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ABSTRACT
Microarray technology is a powerful tool for geneticists to
monitor interactions among tens of thousands of genes si-
multaneously. There has been extensive research on coher-
ent subspace clustering of gene expressions measured under
consistent experimental settings. However, these methods
assume that all experiments are run using the same batch
of microarray chips with similar characteristics of noise. Al-
gorithms developed under this assumption may not be ap-
plicable for analyzing data collected from heterogeneous set-
tings, where the set of genes being monitored may be dif-
ferent and expression levels may be not directly comparable
even for the same gene. In this paper, we propose a model,
F-cluster, for mining subspace coherent patterns from het-
erogeneous gene expression data. We compare our model
with previously proposed models. We analyze the search
space of the problem and give a näıve solution for it.
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1. INTRODUCTION
Recent advances in microarray technology have made large

amounts of gene expression data available from a variety
of different experimental settings. Clustering is a popular
method used to analyze microarrays. A special class of
subspace clustering algorithms called bi-clustering can ef-
fectively identify meaningful gene groups [12, 13]. By find-
ing shifting and/or scaling patterns, bi-clustering algorithms
can identify co-regulated genes whose expressions differ in
value but are highly correlated. Tricluster [14] extends the
model to the temporal domain. It finds clusters in gene-
sample-time space.
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Although previous methods have demonstrated their use-
fulness, all of these methods focus on analyzing expression
data generated by a single microarray technique. There have
been several microarray techniques using fundamentally dif-
ferent mechanisms to measure gene expression levels, includ-
ing Affymetrix oligonucleotide microarrays [5], cDNA mi-
croarrays [8], and serial analysis of gene expression (SAGE)
[11]. The expression levels reported by different techniques
are not necessarily comparable with each other. Since previ-
ously proposed subspace clustering methods were developed
under the assumption that the gene expressions are mea-
sured under consistent experimental settings, they can not
be readily applied to analyze data generated by different
techniques.

In the biology community, there has been wide interest
in the cross-platform comparisons of gene expression values
[1, 2, 3, 6, 7, 9]. However, these studies have focused on
the expression values for individual genes. Statistical and
probabilistic methods [4, 10] have been proposed for finding
the pair-wise interactions of genes or proteins in heteroge-
nous datasets. They are not applicable to finding subspace
coherent patterns in heterogenous microarray datasets.

To overcome the limitation of previous methods, we pro-
pose a more general model for mining coherent subspace
clusters from multiple microarrays that may be generated
by different techniques.

2. PROPOSED MODEL
We propose the model of F-cluster (Frequent cluster),

which mines genes co-expressed in subsets of samples within
multiple microarrays. Informally speaking, an F-cluster is a
group of genes that show similar expression patterns in some
subspaces (of samples) in at least δ matrices, where δ is a
user specified number. For example, as shown in Figure 1,
the gene group {g1, g2, g3} is an F-cluster which is preserved
in matrices M1, M2, and M3 if δ = 3.

2.1 Comparison with Previous Methods
Previous coherent subspace clustering methods focus on

mining data generated under homogeneous settings. Our
model, on the other hand, can be applied to microarray
data collected from heterogeneous settings. Since experi-
mental settings used in different microarray techniques and
the samples may be different and incompatible, we do not
require the genes in an F-cluster have same expression pat-
terns in different microarrays. As shown in Figure 1, the
F-cluster {g1, g2, g3} is preserved in M1, M2, and M3 sepa-
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M1 M2 M3

a b c α β γ x y z

g1 30 40 30 45 35 45 8 18 8
g2 25 35 25 15 5 15 28 38 28
g3 20 30 20 28 18 28 20 30 20

(a) Expression values of g1, g2, g3
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(b) Expression patterns of g1, g2, g3

Figure 1: Example 1

rately. But the expression patterns are not preserved across
matrices. (There are cross-overs between matrices as shown
in Figure 1.)

2.2 Exponential Search Space
Let I be the number of genes in the heterogenous microar-

ray dataset, K be the number of matrices, and δ be the user
specified threshold. There can be as many as 2I potential
gene clusters in each matrix, where I typically ranges from
thousands to tens of thousands. Identifying those supported
by at least δ out of K matrices requires intelligent pruning
strategies to confine the search space.

3. A NAÏVE ALGORITHM
F-clusters can be viewed as consensus subspace clusters in

multiple microarray matrices. To mine the F-clusters, in a
straightforward manner, we can adopt the following 2-step
approach.

• In the first step, we mine and maintain subspace clus-
ters in each matrix separately. Existing bi-clustering
algorithms [12, 13] can be applied to find these clus-
ters.

• In the second step, we exam the combinations of the
subspace clusters found in previous step to see if any
sub-cluster is preserved in at least δ matrices. This
step can be accomplished by using either breadth first
search or depth first search strategy.

This näıve approach is inefficient, since there are usually
thousands to millions of subspace clusters (even if we only
keep maximal subspace clusters) in a single matrix.

4. CONCLUSION AND FUTURE WORK
In this paper, we propose F-cluster model for mining co-

herent subspace clusters. This model can find the clusters
that are preserved in expression data generated by different
microarray techniques. We compare our model with previ-
ous models and propose a straightforward method to mine

the F-clusters. In our future work, we shall develop more
efficient algorithm for this problem. The algorithm should
adopt efficient search strategy and incorporate effective pun-
ning methods. We will apply our mining algorithm to real
life gene expression datasets and validate the biological sig-
nificance of the resulting gene clusters.
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