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Abstract A co-location pattern is a group of spatial features/events that are fre-
quently co-located in the same region. For example, human cases of West Nile Virus
often occur in regions with poor mosquito control and the presence of birds. For co-
location pattern mining, previous studies often emphasize the equal participation
of every spatial feature. As a result, interesting patterns involving events with
substantially different frequency cannot be captured. In this paper, we address the
problem of mining co-location patterns with rare spatial features. Specifically, we first
propose a new measure called the maximal participation ratio (maxPR) and show
that a co-location pattern with a relatively high maxPR value corresponds to a co-
location pattern containing rare spatial events. Furthermore, we identify a weak
monotonicity property of the maxPR measure. This property can help to develop
an efficient algorithm to mine patterns with high maxPR values. As demonstrated
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by our experiments, our approach is effective in identifying co-location patterns with
rare events, and is efficient and scalable for large-scale data sets.

Keywords Spatial data mining · Co-location patterns · Spatial association rules

1 Introduction

Advanced spatial data collecting systems, such as NASA Earth’s Observing System
(EOS) and Global Positioning System (GPS), have been accumulating increasingly
large spatial data sets [8], [12], [18], [24], [25], [30]. For instance, since 1999, more
than a terabyte of data has been produced by EOS every day. These spatial data
sets with explosive growth rate are considered nuggets of valuable information.
The automatic discovery of interesting, potentially useful, and previously unknown
patterns from large spatial datasets is being widely investigated via various spatial
data mining [16], [23], [24], [29] techniques. Classical spatial pattern mining methods
include spatial clustering [22], spatial characterization [9], spatial outlier detection
[27], spatial prediction [28], and spatial boundary shape matching [15].

Mining spatial co-location patterns [7], [10], [11], [20], [21], [26], [31] is an impor-
tant spatial data mining task. A spatial co-location pattern is a set of spatial features
that are frequently located together in spatial proximity. To illustrate the idea of spatial
co-location patterns, let us consider a sample spatial data set, as shown in Fig. 1. In
the figure, there are various spatial instances with different spatial features that are
denoted by different symbols. As can be seen, spatial feature + and × tend to be
located together because their instances are frequently located in spatial proximity.

The problem of mining spatial co-location patterns can be related to various
application domains. For example, in location based services, different services are
requested by service subscribers from their mobile PDA’s equipped with locating de-
vices such as GPS. Some types of services may be requested in proximate geographic
area, such as finding the nearest Italian restaurant and the nearest parking place.
Location based service providers are very interested in finding what services are
requested frequently together and located in spatial proximity. This information can
help them improve the effectiveness of their location based recommendation systems
where a user requested a service in a location will be recommended a service in a
nearby location. Knowing co-location patterns in location based services may also
enable the use of pre-fetching to speed up service delivery. In ecology, scientists are
interested in finding frequent co-occurrences among spatial features, such as drought,
EI Nino, substantial increase/drop in vegetation, and extremely high precipitation.

The previous studies on co-location pattern mining emphasize frequent co-
occurrences of all the features involved. This marks off some valuable patterns
involving rare spatial features. We say a spatial feature is rare if its instances are
substantially less than those of the other features in a co-location. This definition of
“rareness” is relative with respect to other features in a co-location. A feature could
be rare in one co-location but not rare in another. For example, if the spatial feature
A has 10 instances, the spatial feature B has 20 instances, and the spatial feature C
has 10,000 instances. A is not considered a rare feature in the co-location {A, B} but
it is considered a rare feature in co-location {A, C}. Of course, a feature with very
small number of instances are often rare in many co-location patterns.
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Fig. 1 An illustration of spatial co-location patterns. Shapes represent different spatial feature types.
Instances of spatial features in sets {‘+’, ‘×’} and {‘o’, ‘*’} tend to be located together

In many cases, it is important to capture co-location patterns with rare features.
For example, it is believed that human West Nile Virus disease [2] often occurs
in regions with poor mosquito control and the presence of birds. The Center for
Disease Control has received confirmation from state agencies of 8,219 human cases
of West Nile Virus for the year 2003. However, due to numerous locations with poor
mosquito control and the presence of birds, we may not find that poor mosquito
control and domestic animals are strongly co-located with human West Nile Virus
disease using the existing co-location mining methods.

As another example, in a case settled in 1996 [1], PG&E’s nearby plant was
leaching chromium 6, a rust inhibitor, into the water supply of Hinkley California,
and the suit blamed the chemical for dozens of symptoms, ranging from nosebleeds
to breast cancer, Hodgkin’s disease, miscarriages and spinal deterioration. The
prosecutors argued that chromium 6 contaminated water caused nosebleeds, breast
cancer, etc. in their nearby region with high probability. Again, this is a typical co-
location pattern involving rare spatial features; that is, the spatial event “chromium
6 contaminated water” is rare compared to nose-bleeding.
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Therefore, it is necessary to explore new methods to discover co-location patterns
with rare spatial features, which is the motivation of this paper. However, the existing
co-location mining algorithms [20], [26] have difficulties in identifying such patterns.
In general, the challenges of mining spatial co-location patterns with rare spatial
features lay in two aspects.

1. How to identify and measure spatial co-location patterns involving rare spatial
features ?
Strong interactions involving rare spatial features are often marked off in pre-
vious methods, since they require frequent co-occurrences of all features in the
co-location patterns. Many measures are based on the measures of frequency or
minimum participation ratio where rare events are unfavorable.
Our contributions. In this paper, we propose a novel measure called maximal
participation ratio, which can incorporate the spatial co-location patterns in the
presence of rare spatial features. We show that finding spatial co-locations from
spatial data sets with rare spatial features can be achieved by finding co-location
patterns with respect to the maximal participation index.

2. How to mine the patterns involving rare spatial features efficiently?
Even though we have a good measure for co-location patterns in the presence
of rare spatial features, it is still challenging to find all the patterns efficiently.
One dominant obstacle is that the maximal participation ratio is not monotonic
with respect to co-location pattern containment relation. Thus, the conventional
apriori-like pruning technique [4] cannot be applied. Without proper pruning,
there could be many possible combinations. Checking them one by one may be
computationally prohibitive in many cases.
Our contributions. In this paper, we study the problem of efficiently mining
co-location patterns with rare spatial features systematically. We propose two
algorithms. The first algorithm is a rudimentary extension of the apriori-like [4]
solution. It uses a very low participation index threshold to prune and use the
maximal participation ratio threshold to do a post-processing. It is not efficient
since it has to enumerate many patterns.
Our second algorithm is much more efficient. It exploits an interesting weak
monotonic property of the maximal participation ratio to push the maximal
participation ratio threshold deep into the mining. It achieves good performance
in most cases.
We conduct an extensive performance study to test our methods. The experimen-
tal results show that our methods are effective, efficient and scalable for mining
large spatial databases.

The remainder of this paper is organized as follows. In Section 2, we review related
work. We recall important concepts of association rule mining and compare it with
spatial co-location mining in Section 3. Section 4 presents an overview of the co-
location pattern mining framework [26]. In Section 5, we introduce the maximal
participation ratio. Efficient algorithms for mining co-location patterns with rare
features are proposed in Section 6. An extensive performance study is reported in
Section 7. Finally, in Section 8, we draw conclusions and suggest future work.
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2 Related Work

The previous methods of mining co-location patterns can be divided into two
categories, namely the spatial data mining methods and the spatial statistics methods.
They are reviewed briefly in this section.

2.1 Spatial Data Mining Methods

In [26], [31], efficient algorithms were proposed to mine spatial co-location patterns
from spatial databases. A set of spatial features form a pattern if, for each spatial
feature, at least s% instances of that feature form a clique with some instance of all
the rest features in the pattern for a given neighborhood relationship, such as an
Euclidean distance threshold. The parameter s% is called the participation index. In
other words, a set of spatial features form a pattern if whenever a feature of the set
is observed, with a probability of at least s%, all other features are also observed in
spatial proximity. When the number of objects of different spatial features spans a
wide range, the popular features (features with a large number of objects) tend to get
a low ratio compared to rare features (features with a small number of instances).
In [31], spatial co-location patterns were generalized and expressed by multi-way
spatial joins. The space partitioning algorithms were proposed to solve the spatial
co-location pattern mining problem. The proposed algorithm is not restricted to a
particular interesting measure.

In [20], graphs formed by neighboring spatial instances are partitioned to disjoint
parts. A frequency-based pruning technique is developed. This frequency-based
pruning method also favors popular spatial features. A clustering-based map overlay
approach [10], [11] treats every spatial attribute as a map layer and considers spatial
clusters (regions) of point-data in each layer as candidates for mining associations.
Given X and Y as sets of layers, a clustered spatial association rule is defined as
X ⇒ Y(CS%, CC%), for X

⋂
Y = ∅, where CS% is the clustered support, defined as

the ratio of the area of the cluster (region) that satisfies both X and Y to the total
area of the region S under investigation, and CC% is the clustered confidence, which
can be interpreted as CC% of the areas of clusters (regions) of X intersect with areas
of clusters(regions) of Y. However, instances of rare spatial features, e.g., chromium
6 populated water sources, do not always form clusters or regions.

The reference feature centric model proposed in [17] enumerates proximity
neighborhoods to “materialize” a set of transactions around instances of a user
specified reference spatial feature. Transactions are created around instances of one
user-specified spatial feature. The association rules are derived using the apriori
algorithm [4]. The rules found are all related to the reference feature. The support
based apriori pruning marks off co-location patterns with rare spatial features.

Munro et al. [21] described the need for mining complex relationships in spatial
data including multi-feature colocation, self-colocation, one-to-many relationships,
self-exclusion and multi-feature exclusion.

2.2 Spatial Statistics Methods

In spatial statistics, some dedicated techniques such as cross k-functions with Monte
Carlo simulations [7], mean nearest-neighbor distance, and spatial regression models
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[6] have been developed to test the co-location of two spatial features and find
pairs of co-located spatial features. However, the Monte Carlo simulation could
be expensive. Another approach is to arbitrarily partition the space into a lattice.
For each cell of the lattice, count the number of instances of each spatial feature.
Pairwise correlation of spatial features could be found by tests such as χ2 [7] or
using classic association rule mining algorithms such as apriori [4] by treating each
cell as a transaction. Arbitrary partitioning may loss neighboring instances across
borders of cells. Both the cross k-function and the pair wise correlation cannot be
easily extended to the cases with more than two spatial features.

To the best of our knowledge, this is the first systematic study on mining co-
location patterns with rare features in the spatial context.

3 Association Rule Mining

Since spatial co-location pattern mining resembles association pattern mining [3] in
many aspects, we review the basic concepts of association rules in this section.

Since its introduction [3], the problem of mining association rules from large
databases has been the subject of numerous studies. The association rule mining
problem is defined as follows.

Let I = {i1, i2, . . . , im} be a set of m items. Let T D = {T1, T2, . . . , Tn} be a
transactional database where Ti(i ∈ [1, n]) is a transaction which is a subset of items
in I . For an itemset Y ⊆ I , the support of Y is the number of transactions containing
Y in T D, i.e., sup(Y) = |{Ti|Ti ⊇ Y}|. Y is of size k if |Y| = k.

The confidence of an association rule in the form of X → Y, where X ∩ Y = ∅, is
the ratio of the support of X ∪ Y versus the support of X. Itemset Y is a frequent
pattern if the support of Y is no less than a minimum support threshold specified
by user. We compare and contrast frequent pattern mining and spatial co-location
mining in Table 1.

The support of itemsets has a downward closure property (sometimes called the
apriori property): the support of Y is no less than the support of any superset of Y.
Because of the downward closure property of the support, a generate-and-test mining
paradigm was employed by the apriori algorithm proposed in [4]. This approach
generates candidates of size (k + 1) items set based on the size k frequent itemsets.
The set of size (k + 1) candidates includes all and only those itemsets of size (k + 1)

whose size k subsets are all frequent. False candidates are pruned by scanning the
transactions before the next iteration.

Table 1 Comparison of
frequent pattern mining and
spatial co-location mining

Frequent pattern mining Co-Location mining

Item Spatial feature
Item set Spatial feature set
Frequent pattern Co-location pattern
Support Spatial interestingness measures
Transactional database Spatial database
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4 Co-Location Patterns in Spatial Databases

In this section, we review a framework of mining co-location patterns, since our
proposed solution in this paper is based on this model. The framework was proposed
in [26] and is based on the participation index. We will point out why such a
framework still may miss some co-location patterns involving rare spatial features.
In the next section, we will extend the framework to mine co-location patterns with
rare spatial features.

For a spatial data set S, let F = { f1, . . . , fk} be a set of boolean spatial features.
Let i = {i1, . . . , in} be a set of n instances in S, where each instance is a vector
〈instance-id, location, spatial features〉. The spatial feature f of instance i is denoted
by i. f . We assume that the spatial features of an instance are from F and the location
is within the spatial framework of the spatial database. Furthermore, we assume that
there exists a neighborhood relation R over pairwise instances in S.

Example 1: (A Spatial Data Set) Figure 2 shows a spatial data set with a spatial
feature set F = {A, B, C, D}, which will be used as the running example in this
paper. Objects with various shape represent different spatial features, as shown in the
legend. Each instance is uniquely identified by its instance-id. We have 18 instances
in the database. �

The objective of co-location pattern mining is to find frequently co-located subsets
of spatial features. For example, a co-location {traffic jam, police, car accident} means
that a traffic jam, police, and a car accident frequently occur in a nearby region.

To capture the concept of “nearby,” the concept of user-specified neighbor-sets
was introduced. A neighbor-set L is a set of instances such that all pairwise locations
in L are neighbors. A co-location pattern (or just pattern for short) C is a set of spatial
features, i.e., C ⊆ F. A neighbor-set L is said to be a row instance of co-location

Fig. 2 An example dataset
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pattern C if every feature in C appears as a feature of an instance in L, and there
exists no proper subset of L does so. We denote all row instances of a co-location
pattern C by rowset(C).

Example 2: (Neighbor-set, row instance and rowset) In Fig. 2, the neighborhood
relation R is defined based on Euclidean distance. Two instances are neighbors if
their Euclidean distance is less than a user specified threshold. Neighboring instances
are connected by edges. For instance, {3, 6, 17}, {4, 5, 13}, and {4, 7, 10, 16} are all
neighbor-sets because each set forms a clique. Here, we use the instance-id to refer
to an object in Fig. 2. Additional neighbor-sets include {6, 17}, {3, 6}, {2, 15, 11, 14},
and {2, 15, 8, 11, 14}.

{A, B, C, D} is a co-location pattern. The neighborhood-set {14, 2, 15, 11} is a
row instance of the pattern {A, B, C, D} but the neighborhood-set {14, 2, 8, 15, 11}
is not a row instance of co-location {A, B, C, D} because it has a proper subset
{14, 2, 15, 11} which contains all the features in {A, B, C, D}.

Finally, the rowset({A, B, C, D})= {{7, 10, 16, 4}, {14, 2, 15, 11},{14, 8, 15, 11}}. �

For a co-location rule R : A → B, the conditional probability cp(R) of R is
defined as

|{L ∈ rowset(A)|∃L′ s.t. (L ⊆ L′) ∧ (L′ ∈ rowset(A ∪ B))}|
|rowset(A)|

In words, the conditional probability is the probability that a neighbor-set in
rowset(A) is part of a neighbor-set in rowset(A ∪ B). Intuitively, the conditional
probability p indicates that, whenever we observe the occurrences of spatial features
in A, the probability to find occurrence of B in a nearby region is p.

Example 3: (Conditional probability) In Fig. 2, based on the Euclidean distance
relation R as described in Example 2,

rowset({A, B, C, D}) = {{7, 10, 16, 4}, {14, 2, 15, 11}, {14, 8, 15, 11}},
and

rowset({A, B}) = {{7, 10}, {14, 2}, {5, 13}, {14, 8}}.
Since |rowset({A, B})| = 4, only 3 rows of {A, B} satisfy the subset condition, i.e.,
row {7, 10} of {A, B} is a subset of row {7, 10, 16, 4} of {A, B, C, D}, row {14, 2} of
{A, B} is a subset of row {14, 2, 15, 11} of {A, B, C, D} and row {14, 8} of {A, B} is a
subset of row {14, 8, 15, 11} of {A, B, C, D}, the conditional probability cp({A, B} →
{C, D}) = 3

4 = 75%. �

Given a spatial database S, to measure how a spatial feature f is co-located with
other features in co-location pattern C, a participation ratio pr(C, f ) can be defined
as

pr(C, f ) = |{r|(r ∈ S) ∧ (r. f = f ) ∧ (r is in a row instance of C)}|
{r|(r ∈ S) ∧ (r. f = f )}|
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In words, a feature f has a partition ratio pr(C, f ) in pattern C means wherever
the feature f is observed, with probability pr(C, f ), all other features in C are also
observed in a neighbor-set.

In [26], a participation index was proposed to measure how all the spatial features
in a co-location pattern are co-located. For a co-location pattern C, the participation
index PI(C) = min f∈C{pr(C, f )}. In words, wherever any feature in C is observed,
with a probability of at least PI(C), all other features in C can be observed in a
neighbor-set. A high participation index value indicates that the spatial features in
a co-location pattern likely occur together. The participation index was proposed
because in spatial application domain there are no natural “transactions” and thus
“support” is not well-defined.

Given a user-specified participation index threshold min_prev, a co-location pat-
tern is called prevalent if PI(C) ≥ min_ prev.

Example 4: (Participation ratio and participation index) To find the participation
index PI({A, B, C, D}) of pattern {A, B, C, D}, we first identify the rowsets of
{A, B, C, D} as shown in Example 2, i.e., {{7, 10, 16, 4}, {14, 2, 15, 11}, {14, 8, 15, 11}}.

Among all the five instances of A, two of them, namely 7 and 14, have
B, C and D in a neighbor-set. So the participation ratio pr({A, B, C, D}, A) = 2

5 .
Similarly, we can have pr({A, B, C, D}, B) = 3

5 , pr({A, B, C, D}, C) = 2
6 = 1

3 , and
pr({A, B, C, D}, D) = 2

2 = 1. Taking the minimal of all the ratios, the participation
index PI({A, B, C, D}) of co-location {A, B, C, D} is 1

3 . �

As shown below, both the participation ratio and the participation index are
monotonic with respect to the size of co-location patterns.

Lemma 1: (Monotonicity of participation ratio and participation index [26]) Let C
and C′ be two co-location patterns such that C ⊂ C′. Then, for each feature f ∈ C,
pr(C, f ) ≥ pr(C′, f ). Furthermore, PI(C) ≥ PI(C′).

Proof: To have the first claim in the lemma, we only need to show that for a spatial
feature f ∈ C,

|{r|(r ∈ S) ∧ (r. f = f ) ∧ (r is in a row instance of C)}| ≥
|{r|(r ∈ S) ∧ (r. f = f ) ∧ (r is in a row instance of C′)}|

Since C ⊂ C′, every row instance of C′ contains a subset of instances which is a
row instance of C. Thus, the inequality holds.

The second claim follows the fact that PI(C) = min f∈C{pr(C, f )} ≥
min f∈C{pr(C′, f )} ≥ min f∈C′ {pr(C′, f )} = PI(C′). �

Based on Lemma 1, a level-by-level, iterative apriori-like algorithm was developed
in [26] to find the complete set of prevalent patterns from a spatial database. For
details of the algorithm, please refer to [26].

It is interesting to note that, in the above prevalent co-location pattern mining
framework, some co-location patterns involving rare spatial features may be unfor-
tunately missed.
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Example 5: (A Co-location Pattern for West Nile Disease) Let us consider the co-
location pattern C = {West Nile, poor mosquito control, domestic animal}. Suppose
participation ratios

pr(C, West Nile ) = 85%,

pr(C, poor mosquito control) = 10%

and

pr(C, domestic animal) = 1%.

Then, PI(C) = min{85%, 10%, 1%} = 1%. As can be seen, even though West Nile is
strongly co-located with poor mosquito control and domestic animal, unfortunately,
the whole co-location pattern is weak in the term of participation index because the
West Nile is rare compared to poor mosquito control and domestic animals. �

Can we extend the framework to mine such patterns even though their participation
index values are low? In other words, can we mine co-location patterns with rare
spatial features? We will address this issue in the next two sections.

5 Maximal Participation Ratio

There is one important observation about co-location patterns with rare spatial
features, “even though the participation index of the whole pattern could be low,
there must be some spatial feature(s) with high participation ratio(s) .” In Example 5,
in pattern P = {West Nile, poor mosquito control, domestic animal}, the participa-
tion index is low, since West Nile disease are rare compared to poor mosquito control
and domestic animals. However, the participation ratio of “West Nile Virus” in the
pattern is high.

The above observation motivates our extension of the participation index frame-
work. For a co-location pattern C, we define the maximal participation ratio as
maxPR= max f∈C{pr(C, f )}. In words, a high maximal participation ratio value in-
dicates that there are some spatial features strongly imply the pattern.

In general, given a co-location pattern C = { f1, . . . , fk}, we sort all spatial features
in C in the participation ratio descending order. Without loss of generality, for a
given minimum maximal participation ratio threshold min_maxPR, suppose for i ∈
[1, l] pr(C, fi) ≥ min_maxPR, where 1 ≤ i ≤ l ≤ k and l is the last spatial feature that
has participation ratio above the user given threshold. The output of the co-location
mining with rare spatial features will be in the form of 〈C = { f1, . . . , fk}, l〉. Then,
we can say that if a spatial feature fi (1 ≤ i ≤ l) is observed in some location, then the
probability of observing all other spatial features in C − { fi} in a neighbor-set is at least
maxPR(C).

Given a minimum maxPR threshold min_maxPR, the problem of mining co-
location patterns with rare spatial features in a spatial database is to find the complete
set of co-location patterns C such that maxPR(C) ≥ min_maxPR.

In general, every pattern that is significant in participation index is also significant
in maximal participation ratio. In other words, mining co-location patterns with rare
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Table 2 Rowsets, PIs and maxPRs of co-locations of dataset in Fig. 2

ID Co-loc Rowset pr PI max PI

1 {A} {{1},{5},{6},{7},{14}} {1} 1 1
2 {B} {{2},{8},{10}, {13},{18}} {1} 1 1
3 {C} {{3},{9},{12}, {15},{16},{17}} {1} 1 1
4 {D} {{4},{11}} {1} 1 1
5 {A,B} {{5,13},{7,10},{14,2},{14,8}} {4/5,4/5} 4/5 4/5
6 {A,C} {{1,12},{6,3},{6,17},{14,15},{7,16}} {4/5,5/6} 4/5 5/6
7 {A,D} {{5,4},{14,1},{7,4}} {3/5,2/2} 3/5 1
8 {B,C} {{2,9},{2,15},{8,15},{10,16}} {3/5,3/6} 1/2 3/5
9 {B,D} {{2,11},{8,11},{10,4},{13,4}} {4/5,2/2} 4/5 1
10 {C,D} {{15,11},{16,4}} {2/6,2/2} 1/3 1
11 {A,B,C} {{7,10,16},{14,2,15},{14,8,15}} {2/5,3/5,2/6} 1/3 3/5
12 {A,B,D} {{5,13,4},{7,10,4},{14,2,11},{14,8,11}} {3/5,4/5,2/2} 3/5 1
13 {A,C,D} {{7,16,4},{14,15,11}} {2/5,2/6,2/2} 2/5 1
14 {B,C,D} {{2,15,11},{10,16,4},{8,15,11}} {3/5,2/6,2/2} 1/3 1
15 {A,B,C,D} {{7,10,16,4},{14,2,15,11},{14,8,15,11}} {2/5,3/5,2/6,2/2} 1/3 1

spatial features using the maximal participation ratio measure will find all prevalent
patterns as a subset.

While the extension of participation index to maximal participation index
is intuitive, there is no easy way to extend the existing level-by-level apriori-
like algorithm [4] to mine patterns with respect to a maximal participation
ratio threshold. The dominant obstacle is that maximal participation ratio is not
monotonic with respect to the pattern containment relation, as shown in the following
example.

Example 6: (Maximal participation ratio is not monotonic) In Fig. 2, the set of
spatial features {B, C} ⊂ {A, B, C}. However, maxPR({B, C}) = max{ 3

5 , 3
6 } = 60% ≤

maxPR({B, C, D}) = max{ 3
5 , 2

6 , 2
2 } = 100%! (Please see Table 2 for the rowsets and

the maxPR’s). �

Now, the challenge becomes how we can push the maximal participation ratio
threshold to prune the search space. That is the topic of the next section.

6 Algorithms

In this section, we will develop efficient algorithms for mining co-location patterns
from spatial databases with rare spatial features using maximal participation ratio
measure. We propose two methods. The first method is a rudimentary extension
of the Apriori algorithm [4]. The second method is based on an interesting weak
monotonic property of the maximal participation index.
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6.1 A Rudimentary Algorithm

As shown in the previous section, the maximal participation ratio is not monotonic.
Thus, we cannot apply the apriori-like pruning directly. In many applications, very
rare events could be just noise. Thus, we may in fact have a minimum preva-
lent threshold min_ prev and a minimum maximal participation ratio threshold
min_maxPR such that we only want to find patterns P with PI(P) ≥ min_ prev and
maxPR(P) ≥ min_ maxPR.

Based on this observation, we can develop an apriori-like algorithm as follows. We
use the minimum prevalent threshold min_ prev to do apriori-like pruning, then filter
out patterns failed the maximal participation ratio threshold by a post-processing.

To ease the presentation, we call a co-location pattern with k spatial features a k-
pattern. We assume that the spatial features in a k-pattern C is ordered and indexed
by their positions in the co-location pattern, i.e., fi means the ith spatial feature in C.
The algorithm, called Min–Max, is presented in Fig. 3.

The geometric algorithm is used in step 1 to generate length-2 candidates, since all
singleton co-location patterns have both participation index and max participation
index equal to 1, and do not need to be checked. Spatial join methods utilizing
minimal rectangle bounding box, such as the well known plane sweep [5], space
partition [14], and tree matching [19], can be used.

Example 7: (Algorithm Min–Max) Suppose min_ prev = 0 and min_ maxPR = 0.85,
let us show one iteration of the algorithm from 2-patterns to 3-patterns for the dataset
in Fig. 2.

Input: A spatial database S, a neighborhood relation R, a minimum prevalent
threshold min_ prev, and a minimum maximal participation index thresh-
old min_maxPR.

Output: Co-location patterns P such that PI(P) ≥ min_ prev and maxPR(P) ≥
min_maxPR.

Method:

1. let k = 2; generate C2, the set of candidate 2-patterns and their
rowsets, by geometric methods;

2. for each C ∈ Ck calculate PI(C) and maxPR(C) from C’s rowset
rowset(C);

3. let P ′
k be the subset of Ck such that for each P ∈ P ′

k, PI(P) ≥
min_ prev;

4. let Pk be the subset of P ′
k such that for each P ∈ Pk, maxPR(P) ≥

min_maxPR;
5. generate the set Ck+1 of candidate (k + 1)-patterns, a co-location

pattern P with (k + 1) spatial features is in Ck+1 if and only if for
each feature f ∈ P, (P − { f }) ∈ P ′

k;
6. if Ck+1 �= ∅, let k = k + 1, go to Step 2;
7. output ∪i Pi �

Fig. 3 Algorithm Min–Max
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From Table 2 , we have

P ′
2 = {{A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}}

and

P2 = {{A, C}, {A, D}, {B, D}, {C, D}}.
From those rowsets, it is straightforward to calculate their PIs and maxPRs.
The algorithm generates candidate 3-patterns C3 ={{A, B, C}, {A, B, D}, {A, C, D},
{B, C, D}} from P ′

2. Then the rowsets of the candidates are generated by joining the
rowsets of the two 2-patterns. For example, the rowset of {A,B} joins the rowset of
{A,C} to produce the rowset of {A, B, C}. At the end of this iteration, we have the set
of candidate 3-patterns C3 and their rowsets. C3 is not empty. So, we start the next
round from step 2 in the algorithm. �

When the minimum prevalent threshold is set to 0, the algorithm can find the
complete set of patterns. If min_ prev is over 0, some patterns with high maximal
participation ratio but low prevalence may be missed. In Example 7, if min_ prev is
set to 0.45, PI({A, D}) = 0.4 and {A, D} is not in P ′

2. {A, C} and {A, D} will not join
to produce candidate {A, C, D}, though max PI({A, C, D}) = 1 ≥ min_maxPR.

One advantage of the Min–Max algorithm is that the user can specify the preva-
lence of patterns she wants to see by the min_ prev value. The major disadvantage of
the algorithm is that, if a user wants to find the complete answer, the algorithm has
to generate a huge number of candidates and test them, even though the maximal
participation ratio threshold min_maxPR is high.

6.2 Pruning by a Weak Monotonic Property

Is there any property of the maximal participation ratio we can use to get efficient
algorithms for co-location pattern mining with rare features?

Let us re-examine Example 5. Pattern P = {West Nile, poor mosquito control,
domestic animal} has three proper subsets such that each subset has exactly 2
features. Feature West Nile has a high participation ratio, and it participates in two
out of the three subsets. Since the participation ratio is monotonic (Lemma 1), the
maximal participation ratio values of the two proper subsets containing West Nile
must be higher or equal to that of P. In other words, at most one 2-subpattern of P
can have a lower maximal participation ratio value.

The above observation can be generalized to a pattern with l features. Thus, we
have the following weak monotonic property.

Lemma 2: (Weak monotonicity) Let P be a k-co-location pattern. Then, there exists
at most one (k − 1)-subpattern P ′ such that P ′ ⊂ P and maxPR(P ′) < maxPR(P).

Proof: Let f j ∈ P be a spatial feature whose participation ratio is maximal in P. For
all (k − 1)-pattern P ′ such that (P ′ ⊂ P) ∧ (P ′ �= P/{ f j}), P ′ contains fi and fi ∈
P ′ ∩ P. Based on Lemma 1, maxPR(P ′) ≥ pr(P ′, f j) ≥ pr(P, f j) = maxPR(P). In
other words, only one (k − 1)-subpattern of P, i.e., P/{ f j}, is possible to have a lower
maximal participation index value than P does. �
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Based on the above weak monotonic property, if a k-pattern is above the maximal
participation ratio threshold, then at least (k − 1) out of its k subpatterns with (k − 1)

features are above the maximal participation ratio threshold. Therefore, we can
revise the candidate generation process, such that only a k-pattern having at most
one (k − 1)-subpattern below the minimum maximal participation ratio min_maxPR
threshold should be generated. The idea is illustrated in the following example.

Example 8: (Candidate generation using weak monotonicity) Suppose the maximal
participation ratio values of {A, B, C}, {A, C, D} and {B, C, D} are all over the
threshold min_maxPR, but that of {A, B, D} is not. We still should generate a
candidate P = {A, B, C, D}, since it is possible that maxPR(P) passes the threshold.

To achieve this, we need a systematic way to generate the candidates. Please note
that, in apriori, for the above example, {A, B, C, D} is generated only if {A, B, C}
and {A, B, D} (differ only in their last spatial feature) are both frequent. However, in
the co-location pattern mining with rare spatial features using maximal participation
ratio measure, it is possible that {A, B, D} is below the given threshold min_maxPR
while {A, B, C, D} is above the threshold min_maxPR.

In general, for two co-location patterns P and P ′ from the set Pk of k-patterns
above threshold min_maxPR, i.e., P ∈ Pk and P ′ ∈ Pk, P and P ′ can be joined
to generate a candidate (k + 1)-pattern in Ck+1 if and only if P and P ′ have one
different feature in the last two features. For example, even {A, B, D} is below
threshold min_maxPR, candidate {A, B, C, D} can be generated by {A, B, C} and
{A, C, D} since they have the common feature C in their last two features, i.e., they
differ one spatial feature in their last two spatial features. �

We will illustrate the correctness of the above candidate generation method in
Lemma 3 and Example 9. Also, with the revised candidate generator, the mining
algorithm is presented in Fig. 4.

The algorithm does not need a minimum prevalence threshold but still finds all
co-location patterns with maximal participation index above threshold min_maxPR.

To make sure the candidate generation does not miss any co-location, we need to
prove that the candidate (k + 1)-patterns Ck+1 generated by the maxPrune algorithm

Input: A spatial database S, a neighborhood relation R, a minimum maximal
participation ratio min_maxPR.

Output: Co-location patterns P such that maxPR(P) ≥ min_maxPR.
Method:

1. let k = 2; generate C2, the set of candidate 2-patterns and their
rowsets, by geometric methods;

2. For each C ∈ Ck calculate maxPR(C) from C’s rowset rowset(C);
Let Pk be the subset of Ck such that for each P ∈ Pk, maxPR(P) ≥
min_maxPR;

3. generate Ck+1, the set of candidates (k + 1)-patterns, as illustrated
in Example 8 ; if Ck+1 �= ∅, let k = k + 1, go to Step 2;

4. output ∪i Pi �

Fig. 4 Algorithm maxPrune
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is a superset of the actual (k + 1)-patterns Pk+1. This is proved in the following
lemma.

Lemma 3: Let P be a k-pattern above given threshold min_maxPR (k ≥ 3). Then,
there exist two (k − 1) patterns P1 and P2 such that (1) P1 ⊂ P, P2 ⊂ P, (2) P1 and
P2 share their first k − 2 features, (3) P1 and P2 share either the kth or the (k − 1)th
feature or the (k − 2)th feature in P but not any two of them, and (4) both P1 and P2

are above threshold min_maxPR.

Proof: The three length-(k − 1) sub-patterns: P/{ fk−2},P/{ fk−1}, and P/{ fk} share
their first k − 2 features and pairwise share one feature (kth feature, (k − 1)th
feature, or (k − 2)th feature of P) in their last two features but not two of the
features in { fk−2, fk−1, fk}. Following Lemma 2, P has at most one length-(k − 1)

subpattern P ′ which is below threshold min_maxPR. Thus, if any one of the three
below threshold min_maxPR, we still have the other two length-(k − 1) patterns as
stated in the Lemma. �

Lemma 3 guarantees that if we generate size k candidate patterns by joining any
two (k − 1) patterns which differ in one feature in their last two features, we will not
miss any co-location patterns above threshold min_maxI P.

Example 9: (Algorithm maxPrune) Suppose min_maxPR = 0.85. Initially, all sin-
gleton co-location patterns are qualified since they have maxPR = 1. A general
geometric method is used to generate candidate two-patterns and their rowsets. From
their rowsets, we calculate their maxPR. Only the co-location patterns in

P2 = {{A, C}, {A, D}, {B, C}, {C, D}}
are above min_maxPR threshold.

Then, we generate candidates 3-patterns. In detail, {A, C} joins {A, D}, {A, C}
joins {B, C}, {A, C} joins {C, D}, {A, D} joins {C, D}, and {B, C} joins {C, D} to
generate candidate 3-patterns. After duplicate elimination, we have

C3 = {{A, B, C}, {A, B, D}, {A, C, D} {B, C, D}}.
The rowsets of the candidates are generated by joining the rowsets of the two two-
patterns leading to the candidate.

We go back to step 2. From their rowsets, we calculate the maximal participa-
tion ratio values for the candidate 3-patterns. We get P3 = {{A, B, D}, {A, C, D}
{B, C, D}}. The patterns in P3 are above threshold min_maxPR. Then, we generate
the candidate 4-patterns. In detail, {A, B, D} joins {A, C, D} because they differ
by one feature in their last two features. We thus generate candidate four-pattern
C4 = {A, B, C, D}, as illustrated in Example 8. Rowsets of {A, C, D} and {B, C, D}
are joined to produce the rowset of {A, B, C, D}. Its maxPR is calculated and it is
above the threshold min_maxPR.

The algorithm proceeds similarly. It can be verified that C5 = ∅ and thus the
algorithm stops. �

Compared to the min–max algorithm, the maxPrune algorithm does not need any
minimum prevalence threshold and finds the complete set of co-locations above the
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minimum maximal participation index threshold min_maxPR with any prevalence.
In the process of mining the complete set of these co-locations, the maxPrune
algorithm generates much less candidate co-location patterns compared to that of
min–max with min_ prev = 0, and thus lowers down the costs of expensive rowset
generation and test dramatically.

7 Experimental Results

In this section, we present extensive experiments to evaluate the performance of two
algorithms: Min–Max and maxPrune. Specifically, we test three cases: (1) data sets
which contains no co-location patterns involving rare spatial features, (2) data sets
containing patterns involving rare spatial features, and (3) large data sets.

7.1 The Experimental Setup

Our experiments were performed on synthetic data sets. We developed a data
generator for generating synthetic data. Our data generator is similar to the one
used in [4], with some extensions to produce spatial data sets. The major parameters
for generating synthetic data sets are illustrated as follows. For a synthetic data set
I100k.C10.R50, we generate 100 k instances (denoted as I100k). There are up to 50
co-location patterns containing rare features with high participation ratio but very
low prevalence (denoted as R50). We achieve this by binding a spatial feature to a
pre-generated potential co-location pattern, and making those bound spatial features
not prevalent. The number of features in a co-location pattern yields to a Poisson
distribution, while the mean is 10 (denoted as C10). For all generated data sets, the
total number of features is 100 and the total number of pre-generated potential co-
location patterns is 500. A summary of the parameter settings used to generate the
synthetic data sets is presented in Table 3.

We implemented algorithms min–max and maxprune using C++ and all exper-
iments were performed on a Pentium III 550 MHz PC machine with 4G MB main
memory, running Linux Redhat 6.1 operating system. Due to the space limit, we only
report the results on some representative data sets.

Table 3 Parameter settings
Name |I| |C| |R| Size MB

I100 K.C5.R0 100K 5 0 1.86
I100 K.C5.R50 5
I100 K.C10.R50 100K 10 50 1.86
I100 K.C15.R50 15
I250 K.C5.R50 5
I250 K.C10.R50 250K 10 50 4.8
I250 K.C15.R50 15
I750 K.C5.R50 5
I750 K.C10.R50 750K 10 50 14.6
I750 K.C15.R50 15
I1 M.C5.R50 5
I1 M.C10.R500 1M 10 50 19.6
I1 M.C15.R50 15
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7.2 The Performance Comparison on Data Sets in Which no Co-Location Patterns
have High Maxpi Values

We first evaluate the performance of Min–Max and maxPrune algorithms on mining
prevalent co-location patterns from spatial data sets in which there are no co-location
patterns with high maxPR values. This experiment was conducted on the data set
I100kC5R0. The parameter R0 in this data set indicates that no co-location patterns
have relatively high maxPR values. In other words, the PI and maxPR do not vary
too much. Referred to the discussion in the previous sections, this setting favors the
Min–Max algorithm.

In the experiment, we varied maxPR thresholds from 2.5 to 4%. Figure 5(a) shows
the runtime of maxPrune and Min–Max at different maxPR thresholds. For the Min–
Max algorithm, we chose the min_ prev values as 0, 0.05, 0.5 and 2.5%, respectively.
Only when the min_ prev value was set to 0%, Min–Max finds all the co-location
patterns with maxPR values above the maxPR threshold. Because the Min–Max
algorithm has to generate all co-location patterns with participation index values
above min_ prev, the run time of Min–Max is not sensitive to the change of maxPR
thresholds. In contrast, the runtime of maxPrune increases as the maxPR threshold
decreases.

When min_ prev > 0, the Min–Max algorithm can potentially miss some interest-
ing co-location patterns. When two algorithms generate the same set of co-location
patterns, i.e., if min_ prev is equal to zero for the Min–Max algorithm, Min–Max
outperforms maxPrune only when the maxPR threshold is lower than 3.2%. In such
an extreme region, most co-location patterns have high maxPR values, and algorithm
maxPrune has a heavier overload on candidate generation than Min–Max has. For
all other parameter regions, maxPrune outperforms Min–Max.

Finally, Fig. 5(b) shows the number of co-location patterns with high maxPR
values identified at different maxPR thresholds. As can be seen, only if a very small
min_ prev threshold is specified, the Min–Max algorithm can generate comparable
results as maxPrune does. However, the computation performance of the Min–Max
algorithm degrades a lot when the min_ prev threshold is small.

Fig. 5 (a) The runtime of Min–Max and Maxprune on data sets in which there are no co-location
patterns with high maxPI values. (b) The number of Co-locations identified on data sets in which no
Co-location has high maxPI values
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Fig. 6 (a) The runtime of Min–Max and maxPrune on data sets containing co-locations with high
maxPR values. (b) The number of co-location patterns identified on data sets containing co-locations
with high maxPI values

7.3 Performance Comparison on Data Sets Containing Co-Location Patterns with
High Maxpi Values

Here, we compare the performance of maxPrune and Min–Max on a data set
(I100K.C5.R50) in which there are many co-location patterns with high maxPR val-
ues but low prevalence. In this experiment, we identified many co-location patterns
with relatively high maxPR values, say above 50%.

Figure 6(a) shows the runtime of Min–Max and maxPrune on data set
I100K.C5.R50. As can be seen, the runtime of Min–Max dramatically increases with
the decrease of participation index thresholds. In contrast, the runtime of maxPrune
is not affected by the change of participation index thresholds and is much smaller
than that of Min–Max with respect to different MaxPI thresholds. In addition,
Fig. 6(b) shows that the number of co-location patterns identified by Min–Max
decreases with the increase of participation index thresholds. In other words, for the
min–max algorithm, there is a trade-off between the efficiency and the completeness
of results. However, the maxPrune algorithm does not have such a dilemma situation.

Fig. 7 (a) Scalability of the maxPrune algorithm w.r.t. maxPR. threshold (b) Scalability of the
maxPrune algorithm w.r.t. number of instances
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7.4 The Scalability of Maxprune

In this subsection, we first evaluate the scalability of the maxPrune algorithm with
respect to maxPR thresholds. Figure 7(a) shows the runtime of the maxPrune
algorithm on data set I1M.C15.R50. As can be seen, the runtime of the maxPrune
algorithm almost linearly increases with the decrease of maxPR thresholds. Another
observation is that more features on average are in a pattern, the long the runtime we
will have. Also, Fig. 7(b) shows the scalability of maxPrune in terms of the number
of instances in spatial data sets. In the figure, we can see that the execution time is
linearly scalable to the database size.

Finally, please note that, we only reported results from the data set I1M.C15.R50
due to the page limit. Indeed, the results from other data sets are consistent with the
above presented results.

8 Conclusions

In this paper, we formalized the problem of mining co-location patterns with rare
spatial features. We first introduced a new measure called the maximal participation
ratio (maxPR) and showed how this measure can be used to capture co-location
patterns in spatial data sets with rare features. In addition, an algorithm called
pruneMax was developed to exploit the weak monotonicity property of the maxPR
measure and efficiently identify co-location patterns with rare features. Finally, our
experimental results showed that the performance of the pruneMax algorithm is
much better than an alternative, the min–max algorithm, which is a simple extension
of the apriori-like solution [4].

This study opens several interesting directions for future research. First, in many
applications, it is important to go beyond “support”-based pruning to find co-location
patterns involving rare spatial features, but “infrequent” patterns. It would be
interesting to examine whether we can carry this spirit to mine other kinds of patterns
without “support”-based pruning. Second, the approach developed in this paper only
deals with boolean spatial features. In the real world, the features can be categorical
and continuous. There is a need to extend the co-location mining framework to
handle continuous spatial features. Finally, if locations of spatial features change over
time, it would be interesting to mine spatio-temporal association patterns.
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