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Block correlations are common semantic patterns in storage systems. They can be exploited for im-
proving the effectiveness of storage caching, prefetching, data layout, and disk scheduling. Unfor-
tunately, information about block correlations is unavailable at the storage system level. Previous
approaches for discovering file correlations in file systems do not scale well enough for discovering
block correlations in storage systems.

In this article, we propose two algorithms, C-Miner and C-Miner*, that use a data mining
technique called frequent sequence mining to discover block correlations in storage systems. Both
algorithms run reasonably fast with feasible space requirement, indicating that they are practical
for dynamically inferring correlations in a storage system. C-Miner is a direct application of a
frequent-sequence mining algorithm with a few modifications; compared with C-Miner, C-Miner*
is redesigned for mining block correlations by making concessions for the specific problem of long
sequences in storage system traces. Therefore, C-Miner* can discover 7–109% more correlation
rules within 2–15 times shorter time than C-Miner. Moreover, we have also evaluated the benefits of
block correlation-directed prefetching and data layout through experiments. Our results using real
system workloads show that correlation-directed prefetching and data layout can reduce average
I/O response time by 12–30% compared to the base case, and 7–25% compared to the commonly
used sequential prefetching scheme for most workloads.
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1. INTRODUCTION

To satisfy the growing demand for storage, modern storage systems are becom-
ing increasingly intelligent. For example, the IBM Storage Tank system [IBM
2002] consists of a cluster of storage nodes connected using a storage area net-
work. Each storage node includes processors, memory, and disk arrays. An EMC
Symmetric server contains up to eighty 333-MHz microprocessors with up to 4–
64 GB of memory as the storage cache [EMC Corporation 1999]. Figure 1 gives
an example architecture of modern storage systems. Many storage systems also
provide virtualization capabilities to hide disk layout and configurations from
storage clients [Lee and Thekkath 1996; Anthes 2002].

Unfortunately, it is not an easy task to exploit the increasing intelligence
in storage systems. One primary reason is the narrow I/O interface between
storage applications and storage systems. In such a simple interface, storage
applications perform only block read or write operations without any indication
of access patterns or data semantics. As a result, storage systems can only
manage data at the block level without knowing any semantic information
such as the semantic correlations between blocks. Therefore, much previous
work had to rely on simple patterns such as temporal locality, sequentiality, and
loop references to improve storage system performance, without fully exploiting
its intelligence. This motivates a more powerful analysis tool to discover more
complex patterns, especially semantic patterns, in storage systems.

Block correlations are common semantic patterns in storage systems. Many
blocks are correlated by semantics. For example, in a database that uses index
trees such as B-trees to speed up query performance, a tree node is correlated
to its parent node and its ancestor nodes. Similarly, in a file server-backend
storage system, a file block is correlated to its inode block. Correlated blocks
tend to be accessed relatively close to each other in an access stream.

Exploring block correlations is very useful for improving the effectiveness
of storage caching, prefetching, data layout, and disk scheduling. For example,
at each access, a storage system can prefetch correlated blocks into its storage
cache so that subsequent accesses to these blocks do not need to access disks,
which is several orders of magnitude slower than accessing directly from a stor-
age cache. As self-managing systems are becoming ever so important, captur-
ing block correlations would enhance the storage system’s knowledge about its
workloads, a necessary step toward providing self-tuning capability. Further-
more, compared with capturing semantic patterns at the file level, exploring
block correlations is more general since it works for all types of storage clients
without any a priori knowledge, including both file systems and databases.
Additionally, exploring correlations at block level can be integrated with I/O
scheduling more effectively than at file level.

Unfortunately, information about block correlations are unavailable at a
storage system because a storage system exports only block interfaces. Since
databases or file systems are typically provided by vendors different from those
of storage systems, it is quite difficult and complex to extend the block I/O
interface to allow upper levels to inform a storage system about block corre-
lations. Recently, Arpaci-Dusseau et al. proposed a very interesting approach
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Fig. 1. Example of modern storage architecture.

called semantically-smart disk systems (SDS) [Sivathanu et al. 2003] by using
a “gray-box” technology to infer data structure and categorize data in storage
systems. However, this approach requires probing in the front-end and assumes
that the front-ends conform to the FFS-like file system layout.

An alternative approach is to infer block correlations fully transparently
inside a storage system by only observing access sequences. This approach
does not require any probing from a front-end and also makes no assumption
about the type of the front-ends. Therefore, this approach is more general and
can be applied to storage systems with any front-end file systems or database
servers. Semantic distances [Kuenning 1994; Kuenning and Popek 1997] and
probability graphs [Griffioen and Appleton 1994, 1995] are such “black-box”
approaches. They are quite useful in discovering file correlations in file systems
(see Section 2.3 for more details).

This article proposes C-Miner, a method which applies a data mining tech-
nique called frequent sequence mining to discover block correlations in storage
systems. Specifically, we have modified a recently proposed data mining al-
gorithm called CloSpan [Yan et al. 2003] to find block correlations in several
storage traces collected in real systems. In order to improve performance and
accuracy, we further develop a more suitable and tailored algorithm, called
C-Miner*, for discovering correlations from a long sequence such as the storage
system traces. To the best of our knowledge, our technique is the first approach
to infer block correlations involving multiple blocks. Furthermore, both algo-
rithms are more scalable and space-efficient than previous approaches. They
run reasonably fast with reasonable space overhead, indicating that they are
practical for dynamically inferring correlations in a storage system.

Moreover, we have also evaluated the benefits of block correlation-directed
prefetching and disk data layout using the real system workloads. Compared
to the base case, this scheme reduces the average response time by 12% to 30%;
compared to the sequential prefetching scheme, it also reduces the average
response time by 7% to 25% for most workloads except TPC-H.

The article is organized as follows. In the next section, we briefly de-
scribe block correlations, the benefits of exploiting block correlations, and ap-
proaches to discover block correlations. In Section 3, we present our data min-
ing method to discover block correlations including C-Miner and C-Miner*.
Section 4 discusses how to take advantage of block correlations in two specific
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Fig. 2. Examples of block correlations.

applications, prefetching and disk layout. Section 5 presents our experimental
results. Section 7 discusses the related work and Section 8 concludes the article.

2. BLOCK CORRELATIONS

2.1 What are Block Correlations?

Block correlations commonly exist in storage systems. Two or more blocks are
correlated if they are “linked” together semantically. For example, Figure 2(a)
shows some block correlations in a storage system which manages data for a
file system server. In this example, a directory block “/dir” is directly corre-
lated to the inode block of “/dir/foo.txt,” which is also directly correlated to the
file block of “/dir/foo.txt.” Besides direct correlations, blocks can also be corre-
lated indirectly through another block. For example, the directory block “/dir”
is indirectly correlated to the file block of “/dir/foo.txt.” Figure 2(b) shows block
correlations in a database-backend storage system. Databases commonly use
a tree structure such as B-tree or B*-tree to store data, in which a node is di-
rectly correlated to its parent and children and also indirectly correlated to its
ancestor and descendant nodes.

Unlike other access patterns such as temporal locality, block correlations are
inherent in the data managed by a storage system. Access patterns such as tem-
poral locality or sequentiality depend on workloads and can therefore change
dynamically, whereas block correlations are relatively more stable and do not
depend on workloads, but rather on data semantics. When block semantics are
changed (for example, a block is reallocated to store other data), some block
correlations may be affected. In general, block semantics are more stable than
workloads, especially in systems that do not have very bursty deletion and inser-
tion operations that can significantly change block semantics. As we will show in
Section 5.5, block correlations can remain stable for several days in file systems.

Correlated blocks are usually accessed very close to each other. This is be-
cause most storage front-ends (database servers or file servers) usually follow
semantic “links” to access blocks. For example, a file system server needs to
access an inode block before accessing a file block. Similarly, a database server
first needs to access the parent before accessing its children. Due to the in-
terleaving of requests and transactions, these I/O requests may not be always
consecutive in the access stream received by a storage system, but they should
be relatively close within a short distance from each other.
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Spatial locality is a simple case of block correlations. An access stream ex-
hibits spatial locality if, after a block is accessed, other blocks that are near it
are likely to be accessed in the near future. This is based on the observation
that a block is usually semantically correlated to its neighboring blocks. For
example, if a file’s blocks are allocated in disks consecutively, these blocks are
correlated to each other. Therefore, in some workloads, these blocks are likely
accessed one after another.

However, many correlations are more complex than spatial locality. For ex-
ample, for a file system server, an inode block is not necessarily allocated con-
tiguous with its file blocks, and a directory block is usually allocated separately
from the inode blocks of the files in this directory on disks [Sivathanu et al.
2003]. Therefore, although accesses to these correlated blocks are close to each
other in the access stream, they do not exhibit good spatial locality because
these blocks are far away from each other in the disk layout and even on differ-
ent disks.

In some cases, a block correlation may involve more than two blocks. For
example, a three-block correlation might be: if both a and bare accessed recently,
c is very likely to be accessed in a short period of time. Basically, a and b are
correlated to c, but a or b alone may not be correlated to c. To give a real instance
of this multiblock correlation, let us consider a B* tree which also links all the
leaf nodes together. a, b and c are all leaf nodes. If a is accessed, the system
cannot predict that c is going to be accessed soon. However, if a and b are
accessed one after another, it is likely that c will be accessed soon because it is
likely that the front-end is doing a sequence scan of all the leaf nodes, which is
very common in decision-support system (DSS) workloads [Barroso et al. 1998;
Zhang et al. 2003].

2.2 Exploiting Block Correlations

Block correlations can be exploited to improve storage system performance.
First, correlations can be used to direct prefetching. For example, if a strong
correlation exists between blocks, these two blocks can be fetched together from
disks whenever one of them is accessed. The disk read-ahead optimization is an
example of exploiting the simple sequential block correlations by prefetching
subsequent disk blocks ahead of time. Several studies [Smith 1978a; Choi et al.
2000; Kim et al. 2000] have shown that using even these simple sequential cor-
relations can significantly improve the storage system performance. Our results
in Section 5.4 demonstrate that prefetching based on block correlations can im-
prove the performance much better than such simple sequential prefetching in
most cases.

A storage system can also lay out data in disks according to block correlations.
For example, a block can be collocated with its correlated blocks so that they can
be fetched together using just one disk access. This optimization can reduce the
number of disk seeks and rotations, which dominate the average disk access
latency. With correlation-directed disk layouts, the system only needs to pay a
one-time seek and rotational delay to get multiple blocks that are likely to be
accessed soon. Previous studies [Schindler et al. 2002; Sivathanu et al. 2003]
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have shown promising results in allocating correlated file blocks on the same
track to avoid track-switching costs.

Correlations can also be used to direct storage caching. For example, a stor-
age cache can “promote” or “demote” a block after its correlated block is accessed
or evicted. After an access to block A, blocks that are correlated to A are likely
to be accessed very soon. Therefore, a cache replacement algorithm can spe-
cially “mark” these blocks to avoid being evicted. Similarly, after a block A is
evicted, blocks that are correlated to A are not very likely to be accessed soon so
it might be OK to also evict these blocks in subsequent replacement decisions.
The storage cache can also give higher priority to those blocks that are corre-
lated to many other blocks. Therefore, for databases that use tree structures,
it would achieve a similar effect as the DBMIN cache replacement algorithm
that is specially designed for database workloads [Chou and DeWitt 1993]. This
algorithm gives higher priority to root blocks or high-level index blocks to stay
in a database buffer cache.

Besides performance, block correlations can also be used to improve storage
system security, reliability, and energy-efficiency. For example, malicious clients
access the storage system in a very different pattern from the normal clients. By
catching abnormal block correlations in an access stream, the storage system
can detect such kind of malicious users. When a file block is archived to a
tertiary storage, its correlated blocks may also need to be backed up in order to
provide consistency. In addition, storage power management schemes can also
take advantage of block correlations by clustering correlated blocks in the same
disk so it is possible for other disks to transition into standby mode [Carrera
et al. 2003].

The experiments in this study focused on demonstrating the benefits of ex-
ploiting block correlations in improving storage system performance. The us-
ages for security, reliability, and energy-efficiency remain as our future work.

2.3 Obtaining Block Correlations

There can be three possible approaches to obtain block correlations in storage
systems. These approaches trade transparency and generality for accuracy at
different degrees. The “black box” approach is most transparent and general
because it infers block correlations without any assumption or modification
to storage front-ends. The “gray box” approach does not need modifications to
front-end software but makes certain assumptions about front-ends and also
requires probing from front-ends. The “white box” approach completely relies
on front-ends to provide information and therefore has the most accurate infor-
mation but is least transparent.

“Black Box” approaches infer block correlations completely inside a storage
system, without any assumption on the storage front-ends. One commonly used
method of this approach is to infer block correlations based on accesses. The
observation is that correlated blocks are usually accessed relatively close to
each other. Therefore, if two blocks are almost always accessed together within
a short access distance, it is very likely that these two blocks are correlated to
each other. In other words, it is possible to automatically infer block correlations
in a storage system by dynamically analyzing the access stream.
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In the field of networked or mobile file systems, researchers have proposed
semantic distance (SD) [Kuenning 1994; Kuenning and Popek 1997] or proba-
bility graphs [Griffioen and Appleton 1994, 1995] to capture file correlations
in file systems. The main idea is to use a graph to record the number of times
two items are accessed within a specified access distance. In an SD graph, a
node represents an accessed item B1 with edges linking to other items. The
weight of each edge (B1, B2) is the number of times that B2 is accessed within
the specified lookahead window of B1’s access. So if the weight for an edge is
large, the corresponding items are probably correlated.

The algorithm to build the SD graph from an access stream works like this:
suppose the specified lookahead window size is 100, that is, accesses that are
less than 100 accesses apart are considered to be “close” accesses. Initially
the probability graph is empty. The algorithm processes each access one after
another. The algorithm always keeps track of the items of most recent 100
accesses in the current sliding window. When an item B is accessed, it adds
node B into the graph if it is not in the graph yet. It also increments the weight
of the edge (Bi, B) for any Bi accessed during the current window. If such an
edge is not in the graph, it adds this edge and sets the initial weight to be 1.
After the entire access stream is processed, the algorithm rescans the SD graph
and only records those correlations with weights larger than a given threshold.

Even though probability graphs or SD graphs work well for inferring file
correlations in a file system, they, unfortunately, are not practical for inferring
block correlations in storage systems because of two reasons. (1) Scalability
problem: a semantic distance graph requires one node to represent each ac-
cessed item and also one edge to capture each non-zero-weight correlation.
When the system has a huge number of items as in a storage system, an SD
graph is too big to be practical. For instance, if we assume the specified win-
dow size is 100, it may require more than 100 edges associated with each node.
Therefore, one node would occupy at least 100 × 8 = 800 (assuming each edge
requires 8 bytes to store the weight and the disk block number of B2). For a
small storage system with only 80 GB and a block size of 8 KB, the probability
graph would occupy 8 GB, 10% of the storage capacity. Besides space overheads,
building and searching such a large graph would also take a significantly large
amount of time. (2) Multiblock correlation problem: these graphs cannot rep-
resent correlations that involve more than two blocks. For example, the block
correlations described at the end of the Section 2.1 cannot be conveniently rep-
resented in a semantic distance graph. Therefore, these techniques can lose
some important block correlations.

In this article, we present a practical black box approach that uses a data
mining method to automatically infer both dual-block and multiblock correla-
tions in storage systems. In Section 3, we describe our approach in detail.

“Gray Box” approaches were investigated by Arpaci-Dusseau et al. in [2001]
They developed three gray-box information and control layers between a client
and the OS, and combined algorithmic knowledge, observations, and inferences
to collect information.

The gray-box idea has been explored by Sivathanu et al. [2003] in storage
systems to automatically obtain file-system knowledge. The main idea is to
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probe from a storage front-end by performing some standard operations and
then observing the triggered I/O accesses to the storage system. It works very
well for file systems that conform to FFS-like structure (if the front-end security
is not a concern). The advantage of this approach is that it does not require any
modification to the storage front-end software. The tradeoff is that it requires
the front-end to conform to specific disk layouts such as FFS-like structure.

“White Box” approaches rely on storage front-ends to directly pass seman-
tic information to obtain block correlations in a storage system. For example,
the storage I/O interface can be modified using a higher-level, object-like inter-
face [Gibson et al. 1998] so that correlations can be easily expressed using the
object interface. The advantage with this approach is that it can obtain very ac-
curate information about block correlations from storage front-ends. However, it
requires modifying storage front-end software, some of which, such as database
servers, are too large to be easily ported to object-based storage interface.

3. MINING FOR BLOCK CORRELATIONS

Data mining, also known as knowledge discovery in databases (KDD), has de-
veloped quickly in recent years due to the wide availability of voluminous data
and the imminent need for extracting useful information and knowledge from
them. Traditional methods of data analysis dependent on human handling can-
not scale well to huge sizes of data sets. In this section, we first introduce some
fundamental data mining concepts and analysis methods used in our article
and then describe C-Miner and C-Miner*, our algorithms for inferring block
correlations in storage systems.

3.1 Frequent Sequence Mining

Different patterns can be discovered by different data mining techniques, in-
cluding association analysis, classification and prediction, cluster analysis, out-
lier analysis, and evolution analysis [Han and Kamber 2001]. Among these
techniques, association analysis can help discover correlations between two or
more sets of events or attributes. Suppose there exists a strong association be-
tween events x and y , it means that if event x happens, event y is also very
likely to happen. We use the association rule x →y to describe such a correlation
between these two events.

Frequent sequence mining is one type of association analysis to discover
frequent subsequences in a sequence database [Agrawal and Srikant 1995].
A subsequence is considered frequent when it occurs in at least a specified
number of sequences (called min sup) in the sequence database. A subsequence
is not necessarily contiguous in an original sequence. For example, a sequence
database D has five sequences:

D = {abced, abcef, agbch, abijc, aklc}.
The number of occurrences of subsequence abc is 4. We denote the number of
occurrences of a subsequence as its support. Obviously, the smaller min sup is,
the more frequent subsequences the database contains. In the above example,
if min sup is specified as 5, only the subsequence ac is frequent; if min sup is
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specified as 4, the frequent subsequences are

{ab: 4, ac: 5, bc: 4, abc: 4},
where the numbers are the supports of the subsequences.

Frequent sequence mining is an active research topic in data mining [Zaki
2001; Pei et al. 2001; Ayres et al. 2002] with broad applications, such as mining
motifs in DNA sequences, analysis of customer shopping sequences, etc. To the
best of our knowledge, our study is the first one that uses frequent sequence
mining to discover patterns in storage systems.

Our algorithms are based on a recently proposed frequent sequence mining
algorithm called CloSpan (Closed Sequential Pattern mining)[Yan et al. 2003].
The main idea of CloSpan is to find only closed frequent subsequences. A closed
sequence is a subsequence whose support is different from that of its superse-
quences. In the above example, subsequence ac is closed because its support is
5, and the support of any one of its supersequences (for example, abc and agc,
etc.) is no more than 4; on the other hand, subsequence ab is not closed because
its support is the same as that of one of its supersequences, abc.

CloSpan only produces the closed frequent subsequences rather than all fre-
quent subsequences since any nonclosed subsequences can be indicated by their
supersequences with the same support. In the above example, the frequent sub-
sequences are

{a: 5, b: 4, c: 5, ab: 4, ac: 5, bc: 4, abc: 4}
but we only need to produce the closed subsequences {ac: 5, abc: 4}. This fea-
ture significantly reduces the number of patterns generated, especially for long
frequent subsequences. More details can be found in Pei et al. [2001] and Yan
et al. [2003].

3.2 C-Miner : Our Basic Mining Algorithm

Frequent sequence mining is a good candidate for inferring block correlations
in storage systems. One can map a block to an item, and an access sequence to
a sequence in the sequence database. Using frequent sequence mining, we can
obtain all the frequent subsequences in an access stream. A frequent subse-
quence indicates that the involved blocks are frequently accessed together. In
other words, frequent subsequences are good indications of block correlations
in a storage system.

One limitation with the original mining algorithm is that it does not consider
the gap of a frequent subsequence. If a frequent sequence contains two accesses
that are very far from each other in terms of access time, such a correlation is not
interesting for our application. From the system’s point of view, it is much more
interesting to consider frequent access subsequences that are not far apart. For
example, if a frequent subsequence xy always appears in the original sequence
with a distance of more than 1000 accesses, it is not a very interesting pattern
because it is hard for storage systems to exploit it. Further, such correlations
are generally less accurate.

To address this issue, C-Miner restrict access distances. In order to describe
how far apart two accesses are in the access stream, the access distance between
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Fig. 3. Preprocessing traces using overlapped and nonoverlapped windows (cutting window
size = 4).

them is denoted as gap, measured by the number of accesses between these two
accesses. We specify a maximum distance threshold, denoted as max gap. All
the uninteresting frequent sequences whose gaps are larger than the threshold
are filtered out. This is similar to the lookahead window used in the semantic
distance algorithms.

3.2.1 Preprocessing. Existing frequent sequence mining algorithms in-
cluding CloSpan are designed to discover patterns for a sequence database
rather than a single long sequence of time-series information as in storage sys-
tems. To overcome this limitation, C-Miner preprocesses the access sequence
(that is, the history access trace) by breaking it into fixed-size short sequences.
The size of each short sequence is called cutting window size.

There are two ways to cut the long access stream into short sequences—
overlapped cutting and nonoverlapped cutting. The overlapped cutting divides
an entire access stream into many short sequences and leaves some over-
lapped regions between any two consecutive sequences. Nonoverlapped cutting
is straightforward; it simply splits the access stream into access sequences of
equal size.

Figure 3 illustrates how to cut the access stream abcedabcefdagbcabiaklc into
short sequences with length of 4 using these two methods. Overlapped cutting
may increase the number of occurrences for some subsequences if it falls in
the overlapped region. In the example shown in Figure 3, using overlapped
cutting results in 10 short sequences. The subsequences bc in dabc and bcef
occurs only once in the original access stream, but now is counted twice since
the short sequences, dabc and bcef, overlap with each other. It is quite difficult
to determine how many redundant occurrences there are due to overlapping.
Another drawback is that the overlapped cutting generates more sequences
than nonoverlapped cutting. Therefore it takes the mining algorithm a longer
time to infer frequent subsequences.

Using nonoverlapped cutting can, however, lead to loss of frequent subse-
quences that are split into two or more sequences, and therefore can decrease
the support values of some frequent subsequences because some of their oc-
currences are split into two sequences. In the example shown in Figure 3, the
nonoverlapped cutting results in only six sequences. The support for ab is 2,
but the actual support in the original long sequence is 4. The lost support is
because the last two occurrences are broken across cutting windows and are
therefore not counted.

But the amount of lost information in the non-overlapped cutting scheme
is usually quite small, especially if the cutting window size is relatively large.

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Mining Block Correlations to Improve Storage Performance • 223

Fig. 4. Mining algorithm.

Since C-Miner restricts the access distance of a frequent subsequence, only a
few frequent subsequences may be split across multiple windows. Suppose the
instances of a frequent subsequence are distributed uniformly in the access
stream, the cutting windows size is w and the maximum access distance for
frequent sequences is max gap (max gap � w). Then, the probability that an
instance of a frequent subsequence is split across two sequences is max gap/w.
For example, if the access distance is limited within 50, and the cutting win-
dow size is 500 accesses, the support value is lost by about 10%. Therefore,
most frequent subsequences would still be considered frequent after nonover-
lapped cutting. Based on this analysis, we used nonoverlapped cutting in our
experiments.

3.2.2 Core Algorithm. C-Miner mines the sequence database and produces
frequent subsequences, which can then be used to derive block correlations. C-
Miner mainly consists of two stages: (1) generating a candidate set of frequent
subsequences that includes all the closed frequent subsequences; and (2) prun-
ing the nonclosed subsequences from the candidate set.

In the first stage, C-Miner generates a candidate set of frequent sequences
using a depth-first search procedure. The pseudocode in Figure 4 shows the
mining algorithm. In the algorithm, Ds is a suffix database which contains all
the maximum suffixes of the sequences that contain the frequent subsequence s.
For example, in the previous sequence database D, the suffix database of fre-
quent subsequences ab is Dab = {ced, cef, ch, ijc}.

There are two main ideas in C-Miner to improve the mining efficiency. The
first one is based on an obvious observation that, if a sequence is frequent, all
of its subsequences are frequent. For example, if abc is frequent, all of its sub-
sequences {a, b, c, ab, ac, bc} are frequent. Based on this observation, C-Miner
recursively produces a longer frequent subsequence by concatenating every fre-
quent item to a shorter frequent subsequence that has already been obtained
in the previous iterations.
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To better explain this idea, let us consider an example. In order to get the set
Ln of frequent subsequences with length n, we can join the set Ln−1 of frequent
subsequences with length n − 1 and the set L1 of frequent subsequences with
length 1. For example, suppose we have already computed L1 and L2 as shown
below. In order to compute L3, we can first compute L′

3 by concatenating a
subsequence from L2 and an item from L1:

L1 = {a, b, c};
L2 = {ab, ac, bc};
L′

3 = L2 × L1 = {abc, abb, abc, aca, acb, acc, bca, bcb, bcc}.
For greater efficiency, C-Miner does not join the sequences in L2 with all the

items in L1. Instead, each sequence in L2 is concatenated with only the frequent
items in its suffix database. In our example, for the frequent sequence ab in L2,
its suffix database is Dab = {ced, cef, ch, ijc}, and only c is the frequent item, so
ab is only concatenated with c and we get a longer sequence abc that belongs
to L′

3.
The second idea is used for efficiently evaluating whether a concatenated

subsequence is frequent or not. It tries to avoid searching through the whole
database. Instead, it checks with certain suffixes. In the above example, for
each sequence s in L′

3, C-Miner checks whether it is frequent or not by search-
ing the suffix database Ds. If the number of its occurrences is greater than
min sup, s is added into L3, which is the set of frequent subsequences of length
3. C-Miner continues computing L4 from L3, L5 from L4, and so on until no
more subsequences can be added into the set of frequent subsequences.

In order to mine frequent sequences more efficiently, C-Miner uses a tech-
nique that can efficiently determine whether there are new closed patterns in
search subspaces and stop checking those unpromising subspaces. The basic
idea is based on the following observation about a closed sequence property. In
the algorithm’s step 2, among all the sequences in Ds, if an item a always oc-
curs before another item b, C-Miner does not need to search any sequences with
prefix s�b. The reason is that ∀γ , s�b�γ is not closed under this condition. Take
the previous sequence database as an example. a always occurs before b, so any
subsequence with prefix b is not closed because it is also a subsequence with
prefix ab. Therefore, C-Miner does not need to search the frequent sequences
with prefix b because all these frequent sequences are included in the frequent
sequences with prefix ab (e.g., bc is included in abc with support 4). Without
searching these unpromising branches, C-Miner can generate the candidate
frequent sequences much more efficiently.

3.2.3 Generating Association Rules. C-Miner produces frequent sequences
that indicate block correlations, but it does not directly generate the association
rules in the form of x1x2 → y , which is much easier to use in storage systems.

In order to convert the frequent sequences into association rules, C-Miner
breaks each sequence into several rules. In order to limit the number of rules,
C-Miner constrains the length of a rule (the number of items on the left side of
a rule). For example, a frequent sequence abc may be broken into the following
set of rules with the same support of abc: {a → b, a → c, b → c, ab → c}.
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Different closed frequent sequences can be broken into the same rules. For
example, both abc and abd can be broken into the same rule a → b, but they may
have different support values. The support of a rule is the maximum support
of all corresponding closed frequent sequences.

3.2.4 Confidence of Rules. For each association rule, we need to evaluate
its accuracy. For example, in the above example, a occurs five times, but ab
only occurs four times; this means that when a is accessed, b is also accessed
in the near future (within max gap distance) with probability 80%. We call this
probability the confidence of the rule. When we use an association rule to pre-
dict future accesses, its confidence indicates the expected prediction accuracy.
Predictions based on low-confidence rules are likely to be wrong and may not be
able to improve system performance. Worse still, they may hurt the system per-
formance due to overheads and side-effects. Because of this, we use confidence
as a constraint to filter out the rules with low confidence.

The support metric is different from confidence. For example, suppose x and
y are accessed only once in the entire access stream and their accesses are
within the max gap distance, the confidence of the association rule x → y is
100% whereas its support is only 1. This rule is not very interesting because
it happens rarely. On the other hand, if a rule has high support but very low
confidence (e.g., 5%), it may not be useful because it is too inaccurate to be used
for prediction. Therefore, in practice, we usually specify a minimum support
threshold min sup and a minimum confidence threshold min conf in order to
filter low-quality association rules.

3.3 C-Miner*: Mining from a Single Long Sequence

As we mentioned in Section 3.2, the existing frequent sequence mining algo-
rithms have some limitations for mining block correlations in storage systems.
The major limitation is that the training dataset must be a sequence database
that consists of a number of sequences. This is because the mining algorithms
were originally designed for analyzing customer’s behavior from a large number
of transactions, which are quite different from storage systems. Each transac-
tion is considered as a sequence, and each sequence in the sequence database
is relatively short (usually shorter than 100). However, in our problem space
of extracting block correlations, the input is a long sequence of access trace in-
stead of a sequent database. Therefore, the original frequent sequence mining
algorithms cannot be directly applied to these traces.

To get around the above problem, C-Miner breaks the long trace into short
sequences, which can result in loss of some patterns if the items of a pattern
are separated across two different short sequences. In order to limit the loss,
the long sequence should be broken with a relatively large cutting window size.
On the other hand, a large cutting window size can result in a large time over-
head due to the inherent limitation of the original frequent sequence mining
algorithms. Therefore, the cutting window size should be chosen carefully in
order to achieve reasonable accuracy with reasonable overhead.

To better address this problem, we develop a new mining algorithm, called
C-Miner*, that can discover the frequent subsequences from a single long
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Fig. 5. Lookahead window for frequent item a (lookahead distance = 4).

sequence such as the storage system traces without cutting. The key differ-
ence from C-Miner is that C-Miner* can count the supports of subsequences
without breaking the long sequence, and therefore generate the candidate sets
of frequent subsequences from a single long sequence.

The main idea of C-Miner* is to count the support of a subsequence by scan-
ning its corresponding lookahead windows. A lookahead window is a subse-
quence consisting of a specified number (lookahead distance) of items, and the
subsequence begins with the frequent item that is under consideration. For ex-
ample, Figure 5 shows the lookahead windows for the frequent item a in a single
long sequence abcedabcefdagbcabiaklc. There are five lookahead windows for
item a, each of which is composed of a four-item subsequence starting with a.

When C-Miner* counts the support for a subsequence beginning with item
α, it only scans all corresponding lookahead windows beginning with the same
item α. For example, when C-Miner* counts the support for subsequence ab,
it scans the lookahead windows for frequent item a shown in Figure 5 and so
the support is 4. Similarly, the support of a, ac, and abc can also be obtained by
scanning these lookahead windows.

C-Miner* has better accuracy and efficiency than both the nonoverlapped and
overlapped cutting methods. Specifically, compared with nonoverlapped cutting
as in C-Miner, C-Miner* can obtain more block correlations from the trace. Since
C-Miner* does not use a fixed window to cut the single long subsequence into
short sequences, no pattern information will be lost. In the above example,
the last two supports of ab will be lost if using nonoverlapped cutting, but the
lookahead windows will never separate the sequence ab across two windows
if the gap between a and b is less than the lookahead distance. Since we only
want to discover the frequent subsequences with the gap not larger than the
threshold max gap, C-Miner* uses max gap as the default lookahead distance,
and therefore it does not lose any information we want to obtain. Furthermore,
C-Miner* is more efficient than C-Miner in terms of time overhead. In C-Miner,
in order to limit the loss due to cutting, the cutting window size should be much
larger than max gap and it may lead a large time overhead. In contrast, the
lookahead distance in C-Miner* is equal to max gap so that it can avoid this
time overhead.

Compared with the overlapped cutting method, C-Miner* can produce more
accurate support values because each occurrence of subsequences is only
counted as one support, whereas some subsequences may be counted for several
times due to duplicates in the latter. Further more, C-Miner* is faster than the
overlapped cutting method because each occurrence of a subsequence needs to
scan only once within a lookahead window, while the latter needs scan more
than once due to redundancy.
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3.4 Efficiency of C-Miner and C-Miner*

Compared with other methods such as probability graphs or SD graphs,
C-Miner and C-Miner* can find more correlations, especially those multiblock
correlations. From our experiments, we find that these multiblock correlations
are very useful for systems.

For dual-block correlations, which can also be inferred using previous ap-
proaches, our algorithms, C-Miner and C-Miner*, are more efficient. First, our
algorithms are much more space efficient than SD graphs because they do
not need to maintain the information for nonfrequent sequences, whereas SD
graphs need to keep the information for every block during the graph build-
ing process. Second, in terms of time complexity, our algorithms are the same
(O(n)) as SD. But in practice, since our algorithms have much smaller memory
footprint size, it is more efficient and can run in a cheap uniprocessor machine
with moderate memory size as used in our experiments.

Other frequent sequence mining algorithms such as PrefixSpan [Pei et al.
2001] can also find long frequent sequences. Compared with these frequent
sequence mining algorithms, C-Miner and C-Miner* are more efficient for dis-
covering long frequent sequences because they not only avoid searching the
nonfrequent sequences while generating longer sequences, but also prune all
the unpromising searching branches according to the closed sequence property,
as we have discussed. C-Miner and C-Miner* can outperform PrefixSpan by an
order of magnitude for some datasets.

4. APPLICATIONS

4.1 Correlation-Directed Prefetching (CDP)

As we mentioned in Section 2.2, the block correlation information inferred by
C-Miner or C-Miner* can be used to prefetch more intelligently. Assume that
we have obtained a block correlation rule: if block b1 is accessed, block b2 will
also be accessed soon within a short distance (of length gap) with a certain
confidence (probability). Based on this rule, when there is an access to block b1,
we can prefetch block b2 into the storage cache since it will probably be accessed
soon.

Several design issues should be considered while using block correlations
for prefetching. One of the most important issues is how to effectively share
the limited size cache for both caching and prefetching. If prefetching is too
aggressive, it can pollute the storage cache and may even degrade the cache hit
ratio and system performance. This problem has been investigated thoroughly
by previous work [Cao et al. 1994, 1995; Patterson et al. 1995]. We therefore
do not investigate it further in our article. In our simulation experiments, we
simply fixed the cache size for prefetched data so it did not compete with non-
prefetching requests. However, the total cache size was fixed at the same value
for the system with and without prefetching in order to have a fair comparison.

Another design issue is the extra disk load imposed by prefetch requests. If
the disk load is too heavy, the disk utilization is close to 100%. In this case,
prefetching can add significant overheads to demand requests, canceling out
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the benefits of improved storage cache hit ratio. Two methods can be used to
alleviate this problem. The first method is to differentiate between demand re-
quests and prefetch requests by using a priority-based disk scheduling scheme.
In particular, the system uses two waiting queues in the disk scheduler: crit-
ical and noncritical. All the demand requests are issued to the critical queue,
while the prefetch requests are issued to the noncritical queue which has lower
priority.

The other method is to throttle the prefetch requests to a disk if the disk is
heavily utilized. Since the correlation rules have different confidences, we can
set a confidence threshold to limit the number of rules used for prefetching. All
the rules with confidence lower than the threshold are ignored. Obviously, the
higher the threshold is, the fewer the rules are used; therefore, CDP acts less
aggressively. In order to adjust the threshold to make prefetching adapt to the
current disk workload, we keep track of the current load on each disk. When
the workload is too high, say the disk utilization is more than 80%, we increase
the confidence threshold for correlation rules that direct the issuing of prefetch
requests to this disk. Once the disk load drops down to a low level, say the
utilization is less than 50%, we decrease the confidence threshold for correlation
rules so that more rules can be used for prefetching. By doing this, the overhead
on disk bandwidth caused by prefetches is kept within an acceptable range.

4.2 Correlation-Directed Disk Layout

Block correlations can also help lay out data on disks to improve performance
as described in Section 2.2. We can lay out the blocks on disks based on block
correlations like that: if we know a correlation abcd from C-Miner or C-Miner*,
we can try to allocate them contiguously in a disk. Whenever any one of these
blocks is read, all four blocks are fetched together into the storage cache using
one disk access. Since some blocks may appear in several patterns, we allocate
the block based on the rules with highest support value.

One of the main design issues is how to maintain the directory information
and reorganize data without an impact on the foreground workload. After re-
organizing disk layouts, we need to map logical block numbers to new physical
block numbers. The mapping table might become very large. Some previous
work has studied these issues and shown that disk layout reorganization is
feasible to implement [Salmon et al. 2003]. They proposed a two-tiered soft-
ware architecture to combine multiple disk layout heuristics so that it adapts
to different environments. Block correlation-directed disk layout can be one of
the heuristics in their framework. Due to space limitation, we do not discuss
this issue further.

5. SIMULATION RESULTS

5.1 Evaluation Methodology

To evaluate the benefits of exploiting block correlations in block prefetching and
disk data layout, we use trace-driven simulations with several large disk traces
collected in real systems. Our simulator combines the widely used DiskSim
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simulator [Ganger 1995] with a storage cache simulator, CacheSim, to simulate
a complete storage system. Since most of the current storage systems use least
recently used (LRU) replacement policy due to its simplicity, we used LRU in our
experiments. Accesses to the simulated storage system first go through a stor-
age cache and only read misses or writes access physical disks. The simulated
disk specification is similar to that of the 10,000-rev/min IBM Ultrastar 36Z15.
The parameters are taken from the disk’s data sheet [Carrera et al. 2003].

Our experiments used the following six real system traces:

—Cello-92 and Cello-96 were collected at Hewlett-Packard Laboratories in 1992
and 1996 [Ruemmlerler and Wilkes 1993a, 1993b]. They captured all low-
level disk I/O performed by the system. We used the traces gathered on Cello,
which is a timesharing system used by a group of researchers at HP Lab to
do simulations, compilation, editing, and email. The traces include the ac-
cesses to 8 and 20 disks from multiple users and miscellaneous applications,
respectively. They contain a lot of sequential access patterns, so the simple
sequential prefetching approaches can significantly benefit from them.

—Cello-99 is a more recent file system workload that was collected in 1999,
and thereby it represents the modern workloads. It includes the accesses to
22 disks.

—TPC-C Trace is an I/O trace collected on a storage system connected to a
Microsoft SQL Server via storage area network. The Microsoft Server SQL
clients connect to the Microsoft SQL Server via Ethernet and run the TPC-C
benchmark [Leutenegger and Dias 1993] for 2 h. The database consists of
256 warehouses and the footprint is 60 GB, and the storage system employs
a RAID of four disks. More detailed descriptions of this trace can be found
in Zhou et al. [2001] and Chen et al. [2003].

—OLTP is a trace of an OLTP application running at a large financial insti-
tution. It was made available by the Storage Performance Council [Storage
Performance Council 2004]. The disk subsystem is composed of 19 disks.

—TPC-H Trace is another TPC benchmark trace that is collected on a storage
system similar to TPC-C trace. The main difference is that it represents the
DSS workload, and the sequential accesses is the dominant access patterns
in TPC-H. The footprint of the trace is 12 GB, and the storage system employs
a RAID of 20 disks.

All the traces were collected after filtering through a first-level buffer cache
such as the database server cache. Fortunately, unlike other access patterns,
such as temporal locality that can be filtered by large first-level buffer caches,
most block correlations can still be discovered at the second level. Only those
correlations involving “hot” blocks that always stay at the first level can be lost
at the second level. However, these correlations are not useful to exploit anyway
since “hot” blocks are kept at the first level and therefore are rarely accessed
at the second level.

In our experiments, we used only the first half part of the trace to mine block
correlations using C-Miner and C-Miner*. Using these correlation rules, we
evaluated the performance of correlation-directed prefetching and data layout
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Fig. 6. Block correlations mined form the Cello-96 trace. If there is an association rule x → y , we
plot a corresponding point at (x, y). Therefore, each point (x, y) in the graph indicates a correlation
between blocks x and y .

using the rest of the traces. The correlation rules were kept unchanged during
the evaluation phase. For example, in Cello-92, we used the first 3 days’ trace
(1992.5.30–6.1) to mine block correlations and used the following 4 days to eval-
uate the correlation-directed prefetching and data layout. The reason for doing
this was to show the stable characteristic of block correlations and predictive
powers of our method.

To provide a more fair comparison, we also implemented the commonly used
sequential prefetching scheme. At nonconsecutive misses to disks, the system
also issues a prefetch request to load 16 consecutive blocks if the miss belongs
to sequential accesses detected by a simple detector. We also tried prefetching
more or fewer blocks, but the results were similar or worse.

5.2 Visualization of Block Correlations

5.2.1 Correlations in Real System Traces. Figures 6 and 7 plot the block
correlations discovered by our technique from the Cello-96, TPC-C, and TPC-H
traces. Since multiblock correlations are difficult to visualize, we plot only du-
alblock correlations. Each point (x, y) in the graphs indicates a correlation
between blocks x and y . Since the traces contain multiple disks’ accesses, we
plot the disk block address using a unified continuous address space by plotting
one disk address space after another.

Simple patterns such as temporal locality can be demonstrated in such a cor-
relation graph. For example, temporal locality is indicated by the diagonal line
as shown in Figure 6. This is because the temporal locality can be represented
by an association rule x →x, which means that if block x is accessed, this block
will be accessed again soon. Hence, the points showing temporal locality are
located on the diagonal line, y = x, in the correlation graphs. As shown on
Figure 6, the Cello-96 trace has reasonable temporal locality.
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Fig. 7. Block correlations mined from the TPC-C and TPC-H traces.

Simple patterns such as spatial locality can also be demonstrated in such
a correlation graph. It is indicated by dark areas around the diagonal line as
shown in Figure 6. This is because the spatial locality can be represented by
an association rule x → (x ± k) where k is a small number, which means that
if block x accessed, its neighbor blocks are likely to be accessed soon. Since k
is small, the points (x, x ± k) are around the diagonal line, as shown on the
Cello-96 traces in Figure 6. Figure 7(a) shows that the TPC-C trace does not
have such an apparent characteristic, indicating TPC-C does not have strong
spatial locality. In contrast, Figure 7(b) shows that all the patterns discovered
in TPC-H are sequential accesses, which is one of the characteristics of the DSS
workload.

Some more complex patterns can also be seen from correlation graphs. For
example, in Figure 6, there are many horizontal or vertical lines, indicating
some blocks are correlated to many other blocks. Because this is a database I/O
trace, these hot blocks with many correlations are likely to be the root of trees
or subtrees. In the next subsection, we visualize block correlations specifically
for tree structures.

5.2.2 Correlations in B-tree. In order to demonstrate the capability of our
technique to discover semantics in a tree structure, we used a synthetic trace
that simulates a client that searches data in a B-tree data structure, which is
commonly used in databases. The B-tree maintained the indices for 5000 data
items, and each block has space for four search-key values and five pointers. We
performed 1000 searches. To simulate a real-world situation where some “hot”
data items are searched more frequently than others, searches were not uni-
formly distributed. Instead, we used a Zipf distribution and 80% of the searches
were to 100 “hot” data items.

The block correlations mined from the B-tree trace are visualized in Figure 8.
Note here constructing this tree does not take any semantic information from
the application (the synthetic trace generator). The edges between nodes are
reconstructed purely based on block correlations. Due to the space limitation,
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Fig. 8. Block correlations in B-tree. The number on an edge is the support value for the correspond-
ing correlation. The dashed lines indicate the correlation between a node and its descendants other
than its children. The highlighted lines are the correlations with support ≥ 80. Note that corre-
lations with support < 20 are not produced by C-Miner (min sup = 20) in order to make the tree
reasonably small and sparse for plotting.

Table I. Correlation Rules and Mining Overheads (The rules are given with
confidence ≥10%. The number following “# of rules” for C-Miner* is the ratio between

“# of rules” discovered by C-Miner* and C-Miner.)

C-Miner C-Miner*
# of rules Time Space # of rules Time Space

Training Trace (103) (s) (MB) (103) (s) (MB)
Cello-92 (3 days) 228 7800 3.1 335 (1.47×) 513 599
Cello-96 (1 day) 514 2089 4.6 608 (1.18×) 979 355
Cello-99 (1 day) 512 6060 8.5 1070 (2.09×) 2135 656
TPC-C (1 h) 235 3355 9.2 252 (1.07×) 1414 14
TPC-H (1 h) 24 49 4.4 306 (12.75×) 74 4.7
OLTP (2.5 h) 186 174 173 269 (1.45×) 40 455

we only show part of the correlations. Each rule x → y is denoted as a directed
edge with support as its weight. The figure illustrates that the block correlations
implicate a tree-like structure. Also note that our approach to obtaining block
correlations is fully transparent without any assumption on storage front-ends.

5.3 Data Mining Overhead

Table I shows the running time and space overheads for mining different traces
using C-Miner and C-Miner* as described in Sections 3.2 and 3.3. Both algo-
rithms were run on an Intel Xeon 2.4-GHz machine and Linux 2.4.20. The time
and space overhead did not depend on the confidence of rules, as we discussed
in Section 3.2, but the number of rules did.

The results show that C-Miner can effectively and practically discover block
correlations for different workloads. For example, it takes less than 1 h to dis-
cover half a million association rules from the Cello-96 trace that contains a
full-day’s disk requests. For the TPC-C trace, although it takes about 1 h to mine
1 h’s trace, it is still practical for storage systems. Because block correlations are
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relatively stable, it is unnecessary to keep mining for correlations in the back-
ground. Instead, it might be acceptable to spend 1 h every week on running
C-Miner to update correlation rules. In our experiments, we only used parts
of the traces to mine correlations, and used the remaining traces to evaluate
correlation-directed prefetching and disk layout. Our experimental results in-
dicate that correlations are relatively stable and are useful for accesses made
much later after the training period.

C-Miner is also efficient in terms of space overhead for most of traces. It
takes less than 10 MB to mine the Cello, TPC-C, and TPC-H traces. With such
a small requirement, the data mining can run on the same machine as the
storage system without causing too much memory overhead.

Compared with correlation rules discovered by C-Miner, C-Miner* can dis-
cover 7–109% more rules for most of the traces. The results demonstrate that
C-Miner* can find the frequent subsequences from a single long sequence much
more than the basic algorithm because C-Miner breaks the trace into nonover-
lapped short sequences and it may lose patterns. For example, C-Miner can
find 228,000 rules from Cello-92, while C-Miner* can discover 335,000— about
50% more than C-Miner. Especially for TPC-H, C-Miner* can discover 12 times
more rules than C-Miner. The reason is that most frequent sequences in TPC-H
have the same support as the threshold min sup, and therefore the loss of one
support due to nonoverlapped cutting in C-Miner can result in the loss of the
frequent sequence.

The results show that C-Miner* is also as efficient and practical as C-Miner
in terms of time and space overhead for all traces. Furthermore, C-Miner* is
about 2–15 times faster than C-Miner for most of the traces. For example, it
only takes less than 9 min for C-Miner* to mine the 3-days’ Cello-92 trace
while it takes more than 2 h for C-Miner. The exceptional case is TPC-H trace.
The reason is that C-Miner* spends a little longer time discovering 12 times
more rules. Although the space overhead of C-Miner* is larger than C-Miner,
it is still efficient and practical for the current uniprocessor PCs with 1 GB of
memory. The larger space overhead comes from the more frequent subsequences
discovered by C-Miner*.

5.4 Correlation-Directed Prefetching and Disk Layout

In this section, we first present the results of correlation-directed prefetching
and disk layout using the advanced algorithm C-Miner* for all traces, and then
compare the results with those using C-Miner.

5.4.1 Results with C-Miner*. The bar graphs in Figure 9 compare the
read miss ratios and response times using the four different schemes: base-
line (no-prefetching), sequential prefetching, correlation-directed prefetching
(CDP), and correlation-directed prefetching and disk layout (CDP+layout). For
the last three schemes with prefetching, the prefetch cache size was set to be
the same. All four settings used the same total size of storage cache in order to
make a fair comparison. In other words, the TotalCacheSize, which equals to
the sum of DemandCacheSize and PrefetchCacheSize, was the same for all four
schemes. The rules used in CDP were obtained by C-Miner*.
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CDP can improve the average I/O response time for the base-line case by
up to 30%. For instance, in Cello-92, CDP had 35.2% lower storage cache hit
ratios than the base-line case. This translates into 30.3% improvement in the
average I/O response time. In Cello-99, although the miss ratio with CDP was
decreased by only 9%, the improvement was quite significant for this trace since
such a miss ratio with 512 MB cache with CDP can be achieved by using more
than 700 MB cache without CDP. These improvements were due to the fact
that prefetching reduces the number of capacity misses as well as the number
of cold misses. When the cache size is small, some blocks are evicted and need
to be fetched again for disks upon subsequent accesses. Prefetching can avoid
misses at some of these accesses.

The improvement by CDP was much more significant than that by the com-
monly used sequential prefetching scheme, especially in the case of TPC-C and
Cello-92. For example, for the TPC-C trace, sequential prefetching only slightly
reduced the cache miss ratio (by only 2.5%), which was then completely canceled
out by the prefetching overheads. Therefore, sequential prefetching had an even
worse response time than the base case. For the other two traces (Cello-92 and
OLTP trace), the improvement of the sequential prefetching scheme was very
small, almost invisible in terms of the average response time. However, in Cello-
96, sequential prefetching had a lower miss ratio and slightly better response
time than CDP. This was because this trace has a lot of sequential accesses. But
these sequential accesses were not frequent enough in the access stream so it
was not caught by C-Miner*. Fortunately, our patterns obtained by C-Miner*
can be complementary and combined with the existing online sequential
prefetching algorithms that can detect nonfrequent sequential access patterns.

CDP+layout had only small improvement over CDP. Obviously, CDP+layout
should not affect cache miss ratio at all. It only matters to average I/O response
time when the disk is heavily utilized. This small improvement indicates that
our optimization for hiding prefetching overheads using priority-based disk
scheduling is already good enough. Therefore, disk layout does not provide
significant benefits. However, when the disk is too heavily utilized for the disk
scheduling scheme to hide most of the prefetching overheads, we expect the
benefit of correlation-directed disk layout will be larger.

However, no schemes can improve the miss ratio or the response time for
TPC-H trace. The reason is that the TPC-H trace is a typical DSS workload and
contains a number of sequential accesses. C-Miner* can only discover the dom-
inant simple block correlations, as we have shown in Figure 7(d). CDP would
degenerate to a sequential prefetching scheme using such simple correlations.
Furthermore, the database in TPC-H issues a lot of sequential accesses within
a large-size request (usually larger than 128 kB). Therefore, the sequential
prefetching schemes cannot help improve performance.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 9. Miss ratio and response time. The first number in the parentheses is the total cache size,
and the second number is the prefetch cache size. In the base-line case “None,” the prefetch cache
size is zero, so the demand cache size equals the total cache size. In the other three schemes, the
demand cache size is the difference between the total cache size and the prefetch cache size.
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Fig. 10. Miss ratio and response time with CDP using C-Miner and C-Miner*.

Fig. 11. Miss ratio for Cello-92 (64 MB; 4 MB).

5.4.2 Comparison of C-Miner and C-Miner* . Because C-Miner* can find
more block correlations than C-Miner, as shown in Section 5.3, CDP can per-
form better using the rules discovered by C-Miner*. The results of miss ra-
tio and response time of CDP using C-Miner and C-Miner* are compared
in Figure 10. With the more block correlations discovered by C-Miner*, CDP
scheme can prefetch more data and therefore improve the average response
time. For example, because C-Miner* can find 50% more rules from Cello-92
than C-Miner , the miss ratio of CDP with C-Miner* can be improved by
30%, while the miss ratio of CDP with C-Miner can be improved by 25%.
For Cello-96 and TPC-C, because not many more rules can be found by
C-Miner*, the miss ratio and response time are very similar using C-Miner and
C-Miner*.

5.5 Stability of Block Correlations

In order to show that block correlations are relatively stable, we use the correla-
tion rules mined from the first 3 days of the Cello-92 trace using C-Miner*. Our
simulator applies these rules to the next 4 days’ trace without updating any
rules. Figure 11 shows the miss ratio for the next 4 days’ trace using correlated-
directed prefetching (CDP). The miss ratios in the figure are calculated by ag-
gregating every 10,000 read operations. This figure shows that CDP is always
better than the base case. This implies that correlations mined from the first
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Fig. 12. Impact of configuration.

3 days are still effective for the next 4 days. In other words, block correlations
are relatively stable for a relative long period of time. Therefore, there is no
need to run C-Miner* (or C-Miner ) continuously in the background to update
block correlations. This also shows that, as long as the mining algorithm is
reasonably efficient, the mining overhead is not a big issue.

5.6 Impact of Configurations

5.6.1 Effects of the Confidence Threshold. A parameter that can affect the
benefits of correlation directed prefetching is the confidence threshold of corre-
lation rules. Figure 12(a) shows the effects of varying the confidence threshold
from 10% to 100%. A lower confidence threshold corresponds to a more aggres-
sive prefetching policy. The figure shows that the miss ratio is minimum when
prefetching is moderate and the rules with confidence above 60% are used. We
can see that the miss ratio increases when prefetching is either too conservative
or too aggressive (when the rule confidence is smaller than 50%). The reason
for aggressive prefetching is that, when the rules with low confidence are used,
some mispredicted blocks may pollute the prefetch cache.

5.6.2 Effects of the Total Cache Sizes. If the cache size is comparable to
the footprint of a trace, the system simply caches all accesses. Because of
this, the read misses in the case of no prefetching are predominantly cold
misses since subsequent accesses will be cache hits and will not go to the
disk. Therefore, the prefetching schemes do not yield much improvement in
performance.

We study the effects of the cache size by varying the cache size for TPC-C
exponentially from 256 MB to 1024 MB, as shown in Figure 12(b). In this ex-
periment, we keep the prefetch cache fixed at 128 MB and vary the size of the
demand cache. As expected, when the cache size is set at 256 MB, CDP+layout
shows an improvement of 14.6% in miss ratio while with 512 MB, the improve-
ment is only 10.6%. It is important to note that our workloads have relatively
small working set sizes. In large real systems, it is usually not the case that
the entire working set can fit into main memory.
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Fig. 13. Effect of varying the prefetch cache size. (Note: the total cache size is fixed. Therefore,
the demand cache size is also changing with the prefetch cache size. In the base-line case, there is
no prefetch cache.)

5.6.3 Effects of the Prefetch Cache Size. Figures 13(a)–13(d) show the
effects of varying the prefetch cache size while the total cache size is fixed. In
TPC-C, for instance, the storage cache miss ratio with CDP initially decreases
as the prefetch cache size increases. It reaches the minimum when the prefetch
cache size is set to 128 MB. Beyond that point the miss ratio increases again
with the prefetch cache size. This phenomenon is also true for the sequential
prefetching, even though it performs worse than CDP with almost all prefetch
cache sizes.

The above phenomenon can be quite expected. When the prefetch cache size
is very small, prefetched blocks may be replaced even before they are used. Even
though the demand cache size is increased correspondingly, its benefit is not
large enough to offset the loss in unused prefetches. Even worse, the overhead
imposed by CDP causes an increase in the response time compared to the base
case, as shown on Figure 13(d). Fortunately, in this case, the CDP+layout starts
to show the benefits of correlation-directed disk layout. It is still able to provide
some small improvement over the base line case.

As the prefetch cache size increases, blocks can be retained longer in the
prefetch cache and subsequently be used to handle block requests. However,
the increase in prefetch cache size corresponds to a reduced demand cache
size, but the benefit of prefetching in reducing misses outweighs the loss in the
demand cache. Beyond 128 MB, increasing the prefetch cache size no longer has
benefits for increasing hit ratio. So the loss due to the reduced demand cache
size starts to dominate. Therefore, the overall miss ratio increases.
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6. DISCUSSION

In order to use C-Miner and C-Miner* in online storage systems, some issues
should be addressed.

The first issue is how the algorithms can be run in such systems. One way is
to run them on the same system in the background during the idle period. The
running time and space overhead results shown in Section 5.3 indicate that
our mining algorithms are practical to run on the modern storage systems. To
reduce the overhead for collecting I/O traces, a specific log disk can be used.
In order to avoid the performance degradation for the original system, another
way is to run the algorithms on a separate machine where a PC is powerful
enough.

The second issue is how to update block correlations. Since block correlations
depend on data semantics, they can remain relatively stable for a long time in
most systems. Therefore, it is unnecessary to run the algorithms continuously.
The system can collect I/O traces and feed them to the mining algorithm period-
ically or when the block correlations are detected to be out of date (for example,
when the hit ratio of prefetching in CDP is too low).

Furthermore, an incremental stream mining algorithms would be more de-
sirable for updating block correlations. With such enhanced algorithms, we do
not need to keep the traces any more because all the I/O accesses can be di-
rectly passed to the mining algorithm as a data stream online. Additionally,
to consider recency of correlations (that is, some recent frequent subsequences
may be more important than the “ancient” ones), the stream can be considered
as time-series data stream. Accordingly, the mining algorithms can be modified
to change the support or confidence value of a rule dynamically as time pro-
gresses, and so the “ancient” patterns that have not appeared for a long time
would be removed from the correlation rule set.

7. RELATED WORK

In this section, we briefly discuss some representative work that is closely re-
lated to our work. Section 2 has discussed various approaches to capture data
semantics, and we do not repeat them here.

Data prefetching has also been studied extensively in databases, file sys-
tems, and parallel applications with intensive I/Os. Most of previous prefetch-
ing work either relies on applications to pass hints or is based on simple
heuristics such as sequential accesses. Examples of prefetching studies for
databases include Smith [1978b], Wedekind and Zoerntlein [1986], Palmer
and Zdonik [1991], Gerlhof and Kemper [1994a, 1994b], and Hsu et al.
[2001] as well as some recent work [Seifert and Scholl 2002] for mobile
data delivery environments. Prefetching for file I/Os includes application-
controlled prefetching [Cao et al. 1994, 1995] and informed prefetching
[Tomkins et al. 1997; Kimbrel et al. 1996; Patterson et al. 1995], just to
name a few. Soloviev [1996] is an example of prefetching in disk caches.
I/O prefetching for out-of-core applications includes compiler-assisted prefetch-
ing [Mowry et al. 1996; Brown et al. 2001] and prefetching through speculative
execution [Chang and Gibson 1999].
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In the spectrum of sophisticated prefetching schemes, research has been con-
ducted for semantic distance-based file prefetching for mobile or networked file
servers. Besides the probability graph-based approach described in Section 2,
the SEER project from UCLA [Kuenning 1994; Kuenning and Popek 1997]
groups related files into clusters by keeping track of semantic distances between
files and downloading as many complete clusters as possible onto the mobile
station. The CLUMP project tries to leverage the concept of semantic distance
to prefetch file clusters [Eaton et al. 1999]. Kroeger extended the probability
graph to a trie with each node representing the sequence of consecutive file
accesses from the root to the node [Kroeger and Long 1995]. Lei and Duchamp
also used a similar structure by building a probability tree [Tait et al. 1995;
Lei and Duchamp 1997]. Vellanki and Chervenak [1999] combined Patterson’s
cost-benefit analysis with probabilistic prefetching for high performance paral-
lel file systems. Similar to the probability graph, most of these approaches may
be feasible for prefetching at file granularity, but are impractical to track block
correlations in a storage system (see Section 2).

Some studies used data compression techniques for prefetching. It was first
proposed by Vitter and Krishnan [1991]. The basic idea is to encode the data
expected with higher probability using fewer bits. The prefetchers based on any
optimal character-by-character data compressor were theoretically proven to be
optimal in page fault rate. Later, Curewitz et al. [1993] analyzed some practical
issues of such a technique, and proposed three practical data compressors for
prefetching.

Data mining methods have been mostly used to discover patterns in sales,
finance or bio-informatics databases [Han and Kamber 2001; Han 2002]. Only
a few studies have applied them in systems. A well-known example is using
data mining for intrusion detection [Lee and Stolfo 1998; Clifton and Gengo
2000]. Data mining has recently been used in performance evaluation [Wang
et al. 2002] to model bursty traffic.

Data mining and machine learning have been used in web environments
to predict HTTP requests. Schechter et al. [1998] introduced path profiling to
predict HTTP requests in Web environments. Pitkow and Pirolli [1999] have
used longest repeating subsequences to perform path matching for predicting
Web accesses from a client. These schemes predict the next HTTP request by
matching the surfer’s current sequence against the path profile database.

While path-based prediction may work very well for Web environments, it
is very difficult to capture block correlations in storage systems. This is be-
cause Web browser/server workloads are different from storage workloads.
Each Web client usually only browses one page at a time, whereas a stor-
age front-end such as database server can have hundreds of outstanding re-
quests. Since the path-matching schemes do not allow any gaps in the subse-
quence or path, they cannot be used easily to capture block correlations in a
storage system. Supporting gaps or lookahead distances in these approaches
will suffer the same problem as encountered in the probability graph-based
approach.

Our work is also related to various adaptive approaches using learning tech-
niques [Madhyastha and Reed 1997; Madhyastha et al. 1999; Ari et al. 2002;
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Madhyastha and Reed 2002], intelligent storage cache management [Zhou et al.
2001; Wong and Wilkes 2002; Megiddo and Modha 2003; Chen et al. 2003], and
autonomic storage systems [Wilkes et al. 1995; Anderson et al. 2002; Keeton
and Wilkes 2002]

8. CONCLUSIONS AND FUTURE WORK

This article first proposes C-Miner, a novel algorithm that uses data mining
techniques to systematically mine access sequences in a storage system to infer
block correlations. In order to increase the accuracy and time efficiency of C-
Miner, we further propose a new algorithm, called C-Miner*, for mining corre-
lations from a single long sequence such as the storage system traces without
cutting. Using several large real system disk traces, our experiments show that
both algorithms are reasonably fast with small space requirement and there-
fore practical to be used online in autonomic storage systems.

We have also evaluated correlation-directed prefetching and data layout.
Our experimental results with real-system traces have shown that correlation-
directed prefetching and data layout can improve I/O average response time
by 12–30% compared to no-prefetching, and 7–25% compared to the commonly
used sequential prefetching for most workloads.

Our study has several limitations. First, even though this article focuses on
how to obtain block correlations, our evaluation of the block correlation-directed
prefetching and disk layout was conducted using only simulations. We are in the
process of implementing correlation-directed prefetching and disk layout in our
previously built storage system. Second, we do not compare with the semantic-
distance graph approach. The main reason is that our preliminary experiment
indicates that the SD graphs significantly exceed the memory space, making it
extremely slow and almost infeasible to build such graphs.

As we discussed in Section 6, the online and incremental mining algorithm
is desirable for deploying our technique in real systems. Currently, we are de-
signing efficient stream data mining algorithms specifically for mining access
sequences for storage systems and any other application scenarios.
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