing a massive erosion

process—are rare events in the space-time domain, i.e., they appear in a small number of

classes (according to particular thresholds) and they are frequently removed during the

evolution of the systems (according to other thresholds). We also propose an iterative

architecture conformance process, based on the defined heuristics. As proposed by

this process, architects should experiment and adjust the thresholds required by the

defined heuristics, starting with rigid thresholds. Usually, as the thresholds are made

less rigid, more false warnings are generated. Therefore, the architect can finish the

conformance activity when enough violations are detected or when the heuristics start

1.4. Outline of the Thesis 5

to produce too many false positives. We also propose a strategy to rank the generated

warnings, which is used to show firstly the warnings that are more likely to denote real

violations. Finally, we implemented a prototype tool, called ArchLint, that supports

the four heuristics for detecting architectural violations.

The proposed approach is (to the best of our knowledge) the first architecture

conformance technique that relies on a combination of static and historical source code

analysis. It does not require successive refinements on high-level architectural models

neither the specification of an extensive list of architectural constraints, as required

by domain-specific languages. However, the proposed heuristics can generate false

positive warnings, as common in most bugs finding tools based on static analysis, such

as FindBugs [Hovemeyer and Pugh, 2004] and PMD [Copeland, 2005].

We report the results of applying the proposed conformance checking process

in four real-world systems. First, we applied this process in two industrial-strength

information systems. The warnings generated by the proposed heuristics were

evaluated by experts in these systems’ architecture, who classified them as true or false

positives. We were able to detect 389 and 150 architectural violations, with an overall

precision of 62.7% and 53.8%, respectively. We also present and discuss examples of

architectural violations detected by our approach and the architectural constraints

associated with such violations, according to the systems’ architects. Finally, we

relied on the proposed conformance process to evaluate the architecture of two well-

known open-source system, Lucene1 and ArgoUML2. In these cases, using as oracle

a reflexion model independently proposed in another research [Bittencourt, 2012], we

found 264 architectural violations in Lucene and 81 violations in ArgoUML, with an

overall precision of 59.2% and 53.3% respectively.

1.4 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 covers background work related to our research, including work

on software architecture, architectural erosion, architectural conformance

checking techniques, automatic anomaly detection in source code, and data

mining techniques.

• Chapter 3 presents the proposed architectural conformance checking technique,

including the description of the proposed heuristics to detect absences and
1http://lucene.apache.org
2http://argouml.tigris.org

6 Chapter 1. Introduction

divergences, their formal definition, a strategy to rank violations, the design of

the ArchLint tool, and a heuristic-based architecture conformance process.

• Chapter 4 evaluates our approach by presenting and discussing results on its

usage in four real-world systems. In this chapter, we also summarize our main

findings and the lessons learned after designing and evaluating the heuristics-

based approach.

• Chapter 5 reports an exploratory study on mining architectural patterns using

data mining techniques. Essentially, our goal with this final study is to investigate

whether architectural patterns can be inferred by mining software repositories.

• Chapter 6 presents the final considerations of this thesis, including contributions,

limitations, and future work.

1.5 Publications

This thesis generated the following publications and contains material from them:

• [Maffort et al., 2014]: Maffort, Cristiano; Valente, Marco Tulio; Terra, Ricardo;

Bigonha, Mariza; Anquetil, Nicolas; Hora, Andre. Mining Architectural

Violations from Version History. In Empirical Software Engineering Journal

(EMSE), p. 1–41, 2014. Invited for a special issue with best papers from WCRE

2013.

• [Maffort et al., 2013a]: Maffort, Cristiano; Valente, Marco Tulio; Anquetil,

Nicolas; Hora, Andre; Bigonha, Mariza. Heuristics for Discovering Architectural

Violations. In 20th Working Conference on Reverse Engineering (WCRE), p.

222–231, 2013.

• [Maffort et al., 2013b]: Maffort, Cristiano; Valente, Marco Tulio; Bigonha,

Mariza; Anquetil, Nicolas; Hora, Andre. Mining Architectural Patterns Using

Association Rules. In 25th International Conference on Software Engineering

and Knowledge Engineering (SEKE), pages 375-380, 2013.

• [Maffort et al., 2013c]: Maffort, Cristiano; Valente, Marco Tulio; Bigonha,

Mariza; Silva, Leonardo Humberto; Aparecido, Gladston. ArchLint: Uma

Ferramenta para Detecção de Violações Arquiteturais usando Histórico de

Versões. In IV Congresso Brasileiro de Software: Teoria e Prática (Sessão de

Ferramentas), pages 1–6, 2013.

1.5. Publications 7

• [Maffort et al., 2012]: Maffort, Cristiano; Valente, Marco Tulio; Bigonha, Mariza.

Detecção de Violações Arquiteturais usando Histórico de Versões. In XI Simpósio

Brasileiro de Qualidade de Software (SBQS), pages 1–15, 2012.

Additionally, the software infrastructure proposed to extract structural

dependencies from software repositories is used in the following papers:

• [Rocha et al., 2013]: Rocha, Henrique; Couto, Cesar; Maffort, Cristiano; Garcia,

Rogel; Simões, Clarisse; Passos, Leonardo; Valente, Marco Tulio. Mining the

Impact of Evolution Categories on Object-Oriented Metrics. In Software Quality

Journal, vol. 21, issue 4, pages 529–549, 2013.

• [Couto et al., 2013]: Couto, Cesar; Maffort, Cristiano; Garcia, Rogel; Valente,

Marco Tulio. COMETS: A Dataset for Empirical Research on Software Evolution

using Source Code Metrics and Time Series Analysis. In ACM SIGSOFT

Software Engineering Notes, pages 1–3, 2013.

Chapter 2

Background

This chapter is organized as follows. In Sections 2.1 and 2.2 we introduce fundamental

concepts on software architecture and software architectural erosion. Section 2.3

presents methodologies and techniques for architectural conformance. Section 2.4

describes some techniques for automatic detection of source code anomalies. Finally,

in Section 2.5, we present data mining techniques that can be used to detect

architectural violations.

2.1 Software Architecture

The most common definition for software architecture follows a structural

perspective, which considers that an architecture is composed by elements and

their interconnections [Clements, 2003]. For example, Bass et al. define software

architecture as the structure of a system, which comprises software components,

externally visible properties of those components, and the relationships between

them [Bass et al., 2003]. Moreover, the architecture of a software often includes the

relationships, constraints, principles, and guidelines that should guide its design and

evolution over time [Garlan, 2000, Garlan and Shaw, 1996, Fowler, 2002]. Components

are usually defined as architectural entities which encapsulate a subset of the system’s

functionalities [Gurgel et al., 2014].

Software architecture decisions typically have a long-term impact on individual

aspects of the construction and evolution of software systems [Pressman, 2010].

Therefore, software architectures must be documented, not only for purposes of

analyzing the system, but also as an artifact for communication with stakeholders,

facilitating the understanding of a system [Bittencourt, 2010]

9

10 Chapter 2. Background

2.2 Architectural Erosion

It is unquestionable that the architecture specification of a system is a crucial

development activity, as described in Section 2.1. It is an activity that comes before

implementation activities, when software architects define the modular decomposition

of the system and the dependency relationships and constraints between modules and

components, as well as relations with external systems, such as libraries frameworks.

However, during the evolution of a software product implementation anomalies

are frequently introduced in the source code, i.e., decisions that are not compatible

with the specified architectural model, making the current codebase inconsistent

with the existing documentation [Kazman and Carrière, 1999, Knodel et al., 2006,

Knodel and Popescu, 2007, Murphy et al., 1995, Murphy et al., 2001a,

Schmerl et al., 2006]. In this thesis, these anomalies are called architectural

violations [Passos et al., 2010, Perry and Wolf, 1992].

In practice, the introduction of architectural violations is common, mainly

due to the developers’ lack of knowledge, deadline pressures, technical difficulties,

conflicting requirements, etc. [Knodel and Popescu, 2007]. As a result, these

violations make maintenance a more difficult and time-consuming task, since

the implemented product is not adherent to the planned and documented

architecture [Sarkar et al., 2009a]. Additionally, the progressive introduction of

architectural violations in the code can make even simple software evolution tasks

more difficult [Macia et al., 2012]. Nonetheless, architectural violations usually

remain in the source code, leading to the phenomena known as architectural

deviations or architectural erosion [Perry and Wolf, 1992]. Basically, erosion is an

architectural deviation and occurs when the rules governing the dependencies between

architecture components are violated [Perry and Wolf, 1992]. In the more critical cases,

architectural problems can lead to a full reengineering or even the discontinuation of a

software products [Hochstein and Lindvall, 2005].

2.3 Architectural Conformance Checking

To avoid architectural erosion, many architectural conformance approaches were

proposed [Bass et al., 2003, Gorton and Zhu, 2005]. Basically, this activity consists

in checking whether a particular version of the system adheres to the planned

architecture [van Gurp and Bosch, 2002]. In other words, architectural conformance

checking can be viewed as a measure of the degree of adherence between

2.3. Architectural Conformance Checking 11

the concrete architecture, as implemented in source code, and the planned

architecture [Knodel and Popescu, 2007].

Architectural conformance approaches rely on static or dynamic

analysis techniques [Bell, 1999, Hamou-Lhadj and Lethbridge, 2004,

Jerding and Rugaber, 1997, Schmerl et al., 2006]. Static analysis techniques are

non-invasive, and depend only on the source code. For this reason, they do not impact

the normal programming activities or cause any impact during a system execution.

On the other hand, techniques based on dynamic analysis are performed during the

execution of the system. Therefore, they can deal with systems whose behavior may

change at runtime, such as systems that are implemented using techniques such as

dependency injection, reflexion, and meta-programming [Brito et al., 2013]. In this

thesis, we focus on techniques based on static analysis, because they are the most

established ones.

2.3.1 Static Architecture Conformance

In this section we discuss some well-know architectural conformance approaches based

on static analysis.

Dependency Structure Matrix (DSM)

Dependency structure matrices were proposed by Baldwin and Clark to

demonstrate and assess the importance of the modular organization of software

projects [Baldwin and Clark, 1999, Sullivan et al., 2001]. Essentially, DSMs are

adjacency matrices that represent dependencies between the modules of a system.

The elements in these matrices indicate the existence of static dependencies between

the element of the column (source dependency) and the element of the row (target

dependency). For example, in Figure 2.1, the X in the cell (1,2) denotes that class

B depends on class A. In other words, class B has explicit references (method calls,

parameters, exceptions, etc) to syntactic elements defined by class A.

Figure 2.1. DSM example (class B depends on class A)

12 Chapter 2. Background

There are many tools that generate DSMs, such as the Lattix Dependency

Manager (LDM) tool [Sangal et al., 2005].1 This tool is also able to perform

architectural conformance checking. It provides a graphical interface that can be

used to reveal architectural patterns and detect dependencies that may indicate

architectural violations. Initially, the architectural conformance activity requires the

DSM extraction using static analysis techniques. In a second step, a declarative

language is used to specify the conformance rules that must be followed by the

source code of the system under evaluation. Basically, the domain specific language

supported by the LDM tool is very simple. The rules for conformance checking have

two forms: A can-use B and A cannot-use B, which are used to indicate that a

particular class A may or may not depend on a given class B.

Source Code Query Language

Oege Moor et al. proposed a source code query language called .QL, which

has a syntax similar to the SQL language [de Moor, 2007]. By using this language,

it is possible to perform many activities to support software development, such as

architectural conformance checking, searching for errors, software metrics calculation,

identification of refactoring opportunities, etc. To illustrate, we will use a .QL query

to check architectural conformance of a system implemented following the MVC

architectural pattern2. In systems implemented accordingly to this pattern, the Model

layer cannot have any dependency with the Controller layer. To verify this constraint,

the following query can be defined in .QL:

1: FROM RefType r1, RefType r2

2: WHERE r1.fromSource()

3: AND depends(r1, r2)

4: AND isModelLayer(r1)

5: AND isControllerLayer(r2)

6: SELECT "Warning: " + r1.getQualifiedName() +

" depends on " + r2.getQualifiedName()

Basically, this query selects all classes of the layer Model that have dependencies

with classes of the Controller layer. As can be observed, the class r1 must be

implemented in the source code (line 2). Specifically, RefType is a .QL built-in type

1http://www.lattix.com
2A similar example is shown in [Passos et al., 2010]

2.3. Architectural Conformance Checking 13

that provides information about a particular type of a Java program. The predicates

isModelLayer (line 4) and isControllerLayer (line 5) check whether a reference belongs

to the Model and Controller layers, respectively.

Reflexion Models

The Reflexion Models (RM) technique was proposed by Murphy et

al. [Murphy et al., 1995, Murphy et al., 2001a]. According to this technique, software

architects should first define a high-level model representing the planned or desired

architecture. They should also define the dependencies between the components

prescribed in this high-level model. Moreover, architects must define a mapping

between the concrete architecture (source code model) and the proposed high-level

model (desired architecture).

Knodel et al. describe a tool called Software Architecture Visualization and

Evaluation (SAVE) [Knodel et al., 2006] for architectural conformance checking based

on reflexion models. Using as input the high-level model and a mapping of this model

to the source code of the system under analysis, the SAVE tool produces the reflexion

model for revealing architectural violations in the source code.

A Reflexion Model classifies the dependencies between the classes of a system as

follows:

• Convergence: when a dependency prescribed in the architectural model exists in

the source code.

• Divergence: when a dependency exists in the source code, but it is not prescribed

by the architectural model.

• Absence: when a dependency does not exist in the source code, but it is prescribed

by the architectural model.

A RM-based tool, such as SAVE, highlights the divergence and absence

dependencies in the high-level model initially provided by the architects.

Dependency Constraint Languages

These solutions include domain-specific languages to detect dependencies that

are allowed and not allowed in the code, which are inferred from declarative structural

constraints between modules. As an example, we can mention DCL (Dependency

Constraint Language) [Terra and Valente, 2009, Terra and Valente, 2008].

14 Chapter 2. Background

For using such languages, a software architect must first define the dependency

constraints between the classes of the system under analysis. For example, using DCL,

architects may define acceptable or unacceptable dependencies, according to the desired

system architecture. The DCL specification presented next contains four dependency

constraints(lines 5-8) for a hypothetical system that adopts the MVC architectural

pattern.

1: module Model: com.myapp.*.model.**

2: module View: com.myapp.*.view.**

3: module Controller: com.myapp.*.control.**

4: module JPA: javax.persistence.**

5: Model can-depend-only Model, JPA, $java$

6: only View can-depend Controller

7: View cannot-depend JPA

8: Controller cannot-depend JPA

Initially, this specification defines the modules of each layer in the MVC pattern

(lines 1-3). Next, it defines that the JPA module is composed by classes of the

package javax.persistence, including its subpackages (line 4). Finally, a sequence

of dependency constraints are defined (lines 5-8). More specifically, the constraint on

line 5 defines that classes in the Model layer can only depend on classes in this layer,

on JPA classes, and on the Java API. Line 6 establishes that only the View layer can

depend on classes in the Controller layer. Finally, the View and Controller layers

cannot depend on JPA classes (lines 7-8).

The proposed approach also provides a plug-in for the Eclipse IDE called

dclcheck. This plug-in checks whether the source code is in accordance with the

constraints defined in DCL.

Gurgel et al. [Gurgel et al., 2014] proposed a conformance technique that,

similarly to the DCL language, provides mechanisms to explicitly define the planned

architecture of a system, describing their components and dependency constraints.

Their approach assumes that similar degradation evidences occur in software projects.

For this reason, the approach includes support for the hierarchical and compositional

reuse of rules, providing specification mechanisms to specialize previously defined rules.

2.4. Detecting Source Code Anomalies 15

Constraint Programming Languages

Constraint programming languages, usually based on first-order logic, allow

software architects to express architectural constraints on the static structure of

object-oriented systems. The restrictions are specified by a sequence of statements

and logical declarations. However, this definition might be a complex and error-

prone activity, especially for architects and maintainers with experience only in

imperative languages. As examples of logic-based constraint languages, we highlight

SCL (Structural Constraint Language) [Hou and Hoover, 2006], FCL (Framework

Constraint Language) [Hou et al., 2004], and LogEn [Eichberg et al., 2008]. To

support a less complex and more comprehensive notation for expressing architectural

constraints, LogEn authors have proposed a graphical notation, called VisEn, from

which LogEn constraints can be automatically generated.

Architectural Description Languages (ADLs)

ADLs enable architectural conformance checking by constructing and expressing

the architectural behavior and the structure of a software system in a declarative and

abstract language [Allen and Garlan, 1997, Garlan et al., 1997, Magee et al., 1995].

From an ADL specification, code generation tools are proposed to transform

architectural descriptions to code in a general-purpose language.

2.3.2 Critical Assessment

As reported in this section, architectural conformance checking approaches based on

static analysis—such as dependency structural matrices (DSM), source code query

languages, and reflexion models—adopt non-invasive strategies, but also require a

detailed architectural specification (to prescribe modules, components, dependency

constraints, etc.). However, these specifications have shortcomings, making difficult

to prescribe some constraints or architectural representation. Furthermore, they often

require the definition of many rules or similar programming artifacts that should be

maintained and evolved, which are also subjected to errors and omissions.

2.4 Detecting Source Code Anomalies

Programs frequently follow informal or implicit programming

conventions [Li and Zhou, 2005, Gruska et al., 2010, Chang et al., 2007,

16 Chapter 2. Background

Wasylkowski et al., 2007]. For example, some method calls usually occur in a

given order, such as an unlock call, which normally follows a lock call. Other

programming rules may also prescribe more detailed dependencies involving more

functions, as well as other elements such as variables and data types.

On the other hand, developers often unconsciously violate these programming

rules during their daily programming activities. As a result, they can, for example,

add bugs when they do not follow such rules. Finally, manually providing a

specification for each of such rules is not exactly a simple task [Mileva et al., 2011,

Wasylkowski and Zeller, 2009].

The techniques for checking programming patterns, discussed in this section,

do not assume any prior knowledge on the systems under evaluation, such as

naming conventions or pre-defined programming standards, as required by the static

architecture conformance checking approaches described in Section 2.3. Essentially,

the approaches discussed in the present section are based on the observation that large

systems adopt patterns in their implementation and that deviations from these patterns

can therefore be considered as anomalies [Engler et al., 2001a].

In the remainder of this section, we present techniques for detecting programming

patterns in an automate way. Initially, we present techniques for inferring such patterns

from structural information extracted from source code (Section 2.4.1). Next, we

present techniques based on usage and non-usage patterns extracted from different

versions of a system (Section2.4.2). Finally, we present techniques based on static

information extracted from source code (Section 2.4.3).

2.4.1 Structural Analysis Techniques

PR-Miner is a tool that extracts programming rules from systems implemented in C,

without requiring any previous knowledge on the software under evaluation or any form

of instrumentation (e.g., insertion of annotations) [Li and Zhou, 2005]. This tool uses

a data mining technique called frequent itemset mining to detect patterns from the

extracted rules. More details on frequent itemset mining are presented in Section 2.5.

Finally, PR-Miner searches for programming decisions in the source code that are not

adherent to the programming patterns previously identified. Such divergent patterns

are presented as evidences of bugs. The PR-Miner approach is based on the assumption

that correct programming rules are frequently followed and violations rarely occur. To

reinforce this assumption, the tool selects only programming rules that are similar to

the detected patterns in at least 90% of the cases.

Wasylkowski and colleagues [Wasylkowski et al., 2007] proposed an approach

2.4. Detecting Source Code Anomalies 17

for detecting programming anomalies based on sequences of interdependent method

calls, such as calls to method Stack.push(), which usually occur before calls to

method Stack.elements(). This sequence is represented as an object usage model—

which models typical object usage as possible sequences of method calls. The

extracted patterns are compared with their instances in the source code to identify

implementation decisions that violate the proposed patterns, which are classified as

evidence of defects.

The proposed approach includes a tool called JADET that detects patterns in

the form of method calls sequences. The tool also searches for sequences that are

not in conformance with these patterns. The analysis of similarity among patterns

performed on temporal properties extracted from the source code, using formal concept

analysis algorithms.

Wasylkowski et al. proposed an approach for mining object usage models,

extracted by the JADET tool, which checks whether certain preconditions are satisfied

before method invocations [Wasylkowski and Zeller, 2009]. Specifically, the authors

introduced the concept of operational preconditions, which establish how to satisfy the

preconditions of a function or method. In the proposed approach, these preconditions

are extracted from the source code using a tool called Tikanga. The ultimate goal

is to discover the operational preconditions from the context that precedes particular

function or method calls. The higher the number of calls of a particular method, the

higher the precision of inferring its operational preconditions and also the precision in

selecting method calls whose preconditions are not adequately satisfied.

The existing techniques for detecting violations using structural analysis extracts

information only from the source code. In all cases, the precision of the results

depends on the occurrence of patterns with structural similarity in the application

under analysis. Therefore, if the expected implementation pattern rarely occurs in

the system under analysis, it will be wrongly taken as a violation and not as a

programming anomaly.

To overcome the weaknesses of the aforementioned techniques, Gruska et al.

proposed an approach, also based on the JADET tool, which retrieves temporal

properties on the methods of the application under analysis [Gruska et al., 2010]. The

detection is also based on formal concept analysis, as implemented by the Colibri-

Java [Götzmann, 2007] tool. However, the patterns are extracted from various systems

whose implementation is admittedly correct and that are supposed to present high-

levels of internal software quality. Moreover, the extracted temporal properties are

not confronted with the patterns of the application itself. Instead, they are compared

with patterns extracted from other systems, whose structural quality and correctness

18 Chapter 2. Background

is also recognized.

2.4.2 Historical Analysis Techniques

During the evolution of a software, changes frequently occur. For example,

programming anomalies are introduced, defects are corrected, source code is refactored,

etc. In other words, in high-quality and well-organized systems, some of these anomalies

are detected and corrected as a result of software maintenance or inspection activities.

Architectural conformance techniques based on historical analysis searches for

source code change patterns. Next, these techniques detect in a specific version of the

system under evaluation (usually the current version), dependencies that are not in

conformance with these evolution patterns.

Zimmermann et al. proposed one of the first approaches for detecting code

anomalies using version history [Zimmermann et al., 2004, Zimmermann et al., 2005].

The proposed approach includes a tool, called ROSE, which relies on association rules

extracted from version control history systems to suggest and predict missing changes

in the artifacts of the system under analysis. Moreover, ROSE also identifies anomalies

that occur outside the system’s source code, like the need to update the documentation

after changes in the source code. The overall precision achieved by ROSE was 40% in

an evaluation with eight open-source systems. Considering only the first three warnings

indicated in the list, ROSE achieved a precision of 90%.

Another event that often occurs during the evolution of software systems is the

need to perform modifications in the source code as a result of updates in APIs.

In this case, it is necessary to verify whether the code was updated consistently.

To tackle this problem, Mileva et al. proposed a methodology, supported by a tool

called LAMARCK, that extracts temporal properties regarding two different versions

of a system and analyzes the changes between these versions to infer evolution

patterns [Mileva et al., 2011]. Such patterns can be shared with developers to prevent

the use of incorrect programming strategies. Furthermore, they can help to identify

implementation decisions that are out of date. To derive the evolutionary patterns and

to reveal the programming violations, LAMARCK relies on formal concept analysis

techniques, as supported by the Java-Colibri tool.

Silva et al. proposed a technique to assess package modularity using co-change

clusters [Silva et al., 2014], based on the assumption that programming decisions

that are likely to change together should be implemented in the same module. In

their work, the authors argue that the traditional package hierarchy suffers from the

dominant decomposition problem and their approach can introduce improvements in

2.4. Detecting Source Code Anomalies 19

understanding whether a system is really well-modularized. Santos et al. describe a

remodularization technique that relies on information retrieval and semantic clustering

analysis over a vocabulary extracted from identifiers and comments presented in the

classes of a system under evaluation [Santos et al., 2014]. This approach can also be

used to suggest a more suitable modular organization for the evaluated system.

The precision results achieved by the discussed historical analysis approaches

depend essentially on identifying usage and non-usage patterns that are then contrasted

with the remainder of the application. In other words, precision depends on the number

and the correctness of frequent items in the source code. Moreover, it also depends on

the number of revisions in the repository.

2.4.3 Static Analysis Techniques

Techniques for detecting defects using static analysis are based on idioms representing

programming defects, such as: division by zero, array indexing beyond its limits,

method calls using null references, etc. [Araujo et al., 2011]. Several tools have been

proposed to support static code analysis, which generally aim to extend and enhance

the warning messages generated by compilers [Couto et al., 2012].

Lint [Johnson, 1977, Darwin, 1988] was one of the first tools to support static

analysis for identifying bugs and programming bad smells [Hovemeyer and Pugh, 2004,

Fowler, 1999]. The tool searches for common errors present in source code, as

well as it aims to reinforce some common rules of the C language— such as type

checking, operations and/or, and portability restrictions. As a result, some of the

checks performed by Lint were later integrated into compilers, such as checking

the use of uninitialized variables. LCLint [Evans et al., 1994, Evans, 1996] and

JLint [Artho and Biere, 2001] are examples of static source code checking tools that

inherited the philosophy originally proposed by Lint.

Among the existing static verification tools for Java,

FindBugs [Hovemeyer and Pugh, 2004] and PMD [Copeland, 2005] are among

the most popular. FindBugs is an open-source tool that implements a set of bug

detectors able to point out more than 360 patterns of bugs. These patterns are

classified into categories such as correctness, performance, threads synchronization,

malicious code, bad practice, etc. Moreover, FindBugs classifies the bug patterns as

having high, medium, or low priority.

PMD is an open source tool that supports an extensive set of rules for detecting

potential bugs and to check coding styles. PMD also offers a set of metrics to

detect violations in recommended programming practices, such as excessive number

20 Chapter 2. Background

of attributes or long methods. For the detection of bugs, PMD computes its rules over

the AST (Abstract Syntax Tree) generated from the source code of the system under

analysis, unlike FindBugs, which works at the bytecode level.

In a study performed by Araujo et al., the highest precision achieved by FindBugs

was 52.5% [Araujo et al., 2011]. To achieve such result, the authors configured

FindBugs to report only bug evidences with high priority from the correctness category.

In the same study, the authors highlight that PMD produces a massive number of

bug evidences, which must be manually inspected. More specifically, the best result

obtained by the PMD tool was 10% of precision.

2.4.4 Critical Assessment

Among the approaches for automatic detection of source code anomalies described

in this section, the ones based on structural analysis rely on formalisms to extract

dependencies that are strongly linked to procedural languages. These approaches

consider only function calls, independently from the modular and/or architectural

context where they occur. Similarly, approaches based on historical analysis do not

consider violations that occur at the architectural level, since they also consider only

concepts of procedural languages. Furthermore, they often evaluate a limited historical

context, since the analysis is typically performed with only two versions. Approaches

based on static analysis consider only the language idioms, such as the use of types and

typical objects of the language. Typically, such techniques do not consider modular or

architectural aspects of the system under analysis.

2.5 Data Mining Techniques

Data mining includes a set of techniques for the analysis and extraction of

information potentially useful, implicit, and previously unknown [Tan et al., 2002,

Frawley et al., 1992, Fayyad et al., 1996]. Basically, data mining techniques perform a

search for patterns in a dataset defined according to the chosen data mining algorithm.

In the context of this thesis, two data mining techniques deserve special attention due to

their potential application to architectural violation detection. Section 2.5.1 describes

the frequent itemset mining technique and Section 2.5.2 describes the technique based

on formal concepts analysis.

2.5. Data Mining Techniques 21

2.5.1 Frequent Itemset Mining

Frequent patterns are those that appear repeatedly in a dataset. For example, a

pair of items, like “bread” and “butter”, which usually appear together in database

transactions, are considered a frequent pattern. As an example in the software

engineering context, calling an open() method and then calling a close() method, may

also represent a frequent pattern if it occurs at various points in a program. As another

example, considering the software architecture context, classes that depend on Entity

annotation, with an expressive confidence, also depend on annotation Id.

The following concepts are fundamental on frequent itemset mining:

• Items: are the objects under study to which we want to discover the sets of

co-occurring values or frequent patterns. For instance, the objects in a market

basket can be considered items.

• Itemset: is a set of items. For instance, a given collection of objects in a market

basket can be considered an itemset.

• Transaction: is a well-defined itemset, represented as a tuple 〈t,X〉, where t is

a unique transaction identifier.

• Database: is a collection of transactions. Figure 2.2 shows these forms of

database representations.

A B C D E

1 1 1 0 0 1
2 1 1 0 1 1
3 1 0 1 0 0
4 1 1 0 0 1
5 0 1 0 1 0
6 1 1 1 1 1

(a) Binary

itemset

1 ABE
2 ABDE
3 AC
4 ABE
5 BD
6 ABCDE
(b) Transaction

A B C D E

1 1 3 2 1
2 2 6 5 2
3 4 6 4
4 5 6
6 6

(c) Vertical

Figure 2.2. Database representations

Support is a relevant measure in frequent itemset mining techniques, defined

as the number of transactions that contain a given itemset, i.e., it is a measure of

popularity of the pattern in the database. Objectively, a pattern is frequent if it has a

support greater than a given threshold. Therefore, given a database of transactions and

a minimum support, a frequent itemset mining algorithm must enumerate all itemsets

that are frequent [Zaki and Meira Jr., 2011].

22 Chapter 2. Background

As an example, assuming minimum-support = 3. The frequent sub-itemsets of

the transactions presented in Table 2.2 are A: 5, B: 5, D: 3, E: 4, AB: 4, AE: 4, and

ABE: 3. The other itemsets are not frequent because their support is lower than 3.

Once frequent itemsets are mined, it is possible to extract association rules from

these sets and to make assumptions on how often two sets of items occur simultaneously

or conditionally [Agrawal et al., 1993]. Furthermore, association rules can be used

to discover relationships between objects. For example, given a sales database in a

supermarket, it is possible to generate rules of the following type: if consumers purchase

a product A, there is a good chance that they will also purchase product B. In this

case, product A is called the antecedent term and product B is called the consequent

term of the association rule.

An association rule is formally represented as X ⇒ Y , where X and Y are itemsets

and X ∩ Y = ∅. Each association rule has a support and a confidence measure. The

support is the number of times in which both X and Y simultaneously occur as subsets

in the same transaction. The confidence represents the probability of a transaction

covered by an antecedent term X be also covered by a consequent term Y . In practice,

the confidence of a rule is calculated as its support divided by the support of the

antecedent term.

Additionally, other measures are used when extracting association rules, such as:

• Lift: is a measure of the surprise or the strength of a rule. It is computed by

dividing the confidence of a rule by the relative support of its consequent term.

• Leverage: is a measure of the difference between the observed relative support

of the consequent term and the expected joint probability of the multiplication

between the relative support of the antecedent term and the consequent term.

• Jaccard: is a coefficient that measures the similarity between the antecedent

term and the consequent term.

Finally, many algorithms can be used to compute itemsets and association rules,

such as:

• Apriori: an algorithm that improves a brute-force approach for frequent itemset

mining [Agrawal and Srikant, 1994].

• Eclat: an algorithm that indexes the database to improve the computation of

frequency [Zaki et al., 1997].

2.5. Data Mining Techniques 23

• FP-Growth: an algorithm that uses pattern fragment growth to mine the

complete set of frequent patterns [Han et al., 2000].

2.5.2 Formal Concept Analysis

Concept analysis is a branch of applied mathematics, particularly of

the lattice theory [Birkhoff, 1940, Ganter and Wille, 1999, Wille, 2009,

Davey and Priestley, 2002]. It is a technique for analyzing binary relations between

arbitrary objects and their attributes. It produces as output a concepts lattice, which

provides an understanding of the underlying structure of the dependencies between

objects.

The formal context, whose definition is fundamental to the study of formal concept

analysis, is defined by a triple (O,A,R), where O is a set of objects, A is a set of

attributes, and R is a binary relation, called incidence, so that R ⊆ O × A. As an

example, in information retrieval system, documents can be considered objects and

their attributes are considered terms.

A suitable way for representing formal contexts is by means of a cross table, where

the rows are objects and the columns are attributes. The incidence is shown in this

table using a symbol to indicate whether there is any relationship between the object

and the attribute. Therefore, formal contexts are used for representing sets whose

objects may or may not have certain attributes. Figure 2.3 illustrates an example of a

representation of a formal context using a cross table. As we can observe, the objects

are animals that are famous in certain regions of the world and the attributes denote

whether these animals are cartoons or real animals, as well as whether they are dogs,

cats, mammals, or turtles.

Figure 2.3. Formal context of “famous animals” [Priss, 2006]

A formal context determines formal concepts. The set of objects (O) of a formal

concept is called extension (E) and the set of attributes (A) is called intention (I) such

that E ⊆ O, I ⊆ A. A hierarchically ordered set of all formal concepts of a formal

context is called lattice concepts.

24 Chapter 2. Background

A suitable way to represent the lattices is by means of a graph whose vertices

denote the formal concepts and whose edges denote their relationships. An edge creates

a relationship of super-concept and sub-concept between connected formal concepts.

The highest vertex of the diagram represents the formal concept whose extension

contains all objects, while the lower vertex contains all attributes in its intention.

Figure 2.4. Concept lattice of Figure 2.3 [Priss, 2006]

Figure 2.4 shows a diagram of a concept lattice whose concepts correspond to

the formal context of Figure 2.3. In this diagram, each vertex represents the formal

concepts. The objects are arranged on the bottom of the diagram and the attributes

are placed on top. Both objects and attributes are identified by their respective labels.

In summary, formal concept analysis provides a framework to understand and

mine patterns between objects and attributes. From the identified patterns, this

technique detect structural anomalies of the objects in relation to the attributes and

vice versa. For this purpose, techniques based on formal concept analysis can group

blocks of similar relationships, i.e., those that share common attributes.

2.6 Final Remarks

In software development, it is common that development teams adopt strategies that

are not consonant with best practices, as defined by the architectural model of the

system. As a result, several approaches have been proposed to detect source code

anomalies, including architectural violations.

2.6. Final Remarks 25

Table 2.1 summarize the techniques discussed before in this chapter. As can

be observed, the current techniques for architectural conformance checking require as

input an architectural representation, which is not trivial to be produced and that

is also subject to errors and omissions. On the other side, the existing solutions for

automatically detecting programming anomalies usually do not consider architectural

violations. Finally, the approaches based on historical analysis restrict considerably

the evaluated historical context, limiting the analysis on two versions of the system in

most cases.

We concluded this chapter by discussing some data mining techniques that

can contribute to an automatic analysis of architectural patterns. Both frequent

itemsed mining and formal concept analysis can be used to detect complex patterns

of dependencies, composed by multiple classes, independently on any prior knowledge

of software architecture or on the architectural scenarios where violations frequently

occur. In other words, these techniques can detect any pattern of co-occurrence among

items in a dataset. Particularly, frequent itemset mining techniques produce association

rules that can be used: (i) as architectural patterns, allowing to detect dependencies

that violates these patterns; and (ii) as documentation artifacts, supporting and guiding

the development team on expliciting the dependencies in the system. Formal concept

analysis can be a promising technique for mining architectural violations by highlighting

dependency relationships between classes of a system, including use and disuse of

relations.

26 Chapter 2. Background

T
a
b
le

2
.1

.
T
ec

h
n
iq

u
es

fo
r

d
et

ec
ti

n
g

p
ro

gr
am

m
in

g
an

om
al

ie
s

T
e
ch

n
iq

u
e

In
p
u
t

T
o
o
ls

In
te

n
ti

o
n

C
ri

ti
ca

l
A

ss
e
ss

m
e
n
t

D
ep

en
de

nc
y

St
ru

ct
ur

e

M
at

ri
ce

s

B
yt

ec
od

e
of

on
e

ve
rs

io
n

of
a

sy
st

em
L
D

M
[S

an
ga

l
et

al
.,

20
05

]
A

rc
hi

te
ct

ur
al

co
nf

or
m

an
ce

ch
ec

ki
ng

R
eq

ui
re

a
de

ta
ile

d

ar
ch

it
ec

tu
ra

l
sp

ec
ifi

ca
ti

on
an

d

do
no

t
co

ns
id

er
th

e
hi

st
or

y
of

ve
rs

io
n

So
ur

ce
C

od
e

Q
ue

ry

L
an

gu
ag

es

So
ur

ce
co

de
of

on
e

ve
rs

io
n

of
a

sy
st

em
.Q

L
[d

e
M

oo
r,

20
07

]

A
rc

hi
te

ct
ur

al

co
nf

or
m

an
ce

ch
ec

ki
ng

an
d

id
en

ti
fic

at
io

n
of

re
fa

ct
or

in
g

op
p
or

tu
ni

ti
es

R
efl

ex
io

n

M
od

el
s

So
ur

ce
co

de
of

on
e

ve
rs

io
n

of
a

sy
st

em

an
d

a
hi

gh
-l
ev

el

m
od

el
of

th
e

de
si

re
d

ar
ch

it
ec

tu
re

SA
V

E
[K

no
de

l
et

al
.,

20
06

]
A

rc
hi

te
ct

ur
al

co
nf

or
m

an
ce

ch
ec

ki
ng

D
ep

en
de

nc
y

C
on

st
ra

in
t

L
an

gu
ag

es

So
ur

ce
co

de
of

on
e

ve
rs

io
n

of
a

sy
st

em

an
d

a
lis

t
of

st
ru

ct
ur

al
co

ns
tr

ai
nt

s

b
et

w
ee

n
m

od
ul

es

D
C

L
[T

er
ra

an
d

V
al

en
te

,
20

09
]

an
d

T
am

de
ra

[G
ur

ge
l
et

al
.,

20
14

]

A
rc

hi
te

ct
ur

al

co
nf

or
m

an
ce

ch
ec

ki
ng

2.6. Final Remarks 27

T
a
b
le

2
.1

.
T
ec

h
n
iq

u
es

fo
r

d
et

ec
ti

n
g

p
ro

gr
am

m
in

g
an

om
al

ie
s

T
e
ch

n
iq

u
e

In
p
u
t

T
o
o
ls

In
te

n
ti

o
n

C
ri

ti
ca

l
A

ss
e
ss

m
e
n
t

C
on

st
ra

in
t

P
ro

gr
am

m
in

g

L
an

gu
ag

es

So
ur

ce
co

de
of

on
e

ve
rs

io
n

of
a

sy
st

em

an
d

a
lis

t
of

ar
ch

it
ec

tu
ra

l

co
ns

tr
ai

nt
s

on
th

e

st
at

ic
st

ru
ct

ur
e,

de
fin

ed
in

P
ro

lo
g

SC
L

[H
ou

an
d

H
oo

ve
r,

20
06

],

F
C

L
[H

ou
et

al
.,

20
04

],
an

d

L
og

E
n

[E
ic

hb
er

g
et

al
.,

20
08

]

A
rc

hi
te

ct
ur

al

co
nf

or
m

an
ce

ch
ec

ki
ng

R
eq

ui
re

a
de

ta
ile

d

ar
ch

it
ec

tu
ra

l
sp

ec
ifi

ca
ti

on
an

d

do
no

t
co

ns
id

er
th

e
hi

st
or

y
of

ve
rs

io
ns

A
rc

hi
te

ct
ur

al

D
es

cr
ip

ti
on

L
an

gu
ag

es

A
rc

hi
te

ct
ur

al

de
sc

ri
pt

io
n

co
ns

tr
ai

nt
s

sp
ec

ifi
ca

ti
on

A
cm

e
[G

ar
la

n
et

al
.,

19
94

],

A
A

D
L
[F

ei
le

r,
20

14
],

an
d

W
ri

gh
t

[A
lle

n,
19

97
]

A
rc

hi
te

ct
ur

al

co
nf

or
m

an
ce

ch
ec

ki
ng

R
eq

ui
re

a
de

ta
ile

d

ar
ch

it
ec

tu
ra

l
sp

ec
ifi

ca
ti

on

St
ru

ct
ur

al

A
na

ly
si

s

T
ec

hn
iq

ue
s

So
ur

ce
co

de
of

on
e

ve
rs

io
n

of
a

sy
st

em

P
R

-M
in

er
[L

i
an

d
Z
ho

u,
20

05
]

an
d

JA
D

E
T

[W
as

yl
ko

w
sk

i
et

al
.,

20
07

]

D
et

ec
ti

ng
an

om
al

ie
s

in
pr

og
ra

m
m

in
g

pa
tt

er
ns

R
eq

ui
re

a
de

ta
ile

d

ar
ch

it
ec

tu
ra

l
sp

ec
ifi

ca
ti

on
an

d

do
no

t
co

ns
id

er
th

e
hi

st
or

y
of

ve
rs

io
ns

H
is

to
ri

ca
l

A
na

ly
si

s

T
ec

hn
iq

ue
s

So
ur

ce
co

de
of

tw
o

ve
rs

io
ns

of
a

sy
st

em

R
O

SE
[Z

im
m

er
m

an
n

et
al

.,
20

04
]

an
d

L
A

M
A

R
C

K
[M

ile
va

et
al

.,
20

11
]

D
et

ec
ti

ng
an

om
al

ie
s

in
pr

og
ra

m
m

in
g

pa
tt

er
ns

D
o

no
t

co
ns

id
er

ar
ch

it
ec

tu
ra

l

or
m

od
ul

ar
as

p
ec

ts
an

d
us

e

on
ly

tw
o

ve
rs

io
ns

of
th

e

sy
st

em
un

de
r

an
al

ys
is

28 Chapter 2. Background

T
a
b
le

2
.1

.
T
ec

h
n
iq

u
es

fo
r

d
et

ec
ti

n
g

p
ro

gr
am

m
in

g
an

om
al

ie
s

T
e
ch

n
iq

u
e

In
p
u
t

T
o
o
ls

In
te

n
ti

o
n

C
ri

ti
ca

l
A

ss
e
ss

m
e
n
t

St
at

ic

A
na

ly
si

s

T
ec

hn
iq

ue
s

So
ur

ce
co

de
of

on
e

ve
rs

io
n

of
a

sy
st

em

L
in

t
[J

oh
ns

on
,
19

77
,

D
ar

w
in

,
19

88
],

F
in

dB
ug

s

[H
ov

em
ey

er
an

d
P

ug
h,

20
04

],

an
d

P
M

D
[C

op
el

an
d,

20
05

]

D
et

ec
t

an
om

al
ie

s
in

so
ur

ce
co

de
by

m
ea

ns

of
id

io
m

s
re

pr
es

en
ti

ng

pr
og

ra
m

m
in

g
de

fe
ct

s

D
o

no
t

co
ns

id
er

ar
ch

it
ec

tu
ra

l

or
m

od
ul

ar
as

p
ec

ts
an

d
do

no
t

co
ns

id
er

th
e

hi
st

or
y

of

ve
rs

io
ns

Chapter 3

Heuristics for Detecting

Architectural Violations

This chapter is organized as follows. We start by providing an overview of the proposed

approach for detecting architectural violations (Section 3.1). Next, we motivate and

describe the heuristics to detect absences (Section 3.2) and divergences (Section 3.3).

A complete formal specification of the heuristics is presented in Section 3.4. We

also propose a strategy to rank the warnings produced by the heuristics according

to their relevance (Section 3.5). Next, we present a prototype tool, called ArchLint,

that supports the proposed heuristics (Section 3.6). We also present an architecture

conformance process based on the proposed approach (Section 3.7). Finally, we

conclude the chapter with a general discussion (Section 3.8).

3.1 Overview

Figure 3.1 illustrates the input and output of the proposed heuristics for detecting

architectural violations. Basically, the heuristics rely on two types of input information

on the target system: (a) history of versions; and (b) high-level component

specification. We consider that the classes of a system are statically organized in

modules (or packages, in Java terms), and that modules are logically grouped in coarse-

grained structures, called components. The component model includes information on

the names of the components and a mapping from modules to components, using

regular expressions (complete examples are provided in Sections 4.1.1 and 4.2.1).

Given the component model, the proposed heuristics automatically identify suspicious

dependencies (or lack of) in source code by relying on frequency hypotheses and past

corrections made on these dependencies. In practice, the heuristics consider all static

29

30 Chapter 3. Heuristics for Detecting Architectural Violations

dependencies established between classes, including dependencies due to method calls,

variable declarations, inheritance, exceptions, etc.

Evidences of

Architectural

Violations

History of

Versions

High-level

Component

Specification

Heuristics

Figure 3.1. Input and output of the proposed heuristics

We do not make efforts in automatically inferring the high-level components

because it is usually straightforward for architects to provide this representation. When

architects are not available (e.g., in the case of open-source systems), a high-level

decomposition in major subsystems is often included in developers’ documentation

or can be retrieved by inspecting the package structure. In fact, as described in

Section 4.3.1, we applied our approach to an open-source system named Lucene, in

which we reused high-level models independently defined by other researchers using

information available in the systems’ documentation.

3.2 Heuristic for Detecting Absences

An absence is a violation due to a dependency defined by the planned architecture,

but that does not exist in the source code [Murphy et al., 1995, Passos et al., 2010].

For example, suppose an architectural rule that requires classes located in a View

component to extend a class called ViewFrame. In this case, an absence is counted for

each class in View that does not follow this rule.

To detect absences, we initially search for dependencies denoting minorities at

the level of components, regarding a given dependency. We assume that absences

are an exceptional property in classes and therefore minorities have more chances to

represent architectural violations. Moreover, we rely on the history of versions to

mine for dependencies dep introduced in classes originally created without dep. The

underlying assumption in this case is that absences are usually detected and fixed. The

goal is to reinforce the evidences collected in the previous step by checking whether

3.2. Heuristic for Detecting Absences 31

classes originally created with the architectural violation under analysis (i.e., absence

of dep) were later fixed to introduce dep.

Figure 3.2 illustrates the proposed heuristic. As can be observed, class C2 has

an absence regarding TargetClass because: (a) C2 is the unique class in component cp

that does not depend on TargetClass ; and (b) a typical evolution pattern among the

classes in cp is to introduce a dependency with TargetClass , when it does not exist, as

observed in classes C1, C4, and C5.

Figure 3.2. Example of absence (C2 does not depend on TargetClass). The
label Ins denotes a dependency inserted later in the class

Additionally, our approach considers specific types of dependencies. For example,

the planned architecture might prescribe that a given BaseClass must depend on

a TargetClass by means of inheritance, i.e., BaseClass must be a subclass of

TargetClass . Table 3.1 reports the types of dependency supported by this heuristic.

Definition: The proposed heuristic for detecting absences relies on two definitions:

• Dependency Scattering Rate—denoted by DepScaRate(c, t, cp)—is the ratio

between (i) the number of classes in component cp that establish a dependency

of type t with a target class c and (ii) the total number of classes in component

cp.

• Dependency Insertion Rate—denoted by DepInsRate(c, t, cp)—is the ratio

between (i) the number of classes in component cp originally created without

a dependency of type t with a target class c, but that having this dependency in

the last version of the system under analysis, and (ii) the total number of classes

in component cp originally created without the establishment of a dependency of

type t with class c.

32 Chapter 3. Heuristics for Detecting Architectural Violations

Table 3.1. Dependency types, assuming that C1 depends on C2

Dependency type Description

AttributeAnnotation
C2 is used as an annotation over an
attribute in C1

ClassAnnotation C2 is used as an annotation over C1

LocalVariableAnnotation
C2 is used as an annotation over a local
variable in C1

MethodAnnotation
C2 is used as an annotation over a method
of C1

ClassAttribute C2 is used as an attribute in C1

CaughtException C2 is an exception caught in a method of C1

DeclaredException
C2 is an exception declared in a method of
C1

Inheritance C1 is used as a subclass of C2

LocalVariable
C2 is used as a local variable in a method of
C1

ParameterizedType C2 is used as a generic type in C1

ReturnMethod C2 is the type returned by a method of C1

ThrownException C2 is an exception thrown in a method of C1

Therefore, the candidates for absences in component cp are defined as follows:

Absences(cp) = { (x, c, t) | comp(x) = cp ∧ ¬depends(x, c, t,H) ∧

DepScaRate(c, t, cp) > Asca ∧

DepInsRate(c, t, cp) > Ains }

According to this definition, an absence is a tuple (x, c, t) where x is a class

located in component cp that, in the current version of the system in the control version

repository (denoted by the symbol H), does not establish a dependency of type t with

the target class c, when most classes in component cp have this dependency. Moreover,

several classes in component cp were initially created without this dependency, but have

evolved to establish it. Parameters Asca and Ains define the thresholds for dependency

scattering and insertion, respectively.

3.3 Heuristics for Detecting Divergences

A divergence is a violation due to a dependency that is not allowed by the

planned architecture, but that exists in the source code [Murphy et al., 1995,

3.3. Heuristics for Detecting Divergences 33

Passos et al., 2010]. Our approach includes three heuristics for detecting divergences,

as described in the following.

3.3.1 Heuristic #1

This heuristic targets a common pattern of divergences: the use of frameworks

and APIs by unauthorized components [Terra and Valente, 2009, Sarkar et al., 2009b].

For example, enterprise software architectures commonly define that object-relational

mapping frameworks must only be accessed by components in the persistence

layer [Fowler, 2002]. Therefore, this constraint authorizes the use of an external

framework, but only by well-defined components.

The heuristic initially prescribes that the searching for divergences must be

restricted to dependencies present in a small number of classes of a given component

(according to a given threshold, as described next). However, although this is a

necessary condition for divergences, it is not enough to characterize these violations.

For this reason, the heuristic includes two extra conditions: (i) the dependency

must have been removed several times from the high-level component under analysis

(i.e., along the component’s evolution, the system was refactored to fix the violation;

but it was introduced again, possibly by another developer in another package or class

that is part of the component); and, (ii) the heuristic also searches for components

where the dependency under analysis is extensively found (i.e., components that behave

as “heavy-users” of the target module). The assumption is that it is common to have

modules that—according to the intended architecture—are only accessed by classes in

well-delimited components.

Figure 3.3 illustrates the proposed heuristic. In this figure, class C2 presents a

divergence regarding TargetModule because: (a) C2 is the only class in component cp1
that depends on TargetModule; (b) many classes in cp1 (such as C1, C4, and C5)

have in the past established and then removed a dependency with TargetModule;

and (c) most dependencies with TargetModule come from by another component cp2

(i.e., cp2 is a “heavy-user” of TargetModule).

Definition: This heuristic relies on two definitions:

• Dependency Deletion Rate of a component cp regarding a target module m—

denoted by DepDelRate(m, cp)—is the ratio between (i) the number of classes in

component cp that established a dependency in the past with classes in module m,

but no longer have this dependency, and (ii) the total number of classes in

component cp that have established a dependency with any class in module m.

34 Chapter 3. Heuristics for Detecting Architectural Violations

Figure 3.3. Example of divergence (C2 depends on TargetModule). The label
Del denotes a dependency removed in a previous version of the class

As described before, a module is a set of classes (e.g., a package, in the case of

Java systems).

• HeavyUser(m) is a function that retrieves the component whose classes mostly

depend on classes located in module m.

The candidates for divergences in a component cp1 are defined as follows:1

Div1(cp) = { (x, c) | comp(x) = cp ∧ mod(c) = m ∧ depends(x, c,_, H) ∧

DepScaRate(m, cp) 6 Dsca ∧

DepDelRate(m, cp) > Ddel ∧

HeavyUser(m) 6= cp }

According to this definition, a divergence is a pair (x, c), where x is a class located

in component cp that depends on a target class c located in a module m, when most

classes in component cp do not have this dependency (as defined by the scattering rate

lower than a minimal threshold Dsca). Moreover, the definition requires that several

classes in the component under evaluation have removed the dependencies with m in

the past, as defined by a threshold Ddel. Finally, there is another component with a

heavy-user behavior with respect to module m.
1In a depends predicate, the pattern _ (underscore) matches any value.

3.3. Heuristics for Detecting Divergences 35

3.3.2 Heuristic #2

Similarly to the previous case, this second heuristic restricts the analysis to

dependencies defined by few classes of a component that were removed in the past

(in other classes from the component). However, this heuristic has two important

differences in contrast to the first one: (a) it is based on dependencies to a specific target

class (instead of an entire module), which also includes the type of the dependency;

and (b) it does not require the existence of a heavy-user for the dependency under

analysis.

Figure 3.4 illustrates the proposed heuristic. In this figure, class C2 has a

divergence regarding TargetClass because: (a) C2 is the only class in component cp

that depends on TargetClass ; and (b) a common evolution pattern among the classes

in cp is to remove dependencies with TargetClass , as observed in the history of classes

C1, C4, and C5.

Figure 3.4. Example of divergence (C2 depends on TargetClass). The label Del

denotes a dependency removed in a previous version of the class

This heuristic aims to detect two possible sources of divergences: (a) the use of

frameworks that are not authorized by the planned architecture (e.g., a system that

occasionally relies on SQL statements instead of using the object-relational mapping

framework prescribed by the architecture) [Terra and Valente, 2009]; and (b) the use

of incorrect abstractions provided by an authorized framework (e.g., a system that

occasionally relies on inheritance instead of annotations when accessing a framework

that provides both forms of reuse, although the architecture authorizes only the latter).

Definition: This heuristic relies on the Dependency Deletion Rate, as defined by the

previous heuristic. However, it counts deletions regarding a target class c and a

36 Chapter 3. Heuristics for Detecting Architectural Violations

dependency type t—and not an entire module m. Thereupon, the heuristic is formalized

as follows:

Div2(cp) = { (x, c, t) | comp(x) = cp ∧ depends(x, c, t,H) ∧

DepScaRate(c, t, cp) 6 Dsca ∧

DepDelRate(c, t, cp) > Ddel }

According to this definition, a divergence is a tuple (x, c, t), where x is a class

located in component cp that has a dependency of type t with a target class c, when

most classes in component cp do not have this dependency (as defined by the threshold

Dsca). Moreover, the definition requires that several classes in the component under

evaluation might have removed the dependencies (c, t) in the past, as defined by a

threshold Ddel.

3.3.3 Heuristic #3

This heuristic is based on the assumption that a common consequence of divergences

is the creation of asymmetrical cycles between components. More specifically, as

illustrated in Figure 3.5, this heuristic aims to identify pairs of components cp1 and

cp2 where most references are from cp2 to cp1, but there are also a few references

in the reverse direction. The underlying assumption is that the components were

originally designed to communicate unidirectionally and the dependencies in the

“wrong” direction are likely to represent architectural violations (and might not be

exceptions authorized by the architecture, e.g., for performance issues). This heuristic

is particularly useful to detect back-call violations, a typical violation in layered

architectures that occurs when a lower layer relies on services implemented by upper

layers [Sarkar et al., 2009a].

Definition: To evaluate the third heuristic for divergences, we assume that rf (cp1, cp2)

denotes the number of references from classes in component cp1 to classes in

component cp2. We also define the Dependency Direction Weight between components

cp1 and cp2 as follows:

DepDirWeight(cp1, cp2) =
rf (cp1, cp2)

rf (cp1, cp2)+rf (cp2, cp1)

3.4. Formal Definition 37

Figure 3.5. Divergences due to asymmetrical cycles

Using this definition, the heuristic is formalized as follows:

Div3(cp1) = { (x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ cp1 6= cp2 ∧

depends(x, c,_, H) ∧

Ddir 6 DepDirWeight(cp1, cp2) < 0.5 }

Basically, divergences are pairs of classes (x, c) where x is a class in component cp1
(i.e., the component under analysis) that has a dependency with a class c in

component cp2 and the dependencies from cp1 to cp2 satisfy the following conditions:

(a) they are not exceptions, since they occur in a number that is greater than

the minimal threshold Ddir; and (b) they are not dominant, since there are more

dependencies in the reverse direction, as specified by the Dependency Direction Weight

lower than 0.5.

3.4 Formal Definition

In this section, we describe the heuristics proposed by ArchLint.

3.4.1 Notation

The definition of the heuristics relies on the following notation:

• C = {c1, c2, ..., cn} is the set of all classes in the system under analysis.

• CP = {cp1, cp2, ..., cpn} is the set of components in the high-level component

model.

38 Chapter 3. Heuristics for Detecting Architectural Violations

• depends(c1, c2, t, v) indicates that class c1 has a dependency of type t with

class c2 in a given version v.

• comp(c) is the component cp of a class c.

• mod(c) is the module m of a class c.

• first(c) is the version in which class c was originally inserted in the repository.

• H is the identifier of the last version of the system in the repository.

In a depends predicate, the pattern _ (underscore) matches any value. For

example, depends(c1, c2,_,_) indicates that class c1 depends on class c2, despite the

dependency type and the version.

3.4.2 Detecting Absences

DepCompClass(c, t, cp) is the set of classes in a component cp that—in the current

version of the system—have a dependency of type t with a class c, as follows:

DepCompClass(c, t, cp) = { x ∈ C | depends(x, c, t,H) ∧ comp(x) = cp }

ClassComp(cp) is the set of classes in the component cp, as follows:

ClassComp(cp) = { x ∈ C | comp(x) = cp }

DepScaRate(c, t, cp) is the ratio between (i) the number of classes in component cp

that have a dependency of type t with a target class c and (ii) the total number of

classes in component cp, as follows:

DepScaRate(c, t, cp) =
|DepCompClass(c, t, cp)|

|ClassComp(cp)|

CreatedWithoutDep(c, t, cp) is the set of classes of a component cp that were

committed in the repository for the first time without a dependency of type t with

a target class c, as defined next:

CreatedWithoutDep(c, t, cp) = { x ∈ C | comp(x) = cp ∧ ¬depends(x, c, t, first(x)) }

3.4. Formal Definition 39

DepAdd(c, t, cp) is the set of classes in component cp initially created without a

dependency of type t with a target class c but that later were maintained to include

this dependency, as follows:

DepAdd(c, t, cp) = { x ∈ CreatedWithoutDep(c, t, cp) | depends(x, c, t,H) }

DepInsRate(c, t, cp) is the ratio between (i) the number of classes in the component cp

originally created without a dependency of type t with a target class c, but that have

this dependency in the last version of the system under analysis, and (ii) the total

number of classes in component cp originally created without a dependency of type t

with class c, as follows:

DepInsRate(c, t, cp) =
|DepAdd(c, t, cp)|

|CreatedWithoutDep(c, t, cp)|

Finally, the candidates for absences in a component cp are defined as follows:

Absences(cp) = { (x, c, t) | comp(x) = cp ∧ ¬depends(x, c, t,H) ∧

DepScaRate(c, t, cp) > Asca ∧

DepInsRate(c, t, cp) > Ains }

3.4.3 Detecting Divergences

3.4.3.1 Heuristic #1

DepSysMod(m) is the set of classes in the current version of the system that have a

dependency with classes of a module m, as follows:

DepSysMod(m) = { x ∈ C | depends(x, c,_, H) ∧ mod(c) = m }

DepCompMod(m, cp) is the set of classes in component cp that have a dependency

with a module m, as defined next:

DepCompMod(m, cp) = { x ∈ DepSysMod(m) | comp(x) = cp }

DepScaRate(m, cp) is the ratio between (i) the number of classes in component cp that

have a dependency with a module m and (ii) the total number of classes in the current

40 Chapter 3. Heuristics for Detecting Architectural Violations

version of the system that have a dependency with classes of m, as follows:

DepScaRate(m, cp) =
|DepCompMod(m, cp)|

|DepSysMod(m)|

DepAddAny(m, cp) is the set of classes in component cp that have established—in any

version of the system—a dependency with a class in module m, as defined next:

DepAddAny(m, cp) = { x ∈ C | comp(x) = cp ∧ depends(x, c,_,_) ∧ mod(c) = m }

DepDel(m, cp) is the set of classes returned by DepAddAny(m, cp) that in the current

version of the system no longer have a dependency with classes in module m, as defined

next:

DepDel(m, cp) = { x ∈ DepAddAny(m, cp) | ¬depends(x, c,_, H) ∧ mod(c) = m }

DepDelRate(m, cp) is the ratio between (i) the number of classes in component cp that

no longer have a dependency with classes in module m and (ii) the total number of

classes in component cp that have established a dependency with any class in module m,

as defined next:

DepDelRate(m, cp) =
|DepDel(m, cp)|

|DepAddAny(m, cp)|

HeavyUser(m) is a function that returns the component whose classes mostly depend

on classes located in module m, i.e., the component cp that provides the following

maximal value:

max
∀cp ∈ CP

(

|DepCompMod(m, cp)|

|DepSysMod(m)|

)

However, this maximal value must be greater than 0.5. Otherwise, the

function HeavyUser returns null.

Finally, the candidates for divergences in a given component cp are defined as follows:

Div1(cp) = { (x, c) | comp(x) = cp ∧ mod(c) = m ∧ depends(x, c,_, H) ∧

DepScaRate(m, cp) 6 Dsca ∧

DepDelRate(m, cp) > Ddel ∧

HeavyUser(m) 6= cp }

3.4. Formal Definition 41

3.4.3.2 Heuristic #2

DepAddAny(c, t, cp) is the set of classes in component cp that have established—in

any version of the system—a dependency of type t with a class c, as defined next:

DepAddAny(c, t, cp) = { x ∈ C | comp(x) = cp ∧ depends(x, c, t,_) }

DepDel(c, t, cp) is the set of classes returned by DepAddAny(c, t, cp) that no longer

have a dependency of type t with a class c (i.e., the dependencies were removed), as

defined next:

DepDel(c, t, cp) = { x ∈ DepAddAny(c, t, cp) | comp(x) = cp ∧ ¬depends(x, c, t,H) }

Additionally, DepDelRate(c, t, cp) is the ratio between (i) the number of classes in

component cp that no longer have a dependency of type t with a class c, and (ii) the

total number of classes in component cp that have established a dependency of type t

with a class c, as defined next:

DepDelRate(c, t, cp) =
|DepDel(c, t, cp)|

|DepAddAny(c, t, cp)|

Finally, the candidates for divergences in a given component cp are defined as follows:

Div2(cp) = { (x, c, t) | comp(x) = cp ∧ depends(x, c, t,H) ∧

DepScaRate(c, t, cp) 6 Dsca ∧

DepDelRate(c, t, cp) > Ddel }

3.4.3.3 Heuristic #3

This heuristic assumes that rf (cp1, cp2) denotes the number of references from classes

in component cp1 to classes in component cp2, as defined next:

rf (cp1, cp2) = | { (x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ depends(x, c,_, H) } |

DepDirWeight(cp1, cp2) is defined as follows:

DepDirWeight(cp1, cp2) =
rf (cp1, cp2)

rf (cp1, cp2)+rf (cp2, cp1)

42 Chapter 3. Heuristics for Detecting Architectural Violations

Finally, the candidates for divergences in a given component cp are defined as follows:

Div3(cp1) = { (x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ cp1 6= cp2 ∧

depends(x, c,_, H) ∧

Ddir 6 DepDirWeight(cp1, cp2) < 0.5 }

3.5 Ranking Strategy

The proposed heuristics generate warnings for architectural absences and divergences.

However, by their nature, they are subjected to false positives. For this reason, it is

important to report the warnings sorted by their potential to denote true violations. As

usual in the case of heuristic-based results, the first presented warnings should ideally

denote real violations to increase the confidence of the architects in the heuristics.

To rank the warnings generated by our approach, the natural strategy is to rely

on the scattering and change (insertion or deletion) rates of the dependencies that

characterize an absence or divergence. For example, in the cases of absences, we

should first present the dependencies that are observed frequently in a component

(i.e., have a very high Dependency Scattering Rate) and that are also introduced

frequently (i.e., have a very high Dependency Insertion Rate). More specifically, the

rank score of a given warning denoting an absence (x, c, t)— where x is a class that is

missing a dependency of type t with a target class c—is defined as:

ScoreAbsence(x, c, t) =
DepScaRate(c, t, cp) + DepInsRate(c, t, cp)

2

where cp = comp(x). Basically, this formula represents the arithmetic mean of the

scattering rate and the insertion rate of the dependency that characterizes the absence.

Therefore, the warnings denoting absences must be presented according to their ranking

scores, the ones with the highest score values first.

Additionally, the ranking scores of the warnings detected by heuristics #1 and

#2 for divergences are defined as follows, respectively:

ScoreDiv1(x,m) =
(1− DepScaRate(m, cp)) + DepDelRate(m, cp)

2

3.6. Tool Support 43

ScoreDiv2(x, c, t) =
(1− DepScaRate(c, t, cp)) + DepDelRate(c, t, cp)

2

where cp = comp(x). In the first score, the pair (x,m) is used to express that a class x

is incorrectly establishing a dependency with a class in module m. Analogously, in the

second score, the tuple (x, c, t) is used to express that a class x is incorrectly establishing

a dependency of type t with a target class c. In both cases, we assume that high-ranked

divergences should have a low scattering rate and a high deletion rate.

Finally, divergences detected by heuristic #3 are ranked according to the

Dependency Direction Weight between the components in a cycle, as follows:

ScoreDiv3(cp1
, cp

2
) = DepDirWeight(cp

1
, cp

2
)

where the divergences in this case denote a dependency between classes in

components cp
1

and cp
2

and they represent the “wrong” direction of the interaction

between these components. For example, consider two cycles, where the first cycle

has 18% of the dependencies and the second one has 15% of the dependencies in this

situation. In this case, the dependencies responsible for the “wrong” part of the second

cycle should be ranked before the dependencies in the first cycle.

3.6 Tool Support

We implemented a prototype tool, called ArchLint, that supports the

four heuristics for detecting architectural violations. As presented in

Figure 3.6, ArchLint’s implementation follows a pipeline architectural

pattern [Garlan and Shaw, 1996, Garlan, 2000] with three main components:

• The Code Extractor module is responsible for extracting the source code of

all versions of the system under evaluation. Currently, our prototype provides

access to svn repositories.

• The Dependency Extractor module is responsible for creating a model describing

the dependencies available in each version considered in the evaluation.

Essentially, this model is a directed graph, whose nodes are classes and the

44 Chapter 3. Heuristics for Detecting Architectural Violations

edges are dependencies. To extract the dependencies from source code, we rely

on VerveineJ,2 a Java parser that exports dependency relations in the format

for modeling static information assumed by the Moose platform for software

analysis [Nierstrasz et al., 2005, Ducasse et al., 2011]. Nevertheless, we modified

VerveineJ to store this information in a relational database to facilitate queries

over the collected data.

• The Architectural Violations Detector module implements the heuristics described

in Chapter 3. Basically, the heuristics are performed as SQL queries.

Additionally, this module ranks the architectural violations evidences—as

described in Section 3.5—and reports them to the architect of the system under

analysis.

SVN

Repository

Dependency

Model

checkout

use

raise Component

Model

VerveineJ

Code Extractor

Dependency

Extractor

Architectural

Violations

Detector

read Architectural

Violations

create

ArchLint

Figure 3.6. ArchLint architecture

3.7 A Heuristic-Based Architecture Conformance

Process

In this section, we describe a process for architecture conformance, based on the

proposed heuristics, as implemented by the ArchLint tool. Basically, this process

addresses two central challenges regarding the practical use of our heuristics:
2https://gforge.inria.fr/projects/verveinej.

3.7. A Heuristic-Based Architecture Conformance Process 45

• The heuristics rely on thresholds to classify a dependency as a rare event

in the space (scattering thresholds) and in time (insertion and deletion

thresholds). Therefore, the thresholds must be defined before using a tool such

as ArchLint. Moreover, based on our initial experiments with the proposed

heuristics [Maffort et al., 2013a], we figured out that it is not possible to rely

on universal thresholds, which could be reused for any system. This is the case

especially of the insertion and deletion thresholds, since they depend on how

often the architectural violations are detected and fixed, which certainly vary

from system to system.

• By their own nature, the proposed heuristics may lead to false positive warnings.

For this reason, it is important to avoid the generation of a massive number of

warnings, possibly with many false positives. Moreover, when presenting the

architectural warnings to developers or architects, it is important to present the

true warnings before the false ones, following the ranking strategies defined in

Section 3.5.

To tackle the aforementioned challenges, we advocate that an architecture

conformance process based on the proposed heuristics should follow an iterative

approach. More specifically, we argue that a tool such as ArchLint must be executed

several times, starting with rigid thresholds. After each execution, the new warnings,

i.e., the warnings not raised by the previous iterations, should be evaluated by the

architect, in order to check whether they really denote true architectural violations.

As a practical consequence of this evaluation step, the architect can for example request

a refactoring in the system to fix the detected violations. The architect may also decide

to perform another iteration of the conformance process, with more flexible thresholds.

This process should stop when a relevant number of violations is detected, e.g., a

number of violations that is possible and worth to fix by the maintenance team in

a given time frame. Moreover, it is also possible that he/she decides to finish the

conformance process when most of the warnings raised after an iteration are false

positives—and hence it is not worth anymore to experiment with new thresholds.

Figure 3.7 defines the key steps of the proposed iterative conformance process.

Basically, the process consists of a main loop where a given heuristic is applied (Step 2)

and the old warnings, i,e., the warnings already detected in a previous iteration, are

discarded (Step 3). After that, if very few warnings remain as the result of the iteration

(Step 4), a new iteration is automatically started with more flexible thresholds (Step 5).

The rationale is that it is better to trigger a new execution immediately than to

46 Chapter 3. Heuristics for Detecting Architectural Violations

evaluate few warnings that will be raised anyway by the next iteration. However,

in case of enough warnings, they are first ranked—as described in Section 3.5—and

then presented to the architect for analysis and classification as true or false warnings

(Steps 6 and 7). After that, if the architect evaluates that it is worthwhile to continue

searching for new warnings, considering the current workload of the maintenance team

and the precision achieved by the current iteration, the thresholds are adjusted (Step 5)

and a new iteration is started.

remove old

warnings

thresholds =

INITIAL_THRESHOLDS

remaining results <

MIN_RESULTS
ADJUST(thresholds)

yes

no

apply heuristic

rank the results

analyse the results

more results

wanted?

end

no

yes

no

1

2

3

4

5

6

7

8

9

Figure 3.7. Architecture conformance using the proposed heuristics

3.8. Final Remarks 47

It is worth noting that the proposed conformance process is not a fully automatic

procedure, as expected in the case of architecture conformance. Particularly, the final

word on when the process should stop depends on the architect’s judgment, based

on his evaluation on whether it is relevant to fix the already detected violations and

whether smaller precision rates can be tolerated. Moreover, the process depends on a

constant that defines the minimal number of warnings that are worthwhile to evaluate

in a given iteration.

Finally, the process depends on the initial threshold values used by each heuristic

and on a procedure to adjust such thresholds before a new iteration, in order to

make them less rigid. Figure 3.8 presents the proposed initial threshold values and

the thresholds adjustment procedure, for each heuristic. Basically, the initial values

represent very rigid thresholds. For example, for absences, we are recommending

to start with a scattering rate of 95% and an insertion rate of 95%. Regarding the

adjustment procedure, initially the insertion threshold is decremented in intervals of

5%, starting at 95% and finishing at 35%. When this lower bound is reached, the

scattering rate is decremented by 5% and the insertion rate is reset to 95%.

3.8 Final Remarks

Architectural deviations are a serious threat to the long term survival of software

systems [Hochstein and Lindvall, 2005, Garcia et al., 2009]. The reason is that the

accumulation of architectural violations in the source code can demand a lot of effort

even when dealing with simple code changes [Macia et al., 2012]. On the other hand,

the application of current techniques for architectural conformance checking requires

a considerable effort [Knodel et al., 2008, Terra and Valente, 2009]. For instance:

(i) reflexion models may require successive refinements of the high-level model in order

to adequately express the full spectrum of absences and divergences that may be present

in a large system; and (ii) domain-specific languages require a detailed definition of

constraints among the classes of a system.

To address this shortcoming, we describe an approach that combines static

and historical source code analysis techniques to provide an alternative technique for

architecture conformance. The proposed approach includes four heuristics to discover

suspicious dependencies in the source code, i.e., dependencies that may denote absences

(missing expected dependencies) or divergences (existing unwanted dependencies).

Furthermore, the proposed approach includes a technique to report the warnings sorted

by their potential to denote true violations. To automate the violations detection

48 Chapter 3. Heuristics for Detecting Architectural Violations

// INITIAL_THRESHOLDS:

1 Asca = 0.95;
2 Ains = 0.95;

// ADJUST():

3 if Ains > 0.35 then
4 Ains = Ains - 0.05;
5 else
6 Asca = Asca - 0.05;
7 Ains = 0.95;
8 end

(a) Heuristic for Absences thresholds

// INITIAL_THRESHOLDS:

1 Dsca = 0.05;
2 Ddel = 0.95;

// ADJUST():

3 if Ddel > 0.35 then
4 Ddel = Ddel - 0.05;
5 else
6 Dsca = Dsca + 0.05;
7 Ddel = 0.95;
8 end

(b) Heuristics #1 and #2 thresholds

(for divergences)

// INITIAL_THRESHOLDS:

1 Ddir = 0.45;

// ADJUST():

2 if Ddir > 0.0 then
3 Ddir = Ddir - 0.05;
4 end

(c) Heuristic #3 threshold (for

divergences)

Figure 3.8. Initial thresholds values and thresholds adjustment procedures for
each heuristic

triggering, we implemented a prototype tool, called ArchLint, that supports the four

heuristics for detecting architectural violations and the ranking strategy.

In the next chapter, we conduct an evaluation of our approach by reporting and

discussing results on its usage in four real-world systems. We also summarize our

main findings and the lessons learned after designing and evaluating the heuristics-

based approach.

Chapter 4

Evaluation

This chapter is organized as follows. Section 4.1 and Section 4.2 describe two studies

on using our approach to evaluate the architecture of two proprietary information

systems. Section 4.3 and Section 4.4 present a study that evaluates the architecture of

two open-source systems. Next, Section 4.5 discusses the main findings of our work.

Finally, Section 4.7 concludes the chapter with a general discussion.

4.1 First Study: SGA System

To start evaluating our approach, we conducted a first study using a real-world

information system. Our central goal is to perform a first experiment with the

conformance process described in Section 3.7. Specially, in this section we report

the number of iterations required by this process, the precision achieved after each

iteration, and the effectiveness of the strategy proposed to rank the warnings raised by

a given heuristic.

4.1.1 Study Setup

In this first study we followed the architecture conformance process defined in

Section 3.7 to detect violations in the architecture of an EJB-based information

system used by a major Brazilian university, which for confidentiality reasons we will

just call SGA. The SGA system automates many administrative activities, including

functionalities for human resource management, finance and accounting management,

and material management, among others. In the study, we considered 7,692 revisions

(all available revisions), stored in a svn repository, from March, 2009 to June,

2013. After parsing these revisions, ArchLint—our prototype tool—generated a

49

50 Chapter 4. Evaluation

dependency model with more than 147 million relations, requiring 68 GB of storage

in a relational database. All extracted versions were considered for computing the

functions DepInsRate and DepDelRate, described in Sections 3.2 and 3.3. The last

revision considered in the study has 1,864 classes and interfaces, organized in 100

packages, comprising around 273 KLOC.

The SGA system follows a Model-View-Controller (MVC) architecture. The

Model layer has three main modules: domain, persistence, and service. The domain

module handles business objects, such as Students, Professors, etc. The persistence

module provides database transactional methods, such as insert, update, delete, etc.,

that are used to persist business objects in a relational database. The service module

handles the state of the domain objects according to the workflow and business rules

required by the information system.

The V iew layer is implemented in JavaServer Pages and uses JavaServer Faces

components. Basically, this layer provides a way to interact with the system, receiving

and displaying results of the requests made by the users.

The Controller layer provides a bridge between user interface and business-

related components, transferring and adapting the user inputs.

We initially asked SGA’s senior architect to define the system’s high-level

component model. After a brief explanation on the purpose and characteristics of

this model, the architect suggested the following components:

• ManagedBean: bridge between user interface and business-related components.

• IService: facade for the service layer.

• ServiceLayer: core business process automated by the system.

• IPersistence: facade for the persistence layer.

• PersistenceLayer: implementation of persistence.

• BusinessEntity: domain types (e.g., Professor, Student, etc.).

Table 4.1 shows the number of packages and classes in the high-level components

defined by the SGA’s architect. As can be observed, the proposed components are

coarse-grained structures, ranging from components with 15 packages and 286 classes

(ManagedBean) to components with 17 packages and 330 classes (BusinessEntity).

The table also shows the regular expressions proposed by the architect to define the

packages in each component. We can observe that most expressions are simple, usually

selecting packages with common names or prefixes.

4.1. First Study: SGA System 51

Table 4.1. High-level components in the SGA system

Component Packages Classes Regular Expression

ManagedBean 15 286 br.sga*.managedbeans*
IService 17 312 br.sga*.ejb.facade*
ServiceLayer 17 312 br.sga*.ejb.local*
IPersistence 17 313 br.sga*.dao* <excludes> br.sga*.dao.jpa*
PersistenceLayer 17 311 br.sga*.dao.jpa*
BusinessEntity 17 330 br.sga*.domain*

Using as input the regular expressions specifying the high-level SGA components,

we executed ArchLint multiple times, as prescribed by the conformance process

described in Section 3.7. Particularly, for each heuristic, we considered the initial

thresholds and the thresholds adjustment procedure suggested in Figure 3.8. Moreover,

SGA’s architect was only requested to evaluate the warnings generated by iterations

that produce at least 10 new warnings (MIN_RESULTS constant). When this happened,

we asked the architect to carefully examine the new warnings and to classify them as

true or false positives. Since the architect has a complete domain of SGA’s architecture

and implementation, he is the right expert to play an oracle role in our study. We

did not measure recall because it would require finding the whole set of missing or

undesirable dependencies, which in practice requires a detailed and complete inspection

in the source code, which is certainly a hard task considering the size of the SGA system.

To evaluate the strategy used to rank the warnings generated by a given iteration,

we relied on a discounting cumulative function, often used to evaluate web search

engines and other information retrieval systems [Baeza-Yates and Ribeiro-Neto, 2011].

This function progressively reduces the value of a document—a warning, in our case—

as its position in the rank increases. Basically, the value of a warning is divided by the

log of its rank position, as follows:

DCG = rel1 +

p
∑

i=2

rel i

log
2
(i)

where p is the number of warnings generated by the heuristic and rel is the relevance

of a warning. In our particular case, this relevance is a binary value: true positive

warnings have relevance value equal to 1; false positive warnings have a relevance value

of zero.

More specifically, we report the effectiveness of the ranking strategy using a

normalized discounted cumulative gain (nDCG) function, as follows:

52 Chapter 4. Evaluation

nDCG =
DCG

IDCG

where IDCG is the best possible value for the DCG function, i.e., the value generated

by a perfect ranking strategy, considering a given list of warnings. Therefore, nDCG

values range from 0.0 to 1.0, where 1.0 is the value produced by a perfect ranking

algorithm.

4.1.2 Results

In this section, we present the results achieved after following the proposed conformance

process to detect absences (Section 4.1.2.1) and divergences (Sections 4.1.2.2, 4.1.2.3,

and 4.1.2.4) in the architecture of the SGA system.

4.1.2.1 Results for Absences

Table 4.2 presents the results achieved by each iteration of the conformance process,

when it was used to provide warnings for absences. For each iteration, the table

presents the following data: (a) the thresholds required by the heuristic for detecting

absences; (b) the number of warnings produced in the iteration, including the number

of new warnings and the number of warnings evaluated by the architect, if any; (c)

the precision achieved by the current iteration and the overall precision until this

execution, i.e., considering the warnings evaluated in the current iteration and also

in previous iterations. Precision is defined as usual, by dividing the number of true

warnings by the total number of warnings. For the sake of clarity, we do not show

data on thresholds that did not produce warnings or that produced exactly the same

warnings as previous iterations. For example, the first execution was performed with

Asca = 0.95 and Ains = 0.95. These thresholds did not generate warnings and

therefore are not presented in Table 4.2. The same happened with the next two

tested thresholds, i.e., (0.95; 0.90) and (0.95; 0.85). The first selection to generate

warnings was (0.95; 0.80), which generated three (new) warnings. However, since we

configured the process to just require the architect’s evaluation when a minimal of ten

new warnings are generated by an iteration, these initial warnings were not presented

to the architect. In the second iteration, 26 warnings were produced in total. From

these warnings, 23 warnings are new and three warnings correspond exactly to the

warnings generated by the first iteration. Therefore, the 26 warnings were showed and

4.1. First Study: SGA System 53

discussed with the architect, for classification as true or false positives. In this case, a

precision of 100% was achieved.

Table 4.2. Detecting absences in the SGA system

Iteration Asca;Ains

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.95; 0.80 3 3 — — — —
2 0.95; 0.55 26 23 26 100.0% 100.0% 1.00
3 0.95; 0.40 42 16 16 87.5% 95.2% 0.94
4 0.95; 0.35 46 4 — — — —
5 0.90; 0.55 52 26 30 83.3% 90.3% 0.99
6 0.90; 0.50 73 21 21 95.2% 91.4% 0.98
7 0.85; 0.50 108 35 35 74.3% 86.7% 0.90

As can be observed in Table 4.2, we decided to stop the process after seven

iterations, including iterations #1 and #4 that did not generate enough warnings for

evaluation. In the remaining five iterations, the architect evaluated 128 warnings, with

an overall precision of 86.7%. In Table 4.2, we can also observe a downward tendency in

the precision after each iteration. For example, in iteration #2 we achieved a precision

of 100% and in the last iteration the precision was 74.3%. Finally, by evaluating the

nDCG results, we can conclude that the criteria used to rank the warnings generated

by a given iteration was quite effective. As in the case of the precision, the nDCG

values in Table 4.2 present a tendency to decrease after each iteration. However, in

the last iteration the ranking strategy achieved 90% of the effectiveness of a perfect

ranking algorithm.

We finished with seven iterations because the architect considered that the true

warnings detected by such iterations should be first addressed by the maintenance

team before continuing with the conformance process.

Example #1: As an example of a true warning (detected in iteration #1), we can

mention the following one:1

Component: IService

Class: br.sga.doc.ejb.facade.DictionaryService

Missing Dependency: javax.ejb.Remote ClassAnnotation

DepScaRate;DepInsRate: 0.990; 0.800

1To improve the thesis’s comprehension, we translated the class names from Portuguese to English.

54 Chapter 4. Evaluation

In the SGA system, the architect explained that interfaces in the IService

must receive a Remote annotation, which is an EJB annotation used to mark a remote

business interface for a session bean. In fact, 99% of the interfaces in IService

have this annotation (DepScaRate). Moreover, 80% of the interfaces originally

created without this annotation where later maintained to include the annotation

(DepInsRate). The lack of this annotation does not impact the behavior of the system

in its current version because the classes implementing the interfaces missing the

annotation are used only by local clients. However, according to their specification,

they should also support remote accesses.

Example #2: As an example of a false warning, we can mention the following one

(detected in iteration #7):

Component: BusinessEntity

Class: br.sga.core.domain.FederatedUnit

Missing Dependency: br.sga.core.domain.AuditInfo Inheritance

DepScaRate;DepInsRate: 0.885; 0.524

The SGA system has an internal audit service, used to log changes in classes

storing highly sensitive data, such as personal info. The classes subjected to this

service must inherit from a special class, called AuditInfo. Particularly, in the

BusinessEntity component, 88.5% of the classes use this service (DepScaRate).

Moreover, more than a half of the classes in BusinessEntity were changed after their

initial creation to inherit from AuditInfo (DepInsRate) because the audit service was

introduced later in the system. For this reason, the heuristic incorrectly inferred that

all classes in BusinessEntity must inherit from AuditInfo. However, there are classes

that by their own nature do not need this service, such as FederatedUnit, which is a

class that stores information about the Brazilian States (i.e., data that rarely changes

and therefore does not need an audit service, according to SGA’s architect).

4.1.2.2 Results for Divergences - Heuristic #1

Table 4.3 shows the results achieved after each iteration of the conformance process,

when configured to provide warnings using the first heuristic for divergences. As can

be observed, we performed five iterations, but only in the last two the evaluation of

the architect was required. We asked the architect to evaluate 92 warnings, with a

precision of 100%. We finish the process because the architect considered this number

of true divergences worth to be handled, before continuing to search for new warnings.

4.1. First Study: SGA System 55

Table 4.3. Detecting divergences in the SGA system using Heuristic #1

Iteration Dsca;Ddel

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.05; 0.85 1 1 — — — —
2 0.05; 0.75 4 3 — — — —
3 0.05; 0.50 5 1 — — — —
4 0.10; 0.60 10 6 11 100% 100% 1.00
5 0.10; 0.30 92 81 81 100% 100% 1.00

Example #3: As an example of a true warning (detected in iteration #2), we can

mention the following one:

Component: PersistenceLayer

Class: br.sga.core.dao.jpa.PRSystDAO

Unauthorized dependency: br.sga.ejb.facade.PersonFacade

DepScaRate;DepDelRate: 0.012; 0.750

In this case, a DAO class in the PersistenceLayer has a dependency with a

class in the SGA’s facade, which is not allowed by the architecture. In fact, less

than 1.5% of the DAOs establish a dependency with the IService class (DepScaRate).

Moreover, in the past, 75% of the classes that established a dependency like that in a

given version were later refactored to remove the dependency (DepDelRate). Finally,

the br.sga.ejb.facade package has a well-defined heavy-user in the system, which

is the ManagedBean component. In fact, 73.4% of the dependencies to this package

are established by classes located in ManagedBean. Therefore, these evidences when

combined are responsible for this true divergence. In fact, the architect commented

that this divergence represents a back-call, because a lower layer (PersistenceLayer)

is using a service from an upper module (br.sga.ejb.facade).

4.1.2.3 Results for Divergences - Heuristic #2

Table 4.4 shows the results achieved by the second heuristic for divergences. In six out

of nine iterations, the evaluation of the architect was required. In total, we asked

the architect to evaluate 325 warnings, with an overall precision of 34.2%, which

corresponds to the lowest precision in the conformance process. We finish the process

because the architect considered this precision too low, specially the precision of the last

iteration, which was 20.3%. In summary, after nine iterations, the architect considered

the process not productive anymore, demanding the evaluation of many false positives

per true warning discovered.

56 Chapter 4. Evaluation

Table 4.4. Detecting divergences in the SGA system using Heuristic #2

Iteration Dsca;Ddel

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.05; 0.85 5 5 — — — —
2 0.05; 0.80 12 7 — — — —
3 0.05; 0.70 25 13 25 60.0% 60.0% 0.75
4 0.05; 0.65 27 2 — — — —
5 0.05; 0.60 58 31 33 27.3% 41.4% 0.71
6 0.05; 0.55 88 30 30 60.0% 47.7% 0.76
7 0.05; 0.50 136 48 48 29.2% 41.2% 0.44
8 0.05; 0.45 172 36 36 66.7% 46.5% 0.92
9 0.05; 0.40 325 153 153 20.3% 34.2% 0.51

Despite the lower precision, by analyzing the nDCG values in Table 4.4, it is

possible to observe that the strategy to rank the warnings generated by the iterations

was partially effective. In the last five iterations, for example, we achieved an average

precision of 40.7% with the nDCG values ranging from 0.44 to 0.92, with an average

value of 0.68. In other words, the lower precision was compensated by a tendency to

present the true warnings in the top ranked results.

Example #4: As an example of a false warning (detected in iteration #1), we can

mention the following one:

Component: ManagedBean

Class: br.sga.web.managedbeans.MBEducLevel

Unauthorized dependency: br.sga.ejb.facade.EducLevelFacade

AttributeClass

DepScaRate;DepDelRate: 0.003; 0.888

This particular false warning is due to two facts. First, among the 286 classes

in ManagedBean, only a single class references a particular class in the SGA’s facade,

called br.sga.ejb.facade.EducLevelFacade (DepScaRate = 0.003). Second, in the

past, a common refactoring in SGA was to remove the dependencies to this class coming

from ManagedBean. In fact, 88.8% of the classes that once had this dependency were

later refactored to remove it (DepDelRate). Despite these two evidences, the warning

in this case is false, according to the architect. He explained that EducLevelFacade

is a specific class in the system, responsible for very specific scholar degrees. However,

in the past this class was also responsible for regular scholar degrees and at a certain

point in the system’s evolution a design change was made towards creating a new class

4.1. First Study: SGA System 57

to represent such degrees. Despite that, EducLevelFacade remained in the system,

but it is used only for very specific degrees. In summary, the refactoring in the system

responsible for the high Dependency Deletion Rate was motivated by a design decision

not related to removing architectural violations.

4.1.2.4 Results for Divergences - Heuristic #3

Table 4.5 shows the results achieved by the third heuristic for divergences. In this case,

as defined in Figure 3.8, we started searching for cycles where 45% of the dependencies

are in one direction and 55% are in the reverse one, i.e., Ddir = 0.45. We found no

pair of components attending this precondition. The same happened when we reduced

Ddir until 0.20. However, when we defined Ddir = 0.15, 75 warnings were generated

for the first time and they were all ranked as true positives. Finally, in the next three

iterations, no new warning has been produced.

Table 4.5. Detecting divergences in the SGA system using Heuristic #3

Iteration Ddir

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.15 75 75 75 100% 100% 1.00
2 0.10 75 0 — — — —
3 0.05 75 0 — — — —
4 0.00 75 0 — — — —

Example #5: By analyzing the results with SGA’s architect, we discovered that

all 75 warnings are between the components PersistenceLayer and ServiceLayer.

Specifically, there are 320 dependencies from ServiceLayer to PersistenceLayer

and 75 (unauthorized) dependencies in the reverse direction, which represents a

DepDirWeight equal to 0.189 (75 / (320 + 75)). For this reason, the warnings were

only produced when we tested a minimal threshold of 15% to classify dependencies

in the “wrong direction” as divergences. Moreover, exactly the same warnings were

generated again when this threshold was reduced until zero.

4.1.2.5 Overall Results for Divergences

Table 4.6 presents the precision achieved by our approach for divergences, considering

the warnings evaluated for the three heuristics. As can be observed, both heuristic #

1 and heuristic #3 achieved 100% of precision, and heuristic #2 achieved a precision

of 34.2%. Considering the results of all heuristics, we generated 278 true divergences

and 214 false warnings in nine iterations, with an overall precision of 56.5%.

58 Chapter 4. Evaluation

Table 4.6. Precision considering the warnings evaluated for three heuristics for
divergences

Heuristic #1 Heuristic #2 Heuristic #3 Total

Iterations 2 6 1 9
Warnings 92 325 75 492
True Positives 92 111 75 278
False Positives 0 214 0 214
Precision 100% 34.2% 100% 56.5%

4.1.3 Comparison with Reflexion Models

This section compares our results with reflexion models (RM) [Murphy et al., 2001b,

Murphy et al., 1995], which is a well-known and lightweight approach for architecture

conformance. To make this comparison, we calculated a reflexion model for the

SGA system, reusing the high-level model used as input by our approach. As

illustrated in Figure 4.1, we had to enrich our initial model in two directions.

First, we defined six extra components, to denote external components used by the

SGA implementation, including frameworks for presentation (JavaServer Faces), for

communication (Servlets), and for persistence (Java Persistence API and SQL). Second,

we included 25 relations (edges) between the defined components. On the other hand,

when using our approach, external frameworks and relations between components are

automatically inferred by the considered heuristics.

Using the enriched high-level model, we calculated a reflexion model, i.e., a model

that highlights divergences (dependencies that are not expected by the architect) and

absences (dependencies that are expected but not found).

Figure 4.2(a) compares the results for divergences achieved by RM and by our

approach. As mentioned in Section 4.1.2, the proposed heuristics detected 254 true

and unique warnings in the SGA system. On the other hand, RM was able to detect

75 divergences. For example, RM missed 57 divergences between ManagedBean and

JavaIO, two divergences between IService and EJB, and 26 divergences between

BusinessEntity and JPA. In fact, ManagedBean establishes a dependency with JavaIO,

but with the wrong class in this component. Specifically, an architectural rule states

that ManagedBean can only establish dependencies with a single class in JavaIO,

called IOException. Despite this, there are 57 dependencies with other JavaIO

classes, such as BufferedReader and File. To detect these divergences, the high-

level model used by the RM technique must be further refined, by creating two nested

components in JavaIO, one component with only the IOException class and another

one with File, FileReader, BufferedReader, FileOutputStream, and OutputStream.

4.1. First Study: SGA System 59

external/java

external/java

 view

controller

ManagedBean

JSP

SGA

business

IService

model

 persistence

PersistenceLayer

BusinessEntity

JSF

JPA

EJB

ServiceLayer

IPersistence

SQL

Servlet

JavaIO

Figure 4.1. Enriched high-level model for the SGA system

After this modification, we must update the dependency from ManagedBean to

reach just the IOException subcomponent. In fact, this frequent need to refine

reflexion models motivated the extension of the original proposal with hierarchical

modules [Koschke and Simon, 2003].

0 179

RM ArchLint

75

(a) Divergences

0 111

RM ArchLint

(b) Absences

Figure 4.2. Absences and divergences detected by RM and the proposed
heuristics

Figure 4.2(b) compares the results for absences achieved by RM and by our

approach. As reported in Section 4.1.2, the proposed heuristics detected 111 true

absences in the SGA system. On the other hand, RM missed all of them. To

explain the reason for this massive failure in detecting absences, we will consider

60 Chapter 4. Evaluation

the components PersistenceLayer and JPA. As illustrated in Figure 4.1, the high-

level model prescribes that must exist a dependency from PersistenceLayer to JPA.

However, PersistenceLayer is a coarse-grained component—with 311 classes. For

this reason, a single class that relies on JPA is sufficient to hide all eventual absences

in the remaining classes of the component. Of course, it is possible to refine the high-

level model by creating a nested component in PersistenceLayer with exactly the

classes that must depend on JPA and to establish an edge between each of such classes

and JPA. However, the proliferation of nested components increases complexity and

contrasts with the lightweight profile normally associated with RM-based techniques.

Finally, it is important to state that RM is a precise technique, assuming the

relations defined by the architect reflect the idealized architecture. Therefore, the

technique does not generate false warnings. On the other hand, for the 278 true

divergence warnings raised by the proposed heuristics, there were also 214 false

warnings (precision equals 56.5%).

4.1.4 Historical Analysis

In this section, we evaluate how the proposed heuristics perform in different stages of

the evolution of the SGA system. More specifically, we performed again the heuristics

that depend on historical information, i.e., heuristic for absence and heuristics #1

and #2 for divergences, but considering a limited number of versions. In each execution,

we discarded the versions of the first, second, third, and fourth years, respectively.

Moreover, we reused the same thresholds from the first iteration of the process followed

by the SGA architect when validating the results using the complete dataset. For

example, when computing the heuristic for absence, we considered Asca = 0.95 and

Ains = 0.55, which are exactly the first thresholds evaluated by the architect in the

original study (see Table 4.2). We then checked whether each violation detected using

the complete dataset is also detected when the first n initial years are discarded (1 ≤

n ≤ 4).

Table 4.7 reports the true warnings detected in each time frame. Considering

the complete dataset, the heuristic for absences detected 26 violations, and the

heuristics #1 and #2 for divergences detected 11 and 15 violations, respectively. When

we discard the first-year versions, there is a major reduction in the number of absences

(from 26 violations to three violations) and in the number of divergences detected by

heuristic #2 (from 15 violations to two violations). On the other hand, the number of

violations detected by heuristic #1 remains exactly the same when considering the full

dataset (11 violations).

4.1. First Study: SGA System 61

Table 4.7. Historical analysis results

Full dataset
Dataset discarding

1st yr 2nd yr 3rd yr 4th yr

Absences 26 3 3 3 0
Divergence - Heuristic #1 11 11 7 7 0
Divergence - Heuristic #2 15 2 2 2 0

To explain these results, we first characterize the refactorings that have an impact

in the proposed heuristics. The heuristic for absences monitors a refactoring that

inserts a missing dependency in the target class, which we will refer to Insert Missing

Dependency refactoring. In the case of divergences, the heuristics monitor a refactoring

that removes an undesirable dependency from a target class, which we will refer to

Remove Undesirable Dependency refactoring. Figure 4.3 reports the distribution of

these refactorings in our dataset, in four years. We can observe that both refactorings

happened most of the times in the first year of SGA’s evolution. For example, 53% of

the Insert Missing Dependency refactorings were performed in the first year. Regarding

the Remove Undesirable Dependency, we have that 56% (for the ones associated to

heuristic #1) and 46% (for the ones associated to heuristic #2) happened in the first

year. Therefore, when we removed the commits collected in the first year, we also

removed most of the refactorings responsible for triggering the warnings of architectural

violations, as considered by the three heuristics that depend on historical data. In the

case of the heuristic for absence and the heuristic #2 for divergences, the refactorings

performed in the remaining years were not sufficient to attend the respective thresholds

(Dsca = 0.05 and Ddel = 0.70), which are very rigid. On the other hand, in the case

of the heuristic #1 for divergences, they were still sufficient to trigger the same 11

violations when using the full dataset. The central reason in this case is the fact that

the computation of this heuristic uses flexible thresholds (Dsca = 0.10 and Ddel = 0.60).

Finally, in all cases, after removing four years of revisions, we were not able to detect

violations anymore.

Clearly, it is not possible to generalize the results of this subsection to other

systems. However, in the specific case of the SGA system, they show that most

refactorings the proposed heuristics depend on happened in the first year of the system’s

evolution. Therefore, we can extrapolate that at this year the development team was

not completely aware of SGA’s planned architecture. For that reason, many violations

were introduced but also fixed, as the architecture quickly became clearer to the initial

team of developers. Finally, the results reported in this historical analysis reinforce the

importance of the thresholds when computing the heuristics. For example, heuristic #1

62 Chapter 4. Evaluation

for divergences was not deeply impacted by removing the commits of the first year due

to its evaluation with flexible thresholds.

1st year 2nd year 3rd year 4th year

Insert Missing Dependency

Remove Undesirable Dependency (Heuristic #1)

Remove Undesirable Dependency (Heuristic #2)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Figure 4.3. Distribution of the refactoring operations by year

4.2 Second Study: M2M System

In this section, we report the application of our approach in a real-world proprietary

system, which we are just calling M2M, for confidentiality reasons.

4.2.1 Study Setup

M2M is an ERP management system designed for use by Brazilian government

institutions. The system manages the administrative process of acquisition and

distribution of products and services. The system also documents the entire process

workflow and includes other features such as integration with governmental systems,

reports, etc. Moreover, M2M integrates Brazilian government systems, which allows

automatic loading of information of these systems, and assists in resource management,

settlement expenses, and control electronic auctions.

In this study, we considered 61,785 revisions available in the system’s control

version repository (all available revisions), from November, 2010 to October, 2013.

4.2. Second Study: M2M System 63

The last revision considered in the study has 4,999 classes and interfaces, organized in

485 packages, comprising 610 KLOC. After parsing all revisions, the dependency model

generated by our approach has 271.5 million relations, whose relational database has

107 GB.

Similarly to SGA, we asked M2M’s architect to define the system’s high-level

component model. Table 4.8 presents the components suggested by the architect and

in the high-level components the regular expressions proposed by the architect that

define the classes in each component, besides the respective number of classes. We

can observe that the regular expressions in M2M maps classes to components, and

not packages to components as occur in the SGA system. The main reason is that

classes associated to different components may be located in the same package. As

an example, classes from components PersistenceLayer and IPersistenceLayer are

located in the same package, called br.m2m.arq.dao.contract. Furthermore, the size

of the proposed components ranges from nine classes (component Security) to 1,143

classes (component BusinessEntity).

Table 4.8. High-level components in the M2M system

Component #Classes Regular Expression

PersistenceLayer 173 br.m2m.*Impl
IPersistenceLayer 398 br.m2m.*.dao.*DAO <excludes> br.m2m.*Impl
BusinessEntity 1,143 br.m2m.*DTO <or> br.m2m.*.domain.*
ExceptionHandler 12 br.m2m.*Exception
Timer 58 br.m2m.*.timers.* <or> br.m2m.*.Timer*
Security 9 br.m2m.*.security.*
Action 1,056 br.m2m.*Action
Form 243 br.m2m.*Form
WEBController 1,048 br.m2m.*MBean <or> br.m2m.*.jsf.*

<or> br.m2m.*Servlet <or> br.m2m.*.struts.*
Report 17 br.m2m.*.Rep* <or> br.m2m.*.Graphic*
IService 16 br.m2m*.interfaces.*
ServiceLayer 656 br.m2m.*.Processor* <or> br.m2m.*.business.*
Util 170 br.m2m.*Utils <or> br.m2m.*.util.*

In practice, the regular expressions in Table 4.8 were used as input to the

heuristics. Each heuristic was executed several times and the architect was only

requested to evaluate the warnings raised by the iterations that have produced at

least 10 new warnings. In this case, the architect carefully examined the warnings and

classified them as true or false positives.

64 Chapter 4. Evaluation

4.2.2 Results for the M2M system

Table 4.9 summarizes the precision achieved by the proposed heuristics in M2M. In

short, we achieved an overall precision ranging from 18.5% (heuristic #2 to detect

divergences) to 82.1% (the heuristic to detect absences). Nevertheless, heuristic #1 did

not indicate any divergence in M2M. Considering the mean precision of the iterations,

we achieved results ranging from 41.7% to 81.5%.2 Moreover, to discover the violations

we executed seven iterations, raising 279 warnings with an overall precision of 53.8%.

Section 4.2.3 presents a detailed description of the warnings detected by each heuristic.

Table 4.9. Precision considering the warnings raised in M2M system

Iterations Warnings
Precision

Mean Overall

Absences 2 112 81.5% 82.1%
Divergence - Heuristic #1 0 0 — —
Divergence - Heuristic #2 3 119 41.7% 18.5%
Divergence - Heuristic #3 2 48 63.9% 75.0%
All Heuristics 7 279 62.4% 53.8%

During the evaluation, the architect commented that the detected violations are,

in fact, due to some relevant architectural constraints in M2M, as follows:

• All classes in PersistenceLayer must depend on class org.hibernate.Query

(35 absences detected).

• Only classes in IPersistenceLayer must depend on class

org.hibernate.Session (three divergences detected by heuristic #2).

• Classes in ServiceLayer cannot depend on class

java.net.UnknownHostException as a CaughtException (four divergences

detected by heuristic #2).

• Classes in BusinessEntity cannot depend on classes located in

PersistenceLayer (four divergences detected by heuristic #3).

• Only classes in WEBController can depend on classes located in WEBController

(18 divergences detected by heuristic #3).

• Classes in PersistenceLayer cannot depend on classes located in ServiceLayer

(three divergences detected by heuristic #3).
2Mean precision is the average precision of the iterations evaluated by the architect, whereas

Overall precision is the total number of true warnings by the total number of warnings.

4.2. Second Study: M2M System 65

Therefore, we argue that the proposed heuristics are able to detect violations

of well-known architectural patterns and rules without their explicit formalization, as

required by other prescriptive architecture conformance approaches.

4.2.3 M2M Conformance Process

In this section, we show the results achieved after each iteration when detecting

architectural violations in the M2M system.

Results for Absences

Table 4.10 presents the results achieved by each iteration when detecting

absences. As can be observed, two iterations are performed, achieving a precision

ranging from 77.8% to 82.1%. In total, 112 warnings are detected with an overall

precision of 82.1%. In Table 4.10 we can also observe that the criteria used to rank

the warnings was quite effective, producing nDCG results higher than 0.97.

Table 4.10. Detecting absences in the M2M system

Iteration Ddir

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.70; 0.55 45 45 45 77.8% 77.8% 0.97
2 0.60; 0.55 112 67 67 85.1% 82.1% 0.98

In the M2M system we performed only two iterations to detecting absences

because the architect established a limit of around 100 warnings to evaluate. He

considered that such true warnings should be first addressed by the development team,

before continue looking for new warnings.

Results for Divergences - Heuristic #1

As reported before, the Heuristic #1 for detecting divergences did not report

warnings in the M2M system.

Results for Divergences - Heuristic #2

Table 4.11 shows the results achieved by the second heuristic for divergences.

In this case, we performed nine iterations, with three iterations including evaluation

66 Chapter 4. Evaluation

by the architect. As can be observed, we achieved a precision ranging from 18.5% to

90.0%. In summary, we detected 119 warnings with an overall precision of 18.5%.

Table 4.11. Detecting divergences in the M2M system using Heuristic #2

Iteration Asca;Ains

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.05;0.90 1 1 0 — — —
2 0.05;0.85 3 2 0 — — —
3 0.05;0.80 8 5 0 — — —
4 0.05;0.75 10 2 10 90.0% 90.0% 0.96
5 0.05;0.70 14 4 0 — — —
6 0.05;0.65 18 4 0 — — —
7 0.05;0.60 42 24 32 31.3% 45.2% 0.52
8 0.05;0.55 51 9 0 — — —
9 0.05;0.50 119 68 77 3.9% 18.5% 0.50

In Table 4.11, there is an expressive decrease in the precision after each iteration.

For example, in iteration #4 we achieved a precision of 90% and in the iteration #9

(the last iteration) the precision was 18.5%. Similarly, the nDCG values also present

a decrease tendency after each iteration. The smallest result, achieved in the last

iteration, is 50% of the effectiveness of a perfect ranking algorithm.

Results for Divergences - Heuristic #3

Table 4.12 shows the results achieved by the third heuristic for divergences.

In this case, five iterations are performed, with two evaluation steps. As can be

observed, in the first evaluation by the architect (iteration #3) we found 12 warnings,

using Ddir = 0.10, which resulted in a precision of 41.7%. Finally, in the next

evaluation (iteration #5), when we defined Ddir = 0.00, we found 36 warnings with a

precision of 86.6%. In total, we detected 48 warnings with an overall precision of 75.0%.

As can be observed in Table 4.12, despite the precision lower than 50% in the

iteration #3, the nDCG result shows that the proposed ranking strategy was quite

effective.

4.3. Third Study: Lucene System 67

Table 4.12. Detecting divergences in the M2M system using Heuristic #3

Iteration Ddir

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.25 3 3 — — — —
2 0.20 5 2 — — — —
3 0.10 12 7 12 41.7% 41.7% 1.0
4 0.05 17 5 — — — —
5 0.00 48 31 36 86.1% 75.0% 0.94

4.3 Third Study: Lucene System

In this section, we report the application of the proposed heuristics in an open-source

system named Lucene.

4.3.1 Study Setup

In this system, our evaluation is fully based on a Reflexion Model (RM) independently

proposed by Bittencourt et al. [Bittencourt, 2012]. We reused the component

specifications from the high-level model (HLM) defined as the input for the proposed

heuristics. Table 4.13 lists the components defined by the Lucene’s HLM.

Table 4.13. High-level components in Lucene

Component Regular Expression

QueryParser org.apache.lucene.queryparser.*
Search org.apache.lucene.search.*
Index org.apache.lucene.index.*
Store org.apache.lucene.store.*
Analysis org.apache.lucene.analysis.* <or> org.apache.lucene.collation.*
Util org.apache.lucene.util.* <or> org.apache.lucene.message.*
Document org.apache.lucene.document.*

Because the HLM was carefully designed for architecture conformance purposes,

we considered the computed reflexion models as a reliable oracle for evaluating the

precision of the heuristics. More specifically, we classify a warning as a true positive

when it is also reported in the reflexion model. In other words, in this third study, we

replaced the architect with a reflexion model. Moreover, we decided by ourselves when

to stop the iterative process followed for each heuristic. Basically, we targeted around

100 warnings per heuristic, stopping when this value was reached.

In the case of absences, the reflexion model did not indicate absences in Lucene

because, in RM, a single class in a component satisfying the prescribed architectural

68 Chapter 4. Evaluation

rule is sufficient to hide all absences in this component. For instance, the HLM

prescribes that there must exist a dependency from Search to Index. However, Search

is a component with 351 classes and therefore a single class from Search that relies on

Index is sufficient to hide eventual absences in the remaining classes of the component.

Certainly, it is possible to refine the HLM by creating a nested component in Search

with exactly the classes that must depend on Index and establishing an edge between

each of such classes and Index. However, the proliferation of nested components

increases the complexity and contrasts to the lightweight profile normally associated

with RM-based techniques. For this reason, we decided to do not evaluate our approach

for absence detection in Lucene.

To evaluate the heuristics, we checkout 1,959 revisions, from March, 2010 to July,

2012. The last revision considered in the study has 336 KLOC.

4.3.2 Results for the Lucene system

Table 4.14 reports the precision achieved by the heuristics for divergences. The overall

precision was 59.2%. In 16 iterations, our approach raised 446 warnings with a mean

precision at each iteration ranging from 7.0% to 98.5%. Section 4.3.3 presents a detailed

description of the warnings detected by each heuristic.

Table 4.14. Precision considering the warnings raised in Lucene system

Iterations Warnings
Precision

Mean Overall

Divergence - Heuristic #1 6 168 49.3% 55.4%
Divergence - Heuristic #2 4 114 7.0% 7.9%
Divergence - Heuristic #3 6 164 98.5% 98.8%
All Heuristics 16 446 51.6% 59.2%

An analysis of the missing divergences—i.e., divergences we missed but that

were detected by the reflexion model—revealed that we missed many divergences

with a high scattering and a low deletion rate. For example, the high-level model

does not define a dependency between components Search and Store. However, 81

dependencies like that are presented in 32% of the classes in Store, which exceeds

by a large margin the thresholds we tested. Moreover, only 6% of such dependencies

were removed along Lucene’s evolution. Stated otherwise, in Lucene, it is common

to observe divergences that are not spatially and historically confined in their source

components. Therefore, we argue that Lucene’s architecture might have evolved during

the time frame considered in our study. As a result, many dependencies that were not

4.3. Third Study: Lucene System 69

authorized by the initial high-level model might have turned themselves into a frequent

and enduring property of the system.

For computing recall, we consider as false negatives the violations reported by

the reflexion model but that are not detected by our approach. In this way, reflexion

model detected 312 violations and our approach detected 264 violations. Therefore,

the result for recall is 84.62% (264/312).

4.3.3 Lucene Conformance Process

In this section, we show the results for divergences achieved after each iteration

searching for detecting architectural violations in the Lucene system. The heuristic

for absences did not report warnings in Lucene, as mentioned before.

Results for Divergences - Heuristic #1

Table 4.15 shows the results after each iteration of the conformance process,

when configured to provide warnings using the first heuristic for divergences. As

can be observed, we performed 12 iterations, comparing the warnings raised by our

approach with the violations detected using reflexion models. We achieved a precision

in each iteration ranging from 0.0% to 100.0%. As overall result, we analyzed 168

warnings with a precision of 55.4%.

Table 4.15. Detecting divergences in Lucene using Heuristic #1

Iteration Dsca;Ddel

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.05;0.70 2 2 — — — —
2 0.05;0.65 6 4 — — — —
3 0.05;0.60 10 4 10 60.0% 60.0% 0.67
4 0.05;0.55 17 7 — — — —
5 0.05;0.50 19 2 — — — —
6 0.05;0.40 25 6 15 60.0% 60.0% 1.00
7 0.05;0.30 37 12 12 66.7% 62.2% 0.93
8 0.05;0.25 40 3 — — — —
9 0.05;0.20 70 30 33 9.1% 37.1% 1.00
10 0.10;0.50 50 31 31 0.0% 25.7% 0.00
11 0.10;0.25 74 3 — — — —
12 0.10;0.20 168 64 67 100.0% 55.4% 1.00

70 Chapter 4. Evaluation

Results for Divergences - Heuristic #2

Table 4.16 shows the results achieved by the second heuristic for divergences.

In this case, we performed nine iterations, with four evaluation steps. In summary,

we achieved a precision in each iteration ranging from 3.1% to 12.5%. In total, we

analyzed 114 warnings with an overall precision of 7.9%.

Table 4.16. Detecting divergences in Lucene using Heuristic #2

Iteration Dsca;Ddel

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.05;0.90 1 1 0 — — —
2 0.05;0.80 3 2 0 — — —
3 0.05;0.75 4 1 0 — — —
4 0.05;0.70 7 3 0 — — —
5 0.05;0.65 24 17 24 12.5% 12.5% 0.27
6 0.05;0.50 56 32 32 3.1% 7.1% 0.26
7 0.05;0.40 59 3 0 — — —
8 0.05;0.35 97 38 41 12.2% 9.3% 0.41
9 0.10;0.75 21 17 17 0.0% 7.9% 0.00

Results for Divergences - Heuristic #3

Table 4.17 shows the results achieved by the third heuristic for divergences. In this

case, we performed seven iterations, with six evaluation steps. As result, we achieved

a precision in each iteration ranging from 90.9% to 100.0%. In total, we analyzed 164

warnings with an overall precision of 98.8%.

Table 4.17. Detecting divergences in Lucene using Heuristic #3

Iteration Ddir

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.30 12 12 12 100.0% 100.0% 1.00
2 0.25 16 4 — — —
3 0.20 34 18 22 90.9% 94.1% 1.00
4 0.15 98 64 64 100.0% 98.0% 1.00
5 0.10 128 30 30 100.0% 98.4% 1.00
6 0.05 142 14 14 100.0% 98.6% 1.00
7 0.00 164 22 22 100.0% 98.8% 1.00

4.4. Fourth Study: ArgoUML System 71

4.4 Fourth Study: ArgoUML System

Similarly to Section 4.3, in this section we report the application of the proposed

heuristics in an open-source system named ArgoUML.

4.4.1 Study Setup

In this system, similarly to the Lucene system, our evaluation is also fully

based on a Reflexion Model (RM) independently proposed by Bittencourt et

al. [Bittencourt, 2012]. Table 4.18 lists the components defined by the ArgoUML’s

HLM.

Table 4.18. High-level components in ArgoUML

Component Regular Expression

Application org.argouml.application.*
Diagrams org.argouml.uml.diagram.*
Notation org.argouml.notation.*
Explorer org.argouml.ui.explorer.*
CodeGeneration org.argouml.language.*
ReverseEngineering org.argouml.uml.reveng.*
Persistence org.argouml.persistence.*
Profile org.argouml.profile.*
Help org.argouml.help.*
ModuleLoader org.argouml.moduleloader

<or> org.argouml.application.modules
<or> org.argouml.application.api

GUI org.argouml.ui.*
Model org.argouml.model.*
Internationalization org.argouml.i18n.*
TaskManagement org.argouml.taskmgmt.*
Configuration org.argouml.configuration.*
SwingExtensions org.argouml.swingext.*
OCL org.argouml.ocl.*
Critics org.argouml.cognitive.*
JavaCodeGeneration org.argouml.language.java.*

As reported in Section 4.3, the HLM was carefully designed for architecture

conformance purposes, for this reason we considered the computed reflexion models as

a reliable oracle for evaluating the precision of the heuristics. More specifically, in this

fourth study, we replaced the architect with a reflexion model. Moreover, we decided

to stop the iterative process followed for each heuristic when we targeted around 100

warnings per heuristic.

72 Chapter 4. Evaluation

In the case of absences, the reflexion model also did not indicate absences in

ArgoUML for the same reasons appointed to the Lucene system, i.e., in RM a single

class in a component satisfying the prescribed architectural rule is sufficient to hide all

absences in this component.

To evaluate the heuristics, we checkout 1,959 revisions, from March, 2010 to July,

2012. The last revision considered in the study has 336 KLOC.

4.4.2 Results for the ArgoUML system

Table 4.19 reports the precision achieved by the heuristics for divergences. The overall

precision was 53.3%. In 10 iterations, our approach raised 152 warnings with a mean

precision in the iterations used for each heuristic ranging from 14.8% to 100.0%.

Section 4.4.3 presents a detailed description of the warnings detected by each heuristic.

Table 4.19. Precision considering the warnings raised in ArgoUML system

Iterations Warnings
Precision

Mean Overall

Divergence - Heuristic #1 6 105 60.0% 58.1%
Divergence - Heuristic #2 2 31 14.8% 12.9%
Divergence - Heuristic #3 2 16 100.0% 100.0%
All Heuristics 10 152 58.3% 53.3%

Similarly to Lucene system, some divergences were missed by our approach but

they were detected by the reflexion model. We observed that many divergences with

a high scattering and a low deletion rate were missed . For example, in ArgoUML, it

is common to observe divergences that are not spatially and historically confined in

their source components. Therefore, we argue that ArgoUML’s architecture might have

evolved during the time frame considered in our study. As result, many dependencies

that were not authorized by the initial high-level model might have turned themselves

into a frequent and enduring property of the system.

In ArgoUML, recall is computed in the same way as in Lucene, i.e., we consider

as false negatives the violations reported by the reflexion model that are detected by

our approach. In this way, reflexion model detected 148 violations and our approach

detected 81 violations. Therefore, the result for recall is 54.7% (81/148).

4.4.3 ArgoUML Conformance Process

In this section, we show the results achieved after each iteration when searching for

architectural violations in the ArgoUML system. As stated previously, the heuristic

4.4. Fourth Study: ArgoUML System 73

for absences did not report warnings in ArgoUML system.

Results for Divergences - Heuristic #1

Table 4.20 shows the results achieved after each iteration of the conformance

process using the Heuristic #1 for divergences. As can be observed, we performed 24

iterations achieving a precision ranging from 19.0% to 100.0%. As overall result, we

analyzed 105 warnings with a precision of 58.1%.

Table 4.20. Detecting divergences in ArgoUML using Heuristic #1

Iteration Dsca;Ddel

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.05;0.90 2 2 — — — —
2 0.05;0.80 5 3 — — — —
3 0.05;0.70 9 4 — — — —
4 0.05;0.60 11 2 11 63.6% 63.6% 0.93
5 0.05;0.50 24 13 13 46.2% 54.2% 0.62
6 0.05;0.30 26 2 — — — —
7 0.05;0.25 29 3 — — — —
8 0.05;0.00 54 25 30 60.0% 57.4% 0.70
9 0.10;0.85 6 4 — — — —
14 0.10;0.80 11 2 — — — —
17 0.10;0.75 14 3 — — — —
18 0.10;0.65 23 5 14 71.4% 60.3% 0.61
19 0.10;0.60 27 2 — — — —
20 0.10;0.50 42 2 — — — —
21 0.10;0.40 59 17 21 19.0% 50.6% 1.00
22 0.10;0.30 63 2 — — — —
23 0.10;0.25 69 3 — — — —
24 0.10;0.20 80 11 16 100.0% 58.1% 1.00

Results for Divergences - Heuristic #2

Table 4.21 presents the results for the second heuristic for divergences. In this

case, we performed seven iterations, with two evaluation steps. As result, we achieved

a precision ranging from 9.5% to 20.0%. In short, we inspect 31 warnings with an

overall precision of 12.9%.

74 Chapter 4. Evaluation

Table 4.21. Detecting divergences in ArgoUML using Heuristic #2

Iteration Dsca;Ddel

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.05;0.95 2 2 — — — —
2 0.05;0.90 7 5 — — — —
3 0.05;0.85 8 1 — — — —
4 0.05;0.80 10 2 10 20.0% 20.0% 0.47
5 0.05;0.75 13 3 — — — —
6 0.05;0.70 18 5 — — — —
7 0.05;0.65 31 13 21 9.5% 12.9% 0.82

Results for Divergences - Heuristic #3

Table 4.22 reports the results for the third heuristic for divergences. As can be

observed, we performed seven iterations, with two evaluation steps. In total, we found

16 warnings, and they are all ranked as true positives, i.e., with an overall precision of

100.0%.

Table 4.22. Detecting divergences in ArgoUML using Heuristic #3

Iteration Ddir

Warnings Precision
nDCG

Iter. New Eval. Iter. Overall

1 0.30 2 2 — — — —
2 0.25 7 5 — — — —
3 0.20 15 8 15 100.0% 100.0% 1.00
4 0.15 15 0 — — — —
5 0.10 15 0 — — — —
6 0.05 16 1 — — — —
7 0.00 16 0 1 100.0% 100.0% 1.00

4.5 Discussion

In this section, we discuss the main lessons learned in the studies reported in this

chapter:

Are our results good enough?

We detected a relevant number of architectural violations with the proposed

heuristics: 389 violations in the SGA system; 150 violations in the M2M system; and

4.5. Discussion 75

264 violations in Lucene. Furthermore, we achieved the following overall precision

rates: 53.8% (M2M), 59.2% (Lucene), and 62.7% (SGA). These precision values

are compatible to the ones normally achieved by static analysis tools, such as

FindBugs [Hovemeyer and Pugh, 2004]. For example, in a previous study, we found

that precision rates greater than 50% are only possible by restricting the analysis to

a small subset of the warnings raised by FindBugs [Araujo et al., 2011]. Clearly, such

tools have different purposes than ArchLint, but our intention here is to show that

developers accept false warnings when using software analysis tools.

According to the architects of the SGA and M2M systems, most warnings

generated by our approach are in fact due to violations in meaningful architectural

constraints. For example, the SGA’s architect commented that a relevant architecture

rule in his system prescribes that “all IService classes must have a Remote annotation”.

The heuristic for absences was able to detect three violations in this rule.

Regarding the false positives generated by the heuristics, we observed that

they can be due to a design or requirement change that implied in a bulk insertion

or deletion of dependencies from a component. For example, this happened in the

SGA system when the audit service (a new requirement) was introduced, adding new

dependencies in many classes. Finally, we also observed that we may miss many true

warnings when the system under evaluation is facing a major erosion process or when

its architecture has evolved. For example, in Lucene we missed many divergences

which are not “minorities” in their components, i.e., the dependencies responsible for

such divergences are not spatially and historically confined in their source components.

How difficult is to set up the required thresholds?

After applying the heuristic-based conformance process three systems, we

concluded that it is not possible to rely on universal thresholds, which could be

reused from system to system, especially in the case of thresholds denoting insertion

and deletion rates. For example, Figures 4.4(a) and 4.4(b) present respectively the

distribution of the scattering (DepScaRate) and the deletion rates (DepDelRate),

regarding the true warnings detected by heuristic #2 for divergences. We can observe

that usually the warnings present very low scattering rates. For example, the 3rd

quartile values for DepScaRate are 2.7% (SGA), 0.7% (M2M), and 1.7% (Lucene). On

the other hand, there are more differences in terms of the deletion rates (DepDelRate).

For example, the median values of DepDelRate are 50% (SGA), 64% (M2M), and 37%

(Lucene). Such differences reveal that the frequency that true architectural violations

are removed varies significantly among the considered systems.

76 Chapter 4. Evaluation

SGA M2M Lucene ArgoUML

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

D
e
p
S

c
a
R

a
te

(a) Distribution of scattering rates

SGA M2M Lucene ArgoUML

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

D
e
p
D

e
lR

a
te

(b) Distribution of deletion rates

Figure 4.4. Thresholds distribution in heuristic #2 for divergences

Therefore, the proposed conformance process, by allowing developers to gradually

test and evaluate the required thresholds, demonstrated to be the right strategy to

use the proposed heuristics. First, the process did not require many iterations.

Considering all systems and both absences and divergences, we counted 14, 7, and

16 iterations requiring feedback from the developers in the SGA, M2M, and Lucene

systems, respectively. Second, we normally observed lower precision rates as soon as

new iterations were executed, as expected. For this reason, we claim that the detected

true warnings are not mere coincidences, but the result of spatial and temporal

patterns that characterize architectural violations.

How much overlapping is there in the heuristics for divergences?

In the specific case of divergences, since we have three heuristics, it is possible

for a warning to be raised by more than one heuristic. However, we observed that such

warnings followed different patterns in the three systems, especially in the case of true

4.5. Discussion 77

warnings. In the SGA system, as presented in Figure 4.5(a), there is some intersection

between the true warnings raised by the heuristics for divergences, although it is not

relevant. In the M2M system, we have not found true warnings raised by more than

one heuristic, as showed in Figure 4.5(b). Finally, in Lucene, we found an expressive

intersection between heuristics #1 and #3, as showed in Figure 4.5(c). Also, only

in Lucene we found warnings detected simultaneously by the three heuristics. In

summary, our results show that each single heuristic could detect real and unique

violations in at least one of the evaluated systems.

68 97

H1 H2

65

H3

10

14

(a) SGA

0 22

H1 H2

36

H3

(b) M2M

5 0

H1 H2

74

H3

79
9

(c) Lucene

50 1

H1 H2

6

H3

1

2
8

(d) ArgoUML

Figure 4.5. Warnings raised by more than one heuristic for detecting divergences

What are the most common dependency types responsible for violations?

As defined in Section 3, the heuristics for absence and the second heuristic for

divergence consider a violation regarding a specific dependency type. Table 4.23 shows

78 Chapter 4. Evaluation

the dependency types more common considering the true violations detected by these

two heuristics in the SGA system. As we can observe, the most common dependency

types were due to missing local variable declarations (absences) or due to unauthorized

variable declarations (divergences). In the case of absences, most missing local variables

are related to the implementation of the audit service. In some cases, the classes

subjected to this service must inherit from AuditInfo (as discussed in Example #2,

Section 4.1.2.1). In other cases, the methods requiring auditing must declare a local

variable of type AuditDAO and call a save method from this class. However, the

proposed heuristic for absences detected many classes whose methods do not use the

audit service by declaring this local variable when they were supposed to. Regarding

the divergences detected by heuristic #2, many methods were using a local variable of

an incorrect type to persist data. Specifically, in many cases classes from JPA—a Java

API for persistence—should have been used, but instead the code used local variables of

types supporting direct access to SQL. In the case of absences, we also detected classes

that were not inheriting for example from br.sga.core.domain.AuditInfo and also

classes missing a javax.ejb.Local annotation. Finally, in the case of divergences, we

also detected classes incorrectly using the javax.persistence.OneToMany annotation.

Table 4.23. Most common dependency types in the SGA system

Absence Heuristic #2

LocalVariable 32.8% 42.3%
Inheritance 21.8% 0.0%
DeclaredException 17.6% 0.0%
AnnotationClass 15.1% 13.5%
CaughtException 0.0% 12.6%
AnnotationAttribute 10.0% 19.8%

4.6 Threats to Validity

In the case of SGA and M2M systems, we relied on an architect to design our initial

model and to classify our warnings. Therefore, as any human-made artifact, the model

and the classification are subjected to errors and imprecision. However, we interviewed

a senior architect, with a complete domain of SGA’s and M2M’s architecture and

implementation. Furthermore, one can argue that this architect might be influenced

to design a model favoring our approach. However, we never explained to the architect

the heuristics followed to discover architectural violations.

4.7. Final Remarks 79

In the case of Lucene and ArgoUML, our evaluation is fully based on a Reflexion

Model (RM) independently proposed by Bittencourt et al. [Bittencourt, 2012]. We

reused the component specification from the high-level models defined as the input for

the proposed heuristics. For this reason, it is possible that the Lucene’s and ArgoUML’s

high-level model does not capture some true violations. However, we argue that the

chances are reduced since the models were carefully designed and refined to establish

a benchmark for architecture conformance.

4.7 Final Remarks

In this chapter, we evaluated the architecture of two industrial-strength information

systems, for which we detected 539 architectural violations, with an overall precision of

62.7% and 53.8%. We also evaluated our approach with two open-source systems, for

which we detected 345 architectural violations, achieving an overall precision of 53.3%

and 59.2%.

In conclusion, we claim we were able to provide an alternative and iterative

technique for architecture conformance that does not require successive refinements in

architectural models (as reflexion models) neither requires the extensive specification

of architectural constraints (as domain-specific languages). On the other hand, the

proposed approach can generate false positive warnings, as common in most bug finding

tools based on static analysis.

Chapter 5

Extracting Architectural Patterns

In this chapter, we start by presenting our motivation to perform an exploratory

study on using data mining techniques to reveal architectural patterns (Section 5.1).

Next, Section 5.2 presents an overview of the proposed approach to infer patterns for

detecting absences and divergences, respectively. Section 5.3 presents an evaluation of

the proposed approach in a real system. Section 5.4 presents a comparative discussion

between the approach based on data mining technique and the approach based on

heuristics.

5.1 Motivation

The architecture of a system prescribes the organization of its components, their

relationships, constraints, and the principles that guided its design and evolution

over time. An architectural model is a high-level representation of the software that

documents and transmits the major decisions and principles that should be followed

during its development and evolution.

However, as previously reported, during the development of a software

product, anomalies regarding the proposed architectural model are normally

introduced. In practice, the introduction of architectural violations is very

common [Knodel and Popescu, 2007], and it usually makes more complex subsequent

maintenance tasks since the concrete architecture does not match the planned and

documented architecture anymore [Sarkar et al., 2009a].

In this thesis, we presented in Chapter 3 a set of heuristics for detecting

architectural violations, which are based on our previous experience in the area.

Specifically, these heuristics were designed from abstract scenarios where architectural

81

82 Chapter 5. Extracting Architectural Patterns

violations frequently occur, considering the assumption that architectural violations

are frequently corrected.

However, the proposed heuristics do not cover the entire spectrum of architectural

scenarios where violations might occur. For example, as described before, the

proposed heuristics consider only direct dependencies between classes, modules, and

components. Nevertheless, scenarios based on co-dependency analysis and/or causal

relationships among dependencies are not considered by the proposed technique. Co-

dependency analysis can be used, for example, to assess multiple dependencies that

occur simultaneously. For example, in a particular system using JPA (Java Persistence

API) persistence framework, the classes in the Domain component are mapped to

tables in the database using Entity annotations. Additionally, these classes frequently

also have an annotation Id on an attribute of type Long. Therefore, the absence of

this annotation might denote an architectural anomaly.

As another example, in some systems, classes are instrumented according

to certain contracts to make them able to provide services to other classes. In

the aforementioned hypothetical system, classes in the Domain component are

annotated with Entity to make it possible for a specific class of the JPA framework,

called EntityManager, perform persistence operations in these classes. Thus,

there is a well-know reason for that specific Domain classes to receive an Entity

annotation. By contrast, classes annotated with Entity that are not accessed by

the persistence framework are unnecessarily fulfilling an contract. In the presented

example, the introduction of unnecessary code can lead to problems, such as

performance degradation, unnecessary memory allocation, a decrease in readability

and maintainability of the source code, etc.

It is well-know that data mining-based techniques should be used when you want

to discover how often two or more items from a set occur simultaneously. Furthermore,

it is possible to identify co-occurrence dependencies between these items, allowing to

infer causal relationships in these dependencies. Therefore, this chapter investigates a

data mining based approach that assumes that the inception of architectural violations

in software products is a common event and that some violations are detected and

corrected in future revisions by means of inspections and/or quality assurance activities.

Our ultimate goal is to evaluate whether a data mining based approach would be more

effective than the heuristic-based approach described in Chapter 3.

5.2. Data Mining Based Approach 83

5.2 Data Mining Based Approach

This chapter describes the methodology we followed for detecting architectural

violations in object-oriented software systems. The proposed methodology relies

on data mining techniques over historical dependencies between the classes of a

target system. This historical information is retrieved from version control system

repositories. Basically, the idea is to mine structural and historical dependencies

between the classes of the target system.

Figure 5.1 illustrates in details the approach we followed for detecting evidences

of architectural violations. Initially, a Code Extractor component retrieves all source

code versions from the version control system repository. Each revision is parsed by

the VerveineJ parser that extracts the dependencies from the source code. Next, the

extracted dependencies are stored in a relational database. The Architectural Miner

component relies on two types of input on the target system: (a) the dependencies

database and (b) a high-level component specification. In our approach, we assume

that classes are statically organized in modules (packages in the Java terminology)

and modules are logically arranged in coarse–grained structures called components.

The high-level component specification is essentially a mapping from modules to the

defined components. Next, the Architectural Miner populates a Prolog database

describing the structural and historical relations available in the source code. After

that, the Architectural Miner relies on Prolog queries to convert the Prolog database

into a consistent frequent itemset mining dataset. Next, an association rule mining

algorithm is used to detect structural and historical architectural patterns. Finally,

the Violation Detector module relies on such architectural patterns to detect evidences

of architectural violation.

The proposed methodology identifies evidences of architectural violations by

relying on low frequency hypotheses and past refactoring tasks performed on structural

dependencies. The assumption is that dependencies violating architectural patterns are

rare events in the space-time domain, i.e., they appear in a small number of classes and

are eventually corrected during the system evolution. In other words, as in Chapter 3,

this methodology is based on the idea that architectural patterns are frequently followed

and violations represent a small percentage of the cases. For example, if most classes

of a source component access a specific class C and many classes in this component

that did not access C at first were modified to access it afterwards (as observed in the

system history), then we can suppose that there is an architectural pattern prescribing

that classes from the source component must access C.

Our approach is based on a data mining technique called frequent itemset

84 Chapter 5. Extracting Architectural Patterns

SVN

Repository

Component

Model

Code Extractor

Evidences of

Architectural

Violations

Itemsets

(Dependencies)

Architectural Miner

Violation Detector

Architectural

Patterns

Figure 5.1. Data Mining proposed approach

mining [Agrawal and Srikant, 1994], which efficiently finds frequent itemsets in a

transaction dataset, where an itemset is a set of items. The frequent itemset mining

algorithm enumerates itemsets that occur frequently in a dataset. Therefore, this

technique defines the support as the number of occurrences of a subset of items (sub-

itemset). A sub-itemset is considered frequent when its support is greater than a

specified threshold called minimum support. Thus, support counts the number of times

a sub-itemset occurs in the itemsets database.

After the frequent itemsets have been mined, we can compute association

rules [Zaki and Meira Jr., 2011, Agrawal et al., 1993]. From association rules, we

make assumptions that two or more items occur simultaneously or conditionally.

Furthermore, association rules can be used to discover causal relationships among

elements. An association rule is usually expressed as A ⇒ C, where A and C are

itemsets. Each association rule has a confidence, a value that represents the probability

of a database transaction covered by an antecedent term A (pre-condition) be covered

by a consequent term C (consequence).

The investigation reported in this chapter assumes that association rules are

effective to detect violations in architectural patterns. In other words, assuming that

the confidence of the rule (pattern) is very high, as 99% for example, an itemset

containing the antecedent term A but not the consequent term C can be regarded as

5.2. Data Mining Based Approach 85

violating the pattern, i.e., it represents a strong evidence of architectural violation.

To calculate frequent itemsets and to generate association rules, we use a FP-

tree-based mining algorithm, called FPGrowth [Zaki and Meira Jr., 2011]. Instead of

generating the complete set of frequent sub-itemsets, this algorithm generates only

relevant itemset candidates. After the frequent itemsets are mined, FPGrowth also

generates association rules.

The remainder of this section is organized as follows: Section 5.2.1 presents the

methodology proposed to detect evidences of absences; Section 5.2.2 describes the

methodology proposed for divergences.

5.2.1 Mining for Absences

As presented in Section 3.2, an absence happens whenever a dependency is defined by

the planned architecture but it does not exist in the source code [Murphy et al., 1995,

Passos et al., 2010].

Similarly to the heuristic-based approach, to detect absences using data mining

techniques, we initially search for patterns of dependencies that frequently occur. Next,

we search for dependencies that violate such patterns and therefore denote minorities at

the level of components. We assume that absences occur in a small percentage of cases,

which are more likely to represent architectural violations. Additionally, we use the

history of versions to mine for evolutionary architectural patterns. More specifically,

we mine for patterns representing dependencies that are introduced in classes originally

created without such dependencies.

The proposed procedure for detecting absences relies on two steps. First, we

identify architectural patterns that frequently occur in classes grouped according to

the component model provided as input. Second, from the classes in each component,

we identify evolutionary architectural patterns. For instance, Figure 5.2 illustrates

an example of absence. In this case, the planned architecture prescribes that classes

located in module DTO must use services provided by a specific class located in JPA

module, such as the Entity class. In this case, an absence is counted for each class

in DTO that does not follow this rule. In the second step of the proposed procedure,

we check how frequently classes in the DTO module that depend on Entity (a class

of the JPA module) in the current version of the system were initially created without

this dependency.

The main idea behind the evolutionary architectural patterns is to reinforce the

violation evidences suggested by the first step. The assumption is that absences are

86 Chapter 5. Extracting Architectural Patterns

Figure 5.2. Example of absence (DTO must use JPA)

frequently detected and fixed, i.e., classes created without a dependency prescribed by

the planned architecture are frequently fixed in future revisions.

To find correlations among the dependencies, it is initially necessary to compute

the frequent itemset mining dataset. For this purpose, we rely on a dataset of Prolog

facts, which describes both the dependencies and the historical information on the

classes of the system under analysis, as follows:

[component(CompId,CompName).]+

[module(ModId,CompId,ModName).]+

[class(ClassId,ModId,ClassName).]+

[dependency(DepId,BaseClassId,TargetClassId,CreatedWith,ExistCurrently,AddAny).]+

The component predicate defines the components informed by the architect

of the system under analysis. The module predicate defines the packages, in Java

terminology, of the system. The class predicate represents a class in the system. The

dependency predicate defines a dependency relation between two classes (BaseClassId

depends on TargetClassId). In this predicate, the attribute CreatedWith informs

whether the dependency was created together with the BaseClassId. The attribute

ExistCurrently informs whether the dependency exists on the last version of the

system, and the attribute AddAny informs if the dependency was detected in some

version of the system. A short example of this Prolog database is presented next:

1: component(5,’domain’).

2: component(12,’jpa’).

3: ...

4: module(10,5,’br.sga.aaa.core.domain’).

5: module(170,12,’javax.persistence’).

6: ...

7: class(531558,10,’Auditing’).

5.2. Data Mining Based Approach 87

8: class(540800,10,’Functionality’).

9: class(117,170,’Entity’).

10: ...

11: dependency(21,531558,117,false,false,true).

12: dependency(2004,540800,117,true,true,true).

As can be observed in line 11, the class br.sga.aaa.core.domain.Auditing

(id=531558) was created without a dependency with javax.persistence.Entity

(id=117). Moreover, this dependency also does not exist in the current version

of the system (attribute ExistCurrently = false). Nevertheless, this dependency

was inserted in the past (attribute AddAny = true). The dependency

presented in line 12, between br.sga.aaa.core.domain.Functionality (id=540800) and

javax.persistence.Entity (id=117) was detected in the first revision of the class

br.sga.aaa.core.domain.Functionality in the version control repository (attribute

CreatedWith = true). Moreover, this dependency was preserved over time and it was

also detected in the current version of the system (attribute ExistCurrently = true).

In the first step, each class and its dependencies in the last version under analysis

(attribute ExistCurrently = true) are expressed as a row in the itemset database, as

follows:

BaseComponent(bcomp),BaseModule(bmod),BaseClass(bclass)

[,TargetComponent(tcomp),TargetModule(tmod),TargetClass(tclass)]*

By mining the itemset database using the FPGrowth algorithm, we can find the

frequent sub-itemsets and generate the association rules representing the corresponding

architectural patterns. Basically, these patterns represent dependencies that are

frequently used together. Moreover, the FPGrowth requires the definition of a support

(Adps) and a confidence (Adpc) threshold. For instance, suppose a pattern like that:

{BaseComponent(’domain’)}=>

{TargetClass(’Entity’)}

This pattern states that all classes on the component domain (antecedent term)

should depend on the class Entity (consequent term). In other words, according to

this pattern, classes in the domain component that do not depend on Entity represent

an absence violation.

The second step is used to reduce the number of false violations. For each

component in the system, we select the dependencies and the historical information

from the Prolog facts database. In this particular case, we select the attributes

88 Chapter 5. Extracting Architectural Patterns

CreatedWith and ExistCurrently. Each dependency corresponds to a row in the

itemset database as follows:

BaseComponent(bcomp),TargetClass(tclass),

CreatedWith([true|false]),

ExistCurrently([true|false])

We compute the association rules expressing this dependency evolutionary

patterns using the FPGrowth algorithm, using a given support (Adeps) and confidence

(Adepc) threshold. For instance, suppose the following pattern:

{BaseComponent(’domain’),

TargetClass(’Entity’),

CreatedWith(false)}=> {ExistCurrently(true)}

This pattern states that classes on the component domain created without

dependency with the class Entity were frequently refactored to include this dependency,

which also exists in the current version of the system.

The second step results are combined with the results obtained in the first step.

For example, suppose that in the first step the classes in the domain component that do

not depend on Entity were classified as evidences of absences. Moreover, suppose that

in the second step we concluded that classes in domain created without a dependency

with Entity frequently (i.e., with a high support and confidence) were refactored to

include this dependency during their evolution, which therefore reinforces the evidence

detected in the first step.

5.2.2 Mining for Divergences

As described in Section 3.3, a divergence is a violation due to a dependency

that is not allowed by the planned architecture, but that exists in the source

code [Murphy et al., 1995, Passos et al., 2010].

Likewise the heuristic for absences, we assume that divergences happen in a

small percentage of cases. However, a standard frequent itemset mining technique is

not suitable for detecting minorities. For this reason, we in fact mine for dependencies

that do not exist in most classes of a component. More specifically, the divergences

detection relies on two steps. First, we identify the dependencies that frequently do

not occur in the classes of a given component. In the second step, we identify how

frequently classes in this component have established and then removed a dependency

like that in the past. For instance, Figure 5.3 illustrates an example of divergence. In

5.2. Data Mining Based Approach 89

this case, the planned architecture prescribes that classes located in the BO module

must not directly depend on the JPA module. In this particular example, a divergence

is counted for each class in BO which relies on services provided by the JPA module.

In the second step of the proposed procedure, we check how frequently classes in the

component BO that had a dependency with classes on JPA module in the past have

removed this dependency, so that it does not exist anymore in the current version of

the system.

Figure 5.3. Example of divergence (BO cannot use JPA)

In the first step, we initially select all classes in the last version of the target system

(attribute ExistCurrently = true). For each BaseClass , we select the dependencies

that do not exist between BaseClass and TargetClass , where TargetClass is a class

used by the component that contains BaseClass . Then, these items represent a row in

the itemset database, as follows:

BaseComponent(bcomp),BaseModule(bmod),BaseClass(bclass)

[,TargetComponent(tcomp),TargetModule(tmod),TargetClass(tclass)]*

Using the FPGrowth algorithm, we compute the association rules, according to a

given support (Ddps) and confidence (Ddpc). For instance, the following association rule

states that classes in the domain component frequently do not depend on HttpServlet.

{BaseComponent(’domain’)}=>

{TargetClass(’HttpServlet’)}

Therefore, classes in domain that depend on HttpServlet represent an evidence

of divergence.

In the second step, we rely on a historical analysis to reduce the number of false

positives. In this case, we select dependencies from the itemset database including the

90 Chapter 5. Extracting Architectural Patterns

attributes ExistCurrently and AddAny. This information generates an itemset in our

database as follows:

BaseComponent(bcomp),TargetClass(tclass),

AddAny([true|false]),

ExistCurrently([true|false])

Applying the FPGrowth, using Ddeps and Ddepc as support and confidence

respectively, we obtain association rules representing what we decide to call the

dependency evolutionary patterns. For instance, suppose a dependency evolutionary

pattern as follows:

{BaseComponent(’domain’),

TargetClass(’HttpServlet’),

AddAny(true)}=> {ExistCurrently(false)}

This pattern states that classes in the component domain that added a

dependency with the class HttpServlet (attribute AddAny = true) frequently removed

this dependency, so that it no longer exist in the current version of the system (attribute

ExistCurrently = false).

Finally, these results are combined with the results obtained in the first step.

For instance, suppose that it was previously inferred that the classes in the domain

component that depend on HttpServlet represent evidences of divergences. Moreover,

suppose that in this second step we discovered that such classes frequently were

refactored to remove the dependencies with HttpServlet. In this case, the evidence

detected in the first step is reinforced by this second finding.

5.3 Evaluation

To evaluate the data mining based approach for detecting absences and divergences, we

performed a study with the SGA system, i.e., the same system described in Section 4.1.

The last revision considered in our study has 1,852 classes and interfaces, organized in

104 packages, comprising around 127 KLOC.

5.3.1 Dataset

To detect absences and divergences, we initially retrieved 4,923 revisions of the SGA

system, which are maintained in a Subversion repository. Each revision was parsed

by VerveineJ and the extracted dependencies were stored in a relational database with

5.3. Evaluation 91

4.5 GB. Next, an architect defined its high-level component model. Finally, the high-

level components and the dataset of historical dependencies were used as input to

generate the Prolog facts. We executed our approach as described in Sections 5.2.1

and 5.2.2. Finally, the architect of the SGA system inspected the selected violations

in order to classify them as true or false positives.

5.3.2 Thresholds for Absences

As reported in Section 5.2.1, the detection of absences relies on four thresholds:

Adps and Adpc, the support and confidence of the structural dependency architectural

patterns, and Adeps and Adepc, the support and confidence of the historical dependency

evolutionary patterns. Table 5.1 shows the values used for such thresholds:

Table 5.1. Absences thresholds

Threshold Value

Adps 0.1
Adpc 0.9
Adeps 0.1
Adepc 0.6

Basically, we consider as an architectural pattern only the rules that occurred

in at least 10% of the classes and that have a confidence of at least 90%. For the

architectural evolutionary patterns, we consider thresholds of 10% for support and

60% for confidence. In other words, we consider as evidences of architectural violation

classes that do not respect a rule followed by at least 10% of the other classes, among all

classes in the system. Furthermore, only classes whose historical rules have a confidence

higher than 60% are considered as violations.

5.3.3 Thresholds for Divergences

The detection of divergences relies on four thresholds: Ddps and Ddpc, denoting

respectively the support and confidence of the structural architectural patterns, and

Ddeps and Ddepc, denoting respectively the support and confidence of the historical

patterns. Table 5.2 shows the thresholds values used for divergences.

Similarly to the absence detection, for divergences we consider architectural

patterns with support of 10% and confidence of 90%. On the other hand, for the

historical patterns, we consider the thresholds of 10% and 25% for support and

confidence, respectively. Furthermore, we select as divergences the classes that violate

both patterns. More specifically, we select classes that depend on a class when at least

92 Chapter 5. Extracting Architectural Patterns

Table 5.2. Divergences thresholds

Threshold Value

Ddps 0.1
Ddpc 0.9
Ddeps 0.1
Ddepc 0.25

90% of the classes in the same component do not follow this rule. Additionally, at

least 25% of the classes that have established this dependency were later refactored to

remove it.

5.3.4 Results

We applied our methodology in the SGA system using the thresholds defined in

Sections 5.3.2 and 5.3.3. The triggered violations were inspected by the SGA architect,

who classified them as true or false violations.

As we can observe in Table 5.3, we detected 261 evidences of absences, and 101

evidences were classified as true-positives by the SGA architect. Furthermore, we

triggered 73 divergence warnings, which 36 were classified as true-positives. Thus, the

precision was 38.7% and 49.3% for absences and divergences, respectively. As total, the

architect inspected 334 warnings, which 137 were considered true-positives, resulting

in a global precision of 41.0%.

Table 5.3. Architectural violations in the SGA system

Absence Divergence Total

Warnings (E) 261 73 334
True-positives (TP) 101 36 137
False-positives (FP) 160 37 197
Precision (TP/E) 38.7% 49.3% 41.0%

5.4 Discussion

In this chapter, we conducted an exploratory study to explore the feasibility of using

frequent itemset mining techniques to detect architectural violations. As reported

in Section 5.3, this evaluation was conducted using the same information system

considered in the evaluation of the heuristic-based techniques proposed in Chapter 3.

As reported, we achieved an overall precision of 86.7% for absences and 56.5% for

5.4. Discussion 93

divergences, when using the proposed heuristics. On the other hand, the frequent

itemset mining based approach achieved an overall precision of 38.7% and 49.3% for

absences and divergences, respectively.

Therefore, our heuristic-based technique achieved a higher precision than

frequent itemset mining both for absences and divergences. Next, we compare the

two techniques in more details, by discussing the pros and cons of the data mining

approach investigated in this chapter.

Pros: The data mining based methodology has the following advantages:

• It allows to detect complex patterns of dependencies, formed by multiple

classes, independently on any prior knowledge of software architecture or on the

architectural scenarios where violations frequently occur. In other words, frequent

itemset mining techniques detect co-occurrence patterns among items in a dataset

of existing transactions (according to support and confidence thresholds). For

instance, as stated previously, it is common in a system using JPA persistence

framework, that classes that use the Entity annotation also use the annotation

Id on an attribute of type Long. Therefore, the use of Entity without Id, or

vice-versa, might denote an architectural anomaly. Furthermore, the use of Id

on an attribute that is not of type Long, might also represent an anomaly.

• We can rely on association rules generated by frequent itemset mining to reveal

architectural patterns. These patterns can be used as documentation artifacts,

supporting and guiding the development team on understanding the dependencies

between classes, modules, and components of the system. For instance, consider

this association rule: {BaseComp(‘domain’), TargetClass(‘Entity’)} =>

{TargetClass(‘Id’)}. This rule prescribes that classes in the component

Domain that depend on the class Entity should also depend on class Id.

• We can consider other information in the conformance analysis, such as historical

information, information on the components of the system, information on the

structure and hierarchy of modules, class name patterns, direct dependencies, and

indirect dependencies (e.g., based on inheritance rules). For example, consider

this association rule: {BaseComp(‘domain’), ClassNamePart(‘Impl’,

PackageNamePart(‘dao.impl’)} => {TargetClass(‘Entity’),

TargetClass(‘Id’)}. This rule prescribes that classes in the component

Domain, whose name contains the substring “Impl”, and whose package name

contains the substring “dao.impl” must depend on classes Entity and Id.

94 Chapter 5. Extracting Architectural Patterns

• It is feasible to consider not only usage but also non-usage patterns

regarding dependencies. For example, we can infer that classes of a

particular component rarely use the class java.sql.Statement, and

that such classes frequently depend on javax.persistence.Query.

More important, these dependencies are usually mutually exclusive,

i.e., classes that depend on java.sql.Statement do not depend on

javax.persistence.Query and vice-versa. The following association rule

illustrates this example: {TargetClass(‘javax.persistence.Query’)=true}

=> {TargetClass(‘java.sql.Statement’)=false}.

Cons: However, a data mining based methodology has the following disadvantages:

• A frequent itemset mining strategy only considers frequency hypothesis, by means

of the support and confidence thresholds described in Section 2.5. Therefore,

heuristic-based techniques take advantage over frequent itemset mining based

ones because the latter do not rely on any previous knowledge on the problem

domain. This condition may contribute to heuristics-based approaches present

greater precision than data mining based approaches.

• Our initial investigation indicated the need of further improvements in the

performance of the data mining technique. To illustrate this fact, considering the

dataset described in Section 5.3.1, that uses only direct dependencies between

classes, the heuristic-based technique required 33.2 minutes to display the

architectural violations reports. On the other hand, the frequent itemset mining

based technique required 495.8 minutes to display its results (14.9 times slower).

• Specially for low support and confidence thresholds, a data mining algorithm

may require an extremely high amount of memory and produce a large number

of association rules. As an example, using the support and confidence thresholds

presented in Section 5.3, 174,737 association rules are produced for absences and

1,752,365 for divergences.

5.5 Final Remarks

In many scenarios it is necessary to discover how often two or more items of interest

occur simultaneously or the relationships between co-occurrences of items. It is well-

know that data mining-based techniques are suitable when you want to discover how

often two or more items from a set occur simultaneously. Furthermore, it is possible

5.5. Final Remarks 95

to identify multiple dependencies among these items. Therefore, in this chapter, we

investigated a data mining based approach that can be applied to analyze structural

and historical architectural patterns among classes.

We conducted an evaluation in the architecture of the SGA’s system, when we

detected 137 architectural violations, with an overall precision of 41.0%. As can

be observed, our heuristic-based approach achieved a higher precision than the data

mining based approach, both for absences and divergences.

In Section 5.4, we discussed the pros and cons of the data mining based approach.

Despite the disadvantages, we consider that frequent itemset mining is a promising

technique and should be more deeply evaluated. Particularly, frequent itemset mining

techniques can make use of a broad source of information, which can help to generate

more complete architectural patterns.

Chapter 6

Conclusion

This chapter is organized as follows. We start by summarizing the results of this thesis

(Section 6.1). Next, we review our contributions (Section 6.2). Additionally, we also

indicate the limitations of our proposed architecture conformance process (Section 6.3).

Finally, we present further work (Section 6.4).

6.1 Summary

Architectural conformance checking is a fundamental activity for controlling the

quality of software systems. This activity aims to reveal deviations between

the actual and planned software architectures [Passos et al., 2010]. However, the

application of the current techniques for architecture conformance usually requires

a considerable effort [Knodel et al., 2008, Passos et al., 2010]. Specifically, reflexion

models may require successive refinements in the high-level model to reveal the

whole spectrum of absences and divergences in large and extensively maintained

systems [Koschke and Simon, 2003]. On the other hand, domain-specific languages

may require the extensive and detailed definition of constraints.

To address this shortcoming, this thesis proposed an architecture conformance

technique that relies on a combination of static and historical source code analysis

to produce evidences of absences and divergences. We provide an iterative technique

for architecture conformance checking that does not require successive refinements in

high-level architectural models neither requires the specification of an extensive list

of architectural constraints. We also designed and implemented an open-source tool

called ArchLint that supports our approach and hence reveals architectural erosion

symptoms in Java systems. Additionally, we conducted an evaluation of the proposed

conformance checking process in four real-world systems, which provided us a positive

97

98 Chapter 6. Conclusion

feedback on the applicability of our approach. In this evaluation, ArchLint was able

to indicate 884 true violations, with overall precision results ranging from 53.3% to

86.7%.

6.2 Contributions

We present the main contributions of our research both for practitioners and for

software engineering researchers. First, for practitioners, especially the ones who are

not experts on the system under evaluation, we envision that a heuristic-based approach

for architecture conformance can be used to rapidly raise architectural warnings,

without deeply involving experts in the process. Moreover, after evaluating many of the

warnings raised by the heuristics, practitioners can get confidence on the most relevant

architectural constraints, which can be therefore formalized using languages such as

DCL [Terra and Valente, 2009]. Moreover, especially among developers who frequently

use popular static analysis tools (e.g., FindBugs, PMD, etc.), ArchLint can be promoted

as a complementary tool that elevates to an architectural level the warnings typically

raised by such tools. Finally, for researchers the approach proposed in this thesis may

open a novel direction for the investigation on architectural conformance techniques,

based not only on static information, but also on information extracted from version

repositories, which are ubiquitously used nowadays on software projects.

Specifically, this research provides the following contributions:

• We provide a review of the state-of-the-art and state-of-the-practice with respect

to automatic anomaly detection in source code, architectural conformance

checking approaches, and data mining techniques with potential application to

architectural violation detection (Chapter 2);

• We introduces an alternative and iterative technique to architectural conformance

checking based on a combination of static and historical source code analysis

(Chapter 3). This technique includes four heuristics for detecting absences

and divergences. It also includes a ranking strategy for ordering the produced

warnings according to their probability to denote true architectural violations.

• We implemented a prototype tool called ArchLint that implements our approach

and hence provides architectural violation evidences (Section 3.6).

• We evaluated the use of the proposed iterative architectural conformance checking

process in four real-world systems (Chapter 4).

6.3. Limitations 99

• We provide an exploratory study on applying data mining techniques to mine

architectural patterns (Chapter 5). We also implemented a prototype tool called

ArchLintMiner that supports this data mining-based approach.

6.3 Limitations

Our work has the following limitations:

• The proposed approach may miss true warnings when the system under

evaluation is facing a major erosion process. This scenario may cause a

relevant impact on the structural and historical functions, such as DepScaRate,

DepInsRate, and DepDelRate;

• The proposed approach assumes that violations are usually detected and fixed.

This assumption recommends its use especially in mature systems. A possible

workaround in less mature systems is to rely on flexible thresholds, e.g.,

DepInsRate = 0.0 and DepDelRate = 0.0;

• The proposed heuristics do not cover the entire spectrum of scenarios where

architectural violations may occur. They are based on the best of our knowledge

and our experience in software architecture conformance. Moreover, they only

consider direct dependencies among classes, modules, and components;

• We have not evaluated our approach in scenarios where it is not possible to map

the classes of the target system to their respective components through regular

expressions;

• We have not measured recall for the SGA and the M2M systems because a

detailed inspection in the code is required to find the full set of absences and

divergences, including not only true positives, but also false negatives;

• We have not evaluated our ranking strategy using advanced ranking techniques,

such as giving weights to different elements as proposed by Engler et

al. [Engler et al., 2001b] or using correlation rankings [Kremenek et al., 2004].

6.4 Further Work

The heuristic-based approach for architecture conformance proposed in this thesis must

be complemented by the following future work:

100 Chapter 6. Conclusion

• By evaluating other systems to refine and to investigate new heuristics, and to

demonstrate the application of our approach in other contexts, using different

architectural patterns;

• By working on the integration of ArchLint with ArchFix [Terra et al., 2013],

which is a recommendation tool that suggests refactorings for repairing

architectural anomalies triggered by static architecture conformance checking

approaches;

• By working on the integration of ArchLint with a Domain-Specific Language,

such as DCL [Terra et al., 2013].

• By using well-know high quality systems to retrieve architectural patterns, which

are more likely to be correct. Once this patterns are available, we can compare

other system against them, which should be used to evaluate systems with a

small repository of versions.

The data mining-based approach can be complemented by the following future

work:

• By investigating other techniques for detecting common patterns of structural

dependencies, such as formal concept analysis [Ganter and Wille, 1999];

• By conducting a sensitivity analysis to discover the best combination of values

for the thresholds required by data mining algorithms;

• By evaluating its usage on systems using architectural patterns different from the

one followed by the SGA system;

• By extending the study to consider specific correlations between dependencies

as well as to consider the dependency types, such as attributes, annotations,

inheritance, etc.

Bibliography

[Agrawal et al., 1993] Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining

association rules between sets of items in large databases. In International

Conference on Management of Data (MOD), pages 207–216.

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast algorithms for

mining association rules in large databases. In 20th International Conference on

Very Large Data Bases (VLDB), pages 487–499.

[Allen, 1997] Allen, R. (1997). A Formal Approach to Software Architecture. PhD

thesis, Carnegie Mellon, School of Computer Science. Issued as CMU Technical

Report CMU-CS-97-144.

[Allen and Garlan, 1997] Allen, R. and Garlan, D. (1997). A formal basis for

architectural connection. ACM Transactions on Software Engineering and

Methodology, 6(3):213–249.

[Araujo et al., 2011] Araujo, J. E., Souza, S., and Valente, M. T. (2011). Study on

the relevance of the warnings reported by Java bug-finding tools. IET Software,

5(4):366–374.

[Artho and Biere, 2001] Artho, C. and Biere, A. (2001). Applying static analysis

to large-scale, multi-threaded Java programs. In 13th Australian Conference on

Software Engineering (ASWEC), pages 68–75.

[Baeza-Yates and Ribeiro-Neto, 2011] Baeza-Yates, R. and Ribeiro-Neto, B. (2011).

Modern Information Retrieval: The Concepts and Technology Behind Search.

Addison-Wesley Professional, 2nd edition.

[Baldwin and Clark, 1999] Baldwin, C. Y. and Clark, K. B. (1999). Design Rules: The

Power of Modularity. MIT Press.

101

102 Bibliography

[Bass et al., 2003] Bass, L., Clements, P., and Kazman, R. (2003). Software

Architecture in Practice. Addison-Wesley, 2nd edition.

[Bell, 1999] Bell, T. (1999). The concept of dynamic analysis. Software Engineering

Notes, 24(6):216–234.

[Birkhoff, 1940] Birkhoff, G. (1940). Lattice Theory. American Mathematical Society.

[Bittencourt, 2010] Bittencourt, R. A. (2010). Conformance checking during software

evolution. In 17th Working Conference on Reverse Engineering (WCRE), pages

289–292.

[Bittencourt, 2012] Bittencourt, R. A. (2012). Enabling Static Architecture

Conformance Checking of Evolving Software. PhD thesis, Universidade Federal de

Campina Grande.

[Brito et al., 2013] Brito, H., Marques-Neto, H., Terra, R., Rocha, H., and Valente,

M. T. (2013). On-the-fly extraction of hierarchical object graphs. Journal of the

Brazilian Computer Society, 19(1):15–27.

[Chang et al., 2007] Chang, R.-Y., Podgurski, A., and Yang, J. (2007). Finding

what’s not there: a new approach to revealing neglected conditions in software. In

International Symposium on Software Testing and Analysis (ISSTA), pages 163–173.

[Clements, 2003] Clements, P. (2003). Documenting Software Architectures: Views and

Beyond. Addison-Wesley.

[Copeland, 2005] Copeland, T. (2005). PMD Applied. Centennial Books.

[Couto et al., 2013] Couto, C., Maffort, C., Garcia, R., and Valente, M. T. (2013).

COMETS: A dataset for empirical research on software evolution using source code

metrics and time series analysis. ACM SIGSOFT Software Engineering Notes, pages

1–3.

[Couto et al., 2012] Couto, C., Montandon, J. E., Silva, C., and Valente, M. T. (2012).

Static correspondence and correlation between field defects and warnings reported

by a bug finding tool. Software Quality Journal, pages 1–17.

[Darwin, 1988] Darwin, I. F. (1988). Checking C Programs with Lint. O’Reilly.

[Davey and Priestley, 2002] Davey, B. and Priestley, H. (2002). Introduction to Lattices

and Order. Cambridge University Press.

Bibliography 103

[de Moor, 2007] de Moor, O. (2007). Keynote address: .QL for source code analysis.

In 7th IEEE International Conference on Source Code Analysis and Manipulation

(SCAM), pages 3–14.

[Ducasse et al., 2011] Ducasse, S., Anquetil, N., Bhatti, M. U., Hora, A., Laval, J., and

Girba, T. (2011). MSE and FAMIX 3.0: an Interexchange Format and Source Code

Model Family. Technical report, RMOD - INRIA Lille - Nord Europe, Software

Composition Group - SCG.

[Ducasse and Pollet, 2009] Ducasse, S. and Pollet, D. (2009). Software architecture

reconstruction: A process-oriented taxonomy. IEEE Transactions on Software

Engineering, 35(4):573–591.

[Eichberg et al., 2008] Eichberg, M., Kloppenburg, S., Klose, K., and Mezini, M.

(2008). Defining and continuous checking of structural program dependencies. In

30th International Conference on Software Engineering (ICSE), pages 391–400.

[Engler et al., 2001a] Engler, D., Chen, D. Y., Hallem, S., Chou, A., and Chelf, B.

(2001a). Bugs as deviant behavior: a general approach to inferring errors in systems

code. Operating Systems Review, 35(5):57–72.

[Engler et al., 2001b] Engler, D., Chen, D. Y., Hallem, S., Chou, A., and Chelf, B.

(2001b). Bugs as deviant behavior: A general approach to inferring errors in systems

code. In 18th ACM Symposium on Operating Systems Principles (SOSP), pages 57–

72.

[Evans, 1996] Evans, D. (1996). Static detection of dynamic memory errors. In

Conference on Programming Language Design and Implementation (PLDI), pages

44–53.

[Evans et al., 1994] Evans, D., Guttag, J., Horning, J., and Tan, Y. M. (1994). LCLint:

a tool for using specifications to check code. In 2nd Symposium on Foundations of

Software Engineering (FSE), pages 87–96.

[Fayyad et al., 1996] Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. (1996).

Advances in knowledge discovery and data mining. pages 1–34.

[Feiler, 2014] Feiler, P. H. (2014). Aadl and model-based engineering. Ada Lett.,

34(3):17--18.

[Fowler, 1999] Fowler, M. (1999). Refactoring: improving the design of existing code.

Addison-Wesley.

104 Bibliography

[Fowler, 2002] Fowler, M. (2002). Patterns of Enterprise Application Architecture.

Addison-Wesley.

[Frawley et al., 1992] Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J.

(1992). Knowledge discovery in databases: an overview. AI Magazine, 13(3):57–

70.

[Ganter and Wille, 1999] Ganter, B. and Wille, R. (1999). Formal concept analysis:

mathematical foundations. Springer.

[Garcia et al., 2009] Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. (2009).

Identifying architectural bad smells. In 13th European Conference on Software

Maintenance and Reengineering (CSMR), pages 255–258.

[Garlan, 2000] Garlan, D. (2000). Software architecture: a roadmap. In Conference

on The Future of Software Engineering (COFES), 22nd International Conference on

Software Engineering (ICSE), pages 91–101.

[Garlan et al., 1994] Garlan, D., Allen, R., and Ockerbloom, J. (1994). Exploiting style

in architectural design environments. In 2nd Symposium on Foundations of Software

Engineering (FSE), pages 175--188.

[Garlan et al., 1997] Garlan, D., Monroe, R., and Wile, D. (1997). ACME: an

architecture description interchange language. In Conference of the Centre for

Advanced Studies on Collaborative Research (CASCON), pages 1–15.

[Garlan and Shaw, 1996] Garlan, D. and Shaw, M. (1996). Software Architecture:

Perspectives on an Emerging Discipline. Prentice Hall.

[Gorton and Zhu, 2005] Gorton, I. and Zhu, L. (2005). Tool support for just-in-

time architecture reconstruction and evaluation: an experience report. In 27th

International Conference on Software Engineering (ICSE), pages 514–523.

[Gruska et al., 2010] Gruska, N., Wasylkowski, A., and Zeller, A. (2010). Learning

from 6,000 projects: lightweight cross-project anomaly detection. In 19th

International Symposium on Software Testing and Analysis (ISSTA), pages 119–

130.

[Gurgel et al., 2014] Gurgel, A., Macia, I., Garcia, A., von Staa, A., Mezini, M.,

Eichberg, M., and Mitschke, R. (2014). Blending and reusing rules for architectural

degradation prevention. In 13th International Conference on Modularity, pages 61–

72.

Bibliography 105

[Götzmann, 2007] Götzmann, D. N. (2007). Formale Begriffsanalyse in Java: Entwurf

und Implementierung effizienter Algorithmen., Bachelor thesis, Saarland University,

Available from http://code.google.com/p/colibri-java/ (accessed July 06, 2012).

[Hamou-Lhadj and Lethbridge, 2004] Hamou-Lhadj, A. and Lethbridge, T. C. (2004).

A survey of trace exploration tools and techniques. In Conference of the Centre for

Advanced Studies on Collaborative Research (CASCON), pages 42–55.

[Han et al., 2000] Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns

without candidate generation. In 19th International Conference on Management

of Data (SIGMOD), pages 1–12.

[Hochstein and Lindvall, 2005] Hochstein, L. and Lindvall, M. (2005). Combating

architectural degeneration: A survey. Information and Software Technology,

47(10):643–656.

[Hou and Hoover, 2006] Hou, D. and Hoover, H. J. (2006). Using SCL to specify and

check design intent in source code. IEEE Transactions on Software Engineering,

32(6):404–423.

[Hou et al., 2004] Hou, D., Hoover, H. J., and Rudnicki, P. (2004). Specifying

framework constraints with FCL. In Conference of the Centre for Advanced Studies

on Collaborative Research (CASCON), pages 96–110.

[Hovemeyer and Pugh, 2004] Hovemeyer, D. and Pugh, W. (2004). Finding bugs is

easy. SIGPLAN Notices, 39(12):92–106.

[Jerding and Rugaber, 1997] Jerding, D. and Rugaber, S. (1997). Using visualization

for architectural localization and extraction. In 4th Working Conference on Reverse

Engineering (WCRE), pages 56–65.

[Johnson, 1977] Johnson, S. C. (1977). Lint: A C program checker. Technical report 65,

Bell Laboratories.

[Kazman and Carrière, 1999] Kazman, R. and Carrière, S. J. (1999). Playing detective:

Reconstructing software architecture from available evidence. Automated Software

Engineering, 6(2):107–138.

[Knodel et al., 2008] Knodel, J., Muthig, D., Haury, U., and Meier, G. (2008).

Architecture compliance checking - experiences from successful technology transfer to

industry. In 12th European Conference on Software Maintenance and Reengineering

(CSMR), pages 43–52.

106 Bibliography

[Knodel et al., 2006] Knodel, J., Muthig, D., Naab, M., and Lindvall, M. (2006).

Static evaluation of software architectures. In 10th European Conference on Software

Maintenance and Reengineering (CSMR), pages 279–294.

[Knodel and Popescu, 2007] Knodel, J. and Popescu, D. (2007). A comparison of static

architecture compliance checking approaches. In 6th Working IEEE/IFIP Conference

on Software Architecture (WICSA), pages 44–54.

[Koschke and Simon, 2003] Koschke, R. and Simon, D. (2003). Hierarchical reflexion

models. In 10th Working Conference on Reverse Engineering (WCRE), pages 36–45.

[Kremenek et al., 2004] Kremenek, T., Ashcraft, K., Yang, J., and Engler, D. (2004).

Correlation exploitation in error ranking. In 12th Symposium on Foundations of

Software Engineering (FSE), pages 83–93.

[Li and Zhou, 2005] Li, Z. and Zhou, Y. (2005). PR-Miner: automatically extracting

implicit programming rules and detecting violations in large software code. In 13th

Symposium on Foundations of Software Engineering (FSE), pages 306–315.

[Macia et al., 2012] Macia, I., Arcoverde, R., Cirilo, E., Garcia, A., and von Staa, A.

(2012). Supporting the identification of architecturally-relevant code anomalies. In

28th International Conference on Software Maintenance (ICSM), pages 662–665.

[Maffort et al., 2013a] Maffort, C., Valente, M. T., Anquetil, N., Hora, A., and

Bigonha, M. (2013a). Heuristics for discovering architectural violations. In 20th

Working Conference on Reverse Engineering (WCRE), pages 222–231.

[Maffort et al., 2012] Maffort, C., Valente, M. T., and Bigonha, M. (2012). Detecção

de violações arquiteturais usando histórico de versões. In XI Simpósio Brasileiro de

Qualidade de Software (SBQS), pages 1–15.

[Maffort et al., 2013b] Maffort, C., Valente, M. T., Bigonha, M., Hora, A., and

Anquetil, N. (2013b). Mining architectural patterns using association rules. In

25th International Conference on Software Engineering and Knowledge Engineering

(SEKE), pages 375–380.

[Maffort et al., 2013c] Maffort, C., Valente, M. T., Bigonha, M., Silva, L. H., and

Aparecido, G. (2013c). ArchLint: Uma ferramenta para detecção de violações

arquiteturais usando histórico de versões. In IV Congresso Brasileiro de Software:

Teoria e Prática (Sessão de Ferramentas), pages 1–6.

Bibliography 107

[Maffort et al., 2014] Maffort, C., Valente, M. T., Terra, R., Bigonha, M., Anquetil, N.,

and Hora, A. (2014). Mining architectural violations from version history. Empirical

Software Engineering Journal (EMSE), pages 1–41.

[Magee et al., 1995] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. (1995).

Specifying distributed software architectures. In 5th European Software Engineering

Conference (ESEC), pages 137–153.

[Mens et al., 2006] Mens, K., Kellens, A., Pluquet, F., and Wuyts, R. (2006). Co-

evolving code and design with intensional views: A case study. Computer Languages,

Systems & Structures, 32(2-3):140–156.

[Mileva et al., 2011] Mileva, Y. M., Wasylkowski, A., and Zeller, A. (2011). Mining

evolution of object usage. In 25th European Conference on Object-Oriented

Programming (ECOOP), pages 105–129.

[Murphy et al., 1995] Murphy, G., Notkin, D., and Sullivan, K. (1995). Software

reflexion models: Bridging the gap between source and high-level models. In 3rd

Symposium on Foundations of Software Engineering (FSE), pages 18–28.

[Murphy et al., 2001a] Murphy, G., Notkin, D., and Sullivan, K. (2001a). Software

reflexion models. IEEE Transactions on Software Engineering, 27(4):364–380.

[Murphy et al., 2001b] Murphy, G., Notkin, D., and Sullivan, K. J. (2001b). Software

reflexion models: Bridging the gap between design and implementation. IEEE

Transactions on Software Engineering, 27:364–380.

[Nierstrasz et al., 2005] Nierstrasz, O., Ducasse, S., and Gı̌rba, T. (2005). The story

of moose: an agile reengineering environment. In European software engineering

conference held jointly with the ACM SIGSOFT international symposium on

Foundations of software engineering, ESEC/FSE-13, pages 1–10.

[Passos et al., 2010] Passos, L., Terra, R., Diniz, R., Valente, M. T., and Mendonca.,

N. (2010). Static architecture-conformance checking: An illustrative overview. IEEE

Software, 27(5):82–89.

[Perry and Wolf, 1992] Perry, D. E. and Wolf, A. L. (1992). Foundations for the study

of software architecture. Software Engineering Notes, 17(4):40–52.

[Pressman, 2010] Pressman, R. (2010). Software engineering: a practitioner’s

approach. McGraw-Hill.

108 Bibliography

[Priss, 2006] Priss, U. (2006). Formal concept analysis in information science. Annual

Review of Information Science and Technology (ARIST), 40(1):521–543.

[Rocha et al., 2013] Rocha, H., Couto, C., Maffort, C., Garcia, R., Simoes, C., Passos,

L., and Valente, M. T. (2013). Mining the impact of evolution categories on object-

oriented metrics. Software Quality Journal, 21(4):529–549.

[Sangal et al., 2005] Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005). Using

dependency models to manage complex software architecture. In 20th Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),

pages 167–176.

[Santos et al., 2014] Santos, G., Valente, M. T., and Anquetil, N. (2014).

Remodularization analysis using semantic clustering. In IEEE Conference on

Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),

pages 224–233.

[Sarkar et al., 2009a] Sarkar, S., Maskeri, G., and Ramachandran, S. (2009a).

Discovery of architectural layers and measurement of layering violations in source

code. Journal of Systems and Software, 82:1891–1905.

[Sarkar et al., 2009b] Sarkar, S., Ramachandran, S., Kumar, G. S., Iyengar, M. K.,

Rangarajan, K., and Sivagnanam, S. (2009b). Modularization of a large-scale

business application: A case study. IEEE Software, 26:28–35.

[Schmerl et al., 2006] Schmerl, B. R., Aldrich, J., Garlan, D., Kazman, R., and Yan,

H. (2006). Discovering architectures from running systems. IEEE Transactions on

Software Engineering, 32(7):454–466.

[Silva et al., 2014] Silva, L., Valente, M. T., and Maia, M. (2014). Assessing modularity

using co-change clusters. In 13th International Conference on Modularity, pages 49–

60.

[Sullivan et al., 2001] Sullivan, K. J., Griswold, W. G., Cai, Y., and Hallen, B. (2001).

The structure and value of modularity in software design. In 9th International

Symposium on Foundations of Software Engineering (FSE), pages 99–108.

[Tan et al., 2002] Tan, P.-N., Kumar, V., and Srivastava, J. (2002). Selecting the right

interestingness measure for association patterns. In 8th International Conference on

Knowledge Discovery and Data Mining (KDD), pages 32–41.

Bibliography 109

[Terra and Valente, 2008] Terra, R. and Valente, M. T. (2008). Towards a dependency

constraint language to manage software architectures. In 2nd European Conference

on Software Architecture (ECSA), pages 256–263.

[Terra and Valente, 2009] Terra, R. and Valente, M. T. (2009). A dependency

constraint language to manage object-oriented software architectures. Software:

Practice and Experience, 32(12):1073–1094.

[Terra et al., 2013] Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S. (2013).

A recommendation system for repairing violations detected by static architecture

conformance checking. Software: Practice and Experience, pages 1–36.

[van Gurp and Bosch, 2002] van Gurp, J. and Bosch, J. (2002). Design erosion:

problems and causes. Journal of Systems and Software, 61:105–119.

[Wasylkowski and Zeller, 2009] Wasylkowski, A. and Zeller, A. (2009). Mining

temporal specifications from object usage. In 24th International Conference on

Automated Software Engineering (ASE), pages 295–306.

[Wasylkowski et al., 2007] Wasylkowski, A., Zeller, A., and Lindig, C. (2007).

Detecting object usage anomalies. In 15th Symposium on The Foundations of

Software Engineering (FSE), pages 35–44.

[Wille, 2009] Wille, R. (2009). Restructuring lattice theory: an approach based on

hierarchies of concepts. In 7th International Conference on Formal Concept Analysis

(IFCA), pages 314–339.

[Zaki and Meira Jr., 2011] Zaki, M. J. and Meira Jr., W. (2011). Fundamentals of

Data Mining Algorithms. Cambridge University Press.

[Zaki et al., 1997] Zaki, M. J., Parthasarathy, S., Ogihara, M., and Li, W. (1997). New

algorithms for fast discovery of association rules. In 3rd International Conference

on Knowledge Discovery and Data Mining (SIGKDD), pages 283–286.

[Zimmermann et al., 2004] Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A.

(2004). Mining version histories to guide software changes. In 26th International

Conference on Software Engineering (ICSE), pages 563–572.

[Zimmermann et al., 2005] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S.

(2005). Mining version histories to guide software changes. IEEE Transactions on

Software Engineering, 31(6):429–445.

	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem
	1.2 Thesis Statement
	1.3 An Overview of the Proposed Approach
	1.4 Outline of the Thesis
	1.5 Publications

	2 Background
	2.1 Software Architecture
	2.2 Architectural Erosion
	2.3 Architectural Conformance Checking
	2.3.1 Static Architecture Conformance
	2.3.2 Critical Assessment

	2.4 Detecting Source Code Anomalies
	2.4.1 Structural Analysis Techniques
	2.4.2 Historical Analysis Techniques
	2.4.3 Static Analysis Techniques
	2.4.4 Critical Assessment

	2.5 Data Mining Techniques
	2.5.1 Frequent Itemset Mining
	2.5.2 Formal Concept Analysis

	2.6 Final Remarks

	3 Heuristics for Detecting Architectural Violations
	3.1 Overview
	3.2 Heuristic for Detecting Absences
	3.3 Heuristics for Detecting Divergences
	3.3.1 Heuristic #1
	3.3.2 Heuristic #2
	3.3.3 Heuristic #3

	3.4 Formal Definition
	3.4.1 Notation
	3.4.2 Detecting Absences
	3.4.3 Detecting Divergences

	3.5 Ranking Strategy
	3.6 Tool Support
	3.7 A Heuristic-Based Architecture Conformance Process
	3.8 Final Remarks

	4 Evaluation
	4.1 First Study: SGA System
	4.1.1 Study Setup
	4.1.2 Results
	4.1.3 Comparison with Reflexion Models
	4.1.4 Historical Analysis

	4.2 Second Study: M2M System
	4.2.1 Study Setup
	4.2.2 Results for the M2M system
	4.2.3 M2M Conformance Process

	4.3 Third Study: Lucene System
	4.3.1 Study Setup
	4.3.2 Results for the Lucene system
	4.3.3 Lucene Conformance Process

	4.4 Fourth Study: ArgoUML System
	4.4.1 Study Setup
	4.4.2 Results for the ArgoUML system
	4.4.3 ArgoUML Conformance Process

	4.5 Discussion
	4.6 Threats to Validity
	4.7 Final Remarks

	5 Extracting Architectural Patterns
	5.1 Motivation
	5.2 Data Mining Based Approach
	5.2.1 Mining for Absences
	5.2.2 Mining for Divergences

	5.3 Evaluation
	5.3.1 Dataset
	5.3.2 Thresholds for Absences
	5.3.3 Thresholds for Divergences
	5.3.4 Results

	5.4 Discussion
	5.5 Final Remarks

	6 Conclusion
	6.1 Summary
	6.2 Contributions
	6.3 Limitations
	6.4 Further Work

	Bibliography

