
Mining Audit Data to Build Intrusion Detection Models∗

Wenke Lee and Salvatore J. Stolfo and Kui W. Mok
Computer Science Department

Columbia University
500 West 120th Street, New York, NY 10027

{wenke,sal,mok}@cs.columbia.edu

Abstract

In this paper we discuss a data mining framework
for constructing intrusion detection models. The
key ideas are to mine system audit data for con-
sistent and useful patterns of program and user
behavior, and use the set of relevant system fea-
tures presented in the patterns to compute (in-
ductively learned) classifiers that can recognize
anomalies and known intrusions. Our past exper-
iments showed that classifiers can be used to de-
tect intrusions, provided that sufficient audit data
is available for training and the right set of sys-
tem features are selected. We propose to use the
association rules and frequent episodes computed
from audit data as the basis for guiding the au-
dit data gathering and feature selection processes.
We modify these two basic algorithms to use axis
attribute(s) as a form of item constraints to com-
pute only the relevant (“useful”) patterns, and an
iterative level-wise approximate mining procedure
to uncover the low frequency (but important) pat-
terns. We report our experiments in using these
algorithms on real-world audit data.

Introduction

As network-based computer systems play increasingly
vital roles in modern society, they have become the tar-
get of our enemies and criminals. Therefore, we need
to find the best ways possible to protect our systems.
Intrusion prevention techniques, such as user authen-
tication (e.g. using passwords or biometrics), are not
sufficient because as systems become ever more com-
plex, there are always system design flaws and program-
ming errors that can lead to security holes (Bellovin
1989). Intrusion detection is therefore needed as an-
other wall to protect computer systems. There are
mainly two types of intrusion detection techniques.
Misuse detection, for example STAT (Ilgun, Kemmerer,
& Porras 1995), uses patterns of well-known attacks or
weak spots of the system to match and identify intru-
sions. Anomaly detection, for example IDES (Lunt et

∗This research is supported in part by grants from
DARPA (F30602-96-1-0311) and NSF (IRI-96-32225 and
CDA-96-25374).

al. 1992), tries to determine whether deviation from
the established normal usage patterns can be flagged
as intrusions.

Currently many intrusion detection systems are con-
structed by manual and ad hoc means. In misuse de-
tection systems, intrusion patterns (for example, more
than three consecutive failed logins) need to be hand-
coded using specific modeling languages. In anomaly
detection systems, the features or measures on audit
data (for example, the CPU usage by a program) that
constitute the profiles are chosen based on the expe-
rience of the system builders. As a result, the effec-
tiveness and adaptability (in the face of newly invented
attack methods) of intrusion detection systems may be
limited.

Our research aims to develop a systematic framework
to semi-automate the process of building intrusion de-
tection systems. A basic premise is that when audit
mechanisms are enabled to record system events, dis-
tinct evidence of legitimate and intrusive (user and pro-
gram) activities will be manifested in the audit data.
For example, from network traffic audit data, connec-
tion failures are normally infrequent. However, cer-
tain types of intrusions will result in a large number
of consecutive failures that may be easily detected. We
therefore take a data-centric point of view and consider
intrusion detection as a data analysis task. Anomaly
detection is about establishing the normal usage pat-
terns from the audit data, whereas misuse detection
is about encoding and matching intrusion patterns us-
ing the audit data. We are developing a framework,
first described in (Lee & Stolfo 1998), of applying
data mining techniques to build intrusion detection
models. This framework consists of classification (and
meta-classification (Chan & Stolfo 1993)), association
rule (Agrawal, Imielinski, & Swami 1993) and frequent
episode (Mannila, Toivonen, & Verkamo 1995) pro-
grams, as well as a support environment that enables
system builders to interactively and iteratively drive the
process of constructing and evaluating detection mod-
els. The end product is concise and intuitive classifica-

Copyright c©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



tion rules that can detect intrusions.
The rest of the paper is organized as follows. We first

examine the lessons we learned from our past exper-
iments on building classification models for detecting
intrusions, namely we need tools for feature selection
and audit data gathering. We then propose a frame-
work and discuss how to incorporate domain knowledge
into the association rules and frequent episodes algo-
rithms to discover “useful” patterns from audit data.
We report our experiments in using the patterns both
as a guideline for gathering “sufficient” training (audit)
data, and as the basis for feature selection. Finally we
outline open problems and our future research plans.

The Challenges
In (Lee & Stolfo 1998) we described in detail our exper-
iments in building classification models to detect intru-
sions to sendmail and TCP/IP networks. The results on
the sendmail system call data showed that we needed to
use as much as 80% of the (exhaustively gathered) nor-
mal data to learn a classifier (RIPPER (Cohen 1995)
rules) that can clearly identify normal sendmail execu-
tions and intrusions. The results on the tcpdump (Ja-
cobson, Leres, & McCanne 1989) of network traffic data
showed that by the temporal nature of network activi-
ties, when added with temporal statistical features, the
classification model had a very significant improvement
in identifying intrusions. These experiments revealed
that we need to solve some very challenging problems
for the classification models to be effective.

Formulating the classification tasks, i.e., determin-
ing the class labels and the set of features, from au-
dit data is a very difficult and time-consuming task.
Since security is usually an after-thought of computer
system design, there is no standard auditing mecha-
nisms and data format specifically for intrusion analysis
purposes. Considerable amount of data pre-processing,
which involves domain knowledge, is required to ex-
tract raw “action” level audit data into higher level
“session/event” records with the set of intrinsic system
features. The temporal nature of event sequences in
network-based computer systems suggests that tempo-
ral statistical measures over the features (for example,
the average duration of connections in the past 30 sec-
onds) need to be considered as additional features. Tra-
ditional feature selection techniques, as discussed in the
machine learning literature, cannot be directly applied
here since they don’t consider (across record bound-
ary) sequential correlation of features. In (Fawcett &
Provost 1996) Fawcett and Provost presented some very
interesting ideas on automatic selection of features for
a cellular phone fraud detector. An important assump-
tion in that work is that there are some general patterns
of fraudulent usage for the entire customer population,
and individual customers differ in the “threshold” of
these patterns. Such assumptions do not hold here since
different intrusions have different targets on the com-
puter system and normally produce different evidence
(and in different audit data sources).

A critical requirement for using classification rules
as an anomaly detector is that we need to have “suf-
ficient” training data that covers as much variation of
the normal behavior as possible, so that the false posi-
tive rate is kept low (i.e., we wish to minimize detected
“abnormal normal” behavior). It is not always possible
to formulate a classification model to learn the anomaly
detector with limited (“insufficient”) training data, and
then incrementally update the classifier using on-line
learning algorithms. This is because the limited train-
ing data may not have covered all the class labels, and
on-line algorithms, for example, ITI (Utgoff, Berkman,
& Clouse 1997), can’t deal with new data with new (un-
seen) class labels. For example in modeling daily net-
work traffic, we use the services, e.g., http, telnet etc., of
the connections as the class labels in training models.
We may not have connection records of the infrequently
used services with, say, only one week’s traffic data. A
formal audit data gathering process therefore needs to
take place first. As we collect audit data, we need an
indicator that can tell us whether the new audit data
exhibits any “new” normal behavior, so that we can
stop the process when there is no more variation. This
indicator should be simple to compute and must be in-
crementally updated.

Mining Audit Data
We attempt to develop general rather than intrusion-
specific tools in response to the challenges discussed
in the previous section. The idea is to first compute
the association rules and frequent episodes from audit
data, which (intuitively) capture the intra- and (tem-
poral) inter- audit record patterns. These patterns are
then utilized, with user participation, to guide the data
gathering and feature selection processes.

The Basic Algorithms
From (Agrawal, Imielinski, & Swami 1993), let A be
a set of attributes, and I be a set of values on A,
called items. Any subset of I is called an itemset. The
number of items in an itemset is called its length. Let
D be a database with n attributes (columns). Define
support(X) as the percentage of transactions (records)
in D that contain itemset X . An association rule is the
expression X → Y, c, s. Here X and Y are itemsets,
and X ∩ Y = ∅. s = support(X ∪ Y ) is the support of
the rule, and c = support(X∪Y )

support(X) is the confidence. For
example, an association rule from the shell command
history file (which is a stream of commands and their
arguments) of a user is trn→ rec.humor, 0.3, 0.1,which
indicates that 30% of the time when the user invokes
trn, he or she is reading the news in rec.humor, and
reading this newsgroup accounts for 10% of the activ-
ities recorded in his or her command history file. We
implemented the association rules algorithm following
the ideas of Apriori (Agrawal & Srikant 1994).

The problem of finding frequent episodes based on
minimal occurrences was introduced in (Mannila &



Toivonen 1996). Briefly, given an event database D
where each transaction is associated with a timestamp,
an interval [t1, t2] is the sequence of transactions that
starts from timestamp t1 and ends at t2. The width of
the interval is defined as t2− t1. Given an itemset A in
D, an interval is a minimal occurrence of A if it contains
A and none of its proper sub-intervals contains A. De-
fine support(X) as the the ratio between the number of
minimum occurrences that contain itemset X and the
number of records in D. A frequent episode rule is the
expression X,Y → Z, c, s, window. Here X , Y and Z
are itemsets in D. s = support(X∪Y ∪Z) is the support
of the rule, and c = support(X∪Y ∪Z)

support(X∪Y ) is the confidence.
Here the width of each of the occurrences must be less
than window. A serial episode rule has the additional
constraint that X , Y and Z must occur in transactions
in partial time order, i.e., Z follows Y and Y follows X .
The description here differs from (Mannila & Toivo-
nen 1996) in that we don’t consider a separate window
constraint on the LHS (left hand side) of the rule. Our
implementation of the frequent episodes algorithm uti-
lized the data structures and library functions of the
association rules algorithm.

Using the Axis Attribute(s)
These basic algorithms do not consider any domain
knowledge and as a result they can generate many “ir-
relevant” rules. In (Klemettinen et al. 1994) rule tem-
plates specifying the allowable attribute values are used
to post-process the discovered rules. In (Srikant, Vu,
& Agrawal 1997) boolean expressions over the attribute
values are used as item constraints during rule discov-
ery. A drawback of these approaches is that one has to
know what rules/patterns are interesting. We cannot
assume such strong prior knowledge on all audit data.

We use axis attribute(s) as a form of item con-
straints. Intuitively the axis attribute(s) is the essen-
tial attribute(s) of a record (transaction). We consider
the correlations among non-axis attributes as not inter-
esting. During candidate generation, an itemset must
contain value(s) of the axis attribute(s). Consider the
following audit data of network connections (with some
attributes omitted):
time duration service src bytes dst bytes flag
1.1 10 telnet 100 2000 SF
2.0 2 ftp 200 300 SF
2.3 1 smtp 250 300 SF
3.4 60 telnet 200 12100 SF
3.7 1 smtp 200 300 SF
3.8 1 smtp 200 300 SF
5.2 1 http 200 0 REJ
3.7 2 smtp 300 200 SF
...

Here we already discretize the continuous attribute val-
ues (except the timestamps) into proper bins. The ba-
sic association rules algorithm may generate rules such
as src bytes = 200 → flag = SF . These rules are

not useful and to some degree are misleading. There is
no intuition for the association between the number of
bytes from the source, src bytes, and the normal status
(flag=SF ) of the connection. Since the most impor-
tant information of a connection is its service, we use
it as the axis attribute. The resulting association rules
then describe only the patterns related to the services
of the connections.

It is even more important to use the axis attribute(s)
to constrain the item generation for frequent episodes.
The basic algorithm can generate serial episode rules
that contain “non-essential” attribute values. For ex-
ample src bytes=200, src bytes=200→ dst bytes=300,
src bytes=200 (note that here each attribute value, e.g.,
src bytes=200, is from a different connection record).
Compared with the association rules, the total num-
ber of serial rules is large and so is the number of
such useless rules. Observe that the number of iter-
ations for growing the frequent itemsets (that is, the
length of an itemset) is bounded here by the number of
records (instead of the number of attributes as in as-
sociation rules), which is usually a large number. Fur-
ther, if the support of an association rule on non-axis
attributes, A → B, is high then there will be a large
number of “useless” serial episode rules of the form
(A|B)(, A|B)∗ → (A|B)(, A|B)∗. To see this, assume
that there are a total of m records in the database, the
time difference between the last and the first record is
t seconds, and the support of A ∪ B is s. Then the
number of minimal and non-overlapping intervals that
have k records with A∪B is sm

k (note that each of these
intervals contains a length k serial episode on (A|B)).
Further, assume that the records with A∪B are evenly
distributed, then the width of the interval is at most
w = kt

sm . There can be a large number of serial patterns
on (A|B) if s is high and window (the interval width
threshold) is large, since kmax, the maximal length of
the patterns, can be large and w ≤ window still holds.

Instead of using the basic algorithm, here we first
find the frequent associations using the axis attribute(s)
and then generate the frequent serial patterns from
these associations. An example of a rule is (service =
smtp, src bytes = 200, dst bytes = 300, flag = SF ),
(service = telnet, flag = SF ) → (service = http,
src bytes = 200). Here we in effect have combined the
associations (among attributes) and the sequential pat-
terns (among the records) into a single rule. This rule
formalism not only eliminates irrelevant rules, it also
provides rich and useful information about the audit
data.

Level-wise Approximate Mining
Sometimes it is important to discover the low frequency
patterns. In daily network traffic, some services, for
example, gopher, account for very low occurrences. Yet
we still need to include their patterns into the network
traffic profile (so that we have representative patterns
for each supported service). If we use a very low support
value for the data mining algorithms, we will then get



Input: the terminating minimum support s0, the initial minimum support si, and the axis attribute(s)
Output: frequent episode rules Rules
Begin
(1) Rrestricted = ∅;
(2) scan database to form L = {1-itemsets that meet s0};
(3) s = si;
(4) while (s ≥ s0) do begin
(5) find serial episodes from L: each episode must contain at least one axis attribute value

that is not in Rrestricted;
(6) append new axis attribute values to Rrestricted;
(7) append episode rules to the output rule set Rules;
(8) s = s

2 ; /* use a smaller support value for the next iteration */
end while

end

Figure 1: Level-wise Approximate Mining of Frequent Episodes

unnecessarily a very large number of patterns related
to the high frequency services, for example, smtp.

We propose a level-wise approximate mining pro-
cedure, as outlined in figure 1, for finding the fre-
quent episodes. Here the idea is to first find the
episodes related to high frequency axis attribute val-
ues, for example, (service = smtp, src bytes = 200),
(service = smtp, src bytes = 200)→ (service = smtp,
dst bytes = 300). We then iteratively lower the sup-
port threshold to find the episodes related to the low
frequency axis values by restricting the participation of
the “old” axis values that already have output episodes.
More specifically, when an episode is generated, it
must contain at least one “new” (low frequency) axis
value. For example, in the second iteration (where
smtp now is an old axis value) we get an episode rule
(service = smtp, src bytes = 200), (service = http,
src bytes = 200)→ (service = smtp, src bytes = 300).
The procedure terminates when a very low support
value is reached. In practice, this can be the lowest
frequency of all axis values.

Note that for a high frequency axis value, we in ef-
fect omit its very low frequency episodes (generated in
the runs with low support values) because they are not
as interesting (representative). Hence our procedure
is “approximate” mining. We still include all the old
(high frequency) axis values to form episodes with the
new axis values because it is important to capture the
sequential context of the new axis values. For exam-
ple, although used infrequently, auth normally co-occurs
with other services such as smtp and login. It is there-
fore imperative to include these high frequency services
into the episode rules about auth.

Our approach here is different from the algorithms in
(Han & Fu 1995) since we do not have (and can not
assume) multiple concept levels, rather, we deal with
multiple frequency levels of a single concept, e.g., the
network service.

Using the Mined Patterns
In this section we report our experience in mining the
audit data and using the discovered patterns both as
the indicator for gathering data and as the basis for
selecting appropriate temporal statistical features.

Audit Data Gathering
We posit that the patterns discovered from the audit
data on a protected target (e.g., a network, system pro-
gram, or user, etc.) corresponds to the target’s behav-
ior. When we gather audit data about the target, we
compute the patterns from each new audit data set, and
merge the new rules into the existing aggregate rule set.
The added new rules represent (new) variations of the
normal behavior. When the aggregate rule set stabi-
lizes, i.e., no new rules from the new audit data can be
added, we can stop the data gathering since the aggre-
gate audit data set has covered sufficient variations of
the normal behavior.

Our approach of merging rules is based on the fact
that even the same type of behavior will have slight
differences across audit data sets. Therefore we should
not expect perfect (exact) match of the mined patterns.
Instead we need to combine similar patterns into more
generalized ones.

We merge two rules, r1 and r2, into one rule r
if 1) their right and left hand sides are exactly the
same, or their RHSs can be combined and LHSs can
also be combined; and 2) the support values and the
confidence values are close, i.e., within an ε (a user-
defined threshold). The concept of combining here
is similar to clustering in (Lent, Swami, & Widom
1997). To simplify our discussion, consider combining
the LHSs and assume that the LHS of r1 has just one
itemset, (ax1 = vx1, a1 = v1). Here ax1 is an axis
attribute. The LHS of r2 must also have only one
itemset, (ax2 = vx2, a2 = v2). Further, ax1 = ax2,
vx1 = vx2, and a1 = a2 must hold (i.e., the LHSs
must cover the same set of attributes, and their axis
values must be the same). For the LHSs to be com-



56

112

168

224

280

336

392

448

504

560

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Nu
m

be
r o

f R
ul

es

all services
frequent all services

frequent http
frequent smtp

frequent telnet

Figure 2: The Number of Rules vs. The number of
Audit Data Sets

bined, v1 and v2 must be adjacent values or adjacent
bins of values. The LHS of the merged rule r is (ax1 =
vx1, v1 ≤ a1 ≤ v2) (assuming that v2 is the larger
value). For example, (service=smtp, src bytes=200)
and (service=smtp, src bytes=300) can be combined
to (service=smtp, 200 ≤ src bytes ≤ 300). To com-
pute the (statistically relevant) support and confidence
values of the merged rule r, we record support lhs and
db size of r1 and r2 when mining the rules from the
audit data. Here support lhs is the support of a LHS
and db size is the number of records in the audit data.
Experiments Here we test our hypothesis that the
merged rule set can indicate whether the audit data
has covered sufficient variations of behavior. We ob-
tained one month of TCP/IP network traffic data
from “http://ita.ee.lbl.gov/html/contrib/LBL-CONN-
7.html” (there are total about 780,000 connection
records). We segmented the data by day. And for
data of each day, we again segmented the data into
four partitions: morning, afternoon, evening and night.
This partitioning scheme allowed us to cross evaluate
anomaly detection models of different time segments
(that have different traffic patterns). It is often the case
that very little (sometimes no) intrusion data is avail-
able when building an anomaly detector. A common
practice is to use audit data (of legitimate activities)
that is known to have different behavior patterns for
testing and evaluation.

Here we describe the experiments and results on
building anomaly detection models for the “weekday
morning” traffic data on connections originated from
LBL to the outside world (there are about 137,000 such
connections for the month). We decided to compute
the frequent episodes using the network service as the
axis attribute. Recall from our earlier discussion that
this formalism captures both association and sequen-
tial patterns. For the first three weeks, we mined the
patterns from the audit data of each weekday morning,
and merged them into the aggregate rule set. For each
rule we recorded merge count, the number of merges

1 2 3 4 5

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.00

2.20

4.40

6.60

8.80

11.00

13.20

15.40

17.60

19.80

22.00

Weekday Mornings Weekend Mornings Weekday Nights

Figure 3: Misclassification Rates of Classifier Trained
on First 8 Weekdays

1 2 3 4 5

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.00

2.20

4.40

6.60

8.80

11.00

13.20

15.40

17.60

19.80

22.00

Weekday Mornings Weekend Mornings Weekday Nights

Figure 4: Misclassification Rates of Classifier Trained
on First 10 Weekdays

on this rule. Note that if two rules r1 and r2 are
merged into r, its merge count is the sum from the
two rules. merge count indicates how frequent the be-
havior represented by the merged rule is encountered
across a period of time (days). We call the rules with
merge count ≥ min frequency the frequent rules.

Figure 2 plots how the rule set changes as we merge
patterns from each new audit data set. We see that
the total number of rules keeps increasing. We visually
inspected the new rules from each new data set. In
the first two weeks, the majority are related to “new”
network services (that have no prior patterns in the
aggregate rule set). And for the last week, the majority
are just new rules of the existing services. Figure 2
shows that the rate of change slows down during the
last week. Further, when we examine the frequent rules
(here we usedmin frequency = 2 to filter out the “one-
time” patterns), we can see in the figure that the rule
sets (of all services as well as the individual services)
grow at a much slower rate and tend to stabilize.

We used the set of frequent rules of all services as the
indicator on whether the audit data is sufficient. We
tested the quality of this indicator by constructing four
classifiers, using audit data from the first 8, 10, 15, and
17 weekday mornings, respectively, for training. We
used the services of the connections as the class labels,
and included a number of temporal statistical features
(the details of feature selection is discussed in the next
session). The classifiers were tested using the audit data
(not used in training) from the mornings and nights of



1 2 3 4 5

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.00

2.20

4.40

6.60

8.80

11.00

13.20

15.40

17.60

19.80

22.00

Weekday Mornings Weekend Mornings Weekday Nights

Figure 5: Misclassification Rates of Classifier Trained
on First 15 Weekdays

1 2 3 4 5

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.00

2.20

4.40

6.60

8.80

11.00

13.20

15.40

17.60

19.80

22.00

Weekday Mornings Weekend Mornings Weekday Nights

Figure 6: Misclassification Rates of Classifier Trained
on First 17 Weekdays

the last 5 weekdays of the month, as well as the last 5
weekend mornings. Figures 3, 4, 5 and 6 show the
performance of these four classifiers in detecting anoma-
lies (different behavior) respectively. In each figure, we
show the misclassification rate (percentage of misclas-
sifications) on the test data. Since the classifiers model
the weekday morning traffic, we wish to see this rate to
be low on the weekday morning test data, but high on
the weekend morning data as well as the weekday night
data. The figures show that the classifiers with more
training (audit) data perform better. Further, the last
two classifiers are effective in detecting anomalies, and
their performance are very close (see figures 5 and 6).
This is not surprising at all because from the plots in
figure 2, the set of frequent rules (our indicator on au-
dit data) is growing in weekday 8 and 10, but stabilizes
from day 15 to 17. Thus this indicator on audit data
gathering is quite reliable.

Feature Selection

An important use of the mined patterns is as the basis
for feature selection. When the axis attribute is used
as the class label attribute, features (the attributes) in
the association rules should be included in the classi-
fication models. The time windowing information and
the features in the frequent episodes suggest that their
statistical measures, e.g., the average, the count, etc.,
should also be considered as additional features in an
anomaly detector.

Experiments We examined the frequent rules from
the audit data to determine what features should be
used in the classifier. Here when the same value of an
attribute is repeated several times in a frequent episode
rule, it suggests that we should include a correspond-
ing count feature. For example given (service = smtp,
src bytes = 200), (service = smtp, src bytes = 200)
→ (service = smtp, src bytes = 200) 0.81, 0.42, 140,
we add a feature, the count of connections that have
the same service and src bytes as the current connec-
tion record in the past 140 seconds. When an at-
tribute (with different values) is repeated several times
in the rule, we add a corresponding average feature.
For example, given (service = smtp, duration = 2),
(service = telnet, duration = 10) → (service = http,
duration = 1), we add a feature, the average duration
of all connections in the past 140 seconds. The classi-
fiers in the previous section included a number of tem-
poral statistical features: the count of all connections
in the past 140 seconds, the count of connections with
the same service and the same src bytes, the average
duration, the average dst bytes, etc. Our experiments
showed that when using none of the temporal statistical
features, or using just the count features or average fea-
tures, the classification performance was much worse.

In (Lee & Stolfo 1998) we reported that as we mined
frequent episodes using different window sizes, the num-
ber of serial episodes stabilized after the time window
reached 30 seconds. We showed that when using 30
seconds as the time interval to calculate the temporal
statistical features, we achieved the best classification
performance. Here, we sampled the weekday morning
data and discovered that the number of episodes stabi-
lized at 140 seconds. Hence we used it as the window
in mining the audit data and as the time interval to
calculate statistical features.

Off-line Analysis
Since the merged rule set was used to (identify and)
collect “new” behavior during the audit data gather-
ing process, one naturally asks “Can the final rule set
be directly used to detect anomalies?”. Here we used
the set of frequent rules to distinguish the traffic data
of the last 5 weekday mornings from the last 5 week-
end mornings, and the last 5 weekday nights. We use
a similarity measure. Assume that the merged rule
set has n rules, and the size of the new rule set from a
new audit data set is m, the number of matches (i.e.,
the number of rules that can be merged) between the
merged rule set and the new rule set is p, then we have
similarity = p

n ∗
p
m . Here p

n represents the percentage
of known behavior (from the merged rule set) exhibited
in the new audit data, and p

m represents the proportion
of (all) behavior in the new audit data that conforms to
the known behavior. Our experiments showed that the
similarity of the weekday mornings are much larger
than the weekend mornings and the weekday nights.
However in general these mined patterns cannot be used
directly to classify the records (i.e., they cannot tell



which records are anomalous). They are very valuable
in off-line analysis. For example, we built a graphical
tool to visually show the differences between rule sets.
We can easily identify the different behavior across au-
dit data sets.

Conclusion
In this paper we outlined our approach for building in-
trusion detection models. We proposed that association
rules and frequent episodes from the audit data can be
used to guide audit data gathering and feature selec-
tion, the critical steps in building effective classification
models. We incorporated domain knowledge into these
basic algorithms using the axis attribute(s) and a level-
wise approximate mining procedure. Our experiments
on real-world audit data showed that the algorithms are
effective.

To the best of our knowledge, our research was the
first attempt to develop a systematic framework for
building intrusion detection models. We plan to re-
fine our approach and further study some fundamental
problems. For example, can we automatically select the
optimal set of temporal statistical features? Are classi-
fication models best suited for intrusion detection (i.e.
what are the better alternatives)?

It is important to include system designers in the
knowledge discovery tasks. We are implementing a sup-
port environment that graphically presents the mined
patterns along with the list of features and the time
windowing information to the user, and allows him/her
to (iteratively) formulate a classification task, build and
test the model using a classification engine such as JAM
(Stolfo et al. 1997).

Acknowledgments
Our work has benefited from in-depth discussions with
Alexander Tuzhilin of New York University, and sug-
gestions from Charles Elkan of UC San Diego.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms
for mining association rules. In Proceedings of the 20th
VLDB Conference.
Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Min-
ing association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD Con-
ference on Management of Data, 207–216.
Bellovin, S. M. 1989. Security problems in the
tcp/ip protocol suite. Computer Communication Re-
view 19(2):32–48.
Chan, P. K., and Stolfo, S. J. 1993. Toward parallel
and distributed learning by meta-learning. In AAAI
Workshop in Knowledge Discovery in Databases, 227–
240.
Cohen, W. W. 1995. Fast effective rule induction. In
Machine Learning: the 12th International Conference.
Lake Taho, CA: Morgan Kaufmann.

Fawcett, T., and Provost, F. 1996. Combining data
mining and machine learning for effective user profil-
ing. In Proceedings of the 2nd International Confer-
ence on Knowledge Discovery and Data Mining, 8–13.
Portland, OR: AAAI Press.
Han, J., and Fu, Y. 1995. Discovery of multiple-level
association rules from large databases. In Proceedings
of the 21th VLDB Conference.
Ilgun, K.; Kemmerer, R. A.; and Porras, P. A. 1995.
State transition analysis: A rule-based intrusion detec-
tion approach. IEEE Transactions on Software Engi-
neering 21(3):181–199.
Jacobson, V.; Leres, C.; and McCanne, S. 1989. tcp-
dump. available via anonymous ftp to ftp.ee.lbl.gov.
Klemettinen, M.; Mannila, H.; Ronkainen, P.; Toivo-
nen, H.; and Verkamo, A. I. 1994. Finding interesting
rules from large sets of discovered association rules. In
Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM’94),
401–407.
Lee, W., and Stolfo, S. J. 1998. Data mining ap-
proaches for intrusion detection. In Proceedings of the
7th USENIX Security Symposium.
Lent, B.; Swami, A.; and Widom, J. 1997. Cluster-
ing association rules. In Proceedings of the Thirteenth
International Conference on Data Engineering.
Lunt, T.; Tamaru, A.; Gilham, F.; Jagannathan, R.;
Neumann, P.; Javitz, H.; Valdes, A.; and Garvey, T.
1992. A real-time intrusion detection expert system
(IDES) - final technical report. Technical report, Com-
puter Science Laboratory, SRI International, Menlo
Park, California.
Mannila, H., and Toivonen, H. 1996. Discovering gen-
eralized episodes using minimal occurences. In Pro-
ceedings of the Second International Conference on
Knowledge Discovery in Databases and Data Mining.
Mannila, H.; Toivonen, H.; and Verkamo, A. I. 1995.
Discovering frequent episodes in sequences. In Proceed-
ings of the First International Conference on Knowl-
edge Discovery in Databases and Data Mining.
Srikant, R.; Vu, Q.; and Agrawal, R. 1997. Mining
association rules with item constraints. In Proceed-
ings of the 3rd International Conference on Knowledge
Discovery and Data Mining, 67–73. Newport Beach,
California: AAAI Press.
Stolfo, S. J.; Prodromidis, A. L.; Tselepis, S.; Lee,
W.; Fan, D. W.; and Chan, P. K. 1997. JAM: Java
agents for meta-learning over distributed databases.
In Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining, 74–81. New-
port Beach, CA: AAAI Press.
Utgoff, P. E.; Berkman, N. C.; and Clouse, J. A. 1997.
Decision tree induction based on efficient tree restruc-
turing. Machine Learning 29:5–44.


