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Abstract

We are given a large database of customer transactions.

Each transaction consists of items purchased by a customer

in a visit. We present an efficient algorithm that generates all

significant association rules between items in the database.

The algorithm incorporates buffer management and novel

estimation and pruning techniques. We also present results

of applying this algorithm to sales data obtained from a

large retailing company, which shows the effectiveness of the

algorithm.

1 Introduction

Consider a supermarket with a large collection of items.

Typical business decisions that the management of the

supermarket has to make include what to put on sale,

how to design coupons, how to place merchandise on

shelves in order to maximize the profit, etc. Analysis

of past transaction data is a commonly used approach

in order to improve the quality of such decisions.

Until recently, however, only global data about the

cumulative sales during some time period (a day, a week,

a month, etc.) was available on the computer. Progress

in bar-code technology has made it possible to store the

so called basket data that stores items purchased on a

per-transaction basis. Bssket data type transactions do

not necessarily consist of items bought together at the

same point of time. It may consist of items bought by

a customer over a period of time. Examples include

monthly purchases by members of a book club or a

music club.

Several organizations have collected massive amounts

of such data. These data sets are usually stored
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on tertiary storage and are very slowly migrating to

database systems. One of the main reasons for the

limited success of database systems in this area is

that current database systems do not provide necessary

functionality for a user interested in taking advantage

of this information.

This paper introduces the problem of “mining” a large

collection of basket data type transactions for associa-

tion rules between sets of items with some minimum

specified confidence, and presents an efficient algorithm

for this purpose. An example of such an association rule

is the statement that 9070 of transactions that purchase

bread and butter also purchase milk. The antecedent

of this rule consists of bread and butter and the con-

sequent consists of milk alone. The number 9070 is the

confidence factor of the rule.

The work reported in this paper could be viewed aa a

step towards enhancing databases with functionalities

to process queries such as (we have omitted the

confidence factor specification):

Find all rules that have “Diet Coke” as consequent.

These rules may help plan what the store should do

to boost the sale of Diet Coke.

Find all rules that have “bagels” in the antecedent.

These rules may help determine what products may

be impacted if the store discontinues selling bagels.

Find all rules that have “sausage” in the antecedent

and “mustard” in the consequent, This query can be

phrased alternatively az a request for the additional

items that have to be sold together with sausage in

order to make it highly likely that mustard will also

be sold.

Find all the rules relating items located on shelves

A and B in the store. These rules may help shelf

planning by determining if the sale of items on shelf

A is related to the sale of items on shelf B.

Find the “best” k rules that have “bagels” in the

consequent. Here, “best” can be formulated in terms

of the confidence factors of the rules, or in terms
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of their support, i.e., the fraction of transactions

satisfying the rule.

The organization of the rest of the paper is as

follows. In Section 2, we give a formal statement of

the problem. In Section 3, we present our algorithm

for mining association rules. In Section 4, we present

some performance results showing the effectiveness of

our algorithm, based on applying this algorithm to data

from a large retailing company. In Section 5, we discuss

related work. In particular, we put our work in context

with the rule discovery work in AI. We conclude with a

summary in Section 6.

2 Formal Model

Let Z = 11, Iz,..., Im be a set of binary attributes,

called items. Let T be a database of transactions. Each

transaction t is represented as a binary vector, with t[k]

= 1 if t bought the item Ib, and t[k] = O otherwise.

There is one tuple in the database for each transaction.

Let X be a set of some items in Z. We say that a

transaction t satisfies X if for all items 1~ in X, t[k] =

1.

By an association rule, we mean an implication of the

form X ~ Ij, where X is a set of some items in Z, and

Ij is a single item in Z that is not present in X. The

rule X ~ Ij is satisfied in the set of transactions T

with the confidence factor O < c < 1 iff at least c’?loof

transactions in T that satisfy X also satisfy Ij. We will

use the notation X - ~j I c to specify that the rule

X ~ Ij has a confidence factor of C.

Given the set of transactions T, we are interested

in generating all rules that satisfy certain additional

constraints of two different forms:

1.

2.

Syntactic Constraints: These constraints involve

restrictions on items that can appear in a rule. For

example, we may be interested only in rules that have

a specific item 15 appearing in the consequent, or

rules that have a specific item Iv appearing in the

antecedent. Combinations of the above constraints

are also possible — we may request all rules that have

items from some predefine itemset X appearing in

the consequent, and items from some other itemset

Y appearing in the antecedent.

Support Constraints: These constraints concern the

number of transactions in T that support a rule. The

support for a rule is defined to be the fraction of

transactions in T that satisfy the union of items in

the consequent and antecedent of the rule.

Support should not be confused with confidence.

While confidence is a measure of the rule’s strength,

support corresponds to statistical significance.

Besides statistical significance, another motivation

for support constraints comes from the fact that

we are usually interested only in rules with support

above some minimum threshold for business reasons.

If the support is not large enough, it means that the

rule is not worth consideration or that it is simply

less preferred (may be considered later).

In this formulation, the problem of rule mining can

be decomposed into two subproblems:

1.

2.

Generate all combinations of items that have frac-

tional transaction support above a certain thresh-

old, called minsupport. Call those combinations large

itemsets, and all other combinations that do not meet

the threshold small itemsets.

Syntactic constraints further constrain the admissible

combinations. For example, if only rules involving an

item Ic in the antecedent are of interest, then it is

sufficient to generate only those combinations that

contain Iz.

For a given large itemset Y = II IZ . . . Ik, k > 2,

generate all rules (at the most k rules) that use items

from the set 11,12,..., Ik. The antecedent of each

of these rules will be a subset X of Y such that

X has k – 1 items, and the consequent will be the

item Y – X. To generate a rule X = Ij I C,

where X = II IZ . . .Ij-llj+l . . . Ik, take the support

of Y and divide it by the support of X. If the ratio

is greater than c then the rule is satisfied with the

confidence factor c; otherwise it is not.

Note that if the itemset Y is large, then every subset

of Y will also be large, and we must have available

their support counts as the result of the solution of

the first subproblem. Also, all rules derived from

Y must satisfy the support constraint because Y

satisfies the support constraint and Y is the union

of items in the consequent and antecedent of every

such rule.

Having determined the large itemsets, the solution

to the second subproblem is rather straightforward. In

the next section, we focus on the first subproblem. We

develop an algorithm that generates all subsets of a

given set of items that satisfy transactional support

requirement. To do this task efficiently, we use some

estimation tools and some pruning techniques.

3 Discovering large itemsets

Figure 1 shows the template algorithm for finding large

itemsets. Given a set of items Z, an itemset X + Y of

items in Z is said to be an extension of the itemset X if

X n Y = 0. The parameter dbsize is the total number

of tuples in the database.
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The algorithm makes multiple passes over the database.

The frontier set for a pass consists of those itemsets that

are extended during the pass. In each pass, the support

for certain itemsets is measured. These itemsets, called

candidate iternsets, are derived from the tuples in the

database and the itemsets contained in the frontier set.

Associated with each itemset is a counter that stores

the number of transactions in which the corresponding

itemset has appeared. This counter is initialized to zero

when an itemset is created.

procedure LargeItemsets

begin

let Large set L = 0;

let Frontier set F = {0};

while F # 0 do begin

—— make a pass over the database

let Candidate set C = 0;

forall database tuples t do

forall itemsets ~ in F do

if t contains ~ then begin

let Cj = candidate itemsets that are extensions

off and contained in t; –– see Section 3.2

forall itemsets Cf in C’j do

if Cj c C then

C! count = cj count + 1;

else begin

cj count = O;

C=c+cj;
end

end

-- consolidate

let F = 0;

forall itemsets c in C do begin

if count(c)/ dbsize > rninsuppori then

L= L+c;

if c should be used as a frontier —— see Section 3.3

in the next pass then

F= F+c;

end

end

end

Figure 1: Template algorithm

frontier set for the next pass, The algorithm terminates

when the frontier set becomes empty. The support

count for the itemset is preserved when an itemset is

added to the large/frontier set.

We did not specify in the template algorithm what

candidate itemsets are measured in a pass and what

candidate itemsets become a frontier for the next pass.

These topics are covered next.

3.1 Number of passes versus measurement

wastage

In the most straightforward version of the algorithm,

every itemset present in any of the tuples will be

measured in one pass, terminating the algorithm in

one pass. In the worst case, this approach will require

setting up 2~ counters corresponding to all subsets of

the set of items Z, where m is number of items in 1.

This is, of course, not only infeasible (m can easily

be more than 1000 in a supermarket setting) but also

unnecessary. Indeed, most likely there will very few

large itemsets containing more than 1 items, where 1 is

small. Hence, a lot of those 2m combinations will turn

out to be small anyway.

A better approach is to measure in the kth pass only

those itemsets that contain exactly k items. Having

measured some itemsets in the kth pass, we need to

messure in (k + 1)th pass only those itemsets that are

l-extensions (an itemset extended by exactly one item)

of large itemsets found in the kth pass. If an itemset is

small, its l-extension is also going to be small. Thus,

the frontier set for the next pass is set to candidate

itemsets determined large in the current pass, and only

l-extensions of a frontier itemset are generated and

measured during a pass. 1 This alternative represents

another extreme — we will make too many passes over

the database.

These two extreme approaches illustrate the tradeoff

between number of passes and wasted effort due to

measuring itemsets that turn out to be small. Certain

measurement wastage is unavoidable — if the itemset

A is large, we must measure All to determine if it is

large or small. However, having determined Al? to

be small, it is unnecessary to measure ABC, ABD,

ABCD, etc. Thus, aside from practical feasibility, if

we measure a large number of candidate itemsets in a

pass, many of them may turn out to be small anyhow —

wasted effort. On the other hand, if we measure a small

number of candidates and many of them turn out to be

large then we need another pass, which may have not

Initially the frontier set consists of only one element, 1A ~ener~zation of this approach will be to me~ure W uP

which is an empty set. At the end of a pass, the support to g-extensions (g > O) of frontier itemsets in a pass. The

for a candidate itemset is compared with minsupport to
frontier set for the next pass will then consist of only those

determine if it is a /arge itemset. At the same time,
large candidate itemsets that are precisely g-extensions. This
generalization reduces the number of passes but may result in

it is determined if this itemset should be added to the some it emsets being unnecessarily measured.
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been necessary. Hence, we need some careful estimation

before deciding whether a candidate itemset should be

measured in a given pass.

3.2 Determination of candidate itemsets

One may think that we should measure in the current

pass only those extensions of frontier itemsets that are

expected to be large. However, if it were the case and

the data behaved according to our expectations and the

itemsets expected to be large indeed turn out to be

large, then we would still need another pass over the

databsse to determine the support of the extensions of

those large itemsets. To avoid this situation, in addition

to those extensions of frontier itemsets that are expected

to be large, we also measure the extensions X + Ij that

are expected to be small but such that X is expected

to be large and X contains a frontier itemset. We do

not, however, measure any further extensions of such

itemsets. The rationale for this choice is that if our

predictions are correct and X + Ij indeed turns out to

be small then no superset of X + Ij has to be measured.

The additional pass is then needed only if the data does

not behave according to our expectation and X + Ij

turns out to be large. This is the reason why not

measuring X + Ij that are expected to be small would

be a mistake — since even when the data agrees with

predictions, an extra pass over the databsse would be

necessary.

Expected support for an itemset

We use the statistical independence assumption to

estimate the support for an itemset. Suppose that a

candidate itemset X + Y is a k-extension of the frontier

itemset X and that Y = II IZ . . . 1~. Suppose that the

itemset X appears in a total of z tuples. We know

the value of x since X was measured in the previous

psss (x is taken to be dbsize for the empty frontier

itemset). Suppose that X + Y is being considered as

a candidate itemset for the first time after c tuples

containing X have already been processed in the current

pass. Denoting by ~(~j ) the relative frequency of the

item Ij in the database, the expected support 3 for the

itemset X + Y is given by

ii = f(~l) x f(Iz) x . . . x f(I~) x (n – c)/dbsize

Note that (z - c)/dbsize is the actual support for X in

the remaining portion of the database. Under statistical

independence assumption, the expect ed support for X +

Y is a product of the support for X and individual

relative frequencies of items in Y.

If F is less than minsupport, then we say that X + Y

is expected to be small; otherwise, it is expected to be

large.

Candidate itemset generation procedure

An itemset not present in any of the tuples in the

database never becomes a candidate for measurement.

We read one tuple at a time from the database and

check what frontier sets are contained in the tuple read.

Candidate itemsets are generated from these frontier

itemset by extending them recursively with other items

present in the tuple. An itemset that is expected to be

small is not further extended. In order not to replicate

different ways of constructing the same itemset, items

are ordered and an itemset X is tried for extension only

by items that are later in the ordering than any of the

members of X. Figure 2 shows how candidate itemsets

are generated, given a frontier itemset and a database

tuple.

procedure Extend(X: itemset, t:tuple)

begin

let item Ij be such that VII E X, Ij ~ 11;

forall items Ik in the tuple t such that h > Ij do begin

Output(xlk );

if (Xlk ) is expected to be large then

Extend(X1k, t);

end

end

Figure 2: Extension of a frontier itemset

For example, let Z = {A, 1?, C, D, E, F} and assume

that the items are ordered in alphabetic order. Further

assume that the frontier set contains only one itemset,

AB. For the database tuple t = ABCDF, the following

candidate itemsets are generated:

ABC expected large: continue extending

ABCD expected small: do not extend any further

ABCF expected large: cannot be extended further

ABD expected small: do not extend any further

ABF expected large: cannot be extended further

The extension ABCDF was not considered because

ABCD wsa expected to be small. Similarly, ABDF was

not considered because ABD was expected to be small.

The itemsets ABCF and ABF, although expected to

be large, could not be extended further because there

is no item in t which is greater than F. The extensions

ABCE and ABE were not considered because the item

E is not in t.

3.3 Determination of the frontier set

Deciding what itemsets to put in the next frontier

set turns out to be somewhat tricky. One may think
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that it is sufficient to select just maximal (in terms of

set inclusion) large itemsets. This choice, however, is

incorrect — it may result in the algorithm missing some

large itemsets as the following example illustrates:

Suppose that we extended the frontier set Al? as

shown in the example in previous subsection. However,

both ABD and ABCD turned out to be large at the

end of the pass. Then ABD as a non-maximal large

itemset would not make it to the frontier — a mistake,

since we will not consider ABDF, which could be large,

and we lose completeness.

We include in the frontier set for the next pass those

candidate itemsets that were expected to be small but

turned out to be large in the current psas. To see that

these are the only itemsets we need to include in the

next frontier set, we first state the following lemma:

Lemma. If the candidate itemset X is expected to

be small in the current pass over the database, then no

extension X + Ij of X, where Ij > Ik for any Ik in X

is a candidate itemset in this pass.

The lemma holds due to the candidate itemset

generation procedure.

Consequently, we know that no extensions of the

itemsets we are including in the next frontier set have

been considered in the current pass. But since these

itemsets are actually large, they may still produce

extensions that are large. Therefore, these itemsets

must be included in the frontier set for the next pass.

They do not lead to any redundancy because none of

their extensions has been measured so far. Additionally,

we are also complete. Indeed, if a candidate itemset was

large but it was not expected to be small then it should

not be in the frontier set for the next pass because,

by the way the algorithm is defined, all extensions of

such an itemset have already been considered in this

pass. A candidate itemset that is small must not be

included in the next frontier set because the support

for an extension of an itemset cannot be more than the

support for the itemset.

3.4 Memory Management

We now discuss enhancements to handle the fact that we

may not have enough memory to store all the frontier

and candidate itemsets in a pass, The large itemsets

need not be in memory during a pass over the database

and can be disk-resident. We assume that we have

enough memory to store any itemset and all its 1-

extensions.

Given a tuple and a frontier itemset X, we generate

candidate itemsets by extending X as before. However,

it may so happen that we run out of memory when we

are ready to generate the extension X + Y. We will now

have to create space in memory for this extension.

Figure 3 shows the memory reclamation algorithm. Z

procedure ReclaimMemory

begin

–– first obtain memory from the frontier set

while enough memory haa not been reclaimed do

if there is an itemset X in the frontier set

for which no extension has been generated then

move X to disk;

else

break;

if enough memory has been reclaimed then return;

——now obtain memory by deleting some
—— candidate itemsets

find the candidate itemset U

having maximum number of items;

discard U and all its siblings;

let Z = parent(U);

if Z is in the frontier set then

move Z to disk;

else

disable future extensions of Z in this pass;

end

Figure 3: Memory reclamation algorithm

is said to be the parent of U if U has been generated by

extending the frontier set Z. If U and V are l-extensions

of the same itemset, then U and V are called siblings.

First an attempt is made to make room for the new

itemset by writing to disk those frontier itemsets that

have not yet been extended. Failing this attempt, we

discard the candidate itemset having maximum number

of items. All its siblings are also discarded. The reason

is that the parent of this itemset will have to be included

in the frontier set for the next pass. Thus, the siblings

will anyway be generated in the next pass. We may

avoid building counts for them in the next pass, but the

elaborate book-keeping required will be very expensive.

For the same reason, we disable future extensions of the

parent itemset in this pass. However, if the parent is

a candidate itemset, it continues to be meaaured. On

the other hand, if the parent is a frontier itemset, it is

written out to disk creating more memory space.

It is possible that the current itemset that caused the

memory shortage is the one having maximum number

of items, In that case, if a candidate itemset needs to

be deleted, the current itemset and its siblings are the
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ones that are deleted. Otherwise, some other candidate

itemset haa more itemst and this itemset and its siblings

are deleted. In both the cases, the memory reclamation

algorithm succeeds in releasing sufficient memory.

In addition to the candidate itemsets that were

expected to be small but turn out to be large, the

frontier set for the next pass now additionally includes

the following:

● disk-resident frontier itemsets that were not extended

in the current pass, and

● those itemsets (both candidate and frontier) whose

children were deleted to reclaim memory.

If a frontier set is too large to fit in the memory, we

start a pass by putting as many frontiers as can fit in

memory (or some fraction of it).

It can be shown that if there is enough memory to

store one frontier itemset and to measure all of its 1-

extensions in a pass, then there is guaranteed to be

forward progress and the algorithm will terminate.

3.5 Pruning based on the count of remaining

tuples in the pass

It is possible during a pass to determine that a candidate

itemset will eventually not turn out to be large, and

hence discard it early. This pruning saves both memory

and measurement effort. We refer to this pruning ss the

remaining tuples optimization.

Suppose that a candidate itemset X + Y is an

extension of the frontier itemset X and that the itemset

X appears in a total of z tuples (as discussed in

Section 3.2, z is always known). Suppose that X + Y

is present in the cth tuple cent aining X. At the time of

processing this tuple, let the count of tuples (including

this tuple) containing X + Y be s.

What it means is that we are left with at most x – c

tuples in which X + Y may appear. So we compare

maxcount =(x – c + s) with minsupport x dbsize. If

rnaxcount is smaller, then X + Y is bound to be small

and can be pruned right away.

The remaining tuples optimization is applied as soon

as a “new” candidate itemset is generated, and it may

result in immediate pruning of some of these itemsets.

It is possible that a candidate itemset is not initially

pruned, but it may satisfy the pruning condition after

some more tuples have been processed, To prune such

“old” candidate itemsets, we apply the pruning test

whenever a tuple containing such an itemset is processed

and we are about to increment the support count for this

itemset.

3.6 Pruning based on synthesized pruning

functions

We now consider another technique that can prune a

candidate itemset as soon as it is generated. We refer

to this pruning as the pruning function optimization.

The pruning function optimization is motivated by

such possible pruning functions ss total transaction

price. Total transaction price is a cumulative function

that can be associated with a set of items as a sum of

prices of individual items in the set. If we know that

there are less than minsupport fraction of transactions

that bought more than ~ dollars worth of items, we can

immediately eliminate all sets of items for which their

total price exceeds r. Such itemsets do not have to be

measured and included in the set of candidate itemsets.

In general, we do not know what these pruning func-

tions are. We, therefore, synthesize pruning functions

from the available data. The pruning functions we syn-

thesize are of the form

wlIj, + w21jz + . . . + wmIj~ < 7

where each binary valued Iji E Z. Weights wi are

select ed aa follows. We first order individual items in

decreasing order of their frequency of occurrence in the

database. Then the weight of the ith item Ij, in this

order

where c is a small real number such as 0.000001. It

can be shown that under certain mild assumptions

a pruning function with the above weights will have

optimal pruning value — it will prune the largest

number of candidate itemsets.

A separate pruning function is synthesized for each

frontier itemset. These functions differ in their values

for r. Since the transaction support for the item XY

cannot be more than the support for itemset X, the

pruning function associated with the frontier set X can

be used to determine whether an expansion of X should

be added to the candidate itemset or whether it should

be pruned right away. Let z(t) represent the value of

the expression

WIIjl + W21j2 + . . . + wmIj~

for tuple t. Given a frontier itemset X, we need a

procedure for establishing TX such that count(t I tuple

t contains X and ,z(t) > TX) < minsupport.

Having determined frontier itemsets in a pass, we do

not want to make a separate pass over the data just

to determine the pruning functions. We should collect

2For every item pair 1, and fk in ~, if frequency(~j) <

frequency (~k), then for every itemset X comprising items in T,
it holds that frequency(~jx ) < frequency(~kx ).
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information for determining ~ for an itemset X while

X is still a candidate itemset and is being measured

in anticipation that X may become a frontier itemset

in the next psss. Fortunately, we know that only the

candidate itemsets that are expected to be small are

the ones that can become a frontier set. We need to

collect T information only for these itemsets and not all

candidate itemsets.

A straightforward procedure for determining T for

an itemset X will be to maintain minsupport number

of largest values of z for tuples containing X. This

information can be collected at the same time as the

support count for X is being measured in a pass.

This procedure will require memory for maintaining

minsupport number of values with each candidate

itemset that is expected to be small. It is possible

to save memory at the cost of losing some precision

(i.e., establishing a somewhat larger value for T). Our

implementation uses this memory saving technique, but

we do not discuss it here due to space constraints.

Finally, recall that, as discussed in Section 3.4, when

memory is limited, a candidate itemset whose children

are deleted in the current pass also becomes a frontier

itemset. In general, children of a candidate itemset are

deleted in the middle of a pass, and we might not have

been collecting r information for such an itemset. Such

itemsets inherit T value from their parents when they

become frontier.

4 Experiments

We experimented with the rule mining algorithm using

the sales data obtained from a large retailing company.

There are a total of 46,873 customer transactions in

this data. Each transaction contains the department

numbers from which a customer bought an item in

a visit, There are a total of 63 departments. The

algorithm finds if there is an association between

departments in the customer purchasing behavior.

The following rules were found for a minimum

support of l% and minimum confidence of 5070. Rules

have been written in the form X =+ II(c, s), where c

is the confidence and s is the support expressed as a

percentage.

[Tires] ~ [Automotive Services] (98.80, 5.79)

[Auto Accessories], [Tires] ~

[Automotive Services] (98.29, 1.47)

[Auto Accessories] ~ [Automotive Services] (79.51, 11.81)

[Automotive Services] ~ [Auto Accessories] (71.60, 11.81)

[Home Laundry Appliances] *

[Maintenance Agreement Sales] (66.55, 1.25)

[Children~ Hardlines]

[Infants and

[Men’s Furnishing] ~

*

Children’s wear] (66.15, 4.24)

[Men’s Sportswear] (54.86, 5.21)

In the worst csse, this problem is an exponential

problem. Consider a database of m items in which every

item appears in every transaction. In this case, there

will be 2m large itemsets. To give an idea of the running

time of the algorithm on actual data, we give below

the timings on an IBM RS-6000/530H workstation for

finding the above rules:

real 2m53.62s

user 2m49.55s

sys OmO.54s

We also conducted some experiments to asses the

effect iveness of the estimation and pruning techniques,

using the same sales data. We report the results of these

experiments next.

4.1 Effectiveness of the estimation procedure

We measure in a pass those itemsets X that are

expected to be large. In addition, we also measure

itemsets Y = X + Ij that are expected to be small

but such that X is large. We rely on the estimation

procedure given in Section 3.2 to determine what these

itemsets X and Y are. If we have a good estimation

procedure, most of the itemsets expected to be large

(small) will indeed turn out to be large (small).

We define the accuracy of the estimation procedure

for large (small) itemsets to be the ratio of the number

of itemsets that actually turn out to be large (small) to

the number of itemsets that were estimated to be large

(small). We would like the estimation accuracy to be

close to 100%. Small values for estimation accuracy for

large itemsets indicate that we are measuring too many

unnecessary itemsets in a pass — wasted measurement

effort. Small values for estimation accuracy for small

itemsets indicate that we are stopping too early in

our candidate generation procedure and we are not

measuring all the itemsets that we should in a pass —

possible extra passes over the data.

Figure 4 shows the estimation accuracy for large and

small itemsets for different values of minsupport. In

this experiment, we had turned off both remaining tuple

and pruning function optimizations to isolate the effect

of the estimation procedure. The graph shows that

our estimation procedure works quite well, and the

algorithm neither measures too much nor too little in

a pass.

Note that the accuracy of the estimation procedure

will be higher when the data behaves according to the

expect ation of statistical independence. In other words,

if the data is ‘(boring”, not many itemsets that were

expected to be small will turn out to be large, and the

algorithm will terminate in a few passes. On the other

hand, the more “surprising” the data is, the lower will

be the estimation accuracy and the more passes it will

take our algorithm to terminate. This behavior seems
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to be quite reasonable — waiting longer “pays off” in

the form of unexpected new rules.

We repeated the above experiment with both the

remaining tuple and pruning function optimizations

turned on. The accuracy figures were somewhat better,

but closely tracked the curves in Figure 4.

~ Iargel

90 ~

0.10.5 1 2 5

Minimum Support (% of Database)

Figure 4: Accuracy of the estimation procedure

0.10.5 1 2 5
Minimum Support (% of Database)

Figure 5: Efficiency of the pruning techniques

4.2 Effectiveness of the pruning optimization

We define the efficiency of a pruning technique to be

the fraction of itemsets that it prunes. We stated

in Section 3.5 that the remaining tuple optimization

is applied to the new candidate itemsets as soon as

they are generated. The unpruned candidate itemsets

are added to the candidate set. The remaining tuple

optimization is also applied to these older candidate

itemsets when we are about to increment their support

count. Figure 5 shows the efficiency of the remaining

tuple optimization technique for these two types of

itemsets. For the new itemsets, the pruning efficiency

is the ratio of the new itemsets pruned to the total

number of new itemsets generated. For the old itemsets,

the pruning efficiency is the ratio of the old candidate

itemsets pruned to the total number of candidate

itemsets added to the candidate set. This experiment

was run with the pruning function optimization turned

off. Clearly, the remaining tuple optimization prunes

out a very large fraction of itemsets, both new and old.

The pruning efficiency increases with an an increase in

minsupport because an itemset now needs to be present

in a larger number of transactions to eventually make

it to the large set. The candidate set cent ains itemsets

expected to be large as well as those expected to be

small. The remaining tuple optimization prunes mostly

those old candidate itemsets that were expected to be

small; Figure 4 bears out that most of the candidate

itemsets expected to be large indeed turn out to be

large. Initially, there is a large increase in the fraction

of itemsets expected to be small in the candidate set as

minsupport increases. This is the reason why initially

there is a large jump in the pruning efficiency for old

candidate itemsets as minsupport increases.

Figure 5 also shows the efficiency of the pruning func-

tion optimization, with the remaining tuple optimiza-

tion turned off. It plots the fraction of new itemsets

pruned due to this optimization. The effectiveness of

the optimization increases with an increase in minsup-

port as we can use a smaller value for ~. Again, we

note that this technique alone is also quite effective in

pruning new candidate itemset.

We also measured the pruning efficiencies for new and

old itemsets when both the remaining tuple and pruning

function optimizations were turned on. The curves for

combined pruning tracked closely the two curves for the

remaining tuple optimization. The pruning function

optimization does not prune old candidate itemsets.

Given the high pruning efficiency obtained for new

itemsets just with the remaining tuple optimization, it

is not surprising that there was only slight additional

improvement when the pruning function was also turned

on. It should be noted however that the remaining tuple

optimization is a much cheaper optimization.

5 Related Work

Discovering rules from data has been a topic of active

research in AI, In [11], the rule discovery programs have

been categorized into those that find quantitative rules

and those that find qualitative laws.

The purpose of quantitative rule discovery programs

is to automate the discovery of numeric laws of the

type commonly found in scientific data, such as Boyle’s
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law PV = c. The problem is stated as follows

[14]: Given m variables Zl, Zz,..., Cm and k groups

of observational data dl, dz, ... , dk, where each di is

a set of m values — one for each variable, find a

formula ~(zl, 22,..., z~) that best fits the data and

symbolically reveals the relationship among variables.

Because too many formulas might fit the given data,

the domain knowledge is generally used to provide the

bias toward the formulas that are appropriate for the

domain. Examples of some well-known systems in this

category include ABACUS[5], Bacon[7], and COPER[6].

Business databases reflect the uncontrolled real world,

where many different causes overlap and many patterns

are likely to co-exist [10]. Rules in such data are likely

to have some uncertainty. The qualitative rule discovery

programs are targeted at such business data and they

generally use little or no domain knowledge. There

has been considerable work in discovering classification

rules: Given examples that belong to one of the pre-

specified classes, discover rules for classifying them.

Classic work in this area include [4] [9].

The algorithm we propose in this paper is targeted

at discovering qualitative rules. However, the rules

we discover are not classification rules. We have

no pre-specified classes. Rather, we find all the

rules that describe association between sets of items.

An algorithm, called the KID3 algorithm, has been

presented in [10] that can be used to discover the kind

of association rules we have considered. The KID3

algorithm is fairly straightforward, Attributes are not

restricted to be binary in this algorithm. To find the

rules comprising (A = a) as the antecedent, where a is

a specific value of the attribute A, one pass over the

data is made and each transaction record is hashed by

values of A. Each hash cell keeps a running summary of

values of other attributes for the tuples with identical

A value. The summary for (A = a) is used to derive

rules implied by (A = a) at the pass. To find rules by

different fields, the algorithm is run once on each field.

What it means is that if we are interested in finding all

rules, we must make as many passes over the data as the

number of combinations of attributes in the antecedent,

which is exponentially large. Our algorithm is linear in

number of transactions in the database.

The work of Valiant [12] [13] deals with learning

boolean formulae. Our rules can be viewed as boolean

implications. However, his learnability theory deals

mainly with worst case bounds under any possible

probabilistic distribution. We are, on the other hand,

interested in developing an efficient solution and actual

performance results for a problem that clearly has the

exponential worst case behavior in number of itemsets.

There has been work in the database community

on inferring functional dependencies from data, and

efficient inference algorithms have been presented in

[3] [8]. Functional dependencies are very specific

predicate rules while our rules are propositional in

nature. Contrary to our framework, the algorithms

in [3] [8] consider strict satisfaction of rules. Due to

the strict satisfaction, these algorithms take advantage

of the implications between rules and do not consider

rules that are logically implied by the rules already

discovered. That is, having inferred a dependency

X *A, any other dependency of the form X + Y ~ A

is considered redundant and is not generated.

6 Summary

We introduced the problem of mining association rules

between sets of items in a large database of customer

transactions. Each transaction consists of items pur-

chased by a customer in a visit. We are interested in

finding those rules that have:

● Minimum transactional support s — the union of

items in the consequent and antecedent of the rule

is present in a minimum of SYOof transactions in the

database.

● Minimum confidence c — at least c70 of transactions

in the databsse that satisfy the antecedent of the rule

also satisfy the consequent of the rule.

The rules that we discover have one item in the

consequent and a union of any number of items in the

antecedent. We solve this problem by decomposing it

into two subproblems:

1. Finding all itemsets, called large itemsets, that are

present in at least 5% of transactions.

2. Generating from each large itemset, rules that use

items from the large itemset.

Having obtained the large itemsets and their trans-

actional support count, the solution to the second sub-

problem is rather straightforward. A simple solution to

the first subproblem is to form all itemsets and obtain

their support in one pass over the data. However, this

solution is computationally infeasible — if there are m

items in the database, there will be 2m possible itemsets,

and m can easily be more than 1000. The algorithm we

propose has the following features:

It uses a carefully tuned estimation procedure to

determine what itemsets should be measured in a

pass. This procedure strikes a balance between the

number of passes over the data and the number of

itemsets that are measured in a pass. If we measure

a large number of itemsets in a pass and many of them

turn out to be small, we have wasted measurement

effort. Conversely, if we measure a small number of
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itemsets in a pass and many of them turn out to be

large, then we may make unnecessary passes.

It uses pruning techniques to avoid measuring certain

itemsets, while guaranteeing completeness. These are

the itemsets that the algorithm can prove will not

turn out to be large. There are two such pruning

techniques. The first one, called the “remaining tuple

optimization”, uses the current scan position and

some counts to prune itemsets as soon as they are

generated. This technique also establishes, while a

pass is in progress, that some of the itemsets being

measured will eventually turn out to be large and

prunes them out. The other technique, called the

“pruning function optimization”, synthesizes pruning

functions in a pass to use them in the next pass.

These pruning functions can prune out itemsets aa

soon as they are generated.

It incorporates buffer management to handle the fact

that all the itemsets that need to be measured in

a pass may not fit in memory, even after pruning.

When memory fills up, certain itemsets are deleted

and measured in the next pass in such a way that the

completeness is maintained; there is no redundancy

in the sense that no itemset is completely measured

more than once; and there is guaranteed progress and

the algorithm terminates.

We tested the effectiveness of our algorithm by ap-

plying it to sales data obtained from a large retailing

company. For this data set, the algorithm exhibited ex-

cellent performance. The estimation procedure exhib-

ited high accuracy and the pruning techniques were able

to prune out a very large fraction of itemsets without

measuring them.

The work reported in this paper has been done in

the context of the Quest project [1] at the IBM Al-

maden Research Center. In Quest, we are exploring the

various aspects of the database mining problem. Be-

sides the problem of discovering association rules, some

other problems that we have looked into include the en-

hancement of the database capability with classification

queries [2] and queries over large sequences. We believe

that database mining is an important new application

area for databases, combining commercial interest with

intriguing research questions.
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