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Abstract 

The problem of discovering association rules has re- 
ceived considerable research attention and several fast 
algorithms for mining association rules have been de- 
veloped. In practice, users are often interested in a 
subset of association rules. For example, they may 
only want rules that contain a specific item or rules 
that contain children of a specific item in a hierar- 
chy. While such constraints can be applied as a post- 
processing step, integrating them into the mining algo- 
rithm can dramatically reduce the execution time. We 
consider the problem of integrating constraints that 
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of items into the association discovery algorithm. We 
present three integrated algorithms for mining asso- 
ciation rules with item constraints and discuss their 
tradeoffs. 

1. Introduction 
The problem of discovering association rules was intro- 
duced in (Agrawal, Imielinski, & Swami 1993). Given 
a set of transactions, where each transaction is a set 
of literals (called items), an association rule is an ex- 
pression of the form X j Y, where X and Y are sets 
of items. The intuitive meaning of such a rule is that 
transactions of the database which contain X tend to 
contain Y. An example of an association rule is: “30% 
..c&"",",A.:,,, CL-L ,.-..c‘.:.. I.,.-, "l^, ,.,-A..:- rl:..--,,. 
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2% of all transactions contain both these items”. Here 
30% is called the confidence of the rule, and 2% the 
support of the rule. Both the left hand side and right 
hand side of the rule can be sets of items. The prob- 
lem is to find all association rules that satisfy user- 
specified minimum support and minimum confidence 
constraints. Appiications inciude discovering afllnities 
for market basket analysis and cross-marketing, cata, 
log design, loss-leader analysis, store layout and cus- 
tomer segmentation based on buying patterns. See 
(Nearhos, Rothman, & Viveros 1996) for a case study 
of an application in health insurance, and (Ali, Manga- 
naris, & Srikant 1997) for case studies of applications in 
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predicting telecommunications order failures and med- 
ical test results. There has been considerable work on 
developing fast algorithms for mining association rules, 
inciuding (Agrawai et ai. i%Sj (Savasere, Omiecinski, 
& Navathe 1995) (T oivonen 1996) (Agrawal & Shafer 
1996) (Han, Karypis, & Kumar 1997). 

Taxonomies (is-~ hierarchies) over the items are of- 
ten available. An example of a taxonomy is shown 
in Figure 1. This taxonomy says that Jacket is-a, 
Outerwear, Ski Pants is-a Outerwear, Outerwear is- 
a Clothes, etc. When taxonomies are present, users 
are usually interested in generating rules that span dif- 
ferent levels of the taxonomy. For example, we may 
infer a rule that people who buy Outerwear tend to 
buy Hiking Boots from the fact that people bought 
Jackets with Hiking Boots and Ski Pants with Hiking 
Boots. This generalization of association rules and al- 
gorithms for finding such rules are described in (Srikant 
Pr A.-wcmv,l 1 aOK\ IUs., Rr lib 1 NIti\ Ix, n.~LW”“CUI &VU”/ \Im&U uu au *vu”,’ 

In practice, users are often interested only in a subset 
of associations, for instance, those containing at least 
one item from a user-defined subset of items. When 
taxonomies are present, this set of items may be speci- 
fied using the taxonomy, e.g. all descendants of a given 
item. While the output of current algorithms can be 
filtered out in a post-processing step, it is much more 
efficient to incorporate such constraints into the associ- 
ations discovery aigorithm. In this paper, we consider 
constraints that are boolean expressions over the pres- 
ence or absence of items in the rules. When taxonomies 
are present, we allow the elements of the boolean ex- 
pression to be of the form ancestors(item) or descen- 

Clothes Footwear 

Outerwear ShirtS Shoes Hiking Boots 

J\ 
Jackets ski pants 
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dants(item) rather than just a single item. For exam- 
ple, 

(Jacket A Shoes) V (d escendants(Clothes) A 
7 ancestors(Hiking Boots)) 

expresses the constraint that we want any rules that 
either (a) contain both Jackets and Shoes, or (b) con- 
tain Clothes or any descendants of clothes and do not 
contain Hiking Boots or Footwear. 

Paper Organization We give a formal description 
of the problem in Section 2. Next, we review the Apri- 
ori algorithm (Agrawal et al. 1996) for mining associ- 
ation rules in Section 3. We use this algorithm as the 
basis for presenting the three integrated algorithms for 
mining associations with item constraints in Section 4. 
However, our techniques apply to other algorithms that 
use apriori candidate generation, including the recently 
published (Toivonen 1996). We discuss the tradeoffs 
between the algorithms in Section 5, and conclude with 
a summary in Section 6. 

‘I: Prnhlom S;lta+emtan+ I. .a s”vLuILa UUU”UI~~“~LY 
Let C = {Zr,ls, . . . , Zm} be a set of literals, called items. 
Let B be a directed acyclic graph on the literals. An 
edge in B represents an is-a relationship, and B repre- 
sents a set of taxonomies. If there is an edge in &? from 
p to c, we call p a parent of c and c a child of p (p rep- 
resents a generalization of c.) We call x an ancestor of 
y (and y a descendant of Z) if there is a directed path 
from x to y in 9. 

Let D be a set of transactions, where each transac- 
tion T is a set of items such that T C ,C. We say that 
a transaction T supports an item x E .C if a is in T 
or x is an ancestor of some item in T. We say that a 
transaction T supports an itemset X E L if T supports 
every item in the set X. 

A generalized association rule is an implication of 
the form X =+ Y, where X c ,& Y c l, X rl Y = 0.’ 
The rule X j Y holds in the transaction set ‘D with 
confidence c if c% of transactions in D that support X 
also support Y. The rule X + Y has support s in the 
transaction set ‘D if s% of transactions in D support 

_ XUY. 
Let B be a boolean expression over .L. We as- 

sume without loss of generality that a is in disjunc- 
the normal form (Dm).2 That is, 23 is of the form 
D1 vD~V.. .VD,, where each disjunct Di is of the form 
ai1 A Cti2 A . . . A cr;,;. When there are no taxonomies 
present, each element aij is either lij or ‘lij for some 
lij E .C. When a taxonomy B is present, aij &n also 
be ancestor(&), descendant(&), 1 ancestor(Zij), or 

‘Usually, we also impose the condition that no item in 
Y should be an ancestor oE any item in X. Such a rule 
would have the same support and confidence as the rule 
without the ancestor in Y, and is hence redundant. 

‘Any boolean expression can be converted to a DNF 
expression. 

7 descendant(Zij). There is no bound on the num- 
ber of ancestors or descendants that can be included. 
To evaluate S, we implicitly replace descendant(lij) 
by lij V I; V 1:: V . . .) and 1 descendant(lij) by 
~(lijVl~$fl~$V.. .), where l!. l!‘. . . . are the descendants 
Of lij. e perform a simla LrZperation for ancestor. *I 
To evaluate a over a rule X + Y, we consider all items 
that appear in X + Y to have a value true in a and 
all other items to have a value false. 

Given a set of transactions D, a set of taxonomies 
B and a boolean expression a, the problem of mining 
association rules with item constraints is to discover all 
rules that satisfy f? and have support and confidence 
greater than or equal to the user-specified minimum 
support and minimum confidence respectively. 

3. Review of Apriori Algorithm 
The problem of mining association rules can be decom- 
posed into two subproblems: 
l Find all combinations of items whose support is 

greater than minimum support. Call those combi- 
nations frequent itemsets. 

l Use the frequent itemsets to generate the desired 
rules. The general idea is that if, say, ABCD and 
AB are frequent itemsets, then we can determine if 
the rule AB 3 CD holds by computing the ratio r = 
support(ABCD)/support(AB). The rule holds only 
if r > minimum confidence. Note that the rule will 
have minimum support because ABCD is frequent. 
We now present the Apriori algorithm for finding all 

frequent itemsets (Agrawal et al. 1996). We will use 
this algorithm as the basis for our presentation. Let 
k-itemset denote an itemset having k items. Let Lk 
represent the set of frequent k-itemsets, and ck the 
set of candidate k-itemsets (potentially frequent item- 
sets). The algorithm makes multiple passes over the 
data. Each pass consists of two phases. First; the 
set of all frequent (k- 1)-itemsets, &k-r, found in the 
(k-1)th pass, is used to generate the candidate itemsets 
Ck. The candidate generation procedure ensures that 
ck is a superset of the set of all frequent k-itemsets. 
The algorithm now scans the data. For each record, it 
determines which of the candidates in ck are contained 
in the record using a hash-tree data structure and in- 
crements their support count. At the end of the pass, 
Ck is examined to determine which of the candidates 
are frequent, yielding La. The algorithm terminates 
when Lk becomes empty. 

Candidate Generation Given .I&, the set of all fre- 
quent k-itemsets, the candidate generation procedure 
returns a superset of the set of all frequent (k + l)- 
itemsets. We assume that the items in an itemset are 
lexicographically ordered. The intuition behind this 
procedure is that all subsets of a frequent itemset are 
also frequent. The function works as follows. First, in 
the join step, .& is joined with itself: 
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insert into ck+l 
select p.iteml,p.itemz, . . . ,p.itemk, q.itemk 
from Lk P, Lk Q 
where p.itemr = q.itemr, . , . ,p.itemk-1 = q.itemk-1, 

p.itemk < q.itemk; 

Next, in the prune step, all itemsets c E &+I, where 
some k-subset of c is not in Lk, are deleted. A proof 
of correctness of the candidate generation procedure is 
given in (Agrawal et al. 1996). 

We illustrate the above steps with an example. Let 
La be ((12 3}, {12 4}, (13 4}, (13 51, {2 3 4)). After 
the join step, C4 will be ((1 2 3 4}, (1 3 4 5)). The 
prune step will delete the itemset (1 3 4 5) because 
the subset (1 4 5) is not in L3. We will then be left 
with only (1 2 3 4) in Cd. 

Notice that this procedure is no longer complete 
when item constraints are present: some candidates 
that are frequent will not be generated. For example, 
let the item constraint be that we want rules that con- 
tain the item 2, and let 1;s = { (1 2}, (2 3} }. For 
the Apriori join step to generate {l 2 3) as a candi- 
date, both {l 2) and {1 31 must be present - but (1 
3) does not contain 2 and will not be counted in the 
second pass. We discuss various algorithms for candi- 
date generation in the presence of constraints in the 
next section. 

4. Algorithms 
We first present the algorithms without considering 
taxonomies over the items in Sections 4.1 and 4.2, and 
then discuss taxonomies in Section 4.3. We split the 
problem into three phases: 
l Phase 1 Find all frequent itemsets (itemsets whose 

support is greater than minimum support) that sat- 
isfy the boolean expression B. Recall that there are 
two types of operations used for this problem: can- 
didate generation and counting support. The tech- 
niques for counting the support of candidates remain 
unchanged. However, as mentioned above, the apri- 
ori candidate generation procedure will no longer 
generate all the potentially frequent itemsets as can- 
didates when item constraints are present. 
We consider three different approaches to this prob- 
lem. The first two approaches, “MultipleJoins” and 
“Reorder” , share the following approach (Section 
4.1): 

1. Generate a set of selected items S such that any 
itemset that satisfies B will contain at least one 
selected item. 

2. Modify the candidate generation procedure to 
only count candidates that contain selected items. 

3. Discard frequent itemsets that do not satisfy B. 
The third approach, “Direct” directly uses the 
boolean expression B to modify the candidate gener- 
ation procedure so that only candidates that satisfy 
B are counted (Section 4.2). 

Phase 2 To generate rules from these frequent item- 
sets, we also need to find the support of all subsets of 
frequent itemsets that do not satisfy f?. Recall that 
to generate a rule AI3 j CD, we need the support 
of AB to find the confidence of the rule. However, 
AB may not satisfy B and hence may not have been 
counted in Phase 1. So we generate all subsets of the 
frequent itemsets found in Phase 1, and then make 
an extra pass over the dataset to count the support 
of those subsets that are not present in the output 
of Phase 1. 
Phase 3 Generate rules from the frequent itemsets 
found in Phase 1, using the frequent itemsets found 
in Phases 1 and 2 to compute confidences, as in the 
Apriori algorithm. 
We discuss next the techniques for finding frequent 

itemsets that satisfy Z? (Phase 1). The algorithms use 
the notation in Figure 2. 

4.1 Approaches using Selected Items 
Generating Selected Items Recall the boolean 
expression Z? = D1 V D2 V . . . V D,,,,, where Di = 
ail A Q~Z A u . e A ain; and each element oij is either 
lij or dij, for some Zij E C. We want to generate a set 
of items S such that any itemset that satisfies Z? will 
contain at least one item from S. For example, let the 
setofitemsl={l,2,3,4,5}.ConsiderB=(lA2)V3. 
The sets (1, 3}, {2, 3) and (1, 2, 3, 4, 5) all have the 
property that any (non-empty) itemset that satisfies B 
will contain an item from this set. If B = (1 A 2) V 73, 
the set (1, 2, 4, 5) has this property. Note that the 
inverse does not hold: there are many itemsets that 
contain an item from S but do not satisfy B. 

For a given expression B, there may be many differ- 
ent sets S such that any itemset that satisfies B con- 
tains an item from S. We would like to choose a set of 
items for S so that the sum of the supports of items in 
S is minimized. The intuition is that the sum of the 
supports of the items is correlated with the sum of the 
supports of the frequent itemsets that contain these 
items, which is correlated with the execution time. 

We now show that we can generate S by choosing 
one element oij from each disjunct 0; in B, and adding 
either lij or all the elements in .C - {Zij} to S, based 
on .whether oij is lij or 7li.j respectively. We define an 
element ffij = Zij in Z? to be “present” in S if lij E S 
and an element aij = ‘Zij to be “present” if all the 
items in ,C - (lij) are in S. Then: 

Lemma 1 Let S be a set of items such that 

V Da E B 3 aij E Di [(“ii = lij A lij E S) V 
(Ctij = ‘ljj A (L - {ljj)) C S)]. 

Then any (non-empty) itemset that satisfies B vlill con- 
tain an item in S. 
Proof: Let X be an itemset that satisfies Z?. Since X 
satisfies B, there exists some Di E B that is true for X. 
Prom the lemma statement, there exists some aij E 0; 
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8 =DiVD2V.< . V D, (m disjuncts) 
Di = ai1 A ai A * . . A ar;,, (ni conjuncts in Di) 
Qij is either lij 01 +j, for some item lij E C 

S Set of items such that any itemset that satisfies a contains an item from S 
selected itemset An itemset that contains an item in S 

k-itemset An itemset with k items. 
LL Set of frequent k-itemsets (those with minimum support) that contain an item in S 
I;: Set of frequent k-itemsets (those with minimum support) that satisfy a 
C’i Set of candidate k-itemsets (potentially frequent itemsets) that contain an item in S 
Ci Set of candidate k-itemsets [potentially frequent itemsets) that satisfy U 

F Set of all frequent items 

Figure 2: Notation for Algorithms 

such that either oij = Eij and lij E S or aij = 4ij and 
(C - {lij)) 2 S. If the former, we are done: since Di 
is true for X! lij E X. If the latter, X must contain 
some item in m ,C - (lij} since X does not contain l+j . -* . and II is not an empty set. Since (L - i&j)) c S, X 
contains an item from S. 0 

A naive optimal algorithm for computing the set of 
elements in S such that support(S) is minimum would 
require npzn=, ni time, where ni is the number of con- 
juncts in the disjunct Di. An alternative is the fol- 
lowing greedy algorithm which requires Cz”=, ni time 
and is optimal if no literal is present more than once 
in 8, we define s u f&j to be s u 1”:j if o.;j = l.:j and 
S U (C - {lij]) if OZij = +j. 
s := 0; 
for i := 1 tomdo begin //a= DiVDzV...VD,,, 

for j := 1 to n; do // Di = CY~I A a;:;2 A . . . A mini 
COSt(&ij) := support(S U &j) - support(S); 

Let CQ, be the o+ with the minimum cost. 
S := SUCK&; - 

end 

Consider a boolean expression Z? where the same lit- 
eral is present in different disjuncts. For example, let 
23 = (1 A 2) V (1 A 3). Assume 1 has higher support 
than 2 or 3. Then the greedy algorithm will generate 
S = {2,3) whereas S = (11 is optimal. A partial fix for 
this problem would be to add the following check. For 
---L ,:L..---I I LL-1. :- ------A. t- -1:rr-.--1. J:-:..--L- -_- t?tNXl IIbtT~~ lij blltblr IS ~LtXWZUb 111 UllltXBIlb UlSJllIlCbS, Wt: 
add lij to S and remove any redundant elements from 
S, if such an operation would decrease the support of 
S. If there are no overlapping duplicates (two dupli- 
cated literals in the same disjunct), this will result in 
the optimal set of items. When there are overlapping 
duplicates, e.g, (1 A2) V (1 A3) V (3 A4), the algorithm 
may choose {l, 4) even if {2,3) is optimal. 

Next, we consider the problem of generating only 
those candidates that contain an item in S. 

Candidate Generation Given Li, the set of all se- 
lected frequent k-itemsets, the candidate generation 
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procedure must return a superset of the set of all se- 
lected frequent (k+l)-itemsets. 

Recall that unlike in the Apriori algorithm, not all 
subsets of candidates m CL,, will be in Li. While 
aii subsets of a frequent seiected itemset are frequent, 
they may not be selected itemsets. Hence the join pro- 
cedure of the Apriori algorithm will not generate all 
the candidates. 

To generate C’s we simply take Li x F, where F is 
the set of all frequent items. For subsequent passes, 
one solution would be to join any two elements of Li 
that have k - 1 items in common. For any selected k- 
itemset where k > 2, there will be at least 2 subsets 
with a selected item: hence this join will generate all 
the candidates. However, each k + l-candidate may 
have up to k frequent selected k-subsets and k(k- 1) 
pairs of frequent k-subsets with k - 1 common items. 
Hence this solution can be quite expensive if there are 
a large number of itemsets in I;;. 

We now present two more efficient approaches. 

Algorithm MultipleJoins The following lemma 
presents the intuition behind the algorithm. The item- 
set X in the lemma corresponds to a candidate that we 
need to generate. Recall that the items in an itemset 
are lexicographically ordered. 

Lemma 2 Let X be a frequent (k+l)-itemset, k > 2. 
A. If X has a selected item in the first k-l items, 

Al-- AL--- -2-L + _..- r- --_.- -1 --l--L-J L -..L--l- -z v IJKrc U~tvz exzs1. Lw” pxpb~‘L” b~Lecl.eu li-Bu”sel.s “j A. 
with the same first k-l items as X. 

B. If X has a selected item in the last min(k-1, 2) 
items, then there exist two frequent selected k-subsets 
of X with the same last k-l items as X. 

C. If X is a 34temset and the second item is a se- 
lected item, then there exist two frequent selected ,2- 
subsets of X, Y and 2, such that the last item of Y 
is the second item of X and the first item of Z is the 
second item of X. 

For example, consider the frequent 4-itemset {l 2 3 
4). If either 1 or 2 is selected, {l 2 3) and {l 2 4) are 



two subsets with the same first 2 items. If either 3 or 
4 is selected, {2 3 4) and (1 3 4) are two subsets with 
the same last 2 items. For a frequent 3-itemset {l 2 3) 
where 2 is the only selected item, {l 2) and (2 3) are 
the only two frequent selected subsets. 

Generating an efficient join algorithm is now 
straightforward: Joins 1 through 3 below correspond 
directly to the three cases in the lemma. Consider a 
candidate (k+l)-itemset X, k 1 2. In the first case, 
Join 1 below will generate X. (Join 1 is similar to 
the join step of the Apriori algorithm, except that it is 
performed on a subset of the itemsets in L;.) In the 
second case, Join 2 will generate X. When k 2 3, we 
have covered all possible locations for a selected item 
in X. But when k = 2, we also need Join 3 for the 
case where the selected item in X is the second item. 
Figure 3 illustrates this algorithm for S = (2, 4) and 
an Li with 4 itemsets. 

// Join 1 
Li’ := Cp E Lg 1 one of the first k-l items of p is in S} 
insert into Ci,, 
select p.iteml,p.itemz, . . . ,p.iten&, q.itemr, 
from Li’ p, Li’ q 
where (p.iteml = q.iteml, . . . , p.itemk-1 = q.itemL1, 

p.itemk < q.itemk) 

// Join 2 
Lf’ := (p E Li 1 one of the last min(k-1,2) items 

ofpisins) 
insert into Ci,, 
SdeCt p.iteml, q.iteml, q.item2, . . . , q.itemk 
from L;I.” p, Li” q 
where (p.iteml < q.iteml, p.item2 = q.itemz, . . . , 

p.itemk = q.itemk) 
// Join 3 (k = 2) 
insert into Ci 
select q.iteml, p.iteml, p.itemz 
from L$’ p, Lit’ q 
where (q.itemz = p.iteml) and 

(q.iteml, p.itemz are not selected); 

Note that these three joins do not generate any du- 
plicate candidates. The first k - 1 items of any two 
candidate resulting from Joins 1 and 2 are different. 
When k = 2, the first and last items of candidates 
resulting from Join 3 are not selected, while the first 
item is selected for candidates resulting from Join 1 
and the last item is selected for candidates resulting 
from Join 1. Hence the results of Join 3 do not overlap 
with either Join 1 or Join 2. 

In the prune step, we drop candidates with a selected 
subset that is not present in 1;;. 

Algorithm Reorder As before, we generate Ci by 
taking Li x F. But we use the following lemma to 
simplify the join step. 

Lemma 3 If the ordering of items in itemsets is such 
that all items in S precede aZE items not in S, the join 

Ljl’ L;” Join 1 Join 2 Join 3 
123 

(13 4) [l 2 51 

Figure 3: MultipleJoins Example 

Figure 4: Reorder Example 

procedure of the Apriori algorithm applied to Li will 
generate a superset of Li+,. 

The intuition behind this lemma is that the first item 
of any frequent selected itemset is always a selected 
item. Hence for any (k + 1)-candidate X, there exist 
two frequent selected k-subsets of X with the same first 
k-l items as X. Figure 4 shows the same example as 
shown in Figure 3, but with the items in S, 2 and 4, 
ordered before the other items, and with the Apriori 
join step. 

Hence instead of using the lexicographic ordering of 
items in an itemset, we impose the following ordering. 
All items in S precede all items not in S; the lexico- 
graphic ordering is used when two items are both in S 
or both not in S. An efficient implementation of an as- 
sociation rule algorithm would map strings to integers, 
rather than keep them as strings in the internal data 
structures. This mapping can be re-ordered so that 
all the frequent selected items get lower numbers than 
other items. After all the frequent itemsets have been 
found, the strings can be re-mapped to their original 
values. One drawback of this approach is that this re- 
ordering has to be done at several points in the code, 
including the mapping from strings to integers and the 
data structures that represent the taxonomies. 

4.2 Algorithm Direct 
Instead of first generating a set of selected items S 
from a, finding all frequent itemsets that contain one 
or more items from S and then applying l3 to filter the 
frequent itemsets, we can directly use 23 in the candi- 
date generation procedure. We first make a pass over 
the data to find the set of the I”requent items F. Lb, 
is now the set of those frequent 1-itemsets that sat- 
isfy 23. The intuition behind the candidate generation 
procedure is given in the following lemma. 

Lemma 4 For any (k+l)-itemset X which satisfies 
I3, there exists at least one k-subset that satisfies l3 
unless each Di which is true on X has exactly k +l 
non-negated elements. 
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We generate CL+1 from .f!$ in 4 steps: 

CL+1 := L; x F; 

Delete all candidates in CL+1 that do not not satisfy 
a; 
Delete all candidates in Ct+I with a &subset that 
satisfies B but does not have minimum support. 

For each disjunct D; = ail A CQ A . . . A 
a+ in B with exactly Ic + 1 non-negated el- 
ements aipl, epa, . . . , ffiPk+lr add the itemset 
{oiplaip, . . . , aipk+l} to CL+1 if all the aipjs are fre- 
quent , 
For example, let L = {1,2,3,4,5) and B = (1 A 2) V 

(4 A 15)). Assume all the items are frequent. Then 
Lt = ((4)). To generate C$, we first take Li x F to 
get ( {l 4}, (2 41, {3 41, (4 5) >. Since (4 5) does 
not satisfy B, it is dropped. Step 3 does not change Ci 
since all l-subsets that satisfy B are frequent. Finally, 
we add (1 2) to Ci to get {{12}, (141, (2 4}, {3 4)). 

4.3 Taxonomies 
The enhancements to the Apriori algorithm for inte- 
grating item constraints apply directly to the algo- 
rithms for mining association rules with taxonomies 
given in (Srikant & Agrawall995). We discuss the Cu- 
mulate algorithm here. 3 This algorithm adds all ances- 
tors of each item in the transaction to the transaction, 
and then runs the Apriori algorithm over these “ex- 
tended transactions”. For example, using the taxon- 
omy in Figure 1, a transaction {Jackets, Shoes} would 
be replaced with {Jackets, Outerwear, Clothes, Shoes, 
Footwear]. Cumulate also performs several optimiza- 
tion, including adding only ancestors which are present 
in one or more candidates to the extended transaction 
and not counting any itemset which includes both an 
item and its ancestor. 

Since the basic structure and operations of Cumu- 
late are similar to those of Apriori, we almost get 
taxonomies for “free”. Generating the set of selected 
items, S is more expensive since for elements in B that 
include an ancestor or descendant function, we also 
need to find the support of the ancestors or descen- 
dants. Checking whether an itemset satisfies B is also 
more expensive since we may need to traverse the hi- 
erarchy to find whether one item is an ancestor of an- 
other. 

Cumulate does not count any candidates with both 
an item and its ancestor since the support of such an 
itemset would be the same as the support of the item- 
set without the ancestor. Cumulate only checks for 
such candidates during the second pass (candidates of 
size 2). For subsequent passes, the apriori candidate 
generation procedure ensures that no candidate that 

‘The other fast algorithm in (Srikant & Agrawal 1995), 
EstMerge, is similar to Cumulate, but also uses sampling 
to decrease the number of candidates that are counted. 
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contains both an item and its ancestor will be gen- 
erated. For example, an itemset {Jacket Outerwear 
Shoes] would not be generated in C’s because {Jacket 
Outerwear} would have been deleted from L2. How- 
ever, this property does not hold when item constraints 
are specified. In this case, we need to check each can- 
didate (in every pass) to ensure that there are no can- 
didates that contain both an item and its ancestor. 

5. Tradeoffs 
Reorder and MultipleJoins will have similar perfor- 
mance since they count exactly the same set of can- 
didates. Reorder can be a little faster during the 
prune step of the candidate generation, since check- 
ing whether an h-subset contains a selected item takes 
O(1) time for Reorder versus O(lc) time for Multiple- 
Joins. However, if most itemsets are small, this differ- 
ence in time will not be significant. Execution times 
are typically dominated by the time to count support 
of candidates rather than candidate generation. Hence 
the slight differences in performance between Reorder 
and MultipleJoins are not enough to justify choosing 
one over the other purely on performance grounds. The 
choice is to be made on whichever one is easier to im- 
plement . 

Direct has quite different properties than Reorder 
and MultipleJoins. We illustrate the tradeoffs be- 
tween Reorder/MultipleJoins and Direct with an ex- 
ample. We use “Reorder” to characterize both Re- 
order and MultipleJoins in the rest of this comparison. 
Let B = 1 A 2 and S = (1). Assume the 1-itemsets 
(1) through { 100) are frequent, the 2-itemsets Cl 2) 
through (1 5) are frequent, and no 3-itemsets are fre- 
quent. Reorder will count the ninety-nine 2-itemsets {l 
2) through (1 loo}, find that (1. 2) through (1 53 are 
frequent, count the six 3-itemsets (1 2 3) through {l 
4 53, and stop. Direct will count {l 2) and the ninety- 
eight 3-itemsets (1 2 3) through (1 2 100). Reorder 
counts a total of 101 itemsets versus 99 for Direct, but 
most of those itemsets are 2-itemsets versus 3-itemsets 
for Direct. 

If the minimum support was lower and { 12) through 
(1 20) were frequent, Reorder will count an additional 
165 (19 x 18/2 - 6) candidates in the third pass. Re- 
order can prune more candidates than Direct in the 
fourth and later passes since it has more information 
about which 3-itemsets are frequent. For example, Re- 
order can prune the candidate (1 2 3 4) if {l 3 4) 
was not frequent, whereas Direct never counted (1 
3 43. On the other hand, Direct will only count 4- 
candidate4 that qatixfv t3 while Reorder will count anv --_--_-21-L ---11 L-v--d _ ..____ - -__-_--_ ..___ -----J ---J 
4-candidates that include 1. 

If B were “lA2A3” rather than “lA2”, the gap in the 
number of candidates widens a little further. Through 
the fourth pass, Direct will count 98 candidates: (1 2 
33 and (12 3 4) through {12 3 1001. For the minimum 
support level in the previous paragraph, Reorder will 
count 99 candidates in the second pass, 171 candidates 



in the third pass, and if {l 2 33 through (1 5 63 were 
frequent candidates, 10 candidates in the fourth pass, 
.c..^- L”I a total of 181 candidates. 

Direct will not always count fewer candidates than 
Reorder. Let a be “( 1 A 2 A 3) V (1 A 4 A 5)” and S be 
Cl}. Let items 1 through 100, as well as {l 2 33, (1 4 
5) and their subsets be the only frequent sets. Then 
Reorder will count around a hundred candidates while 
Direct will count around two hundred. 

In general, we expect Direct to count fewer candi- 
dates than Reorder at low minimumsupports. But the 
candidate generation process will be significantly more 
expensive for Direct, since each subset must be checked 
a@ainst a footentiallv complex) boolean expression in -a----- \~. - ---.-~~~~* 
the prune phase, Hence Direct may be better at lower 
minimumsupports or larger datasets, and Reorder for 
higher minimum supports or smaller datasets. Fur- 
ther work is needed to analytically characterize these 
trade-offs and empirically verify them. 

6. Conclusions 
We considered the problem of discovering association 
rules in the presence of constraints that are boolean 
expressions over the presence of absence of items. Such 
----l--:-L- -I,---- ______ L- __^^ :,L Al.- -..L,,& ,c ,..,,., cons6rainbs avow UYBI‘B LU qxtiuy cut: JUUS~ VL IUI=~ 
that they are interested in. While such constraints can 
be applied as a post-processing step, integrating them 
into the mining algorithm can dramatically reduce the 
execution time. We presented three such integrated 
algorithm, and discussed the tradeoffs between them. 
Empirical evaluation of the MultipleJoins algorithm on 
three real-life datasets showed that integrating item 
constraints can speed up the algorithm by a factor of 5 
to 20 for item constraints with selectivity between 0.1 
and 0.01. 

Although we restricted our discussion to the Apriori 
algorithm, these ideas apply to other algorithms that 
use apriori candidate generation, including the recent 
(Toivonen 1996). The main idea in (Toivonen 1996) is 
to first run Apriori on a sample of the data to find item- 
sets that are expected to be frequent, or all of whose 
subsets are are expected to be frequent. (We also need 
to count the latter to ensure that no frequent itemsets 
were missed.) These itemsets are then counted over 
the complete dataset. Our ideas can be directly ap- 
plied to the first part of the algorithm: those itemsets 
counted by Reorder or Direct over the sample would be 
counted over the entire dataset. For candidates that 
were not frequent in the sample but were frequent in 
the datasets, only those extensions of such candidates 
that satisfied those constraints would be counted in the 
additional pass. 
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