
 

Abstract—Building Energy Management Systems (BEMSs) are 

essential components of modern buildings that are responsible for 

minimizing energy consumption while maintaining occupant com-

fort. However, since indoor environment is dependent on many 

uncertain criteria, performance of BEMS can be suboptimal at 

times. Unfortunately, complexity of BEMSs, large amount of data, 

and interrelations between data can make identifying these subop-

timal behaviors difficult. This paper proposes a novel Fuzzy 

Anomaly Detection and Linguistic Description (Fuzzy-ADLD)-

based method for improving the understandability of BEMS be-

havior for improved state-awareness. The presented method is 

composed of two main parts: 1) detection of anomalous BEMS be-

havior; and 2) linguistic representation of BEMS behavior. The 

first part utilizes modified nearest neighbor clustering algorithm 

and fuzzy logic rule extraction technique to build a model of nor-

mal BEMS behavior. The second part of the presented method 

computes the most relevant linguistic description of the identified 

anomalies. The presented Fuzzy-ADLD method was applied to 

real-world BEMS system and compared against a traditional 

alarm based BEMS. Six different scenarios were tested, and the 

presented Fuzzy-ADLD method identified anomalous behavior ei-

ther as fast as or faster (an hour or more), than the alarm based 

BEMS. Furthermore, the Fuzzy-ADLD method identified cases 

that were missed by the alarm based system, thus demonstrating 

potential for increased state-awareness of abnormal building be-

havior. 

 
Index Terms—Anomaly detection, building energy manage-

ment systems (BEMSs), clustering, fuzzy systems, linguistics 

 

I. INTRODUCTION 

UILDINGS consume more than 20% of world energy pro-

duction and around 40% of US energy production [1], [2]. 

Such energy consumption means buildings are one of the major 

causes of greenhouse gas production as well [3]–[6]. Due to 

various reasons, the energy usage in buildings has been steadily 

growing [2]. And this number has been projected to further in-

crease [1], [7].  

The largest energy consumer in buildings is Heating, Venti-

lation and Air Conditioning (HVAC) systems, consuming 30-

50% of building energy [2], [4], [6], [8]–[10]. It has been shown 

that energy efficiency in HVAC systems can be improved by 

more than 5% by implementing very low cost building manage-

ment strategies [4]. Research has shown that the energy effi-

ciency can be improved by up to 40% by closely monitoring the 

state of the building and improving control strategies [11]. 

Building Energy Management Systems (BEMSs) are respon-

sible for monitoring building state and controlling HVAC sys-

tems. BEMSs are highly complex information gathering and 

control systems and implement advanced control strategies to 

improve energy efficiency while maintaining occupant comfort 

[12]. BEMSs enable significant energy savings in buildings 

when properly tuned and controlled [13]–[15]. 

Modern BEMS are extremely complex and consist of thou-

sands of components such as sensors, controller and actuators 

[16]. BEMSs provide data about the current state of the system 

to building managers, who are responsible for maintaining un-

interrupted operation of the HVAC and lighting systems with-

out compromising the occupant comfort or impacting tempera-

ture-sensitive equipment. The information provided by the 

BEMS should allow the building managers to gain an under-

standing of the current state of the building operation and to 

quickly focus on inefficiencies and anomalous behavior [17]. 

However, due to the complexity and the overwhelming 

amount of the acquired data it is difficult to identify important 

and abnormal building behavior and resolve them accordingly 

[18], [19]. Furthermore, it has been shown in previous work that 

information representation and visualization of building state 

can lead to significant savings in energy and identification of 

hardware faults [15]–[22].  

Therefore, in order to improve the understandability of the 

BEMS data and to enhance the state-awareness of building 

managers, this paper presents a novel method for extracting rel-

evant actionable information via fusing multiple heterogeneous 

sources of BEMS data using Computational Intelligence (CI) 

techniques [23]. The presented method utilizes Fuzzy Anomaly 

Detection and Linguistic Descriptions (Fuzzy-ADLD) for min-

ing BEMS data. The anomaly detection enables identification 

of anomalous behavior which is otherwise difficult to identify. 

The linguistic descriptions of anomalies provide the capability 

to present identified behavior in easy to understand natural lan-

guage form. 

The presented Fuzzy-ADLD method has been integrated 

with a graphical user interface and applied to real-world BEMS 

data demonstrating potential for increased state-awareness of 
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building managers. The Fuzzy-ADLD method was compared to 

a traditional alarm based system using six abnormal scenarios. 

In all cases tested, the Fuzzy-ADLD method was at least as 

good as or better than the alarm based system in identifying the 

abnormal behavior. Furthermore, the Fuzzy-ADLD method 

was able to identify certain abnormal behavior that was not 

identified by the alarm based system. 

The rest of the paper is structured as follows. Section II dis-

cusses the problems in BEMS data and details the presented 

Fuzzy-ADLD method for BEMS. Section III elaborates on the 

developed anomaly detection algorithm for BEMS. The method 

for generating linguistic descriptions of the identified anomalies 

is described in section IV. The implementation of the presented 

Fuzzy-ADLD method and its integration with a suitable graph-

ical interface is explained in section V. Finally, the experi-

mental results are presented in section VI and the paper is con-

cluded in section VII. 

 

II. MINING BEMS DATA 

This section first identifies prevalent shortcomings in exist-

ing BEMS data, and then, a detailed overview of the novel 

Fuzzy-ADLD method for BEMS is presented.  

A. Existing BEMS data 

BEMS uses a large array of sensors installed within the build-

ing, outside the building and throughout the air handling sys-

tems to gather information about zone temperature, air quality, 

occupancy, and even lighting [16], [24], [25]. BEMS uses this 

information to control the heating, cooling and lighting of the 

building [14], [26], [27]. This type of control has the potential 

of large energy savings when compared to conventional sys-

tems, without sacrificing occupant comfort [13], [17], [28]. Fur-

thermore, gathering and analyzing sensor data allows the iden-

tification of previously unknown building performance charac-

teristics [13]. 

Significant impact of uncertain factors such as weather and 

occupancy on building state also make it difficult to identify 

and predict such behavior using traditional methods [31], [32]. 

The large number of sensors and the interdependency of meas-

urements make it difficult to identify and locate abnormal be-

havior or malfunctions.  

Therefore, inspection of reported data and identification of 

anomalous behavior and inefficiencies is a daunting task for 

building managers. 

Current BEMS tools lack the capability of providing action-

able information by processing and integrating gathered data 

[13]. Some tools specifically created for monitoring and ana-

lyzing BEMS data exist in the industry [30]–[33]. However, 

these tools commonly require additional training in order for it 

to be utilized effectively, and may require a service contract 

with the supplier to access [22], [28]. Furthermore, most of 

these tools need to be customized for specific applications and 

thorough understanding of the system is required to operate 

them. 

Advanced CI based techniques have been previously used for 

improving BEMS [35], [36], [37], [38], [39]. However, to the 

best of authors’ knowledge, the combination of anomaly detec-
tion and linguistic descriptions used to generate actionable in-

formation for increasing the state-awareness of building man-

agers have not been previously considered. 

A framework that utilizes all the sensors in a building along 

with energy consumption data for identifying specific events 

was presented in [40]. In [40] the authors present a method for 

manually and semi-automatically acquire rules for classifying 

building performance according to the energy consumption. 

The Fuzzy-ADLD method presented in this paper differs from 

the framework presented in [40] by providing completely auto-

mated anomaly detection that is not restricted to energy con-

sumption. Furthermore, linguistic descriptions of anomalies are 

automatically generated and the use of fuzzy logic derived com-

putation enables handling of human understandable linguistic 

terms while maintaining uncertainty inherent to system meas-

urements. 

B. Fuzzy-ADLDs for BEMS 

This paper presents a novel methodology for mining BEMS 

data that leads to improved state awareness of building manag-

ers. The presented Fuzzy-ADLD method is based on a two part 

approach: 1) detecting abnormal behavior patterns by fusing 

multiple sources of data, 2) providing easy to understand de-

scriptions of the identified behavior in a linguistic form. 

The first part of the Fuzzy-ADLD method utilizes modified 

nearest neighbor clustering (NNC) algorithm and a fuzzy logic 

rule extraction technique to build a model of normal BEMS op-

erations based on the provided normal behavior training data 

[41]. The anomaly detection algorithm then compares the cur-

rent behavior of the BEMS to the established normal behavior 

to identify abnormal BEMS behavior.  

The second part of the Fuzzy-ADLD method presents the 

identified anomalies in an intuitive, easy to understand manner 

in the form of linguistic descriptions. This is done by using a 

predefined fuzzy representation of the input attributes to auton-

omously compute the relevant and compact linguistic descrip-

tion of the identified anomalies. The Fuzzy-ADLD method also 

enables building managers to adjust the complexity of the lin-

guistic descriptions for increased understandability. 

The presented Fuzzy-ADLD method was implemented in a 

software prototype that incorporates an easy to understand in-

tuitive Graphical User Interface (GUI), which is further dis-

cussed in section V. 

 

III. ANOMALY DETECTION FOR BEMS 

This section first discusses the feature extraction from BEMS 

data. Next, an algorithm for normal behavior modeling and 

anomaly detection using online clustering and fuzzy logic rule 

extraction is presented. 

A. Feature Extraction 

Typical BEMS provides measurements from multiple sensors 

throughout the building. Some measurements are associated 



 

with the entire building (e.g. outside air temperature), some are 

associated with individual floors (e.g. return air temperature or 

supply air fan load for an air handling unit at a given floor) and 

some are associated with individual occupants’ zones on the 
floor (e.g. zone temperature). The sensor measurements col-

lected over time constitute a time-series data describing the be-

havior of each occupant zone. Different patterns of zone behav-

iors can be experienced in a typical building. A common pattern 

for winter climates, for instance, exhibits pre-heating of the 

rooms in the morning, regulating appropriate human comforta-

ble temperatures during a day [42], and reducing the set point 

to maintain lower temperatures at night. An example of BEMS 

data recorded from a real building over a one week period, 

namely the occupants zone temperature, the outside air temper-

ature and the supply fan load is depicted in Fig. 1. The alterna-

tions between day time (e.g. increased outside air temperature) 

and night time hours is clearly visible. 

The behavior of each building zone can be described as a fea-

ture vector extracted from the sensor measurements. This fea-

ture X(t) extracted at time t can then be expressed as: 

 

 )}(...,),(),({)( 21 txtxtxtX n  (1) 

 

Here, )(txi denotes the specific value of the ith attribute sam-

pled at time t (e.g. zone temperature) and n denotes the dimen-

sionality of the feature vector.  

B. Rule Extraction via Online Clustering 

The behavioral patterns in a specific building zone can be ex-

tracted using online fuzzy rule extraction technique, which was 

previously proposed in [41]. This method uses a computation-

ally efficient one-pass algorithm for unsupervised modeling of 

input data. One of the major advantages of the proposed algo-

rithm is that it is capable of online learning, which means that 

the model can be updated without the need to relearn the entire 

training data set. In addition the algorithm requires only a single 

pass through the training data, which is suitable for large data 

sets.  

The obtained model of normal zone behavior is composed of 

a set of fuzzy rules. Each rule is extracted using a modified 

NNC algorithm [41]. The original NNC algorithm was modi-

fied to maintain additional information about the spread of data 

points associated with each cluster throughout the clustering 

process. 

Each cluster Pi of normal zone behavior is described by its 

center of gravity ic
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Here, i is the index of particular cluster, 
j

ic is the attribute 

value in the jth dimension, 
j

ic and 
j

i
c are the upper and lower 

bounds on the encountered values of the jth attribute for data 

points assigned to cluster Pi and n denotes the dimensionality 

of the input vector.  

The algorithm is initialized with a single cluster P1 created at 

the position of the first supplied training data point )0(X . Upon 

acquiring a new data point )(tX  the nearest cluster Pa is iden-

tified by calculating the Euclidean distance to all available clus-

ters with respect to the new data point )(tX . The set of clusters 

is then updated according to the NNC algorithm: if the com-

puted nearest distance is greater than the established maximum 

cluster radius parameter, a new cluster is created, otherwise the 

nearest cluster Pa is updated as: 
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As can be seen in (4), the modified NNC algorithm also keeps 

track of the lower and upper bounds of the encountered input 

values in each dimension for every cluster. 

C. Fuzzy Rule Based Behavior Modeling 

Once the clustering process is completed (i.e. all available 

data has been processed by the algorithm), the set of extracted 

clusters is transformed into a set of fuzzy rules [41]. Each fuzzy 

rule describes the belonging of a particular sub-region of the 

multi-dimensional input space to the class of normal building 

zone behavior. 

 
(a) 

 
(b) 

 
(c) 

Fig. 1 Example of BEMS sensor data, occupant zone temperature (a), outside 

air temperature (b) and supply fan load (c). 



 

A fuzzy rule Ri corresponding to cluster Pi is composed of n 

antecedent fuzzy sets: njA j

i ...1,  . Each fuzzy set
j

iA , lo-

cated in the jth dimension of the input space, is modeled using a 

non-symmetrical Gaussian fuzzy membership function. As 

shown in Fig. 2 this membership function is defined using three 

parameters: mean 
j

im  and the left and the right standard devia-

tions 
j

i , 
j

i . The parameter values are extracted based on the 

computed cluster Pi as follows: 
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Here, symbol   denotes the fuzziness parameter, which is 

used to adjust the spread of the membership functions.  

The firing strength of fuzzy rule Ri can then computed using 

the minimum operation as: 
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The output of the fuzzy rule is a singleton fuzzy set assigning 

the input pattern to the normal behavior class. Hence, the fired 

output of a particular fuzzy rule is its own firing strength 

))(( tX
iR . The final output decision y of the anomaly detec-

tion system is obtained by applying the maximum operator to 

the output of all available fuzzy rules: 
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Here, C denotes the number of extracted fuzzy rules, which 

is equal to the number of extracted clusters. The value of the 

output y denotes the degree of belonging of input pattern X(t) to 

the class of normal behavior. In other words, the output value y 

expresses the confidence of the algorithm in how likely does the 

current input pattern belong to the class of normal behavior. A 

specific sensitivity threshold can be used for the final classifi-

cation into the normal/anomaly class. 

It should be noted here that the main assumption of the anom-

aly detection algorithm is that a representative normal behavior 

data set has been collected and used for training. In case that the 

used training data set was not a good representation of the class 

of normal behavior, the detection of an anomaly might only sig-

nalize that the input data is normal but it has not been included 

in the training data set. This assumption constitutes a funda-

mental concept underlying the use of anomaly detection tech-

niques. 

IV. LINGUISTIC DESCRIPTION OF ANOMALIES 

To further improve the state-awareness of building managers, 

the presented method provides compact and easy to understand 

linguistic descriptions of the identified anomalies. It has been 

previously shown that using linguistic terms rather than precise 

numbers for describing data increases the understandability of 

the descriptions [43], [44]. Therefore the provided descriptions 

linguistically characterize the identified anomaly [45], [46]. 

Each detected anomaly can be automatically described using a 

linguistic description encoded as a fuzzy rule in the following 

form: 

 

IF
)1(fx  is 

)1(fB AND … AND 
)(mfx  is 

)(mfB  

          THEN Anomaly WITH Confidence is C   (10) 

 

Here, m is the complexity of the linguistic description that 

can be set by the user. It expresses how many antecedents par-

ticipate in the linguistic description, typically set to 1 or 2. The 

linguistic description thus contains the first m antecedents of the 

overall n available antecedents ranked according to their im-

portance as expressed by the indexing function )(if . Symbols 

B and C denote the linguistic labels that are modeled as fuzzy 

sets and assigned to individual input dimensions as well as the 

confidence of the linguistic description. Thus a typical linguis-

tic description can be written as: 

 

IF Zone Temperature IS Low AND Chiller temperature High 

THEN Anomaly WITH Confidence IS Very High 

 

The following sections explain the ranking of the available 

input attributes followed by a description of the method for as-

signing linguistic labels to individual attributes. 

A. Ranking of Antecedents 

In applications such as BEMS, the number of available input 

attributes is typically significantly larger than the desired com-

plexity of the generated linguistic descriptions. As the number 

of antecedents, m increases, the linguistic rule becomes more 

difficult to interpret [46]. For a linguistic description to be com-

prehensible, the number of antecedents, m should be kept low 

[44], [46]. For instance, the complexity of linguistic descrip-

tions generated based on building zone behavior described us-

ing 10-dimensional input vector, should not exceed 2 or 3 ante-

cedents in order to provide easy to understand linguistic de-

scriptions for the building manager. Hence, it is important to 

select m most important and descriptive antecedents out of the 

n available input attributes with respect to the detected anomaly 

[46]. 

This selection is performed via first ranking individual input 

attributes and then selecting the first m dimensions. The permu-

tation of the input antecedents according to their rank is denoted 

by function )(if in (10). The main idea of the antecedent rank-

ing process is based on the assumption that the more a specific 

 

Fig. 2 Illustration of the non-symmetric input Gaussian fuzzy set 
j

iA  



 

input attribute contributes to the classification of particular in-

put vector as an anomaly, the more it is important for the lin-

guistic description. 

This ranking is then computed based on the fuzzy rule based 

behavior modeling algorithm presented in section III.C. The 

classification of the given input vector is performed according 

to the fuzzy rule with the highest firing strength as denoted in 

(9). This firing strength was calculated as the minimum among 

the antecedent membership degrees of particular fuzzy rule. 

Hence, the smaller the membership degree of specific anteced-

ent with respect to the winning fuzzy rule, the more important 

is the respective attribute for the classification. 

Hence, the antecedent dimensions are ranked based on the 

membership degree of the input vector to the fuzzy rule with 

the maximum firing strength sorted in an increasing order. The 

resulting permutation of indexes )(if  can be denoted as fol-

lows: 

njixxjiji jfAifA k
jf

k
if

,...,1,),()(, )()(
)()(

  (11) 

B. Linguistic Label Assignment 

The range of the input attributes can be described using a 

group of fuzzy sets with assigned linguistic meaning. Note, that 

various fuzzy partitions of the respective domains are possible. 

The actual fuzzy representation of each input variable should be 

manually designed based on the context, domain and linguistic 

terms commonly used by the end users, i.e. building managers 

[45]. 

The linguistic description Bi for the ith attribute of the feature 

vector X(t) denoted in (10) can be obtained by selecting the kth 

linguistic label 
k

iD  with the highest fuzzy membership degree 

according to: 

 ))((maxarg
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Here, K denotes the number of fuzzy sets used to describe the 

domain of the ith attribute. Identical approach can be applied to 

select the linguistic label Ci for the anomaly confidence. 

The anomaly detection algorithm evaluates the presence of 

an anomaly at each time sample. However, an anomalous event 

in a particular building zone can last multiple consecutive time 

samples. In order to achieve increased state awareness, it is im-

portant to avoid overloading the building manager with anom-

aly alarms with associated linguistic label for each time instant. 

Instead, the presented method computes a simple meaningful 

linguistic description, which characterizes the entire anomalous 

event. For an anomaly occurring at time t1 and lasting   time 

steps the linguistic label iB  for a given input feature i is selected 

as the kth linguistic label 
k

iD  according to: 
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V. MINING BEMS DATA VIA ANOMALY DETECTION AND 

LINGUISTIC DESCRIPTIONS  

The presented Fuzzy-ADLD method was implemented in a 

software prototype that focuses on increasing the state-aware-

ness of building managers and on automatically identifying 

anomalous behaviors without the need to tediously scan 

through the large data set.  

A. Implementation Parameters 

The presented Fuzzy-ADLD method was applied to real-

world BEMS data recorded from an office building in the Pa-

cific Northwest part of the U.S. The building consists of 11 

floors, where each floor has between 10 and 60 different meas-

ured thermal zones. Various sensors are available throughout 

the building measuring attributes related to individual thermal 

zones, entire floors or the entire building. 

For the purpose of experimental demonstration, 11 attributes 

were identified. These attributes together with their scope are 

listed in Table I. The data is collected by the system at 45 mi-

nute intervals. All attribute values were first normalized into a 

unit interval between 0 and 1. Next the domain of the input at-

tributes was represented using 5 triangular and trapezoidal 

fuzzy sets as denoted in Fig. 3(a) with the exception of the time 

attribute, which was represented using 6 fuzzy sets as denoted 

in Fig. 3(b). Finally, the confidence of the anomaly detection 

algorithm was represented using 5 fuzzy sets as depicted in Fig. 

3(c). These fuzzy partitions represent a suitable decomposition 

of the respective domains established with respect to the tar-

geted application. 

The anomaly detection algorithm was implemented with the 

following parameter values. The maximum cluster radius for 

the nearest neighbor clustering method was set to 0.1. The   

parameter for the fuzzy rule extraction based on the identified 

clusters was set to 2.0 and the sensitivity threshold for detecting 

anomalous events was set to 0.8. Note, these parameter values 

were selected based on extensive experimental testing. How-

ever, the values can be modified by the user. For example, the 

building manager can lower the sensitivity threshold, which 

would result in detecting more anomalies in the observed build-

ing behavior. 

B. Implemented GUI 

The GUI of the implemented prototype is depicted in Fig. 4. 

The GUI contains three main information views: the building 

view (Fig. 4(a)), the floor view (Fig. 4(b)) and the data view 

(Fig. 4(c)). The building view provides a summary view of all 

floors in the building, where color can be assigned to depict 

various information, such as average floor temperature or the 

TABLE I 

LIST OF EXTRACTED ATTRIBUTES AND THEIR SCOPE 
 

Attribute Scope 

Zone Temperature Zone 

Time Building 

Outside Air Temperature Building 

Chiller Temperature Floor 

Mixed Air Temperature Floor 

Return Air Temperature Floor 

Damper Position Floor 

Exhaust Fan Load Floor 

Exhaust Fan Current Floor 

Supply Fan Load Floor 

Supply Fan Current Floor 

 



 

maximum anomaly level. In this figure, the floor view shows 

the floor plan of the selected floor, where the color of each zone 

depicts either the average temperature or the confidence that an 

anomalous behavior was identified for a given zone. Finally, 

the user can select a specific zone for the given floor and ob-

serve the source data plotted over time. The building manager 

can plot multiple sources of data in the data view. 

Upon selecting a specific building zone, the algorithm also 

linguistically expresses either the confidence level that a partic-

ular zone behaves according to the normal behavior model or 

the confidence level that an anomaly has been identified. Fi-

nally, the linguistic description of the identified anomaly is pro-

vided, where the complexity of the generated summaries can be 

interactively adjusted. 

C. Anomaly Detection in BEMS Data 

The developed GUI can be used to explore the BEMS perfor-

mance data. An example of the floor view showing the distri-

bution of temperature in each zone is depicted in Fig. 5(a). The 

associated floor view, which depicts the level of anomaly of 

each building zone is depicted in Fig. 5(b), where it can be con-

firmed that all building zones are operating according to the 

normal behavior model. Note, that in the implemented visuali-

zation, low temperature values are depicted as blue color, while 

high temperature values are depicted as red. Similarly, low 

anomalous level (i.e. normal behavior) is depicted using green 

color, while high confidence in an anomaly is depicted using 

red color tones. 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3 Linguistic labels for sensor input (a), for time attribute (b), and for 

anomaly confidence (c). 

 

     
 (a) (b) 

     
 (c) (d) 

     
 (e) (f) 

Fig. 5 Floor view depicting the zone temperature and the anomaly level in 

normal behavior (a), (b) and during an anomaly (b)-(f). 

 
 

Fig. 4 User interface with the building (a), floor (b) and data view (c). 



 

Next, instead of manually exploring the building data, the 

building manager can utilize the implemented anomaly detec-

tion engine to process the data and focus on the occurrence of 

the next anomaly. The floor view depicting the temperature of 

the particular time step is shown in Fig.  5(c), where it can be 

observed that zone 6 (Z6) features decreased temperature. The 

view of the anomaly indicator in Fig. 5(d) further confirms that 

the behavior of this particular zone does not comply with the 

established normal behavior model. Finally, upon selecting the 

anomalous zone a linguistic description is generated, which by 

default uses a single input antecedent and linguistically de-

scribes the anomalous event as: 

 

IF Zone Temperature IS Low THEN Anomaly WITH Con-

fidence IS Very High 

 

Another example of identified anomalies is depicted in Fig. 

5(e). Here, only reviewing the zone temperature does not indi-

cate an anomaly. However, the anomaly indicator shown in Fig. 

5(f) signalizes high confidence in detecting anomalies in zones 

9, 10 and 15. The generated description of the anomaly detected 

in zone 9 is then: 

 

IF Exhaust Fan Current IS High THEN Anomaly WITH 

Confidence IS Very High 

 

D. Generation of Linguistic Descriptions 

As explained above, in order to increase the state-awareness 

of building managers and not to overwhelm them with addi-

tional sources of data, it is important to generate compact and 

informative linguistic descriptions. The actual level of com-

plexity expressed as the number of antecedents in the linguistic 

description, can be interactively adjusted by the building man-

ager. 

As an example, consider the linguistic description generated 

in the previous section for zone 6. This linguistic description 

contains only single antecedent, which was identified as the 

most important antecedent from the available attributes. How-

ever, the building manager might request more information by 

increasing the complexity of the summary via the GUI. An ex-

ample of a linguistic description with 4 antecedents would be 

as follows: 

 

IF Zone Temperature IS Very Low AND  

Return Air Temperature IS Low AND 

Exhaust Fan Current IS Low AND 

Mixed Air Temperature IS Medium THEN  

Anomaly WITH Confidence IS Very High 

 

Note that the antecedents are automatically ordered according 

to their importance. 

TABLE II 
AUTOMATICALLY GENERATED BEMS PERFORMANCE REPORT 

 

Location Time Linguistic Description 

Floor 7, Zone 6 
9/16/2011, 

3:45am – 6:00am 
Zone Temperature is Very Low and Chiller Temperature is High ( Confidence is Very High ). 

Floor 7, Zone 4 
9/16/2011, 
3:00pm – 6:00pm 

Exhaust Fan Load is High and Time is Afternoon ( Confidence is Very High ) 

Floor 7, Zone 15 
9/16/2011,  

6:45am – 7:30am 
Zone Temperature is Very Low and Mixed Air Temperature is Low ( Confidence is Significant ) 

Floor 7, Zone 10 9/26/2011, 11:15pm: Time is Night and Supply Fan Current is Very Low ( Confidence is Very High) 

Floor 5, Zone 21 9/27/2011, 9:00am Exhaust Fan Current is Very Low and Return Air Temperature is Low ( Confidence is Significant ) 

Floor 5, Zone 20 9/27/2011, 11:15pm Supply Fan Current is Very Low and Exhaust Fan Current is Low (Confidence is Very High) 

Floor 5, Zone 17 
9/28/2011, 
9:00am – 9:45am 

Damper Position is Medium and Return Air Temperature is Low (Confidence is Very High) 

Floor 5, Zone 9 9/28/2011, 9:45pm Zone Temperature is Very Low and Exhaust Fan Load is Medium (Confidence is Very High) 

Floor 5, Zone 17 9/30/2011, 1:30am Mixed Air Temperature is Medium and Damper Position is High (Confidence is Significant) 

 

     
 (a) (b) 

 

     
 (c) (d) 

 

Fig. 6 Anomaly confidence level before and after the adjustment of the model. 
Including the behavior observed in zone 35 and 32 into the normal behavior 

model (a) before (b) after. Removing behavior in zone 14 from the normal 

behavior model (c) before (d) after 



 

E. Automatic Report Generation 

Automatic report generation for a given period of time is also 

implemented in the proposed system. Assume a scenario in 

which the building manager needs to inspect several weeks of 

collected BEMS data in an attempt to identify anomalous be-

haviors and other indications of possible building energy man-

agement inefficiencies. Manual step-by-step inspection of the 

large dataset can be considered an overwhelming and infeasible 

task. 

The report generation sequentially processes a given time in-

terval and applies the anomaly detection method for each time 

step. For anomalies lasting a single time step, the generated re-

port contains the time, location and the linguistic description of 

the anomaly, which is calculated according to (12). For anom-

alous events spanning multiple consecutive time steps, the gen-

erated report contains a summary of that anomaly with start and 

end times of the event, location and the representative linguistic 

description computed according to (13). An example of the gen-

erated descriptions is given in Table II. 

F. Normal Behavior Model Adjustments 

It is important to emphasize that the notion of an anomaly 

here refers to an event that is sufficiently different from the set 

of previously collected and approved normal data used for the 

training of the algorithm. Hence, events which might be consid-

ered normal from a building operation point of view might also 

be labeled as anomalous if they were not included in the normal 

training dataset. Similarly, anomalous behavior existing in the 

initial training data will be identified as normal behavior. To 

address these issues, the developed anomaly detection system 

allows for incremental learning of new behavior patterns. 

In this scenario, upon inspection of the identified anomalous 

event, the building manager can decide that an anomaly should 

be included in the normal behavior model. The algorithm then 

extracts the relevant input feature vector and updates the set of 

relevant clusters. According to the NNC algorithm, either a new 

cluster will be created or an already existing cluster will be up-

dated to account for the new data pattern. Next, the set of fuzzy 

rules for particular zone is updated to reflect the recent update 

(see section III.B). Similarly, if the building manager decides 

that a given normal behavior is actually an anomaly the cluster 

related to the behavior, along with the generated fuzzy rules will 

be deleted from the model. 

In this manner the performance of the anomaly detection al-

gorithm can be interactively and incrementally tuned by the 

building manager to focus only on relevant anomalies. An ex-

ample of this behavior is shown in Fig. 6. The anomaly confi-

dence level for the 5th floor is depicted in Fig. 6(a). The anomaly 

detection algorithm clearly marks zones 17, 20, 21, 32 and 35 

as anomalous. Fig. 6(b) then shows the anomaly confidence 

level after the observed behavior in zones 32 and 35 was in-

cluded in the model. Similarly, Fig. 6(c) shows the anomaly 

confidence level for floor 7. The behavior of zone 14 is then 

removed from the normal behavior and the anomaly confidence 

after removal is shown in Fig. 6(d), where zone 14 is identified 

as an anomaly. 

VI. EXPERIMENTAL RESULTS 

The presented Fuzzy-ADLD method was compared with the 

existing traditional alarm based system in the afore-mentioned 

building. Six different abnormal scenarios were tested and the 

time each method identified the anomalous behavior was rec-

orded for comparison. 

The six cases were divided into sensor faults and physical ab-

normalities (see Table III). The sensor faults (Case 1, 2 and 3) 

were simulated by injecting artificial values to the system via 

the installed communication infrastructure. The physical abnor-

malities were simulated by actual physical changes to the envi-

ronment (Case 4: by opening a window, Case 5: using a small 

portable heater, and Case 6: by closing an air supply vent). All 

six cases were performed in a small enclosed office room dur-

ing non-occupied hours. 

TABLE III 

BUILDING ANOMALIES TESTED 
 

Case Type Fault Start Time End Time Duration 

Case 1 

Sensor Fault 

Constant default sensor value 09/16/2013 22:30 09/17/2013 10:30 12 Hours 

Case 2 Constant previous sensor value 09/01/2013 20:00 09/01/2013 08:00 12 Hours 

Case 3 Constant degradation of sensor value 09/16/2013 21:00 09/17/2013 12:00 15 Hours 

Case 4 
Physical Ab-

normality 

Open window 09/02/2013 21:00 09/03/2013 09:00 12 Hours 

Case 5 External heat source 09/18/2013 21:00 09/19/2013 09:00 12 Hours 

Case 6 Closed air supply vent 09/19/2013 09:00 09/19/2013 21:00 12 Hours 

 

 
 

Fig. 7 Typical operation characteristics of the selected office room for a 48 

hour period 



 

Fig. 7 depicts typical operation of the selected zone for a 48 

hour period. Fig. 8a to 8f show each test case and the time each 

method was able to identify the abnormal behavior. Note that 

the sensor values plotted in each figure are the ones that were 

identified by the Fuzzy-ADLD method as relevant for that sce-

nario. Table IV shows the time when each of the methods iden-

tified the abnormal behavior along with linguistic descriptions 

provided by the Fuzzy-ADLD method. 

Case 1 [Fig. 8(a)] where the sensor faults to the default value 

(in this case 0oF) was immediately identified by both 

methods. 

Case 2 [Fig. 8(b)] was not identified by the alarm based sys-

tem since the sensor value does not go outside the 

preset bounds. However, the anomaly detection sys-

tem was able to identify the abnormal behavior by 

identifying that the return air and mixed air tempera-

tures were lower compared to the zone temperature. 

            
 (a) (b) 

 

            
 (c) (d) 

 

            
 (e) (f) 

 

Fig. 8 Abnormal building behavior scenarios tested. (a) – (c) sensor based anomalies, (d) – (f) physical anomalies  

 



 

Case 3 [Fig. 8(c)] was identified by both methods, however, 

the alarm based system only identified the anomaly 

after the temperature reached the lower threshold set 

by the system (which was 60oF). The anomaly detec-

tion system was able to identify the behavior since 

the return air temperature was much higher compared 

to the zone temperature. 

Case 4 [Fig. 8(d)] where a window was opened during the 

night was identified by the anomaly detection system 

because of the discrepancy between the supply air 

temperature and the zone temperature. Again the 

alarm based system only identified the anomaly after 

the zone temperature reached the low alarm thresh-

old. 

Case 5 [Fig. 8(e)] was identified by the anomaly detection 

system because of the high zone temperature while 

the chiller temperature is very low. The alarm based 

system was unable to identify the anomaly. 

Case 6 [Fig. 8(f)], similar to Case 5 was identified by the 

anomaly detection system due to the difference in the 

chiller temperature and the zone temperature. Again, 

the alarm based system failed to identify the anomaly. 

Cases 2, 5 and 6 were not identified by the traditional alarm 

based system because all the sensor values were inside the pre-

set bounds during the anomalous event. However, because the 

presented Fuzzy-ADLD method identifies anomalies based on 

the combination of interrelationships of the sensors, these cases 

were identified by the Fuzzy-ADLD method (see Table IV). 

Similarly, cases 3 and 4 were identified by the Fuzzy-ADLD 

method before the alarm based system, because of the com-

bined states of the sensors were anomalous. These cases were 

identified by the alarm based system only after certain sensor 

values exceeded the preset bounds. 

Case 1 was immediately identified by both methods because 

the sensor value immediately exceeded present bounds.  

Identifying such anomalous building behavior faster enables 

building mangers to react to the situation more quickly and 

more effectively. This may lead to energy savings, higher level 

of comfort for occupants, as well as mitigate equipment failure 

due to prolonged exposure to abnormal operation conditions. 

Furthermore, the presented Fuzzy-ADLD method provided lin-

guistic descriptions for each of the identified anomalous event 

enabling the user to make more informed decisions.  

 

VII. CONCLUSION 

Fuzzy Anomaly Detection and Linguistic Description 

(Fuzzy-ADLD) method is presented in this paper for improved 

state-awareness of buildings. The Fuzzy-ADLD method is 

composed of two main parts performing anomaly detection and 

generating linguistic descriptions of the identified anomalies. 

The generated linguistic descriptions are further enhanced by 

ranking the antecedents in order of importance. Furthermore, 

the complexity of linguistic descriptions as well as the perfor-

mance of the anomaly detection can be adjusted for additional 

control. The presented Fuzzy-ADLD method was integrated 

with a graphical user interface and applied to real-world BEMS 

data collected from an office building in the Pacific Northwest 

part of the U.S. demonstrating potential for increased state-

awareness for building managers. 

The presented Fuzzy-ADLD method was compared to a tra-

ditional alarm based system using six abnormal building behav-

ior cases. In each case the presented anomaly detection method 

was able to identify the abnormal behavior as least fast as or 

faster than (over an hour or more) the traditional alarm based 

system. Furthermore, the Fuzzy-ADLD method identified 3 of 

the cases that were not identified by the alarm based system. 

The linguistic description provided by the Fuzzy-ADLD 

method provides insight into the identified behavior. 

Future work entails implementing the developed software 

prototype on a mobile device such as tablet, which would con-

stitute a portable touch-screen controlled tool. Furthermore, 

possibility of classifying anomalous behavior using expert 

knowledge in the form of fuzzy rules will be investigated. Such 

classification can be used to provide more detailed descriptions 

of building behavior and possible solutions. 
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