
Mining Assumptions for Synthesis

Wenchao Li
UC Berkeley

wenchao@berkeley.edu

Lili Dworkin
Haverford College

ldworkin@haverford.edu

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

Abstract—Automatic synthesis of a reactive system from
its formal specification is appealing but often difficult due
to the tedium of writing auxiliary specifications, especially
on the environment. In several instances, specifications are
found unrealizable as a result of insufficient environmental
assumptions. We present an approach to this problem for
synthesis from LTL based on specification mining. For a
satisfiable but unrealizable specification, a counter-strategy
can be computed from the synthesis game as a witness to
unrealizability. Our algorithm mines environment assumptions
from this counter-strategy as well as user scenarios if they
are provided. We argue that our approach is a natural way to
discover the designer’s intent. We demonstrate the effectiveness
of our approach on examples from the domains of digital
circuits and robotic controllers.

I. INTRODUCTION

Automatic synthesis of a reactive system from high-
level specifications is a very attractive proposition. A user
describes the target system using a high-level language, such
as linear temporal logic (LTL), and the tool will produce
a system that automatically satisifies the specification [20],
[26]. Such a synthesis tool can enable the human user
to specify core design properties while freeing her of the
tedious low-level programming tasks. However, synthesis is
challenging on multiple dimensions: (i) it requires good-
quality specifications on the system; (ii) it requires good
models (specifications) of the environment, and (iii) the un-
derlying decision problems often have very high complexity.
Industrial experience indicates that these specifications are
hard to get right [14]. In this paper, we address the problem
of inadequate environment specifications for synthesis from
LTL.

A specification is unsatisfiable if there does not exist any
input and output sequence that can accomplish the objective
of the specification. On the other hand, a specification is
unrealizable if there is no implementation that can produce
outputs to satisfy the specification given all possible inputs
that can be generated by the environment. Unsatisfiability is
a stronger notion of a specification being unsynthesizable
than unrealizabilty. The problem that we are tackling in
this paper is the case when a specification is satisfiable but
unrealizable.

This class of specifications has been studied in pre-
vious work. For example, the requirements analysis tool

RATSY [7] is an interactive tool that can analyze un-
realizability for Generalized Reactivity(1) specifications
(GR(1)) [25]. The tool uses a game-theoretic approach by
taking on the role of the environment while the user takes
on the role of the system. The game proceeds by the tool
providing inputs to the system and the user determining the
outputs as an attempt to satisfy the specification. The move
of the tool (and the environment) is a result of the finite-
state counter-strategy computed for the environment so as
to prevent the system from satisfying the specification.

This paper builds upon the above work, using the counter-
strategy to further suggest solutions to make the specifi-
cation realizable. In particular, we use a template-based
specification mining approach to find LTL properties that are
satisfied by the counter-strategy. By asserting the negation
of these mined properties as an assumption of the original
specification, we effectively rule out such moves by the en-
vironment. We iterate this process until either we cannot find
a specification in our library of templates that is satisfied by
the counter-strategy or the resulting specification becomes
realizable.

Our work can be viewed as a debugging approach to
unrealizability. Unrealizability typically arises either from an
under-constrained environment or from an over-constrained
system. We focus on debugging environmental assumptions
rather than system guarantees; note however, that these two
are complementary, and the proposed approach can easily
be adapted to generate guarantees as well. Könighofer et
al. [23] identify guarantees that can be weakened or signals
that can be less restricted in order to obtain a realizable
specification. Our focus is on generating additional envi-
ronment assumptions, since it is the more tricky problem in
practice — it is often easier to miss an environment behavior
than to miss a system specification because the former
is not inherently part of the design and seldom formally
defined. Particularly, we want additional assumptions that
are tailored to the type of synthesis (GR(1) in this case
here) and the existing specification. As also noted in [23],
the Boolean formula false is also a valid assumption to
resolve unrealizability but a trivial and uninteresting one.
We propose a template-based specification mining approach
to address this problem. By imposing a particular structure
on the form of specifications (using templates), we reduce
the possibility of generating uninteresting assumptions.

Figure 1. Flow of Assumption Mining

Figure 1 shows the main flow of our method. Our spec-
ification mining algorithm takes in as input a library of
specification templates, a set of user scenarios (desired I/O
traces of the target implementation), and a counter-strategy
state machine generated from unrealizability analysis, and
produces as output a candidate assumption that can be added
to the existing specification to make it realizable.

One may argue in favor of an alternate approach where the
additional environment assumption is constructed directly
from the counter-strategy so that the resulting specification
is realizable. Chatterjee et al. [12] showed that in fact one
can construct such an assumption by analyzing the game
graph that is used to answer the realizability question. In
fact, the assumption synthesized (as a Büchi automaton) is
minimal in terms of the number of safety and fair edges
manipulated in the game graph during synthesis. However,
such a monolithic environment assumption (see, e.g., Fig.
3 in [12]) can be difficult for a human user to understand
even for correcting a simple specification. Moreover, the
Büchi automaton synthesized does not directly translate to a
LTL description. In addition, the behavior of the weakest as-
sumption does not neccessarily coincide with the designer’s
intent. We offer an alternative approach that is simpler from
the theoretical viewpoint but very useful in practice.

We make the following contributions in this paper.

• When LTL specifications are satisfiable but unrealiz-
able, we present a novel counter-strategy guided syn-
thesis approach based on specification mining that can
strengthen the environmental assumptions to make the
specifications realizable.

• We demonstrate the effectiveness of our approach with
synthesis examples in digital circuits and robotic con-
trollers.

The rest of the paper is organized as follows. Section II
surveys related work. We present basic terminology and
background information in Section III. The proposed tech-
nique is described in Section IV. Experimental results are
given in Section V and we conclude in Section VI.

II. RELATED WORK

Unrealizability can come from overconstrained system as-
sertions or insufficient environment assumptions. Our work
assumes that unrealizability is due to insufficient environ-
ment assumptions, and tackles this by generating additional
assumptions.

Cimatti et al. [13] formally define the notion of (minimal)
explanation for unrealizability using an unrealizability core,
which is the set of specifications responsible for unreal-
izabilty. In particular, they suggest using the removal of
guarantees as a way to explain and fix unrealizability. Our
approach can be viewed as orthogonal to theirs. We aim
to add environment assumptions to make the specification
realizable. We argue that this is also a natural way to
fix unrealizability. In fact, (in)formal descriptions of the
environment are often not available or far less accessible
than those of the system. The challenge here is finding the
right assumptions to add.

Counter-strategies have been used to explain the failure
in synthesizing a system that respects the specification, such
as in the context of Live Sequence Charts [9]. Könighofer
et al. [22] provide an explanation for LTL unrealizability
by computing a finite-state counter-strategy for the environ-
ment. The counter-strategy is further simplified by removing
specifications and variables that are not responsible for
unrealizability. A heuristic is also provided for computing
from the counter-strategy a counter-trace — a fixed infinite
input sequence that, regardless of what the system outputs,
will still ensure that the system specification will be violated.
The paper finally illustrates how to compute this counter-
strategy specifically for GR(1) specifications. Our work
builds upon this work, mining specifications from these
counter-strategies and counter-traces. Similar to this work,
we also focus our attention on GR(1) specifications.

Könighofer et al. [23] follow up on their previous work
with a model-based diagnosis technique that identifies com-
ponents (specification or variables) in the system guaran-
tees which are overconstrained. For GR(1) specifications,
the authors also show how to compute the realizable and
unrealizable core quickly using approximations. In our work,
we focus on analyzing the weakness in the environment
assumptions instead of the constraints in the system guaran-
tees. Moreover, we produce additional assumptions instead
of localizing the error.

The problem of correcting the assumption of an unreal-
izable LTL specification has also been studied in depth in
[12]. The authors construct an additional assumption that
constrains only the environment as weakly as possible, and
makes the resulting specification realizable. The approach
proceeds by first computing a safety assumption that re-
moves a minimal set of environment edges from the game
graph, and then computing a liveness assumption that puts
fairness on the remaining environment edges. Finding a

minimal set of fair edges was shown to be NP-hard. The
authors use probabilistic games to compute a locally minimal
fairness assumption and implemented their approach in the
tool GIST [11]. Their work can synthesize general environ-
ment assumptions (as an intersection of safety and liveness
assumptions [4]) for any LTL synthesis problem. Our work
provides a simpler but practical approach by restricting the
form of missing assumptions and uses specification mining
to identify a set of assumptions such that it restricts the
environment in a reasonable way to make the specification
realizable.

Previous work by Hagihara et al. [18] has also attempted
to extract environment constraints of simple forms to make
specifications strong satisfiable, where strong satisfiability
means that for all input sequences which are given in
advance, there exists an output sequence such that the speci-
fication is satisfied. Their method is based on deriving these
constraints from Büchi automata representing the specifica-
tions. Our method is different because we tackle realizability
directly instead of strong satisfiability. In addition, we use a
counter-strategy guided approach instead of the constructive
derivation used in this previous work.

The realizability problem for general LTL formulas has
been shown to be 2EXPTIME-complete [27]. This high
complexity of LTL synthesis has prohibited its wide-scale
adoption in actual practice. However, more recently, a sub-
class of LTL known as Generalized Reactivity(1) formulas
(GR(1)) has been shown to be very amenable to synthesis.
Piterman et al. [25] show that the realizability and synthesis
problem of GR(1) specifications can be solved efficiently in
polynomial time. Building on this result, real world problems
from several application domains have been approached
using synthesis from GR(1) specifications, such as planning
for autonomous vehicles in an urban environment [30].
Leveraging the expressiveness of GR(1) specifications and
its efficient synthesis algorithms, our paper focuses on the
mining of assumptions in the GR(1) class. However, our
template-based approach can also be extended to handle
more complicated specifications.

Our approach is motivated by the extensive work done
in the area of specification mining. The study of auto-
matically generating specifications goes back as early as
1974 [29]. Since then, many techniques have been proposed
and they seek to either mine specifications dynamically
from execution traces [16] or infer them directly from the
program through static analysis [5]. DAIKON [16] is one of
the earliest template-based specification mining tools that
generates single-state invariants or pre-/post-conditions in
programs. Our approach is similar in spirit but presents a
novel application of specification mining - the generation of
environment assumptions for LTL synthesis.

III. PRELIMINARIES

A. LTL Synthesis
1) Linear Temporal Logic: Given a finite set of proposi-

tional (Boolean) variables P , LTL formulas are constructed
as follows.

ψ ::= p | ¬ψ |ψ ∨ ψ |X ψ |ψU ψ

where p ∈ P is a propositional variable, X is the temporal
operator next and U is the temporal operator until. Other
temporal operators can be derived using these two temporal
operators and Boolean operators. Fψ = trueUψ. Gψ =
¬F¬ψ. We interpret LTL formulas over infinite words w ∈
(2P)ω . Then the language of a LTL formula ψ is the set
of infinite words that satisfy ψ, given by L(ψ) = {w ∈
(2P)ω |w |= ψ}. One classic example is the LTL formula
G (p → F q), which means every p must be followed by
some q in the future.

2) Finite-state Transducers: Given a set of atomic propo-
sitions P , we partition P into two disjoint sets I and
O that represent the set of input signals and the set of
output signals respectively. A Moore transducer is a tuple
M = (I,O, S, s0, δ, θ), where I = 2I is the input alphabet,
O = 2O is the output alphabet, S is the set of states, s0 ∈ S

is the initial state, δ : S × I → S is the transition function,
and θ : S → O is the state output function. A Mealy
transducer is similar, except that the state output funciton
is θ : S × I → O. Given a word w ∈ Iω , a run of
M is the infinite sequence π ∈ Sω of states such that
π0 = s0, and πi+1 = δ(πi, wi) for all i ≥ 0. The run
π on w produces an infinite word M(w) ∈ 2P such that
M(w)i = θ(πi) ∪ wi for all i ≥ 0. The language of M is
then the set L(M) = {M(w) |w ∈ Iω}.

3) Satisfiability and Realizability: A LTL formula ψ is
satisfiable if there exists an infinite word that satisfies ψ,
i.e. ∃w ∈ (2P)ω such that w |= ψ. A Moore transducer M
satisfies a LTL formula ψ if L(M) ⊆ L(ψ). We write this as
M |= ψ. Then realizability is the the problem of checking
whether there exists a Moore transducer M that satisfies the
LTL specification ψ.

B. Synthesis as a Game
A two-player deterministic game graph is a tuple G =

(Q,Q0, E) where Q = Q1∪Q2 can be split into two disjoint
sets of states. Q1 is the set of player 1 states, and Q2 is
the set of player 2 states. Q0 is the set of initial states.
E = Q×Q is the set of edges. The game is played by each
player taking turn to decide the successor state. If we are
currently at a state in Q1, player 1 decides the successor
state. Otherwise, player 2 decides the successor state.

A play of the game graph G is an infinite sequence of
states π = s0s1 . . . such that (qi, qi+1) ∈ E for all i. We
write Π as the set of plays. A strategy for player 1 is the
function α : Q∗ ×Q1 → Q that decides the successor state

given a finite sequence of states ending at a player 1 state.
Similary, we can define a strategy for player 2 using the
function β : Q∗ ×Q2 → Q. A strategy is memoryless if it
depends only on the current state of the play. For example,
a memoryless strategy for play-1 is α : Q1 → Q. Given
two strategies α and β, and a state q ∈ Q, the outcome is
the play starting at q and executed by α and β, denoted as
o(q, α, β).

We consider parity games in the context of LTL synthesis.
Let Inf(π) = {q ∈ Q | ∀i, ∃j j > i ∧ q = qj} be the set
of states visited infinitely many times in π. A parity game
consists of a game graph G and a parity objective. Given
a function p : Q → {0, 1, . . . ,m} that maps every state to
a priority, a parity objective is the set of plays PO(p) =
{π ∈ Π |min{p(Inf(π))} is even } requiring that the least
priority is even among the sets of states that are visited
infinitely oftenn.

Given a parity game, we say a strategy α is winning for
player 1 for some state q if for every strategy β of player
2, we have o(q, α, β) ∈ PO(p). Memoryless strategies exist
for both players for parity game [15].

Given a LTL formula ψ, and a partition of the set of
propositions P into I and O, synthesis is the problem of
finding a Moore transducer M = (I,O, S, s0, δ, θ) such that
M |= ψ. This problem can be solved by first constructing
a nondeterministic Büchi automaton that accepts L(ψ) [28].
This automaton is then translated into a deterministic parity
automaton that accepts L(ψ) [24]. By splitting the states in
the parity automaton according to the inputs I and outputs
O, we can obtain a parity game. We use the function κ1 :
Q1 → I and κ2 : Q2 → O to label states in the game graph.
Every memoryless winning strategy for player 1 (the system)
in this game can be represented by a Moore transducer M =
(I,O, S, s0, δ, θ) satisfying ψ such that S = Q1, so = qI
where qI is the initial state, δ(s, i) = s′ where κ1(s

′) = i,
and θ(s) = κ2(α(s)) where (α(s), s′) ∈ E.

1) Counter-strategies: A counter-strategy to the synthesis
problem is a strategy for the environment (player 2) such
that it can force the specification to be violated. Hence,
we can construct a Mealy transducer Mc corresponding
to this counter-strategy for player 2, which satisfies ¬ψ.
Alternatively, we can treat the synthesis problem as finding
a Mealy transducer that satisfies the LTL specification ψ and
the counter-strategy for player 2 would be a Moore machine.

C. Synthesis of GR(1) specifications
Consider a LTL specification ψ that can be expressed in

this form, ψ = ψe → ψs. ψe is the environment assumption
and ψs is the system guarantee. We require ψl for l ∈ {e, s}
to be a conjunction of sub-formulas in the following forms:

• ψi
l : a Boolean formula that characterizes the initial

states
• ψt

l : a LTL formula that characterizes the transition, in
the form G B, where B is a Boolean combination of

variables in I ∪ O and expression X u where u ∈ I if
l = e and u ∈ I ∪ O if l = s.

• ψ
f
l : a LTL formula that characterizes fairness, in the

form G FB, where B is a Boolean formula
The GR(1) synthesis problem can also be reduced to solving
a two-player deterministic game between the system and
the environment. Piterman et al. [25] describe a fixpoint
formulation that solves the realizability problem in cubic
time. We omit details of the algorithm in this paper. The
form of GR(1) specifications allows us to impose structure
on the assumptions that we seek to mine. Starting with a
set of GR(1) specifications, the goal is to see if we can find
assumptions that are also in the GR(1) class to make the
resulting specification realizable.

IV. SPECIFICATION MINING

Our method first computes a finite-state counter-strategy
using the approach proposed in [22]. The counter-strategy
state-machine summarizes the next moves of the environ-
ment in response to the current output of the system, which
will force a violation of the specification. We then use
a template-based mining approach to find specifications
that are satisfied by the counter-strategy. By asserting the
negation of such a specification as an assumption to the
original specification, we effectively rule out such moves
by the environment. We iterate this process until either we
cannot find a specification in our library of templates that is
satisfied by the counter-strategy or the resulting specification
becomes realizable.

A. Overall Algorithm
We give an overview of our mining algorithm in this

section.

Algorithm 1 Mine Assumptions for ψ = ψe → ψs

Input: B = I ∪ O: set of Boolean signals
Input: ψ: initial specification
Input: Γ: set of specification templates
Input: Ωu: set of scenario traces for the target system
Output: φ: additional assumption required for realizability

1: Γ(B) := GenerateCandidates(Γ, B)
2: while ¬Realizable(ψ) do
3: Mc := CounterStrategy(ψ)
4: ρ := Mine(Mc, Γ(B), Ωu, ψe)
5: if ρ = false then
6: return Insufficient Template
7: Quit
8: end if
9: ψe := ψe ∧ ρ

10: ψ := ψe → ψs

11: end while

There are four main procedures used by our approach.

GenerateCandidates(Γ, B) generates a set of template
instantiations Γ(B) in a particular order as candidates of
the additional environment assumptions.

Realizable(ψ) checks if the specification ψ is realiz-
able [20], [7].

CounterStrategy(ψ) returns a counter-strategy as a
Moore machine Mc for the environment to force a violation
of the specification if ψ is not realizable [7].

Mine(Mc, Γ(B), Ωu, ψe), which is our contribution,
returns a formula ρ as an additional assumption. We give
the details of this procedure in Section IV-B.

It should be noted that if we are able to mine a set
of assumptions that are sufficient to make the specification
realizable, we still want to remove redundant assumptions
from this set. We point the readers to [13] for finding a set
of assumptions that is minimally sufficient.

Example 1: Consider the following simple example, with
I = {r, c} and O = {g, v}. We start with no assumptions,
i.e. ψe = true , and no user traces. The system guarantee
ψs is a conjunction of the following properties.

• G1: G (r = 1 → X (F g = 1))
• G2: G ((c = 1 ∨ g = 1) → X g = 0)
• G3: G (c = 1 → v = 0)
• G4: G F (g = 1 ∧ v = 1)

Specifications G1 and G2 are borrowed from the first
example in [12]. G1 says every request r has to be granted
eventually by setting g to high starting from the next time
step. G2 says if either the cancel signal c is high or grant g
is high, then g has to be low in the next time step. G3 says if
c is high, then the valid signal v has to be low. G4 says that
g and v are both true (a valid grant) infinitely often. Our
algorithm produces assumptions that achieves realizability
in the following order.

• A1: G (F c = 0)
• A2: G (r = 0 → X c = 0)
• A3: G (r = 0 → c = 0)
• A4: G (F r = 0)

A1 requires that the cancel signal c to be low infinitely
often. This is necessary because otherwise setting c perma-
nently to high can force the grant signal to stay low because
of G2, and this is in conflict with G1.

A2 requires that cancel signal c to be low the cycle after
the request signal r is set to low. This is also necessary
because the environment can generate a sequence of inputs
in which r and c are set to high in an alternating fashion.
According to G2 and G3, at least one of v and g is low at
every cycle. This is in conflict with G4.

A3 requires that the cancel signal c to be low in the same
cycle as the request signal r is set to low. This assumption
together with A2 prevents the scenario of alternating r and
c described above. However, the resulting specification is
still unrealizable. This is because the environment can force
r to stay high from some point onwards and set c in an
alternating fashion such that G4 is again violated.

A4 requires that the request signal r is set low infinitely
often. Adding this assumption resolves the above problem
and the specification is finally realizable.

This example illustrates an instance of which our specifi-
cation mining approach iteratively adds assumptions to the
original specification. At each iteration, the added assump-
tion removes certain behaviors of the environment which
are causes of unrealizability. This set, however, is in no
way the only set or the minimal set of assumptions that
can achieve realizabiliy. In fact, we can replace A1 with
G F (c = 0 ∨ r = 0) and the resulting specification is still
realizable. However, each element in this set of assumptions
is a simple specification in GR(1) that contains environment
behaviors which are necessary for the realizability of the
specification and can be readily analyzed by the user. If
a particular assumption is deemed too strong or erroneous,
the user can simply remove that assumption and our method
will seek alternative replacements until either the resulting
specification is realizable or the set of candidate assumptions
is depleted.

Our approach can be viewed as a recommendation system
for the user, which can incorporate the user’s design intent
in an interactive way. The user can engineer the templates
based on his knowledge of the environment (possibly another
system) or inspect and rule out any candidate assumption as
the mining algorithm proceeds. To come up with multiple
recommendations, one can simply restart the algorithm with
a reduced set of template instantiations (in which the first
additional assumption found in constructing the previous
φ is discarded) and try to find another set that achieves
realizability.

B. Template-based Mining
In this section, we describe the procedure Mine in detail.

First, we formally define the set of templates Γ.
Definition 1: [Templates] Given a set of Boolean vari-

ables B, a template γ is a LTL formula with at least one
placeholder ?b, such that each ?b can be replaced by a literal
lb of Boolean variable b ∈ B and replacing all the ?b(s)
results in a valid LTL formula. We call this an instantiation
of γ with the lb(s). We write γ(B) as the set of all unique
instantiations of γ using variables in B.

1) Templates in GR(1): In our experiments, we focus
on mining assumptions that are in GR(1). The set Γ is
constructed using the following types of templates.

• γ1 : G F ?b, where b ∈ I

• γ2 : G (?b1 → X ?b2), where b1 ∈ I ∪O and b2 ∈ I

• γ3 : G (?b1∨?b2), where b1, b2 ∈ I

The negation of each template has the following form. We
omit the negation on the placeholder for the simplicity of
notations.

• φ1 : F G ?b

• φ2 : F (?b1 ∧X ?b2)
• φ3 : F (?b1∧?b2)

Also, notice that we do not mine assumptions that charac-
terize the initial state of the system. This is just because these
assumptions are easier to write in practice, and, moreover, it
is straightforward to discover them from the counter-strategy.

2) Generate Candidate Assumptions from Templates:
We generate a set of candidate assumptions in procedure
GenerateCandidates of Algorithm 1 by first generating a
set of candidates γi(B) for each of the three templates. Each
set contains all unique instantiations of the corresponding
template and boolean signals. For example, if B = {a},
then γ1(B) = {G F a,G F ¬a}. Next, we construct
Γ(B) = {γ1(B), γ2(B), γ3(B)}.

3) Mining assumptions: Algorithm 2 describes the series
of tests for checking whether a candidate assumption should
be added to the current specification ψ.

Algorithm 2 Procedure Mine
Input: Mc: counter-strategy state machine
Input: Γ(B): set of candidate assumptions
Input: Ωu: set of scenario traces for the target system
Input: ψe: current assumption
Output: ρ: additional assumption

1: while Γ(B) 6= ∅ do
2: ρc = pop(Γ(B))
3: if Ωu |= ρc then
4: if Mc |= ¬ρc then
5: if Satisfiable(ρc ∧ ψe) then
6: return ρc

7: end if
8: end if
9: end if

10: end while
11: return false

The procedure pop will remove and return a candidate
assumption from Γ(B) based on the last returned candidate
by Mine. The idea is to keep trying candidate assumptions
from a particular template until one is successfully added
to the existing specification and then move on to a dif-
ferent template. We choose the following order for select-
ing the templates, γ1, γ2, γ3, γ1, γ2, . . . and corresponding
γ1(B), γ2(B), γ3(B), γ1(B), γ2(B), . . . for the sets of can-
didates. If a current set is depleted, then we move on to the
next set in the aforementioned order. The order for which a
candidate assumption is popped from a set γi(B) is arbitrary.
The assumptions generated in Example 1 are based on this
template order. We choose this order to select candidate
assumptions of different forms based on our experience but
we do not claim that it is general for all problems.

Eliminate False Assumptions
Given a candidate assumption ρc, we check if it matches

the user’s intent by checking whether ωu satisfies ρc, for all
ωu ∈ Ωu, where Ωu is the set of traces representing some
known behaviors of the target design and the environment.

Each ωu can be finite or infinite. For the different types
of templates, if ωu is finite, we only check the validity of
instantiations of γ1 and γ3 in ωu up to the last time step and
instantiations of γ2 in ωu up to the second last time step.

Eliminate Counter-Strategy
Our method follows a counter-strategy guided synthesis

approach in which at every iteration, we constrain the
environment more by adding an additional assumption and
move closer to realizability. The key idea is to eliminate the
counter-strategy generated in unrealizabilty analysis by first
finding a formula that is satisfied by the counter-strategy
state machine, and then assert the negation of the formula
as an additional assumption. This step is equivalent to
model checking the counter-strategy state machine with the
candidate specification. In the cases where RATSY produces
a countertrace τc, we use τc in place of Mc by encoding it
as a Moore machine.

Notice that our template-based mining approach has a lot
in common with query checking. Query checking was first
proposed by Chan [10]. A temporal logic query is a temporal
logic formula containing a special symbol ?x, called the
placeholder, which can be replaced by any propositional
formula. The job of query checking is to find the strongest
solutions to ?x such that the resulting expression is true for
a given model. For example, the query AG?x is to find the
strongest propositional formula that is true at all points of
computation of the model. One can also restrict the query to
propositions of interest. In the previous example, one may be
only interested in formulas that contain only atomic proposi-
tions p and q. We write this modified query as AG?x{p, q}.
Given the set of atomic propositions of interest of size n,
the query checking problem can be solved by searching all
22

n propositional formulas (modulo logic equivalence) as
replacements for the placeholders, and individually verifying
each resulting temporal logic formula. Gurfinkel et al. [17]
implemented one such temporal logic query checker for
CTL based on multi-valued model checking. More recently,
Chockler et al. [19] studied its LTL variants.

In our approach, we try to avoid the potential high
complexity of query checking by further imposing structure
on the Boolean formula. However, query checking has the
advantage of finding the strongest formula for a particular
query that can be satisfied by the system. As a result, by
asserting the negation of the resulting match as an additional
assumption, we are less likely to rule out desirable behaviors
of the environment. We plan to leverage this technique in
the future.

Avoid Trivial Assumptions
To avoid synthesizing trivial systems as a result of the

additional assumptions, each candidate match is checked
with the current assumption ψe for inconsistency. If the
conjunction of the match and ψe is unsatisfiable, we elim-
inate this candidate. Moreover, each candidate match can
be examined by the user to check if it makes sense. In our

experiments, no user inspection is sought; instead, we simply
return the assumptions mined by the procedure.

V. EXPERIMENTAL RESULTS

In this section, we present case studies from the domains
of digital circuit design and robotic controller synthesis.
We use RATSY [7] to generate the counter-strategy in
case of unrealizability. Additionaly, we let RATSY perform
minimization of the unrealizable core. Hence, the counter-
strategy we use to mine assumptions is computed from the
reduced unrealizable core. We use the Cadence SMV model
checker [1] to (1) check if the current set of assumptions is
satisfiable, (2) generate witnesses (as representations of user
scenarios) to the original specification and (3) model check
counter-strategy state machines with candidate assumptions.
Our experiment proceeds as follows. Starting with a known
realizable specification ψ (with a minimally sufficient set of
assumptions [13]),

1) Remove an arbitrary assumption τ from ψ to get ψ′;
2) Proceed with Algorithm 1 to generate a replacement

assumption φ;
3) Evaluate the relationship between φ and τ ;
4) Restart from Step 1 by removing a different assump-

tion.

A. AMBA AHB Bus Protocol
ARM’s Advanced Microcontroller Bus Architecture

(AMBA) Advanced High Performance Bus (AHB) is an
on-chip communication protocol. The specification allows
for up to 16 masters and 16 slaves. The masters initiate
communication (reading or writing) with the slaves, and the
slaves respond to a master’s request. There is an address
bus and a data bus, each of which can only be accessed
by one master at a time. An arbiter controls access to the
address bus. A bus access can either be a single transfer, or a
burst, which is a transaction consisting of multiple transfers.
A bus access can also either be locked (incapable of being
interrupted) or unlocked. Our specifications for this protocol
are taken from the example files provided with RATSY [7].
For details of this protocol, we refer the readers to [6]. There
are four environment signals. The first three are driven by
the masters and the last one is driven by the slaves.

• HBUSREQ[i] - master i requests access to the bus
• HLOCK[i] - master i requests locked access to the

bus (used in combination with HUBUSREQ[i])
• HBURST[1:0] - one of following: single transfer

(SINGLE), 4-transfer burst (BURST4), or unspecified
size burst (INCR) Signals driven by the slaves:

• HREADY - high if the slave has finished working with
the current data; needs to be high before bus ownership
can change or transfers can begin

Our experiment was on the configuration of the protocol
with 1 master and 2 slaves (“amba02.rat”). We ignored the
assumptions that characterize the initial states. In fact, the

removal of any of them does not lead to unrealizability. First,
we remove the following environment fairness.

ψf
e = G (F HREADY = 1)

We used a single satisfying trace (witness) of the original
specification as a representation of the user’s knowledge
of the design. The trace is shown below, with parentheses
indicating the start and end of the loop and input signals in
bold.

cycle: (1 2 3)
HBUSREQ[0]: 0 0 0
HBUSREQ[1]: 0 0 1
HBURST[0]: 0 0 0
HBURST[1]: 0 0 0
HLOCK[0]: 0 0 0
HLOCK[1]: 0 0 0
HREADY: 0 1 1
HMASTER[0]: 0 0 0
HGRANT[0]: 1 1 1
HGRANT[1]: 0 0 0
HMASTLOCK: 0 0 0
LOCKED: 0 0 0
BUSREQ: 0 0 0
DECIDE: 1 0 0
START: 1 0 0

Table I
A SINGLE USER SCENARIO FOR THE AMBA AHB BUS EXAMPLE

We applied our algorithm on the remaining specification
and we found ψf

e in exactly one iteration. In fact, we can
choose a different order to find candidate assumptions. The
following is another possible valid replacement

G (HREADY = 0 → X HBUSREQ[0] = 0)∧
G (F HREADY = 1)

In this example, the second candidate assumption
G (HREADY = 0 → HBUSREQ[0] = 1) was refuted
by the witness. After removing redundant assumptions, we
again get back ψf

e .
Next, we removed the following environment transition.

ψt
e : G (HLOCK[0] = 1 → HBUSREQ[0] = 1)

Following our algorithm, we obtained G(FHLOCK[0] = 0)
as a replacement. The original assumption says whenever
master 0 sets HLOCK[0] to high, it should be sending a
request at the same time by setting HBUSREQ[0] to high.
Our replacement says master 0 should de-assert HLOCK[0]
infinitely often. This assumption may not be completely
desirable because it does not pinpoint the condition on
which the signal should be de-asserted. However, it clearly
indicates the need to prevent a master from having a locked
access to the bus permanently, and the fact that adding this
requirement will make the specification realizable.

In general, we may get a number of possible replacements.
It is debatable which of these replacements best represents

the designer’s intent. We are simply offering a recommen-
dation system in which the user can choose from a pool
of possible assumptions. The quality of this pool is better
if the user can provide more information to the synthesis
process in the form of desired traces of the target design. Our
experiments show that even with limited user input such as
a single desired trace in this case here, our method is able to
generate good quality assumptions that achieve realizability.

B. Generalized Buffer
IBM’s generalized buffer (GenBuf) transmits data from n

senders to two receivers. The senders provide data in any
order, but the receivers must receive the data in turns. The
handshake protocol between sender, buffer, and receiver is as
follows. The senders request permission from the buffer to
send their data. The buffer must acknowledge each sender’s
request. The buffer then sends a request to a receiver for
permission to transmit the data. The receiver must also
acknowledge the buffer’s request. We used the specifications
provided with the tool ANZU [21]. For details of this
example, we refer the readers to [8]. It has the following
environment signals.

• StoB_REQi - sender i requests a send from the buffer
• RtoB_ACKj - receiver j acknowledges the buffer’s

request
• FULL - the FIFO is ready to send data
• EMPTY - FIFO is ready to receive data
We performed a similar experiment as the one in Sec-

tion V-A. For the complete list of results of this benchmark,
we refer the readers to [2]. We used two witnesses of the
original specification for refuting false candidate assump-
tions. In the first experiment, we removed the following
fairness assumption.

ψf
e : G (F (BtoR_REQ0 = 1 ↔ RtoB_ACK0 = 1))

Our algorithm produced the following replacement.

G (F RtoB_ACK0 = 1)

The first candidate G (F StoB_REQ0=0) was refuted by
the witnesses. In this example, we were not able to recover
the missing assumption. Our replacement represents an en-
vironment where the receiver acknowledges infinitely often.
The original assumption states that only true request (when
BtoR_REQ0 is high) is acknowledged infinitely often. The
replacement assumption is stronger than the original, but
still provides a good hint to the desired behavior of the
environment.

C. Robotic Vehicle Controller
Our example of a robotic vehicle controller is motivated

by the work done by Wongpiromsarn et al. [30]. Their work
aims to synthesize a discrete planner for an autonomous
vehicles to navigate in an urban environment while following
traffic rules and avoiding obstacles. We use the following

simplified variant in our experiment. Given a rectangular
grid of length X (length of the road) and width Y (number
of lanes), define the coordinates of where the vehicle is
located as lx,y. We use ox,y to denote if there is an obstacle
at position (x, y) at every time step (ox,y = 1 if there is
one). This is used to simulate moving obstacles such as
other cars in the urban environment. The requirements are
the following.

• A: All squares are clear of obstacles infinitely often:
G F ox,y = 0.

• G1: The car is at initial position lix,y and there is no
obstacle at the initial position.

• G2: The vehicle can move to an adjacent square or stay
in the current square at each time step.

• G3: The vehicle cannot move into a square occupied
by an obstacle.

• G4: The vehicle eventually reaches its final destination
(dx, dy).

We expressed these requirements in GR(1) formulas [3].
One way to make the specification unrealizable is to have
the destination square permanently blocked (by removing
the corresponding fairness assumption). We followed Algo-
rithm 1 and were able to recover the assumption in one
iteration.

VI. CONCLUSION

We have proposed a template-based approach that can
mine a set of assumptions to correct an unrealizable spec-
ification for LTL synthesis. Our approach uses both the
counter-strategy which can be computed as a result of unre-
alizability and exemplary traces from the user for the target
design to generate candidate assumptions. The assumptions
produced are of simple forms and can be readily under-
stood and analyzed by an user. Our experiments indicate
that our proposed method is practical. For a number of
examples taken from existing literature, we show that we can
either reverse-engineer the missing assumption or produce
reasonable replacements. In the future, we would like to
incorporate query checking into the mining algorithm and
evaluate its effectiveness.

REFERENCES

[1] Cadence smv. http://www.kenmcmil.com/smv.html.

[2] http://www.eecs.berkeley.edu/∼wenchaol/files/genbuf.result.

[3] http://www.eecs.berkeley.edu/∼wenchaol/files/robotic.rat.

[4] Bowen Alpern and Fred B. Schneider. Recognizing safety
and liveness. Distributed Computing, 2:117–126, 1987.
10.1007/BF01782772.

[5] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong
Nam. Synthesis of interface specifications for java classes. In
POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
98–109, New York, NY, USA, 2005. ACM.

[6] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli,
and M. Weiglhofer. Automatic hardware synthesis from
specifications: A case study. In Design, Automation Test in
Europe Conference Exhibition, 2007. DATE ’07, pages 1 –6,
April 2007.

[7] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg
Hofferek, Robert Knighofer, Marco Roveri, Viktor Schuppan,
and Richard Seeber. Ratsy - a new requirements analysis tool
with synthesis. In CAV’10, pages 425–429, 2010.

[8] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piter-
man, Amir Pnueli, and Martin Weiglhofer. Specify, compile,
run: Hardware from psl. Electron. Notes Theor. Comput. Sci.,
190:3–16, November 2007.

[9] Yves Bontemps, Pierre-Yves Schobbens, and Christof
Löding. Synthesis of open reactive systems from scenario-
based specifications. Fundam. Inf., 62:139–169, February
2004.

[10] William Chan. Temporal-logic queries. In E. Emerson
and A. Sistla, editors, Computer Aided Verification, volume
1855 of Lecture Notes in Computer Science, pages 450–463.
Springer Berlin / Heidelberg, 2000.

[11] Krishnendu Chatterjee, Thomas Henzinger, Barbara Jobst-
mann, and Arjun Radhakrishna. A solver for probabilistic
games. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, Computer Aided Verification, volume 6174 of Lecture
Notes in Computer Science, pages 665–669. Springer Berlin
/ Heidelberg, 2010.

[12] Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara
Jobstmann. Environment assumptions for synthesis. In Pro-
ceedings of the 19th international conference on Concurrency
Theory, CONCUR ’08, pages 147–161, Berlin, Heidelberg,
2008. Springer-Verlag.

[13] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev.
Diagnostic information for realizability. In Proceedings of the
9th international conference on Verification, model checking,
and abstract interpretation, VMCAI’08, pages 52–67, Berlin,
Heidelberg, 2008. Springer-Verlag.

[14] Fady Copty, Amitai Irron, Osnat Weissberg, Nathan P. Kropp,
and Gila Kamhi. Efficient debugging in a formal verification
environment. In Proceedings of the 11th IFIP WG 10.5 Ad-
vanced Research Working Conference on Correct Hardware
Design and Verification Methods, CHARME ’01, pages 275–
292, London, UK, 2001. Springer-Verlag.

[15] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy. In Proceedings of the 32nd annual sympo-
sium on Foundations of computer science, SFCS ’91, pages
368–377, Washington, DC, USA, 1991. IEEE Computer
Society.

[16] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen
McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen
Xiao. The daikon system for dynamic detection of likely
invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[17] Arie Gurfinkel, Benet Devereux, and Marsha Chechik. Model
exploration with temporal logic query checking. In In Pro-
ceedings of Sigsoft Conference on Foundations of Software
Engineering (FSE’02, pages 139–148. ACM Press, 2002.

[18] S. Hagihara, Y. Kitamura, M. Shimakawa, and N. Yonezaki.
Extracting environmental constraints to make reactive system
specifications realizable. In Software Engineering Conference,
2009. APSEC ’09. Asia-Pacific, pages 61 –68, dec. 2009.

[19] Arie Gurfinkel Hana Chockler and Ofer Strichman. Variants
of ltl query checking. Lecture Notes in Computer Science.
Springer, 2010. in press.

[20] Barbara Jobstmann and Roderick Bloem. Optimizations for ltl
synthesis. In Proceedings of the Formal Methods in Computer
Aided Design, FMCAD ’06, pages 117–124, Washington, DC,
USA, 2006. IEEE Computer Society.

[21] Barbara Jobstmann, Stefan Galler, Martin Weiglhofer, and
Roderick Bloem. Anzu: a tool for property synthesis. In
Proceedings of the 19th international conference on Com-
puter aided verification, CAV’07, pages 258–262, Berlin,
Heidelberg, 2007. Springer-Verlag.

[22] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal
specifications using simple counterstrategies. In Formal
Methods in Computer-Aided Design, 2009. FMCAD 2009,
pages 152 –159, November 2009.

[23] Robert Könighofer, Georg Hofferek, and Roderick Paul
Bloem. Debugging unrealizable specifications with model-
based diagnosis. In Haifa Verification Conference (HVC),
Lecture Notes in Computer Science. Springer, 2010.

[24] Nir Piterman. From nondeterministic büchi and streett au-
tomata to deterministic parity automata. In In 21st Symposium
on Logic in Computer Science (LICS06, pages 255–264. IEEE
Computer Society, 2006.

[25] Nir Piterman and Amir Pnueli. Synthesis of reactive(1)
designs. In In Proc. Verification, Model Checking, and
Abstract Interpretation (VMCAI06, pages 364–380. Springer,
2006.

[26] A. Pnueli and R. Rosner. On the synthesis of a reactive
module. In Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL
’89, pages 179–190, New York, NY, USA, 1989. ACM.

[27] R. Rosner. Modular synthesis of reactive systems. Ph.D.
dissertation, Weizmann Institute of Science, 1992.

[28] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite
computations. Information and Computation, 115:1–37, 1994.

[29] Ben Wegbreit. The synthesis of loop predicates. Commun.
ACM, 17(2):102–113, 1974.

[30] T. Wongpiromsarn. Formal methods for design and ver-
ification of embedded control systems: application to an
autonomous vehicle. 2010.

