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In the late 18th century, Erasmus Darwin, Charles Darwin’s grandfather, advocated evolu-

tionary theory as a mean to “unravel the theory of disease”. More than 200 years later,

although Darwinian medicine is regaining some ground after having been muzzled during

the second half of the 20th century, genomics has largely outcompeted evolution and has

acquired a dictatorial success as a tool for studying disease etiology [1]. From an evolu-

tion-inspired perspective, we have gradually drifted into the habit of focusing primarily on

genomic data from sources such as genome-wide association studies (GWAS). As a result,

understanding the how and why of human diseases and pathobiology has largely become

a matter of crunching DNA sequences. Despite the popularity of GWAS, their reality

remains unchanged: most of the susceptibility loci they allow to identify explain only a

small fraction of the heritability of complex diseases [2]. A number of reasons for the so-

called “missing heritability” have been proposed [2], and our goal is not to review them all.

Here we primarily reiterate that there is more to discover than non-synonymous point

mutations and suggest that amid genetic deserts and genetic islands, there is also more to

explore than the coding regions of the genome. We then highlight the importance and the

necessity of designing efficient methods to mine beyond the exome.

The premise of GWAS is the “common disease-common variant” hypothesis, which

posits that common diseases are, at least partly, associated with DNA sequence variations

or polymorphisms present in more than 1-5% of the population. It turns out that most

allele frequencies battle to reach the 5% detection threshold of commercial genotyping

arrays and the “common disease-rare variant” hypothesis is gradually taking precedence

over its counterpart [2]. Hence, aiming for the rare variants using whole genome sequen-

cing for example is one first step into the right direction [3]. A further step is to deliber-

ately include synonymous polymorphisms among the genetic variants considered in

association studies. Although largely disregarded, synonymous polymorphisms are about

twice as numerous as non-synonymous ones [4] and are often found responsible for

altered protein structure, function and expression level [5]. Accordingly, a considerable list

of disease-associated synonymous polymorphisms is already available [5] and there are

more to be found. Besides single nucleotide polymorphisms (SNPs), variation can also be

structural: multi-kilobase genomic regions can be inserted or deleted (copy number varia-

tion, CNV), or they can be moved (copy neutral variation), within (inversion) or between

(translocation) chromosomes [6,7]. Structural variants have already been shown to contri-

bute to disease phenotypes [8,9], but with the help of high resolution GWAS purposely

designed to detect them, there are undoubtedly more discoveries ahead [6,7].

Variants can adopt different forms but they can also occur in different locations

throughout the genome. When given the choice between (quasi) random SNPs and
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SNPs located in coding regions (gene-centric approach), choosing the latter is the safer

bet [10]. However, the fact that more than 80% of the risk-associated variants identified

so far fall outside of the coding regions suggests that there is a third option, namely

the non-coding regions of the genome, including intergenic regions, introns and 3’ and

5’ untranscribed regions [11]. Non-coding regions harbor plenty of functional DNA,

composed essentially of regulatory elements such as enhancers, promoters, insulators

and silencer, and of non-coding functional RNA such as micro-RNA (miRNA). As the

non-coding regions of the genome have gradually been revealing their secretes, evi-

dence for their etiological importance has accumulated. Accordingly, genetic variation

at regulatory elements [12-15] and at miRNA [16-18] has been found to play an

important role in various diseases. Both better SNP coverage and whole genome

sequencing will allow for a more methodological exploration of the non-coding regions

of the genome.

There is more to the genome than we may have believed. Yet novel discoveries heav-

ily rely on the availability of adequate and powerful analytical tools to exploit rich and

complex data. In particular, progress in our understanding of the genetic architecture

of common diseases requires efficient methods for merging different types of data and

exploiting them simultaneously. Recent literature provides promising ideas on how to

combine expert knowledge and crude genotyping data. Cowper et al. [14] for example

suggest the use of genome-wide regulatory networks as a framework to incorporate

biological knowledge to the analysis and interpretation of genotyping data, including

data collected in the non-coding regions of the genome. This fits into a broader sys-

tems genetics approach to human disease [19]. Data are accumulating at a faster rate

than methodological tools do. We suggest that there is room and urgent need for

more ideas on how to analyze and integrate the different sources of information that

we extract from both popular and remote regions of the genome. The last five years

has focused on the task of manipulating large genomic data sets. Now is the time to

integrate and synthesize these disparate sources of genomic information.
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