
Mining Compressing Sequential Patterns

Hoang Thanh Lam1, Fabian Mörchen2, Dmitriy Fradkin3 and Toon Calders1

1Siemens Corporation, Corporate Research and Technology, Princeton, NJ, USA

2Amazon.com Inc., 410 Terry Avenue North, Seattle WA 98109, USA

3Technische Universiteit Eindhoven, Department of Maths and Computer Science, Eindhoven, Netherlands

Received 29 July 2012; revised 27 February 2013; accepted 16 April 2013

DOI:10.1002/sam.11192

Published online 23 May 2013 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: Pattern mining based on data compression has been successfully applied in many data mining tasks. For itemset
data, the Krimp algorithm based on the minimum description length (MDL) principle was shown to be very effective in solving
the redundancy issue in descriptive pattern mining. However, for sequence data, the redundancy issue of the set of frequent
sequential patterns is not fully addressed in the literature. In this article, we study MDL-based algorithms for mining non-
redundant sets of sequential patterns from a sequence database. First, we propose an encoding scheme for compressing sequence
data with sequential patterns. Second, we formulate the problem of mining the most compressing sequential patterns from a
sequence database. We show that this problem is intractable and belongs to the class of inapproximable problems. Therefore, we
propose two heuristic algorithms. The first of these uses a two-phase approach similar to Krimp for itemset data. To overcome
performance issues in candidate generation, we also propose GoKrimp, an algorithm that directly mines compressing patterns by
greedily extending a pattern until no additional compression benefit of adding the extension into the dictionary. Since checks for
additional compression benefit of an extension are computationally expensive we propose a dependency test which only chooses
related events for extending a given pattern. This technique improves the efficiency of the GoKrimp algorithm significantly while
it still preserves the quality of the set of patterns. We conduct an empirical study on eight datasets to show the effectiveness
of our approach in comparison to the state-of-the-art algorithms in terms of interpretability of the extracted patterns, run time,
compression ratio, and classification accuracy using the discovered patterns as features for different classifiers.  2013 Wiley

Periodicals, Inc. Statistical Analysis and Data Mining 7: 34–52, 2014

Keywords: sequence data; compressing patterns mining; complexity; minimum description length; compression-based pattern
mining

1. INTRODUCTION

Mining frequent sequential patterns from a sequence

database is an important data mining problem which has

been attracting researchers for more than a decade. Dozens

of algorithms [1] to find sequential patterns effectively have

been proposed. However, relatively few researchers have

addressed the problem of reducing redundancy, ranking

patterns by interestingness, or using the patterns for solving

further data mining problems.

Redundancy is a well-known problem in sequential

pattern mining. Let us consider the Journal of Machine

Learning Research (JMLR) dataset which contains a

∗ Correspondence to: Hoang Thanh Lam (t.l.hoang@tue.nl)

database of word sequences, each corresponding to an

abstract of an article in the Journals of Machine Learning

Research. Figure 1 shows the 20 most frequent closed

sequential patterns ordered by decreasing frequency. This

set of patterns is clearly very redundant, so many patterns

with very similar meaning are shown to users.

Besides redundancy issues, the set of frequent patterns

usually contain trivial and meaningless patterns. In fact, the

set of frequent closed patterns in Fig. 1 contains random

combinations or repeats of frequent terms in the JMLR

abstracts such as algorithm, result, learn, data and problem.

These patterns are meaningless given our knowledge about

the frequent terms.

To solve these issues, we have to find alternative

interestingness measures rather than relying on frequency

 2013 Wiley Periodicals, Inc.

Lam et al.: Making Sequential Patterns Useful 35

Fig. 1 The 20 most frequent non-singleton closed sequential patterns from the JMLR abstracts datasets. This set, despite containing some
meaningful patterns, is very redundant. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

alone. For itemset data, an interesting approach has been

proposed recently. The Krimp algorithm mines patterns that

compress the data well [2] using the minimum description

length (MDL) principle [3]. This approach has been shown

to reduce redundancy and generate patterns that are useful

for classification [2], component identification [4], and

change detection [5]. We extend these ideas to sequential

data. The key issue in designing an MDL-based algorithm

for sequence data is the encoding scheme that determines

how a sequence is compressed given some patterns. In

contrast to itemsets we need to consider the ordering of

elements in a sequence and need to be able to deal with

gaps, as well as overlapping and repeating patterns; all

properties that are not present in itemset data.

In this article, we study MDL-based algorithms for

mining non-redundant and meaningful patterns from a

sequence database. The key contributions of this work can

be summarized as follows:

1. We propose a novel encoding for sequence data.

Our encoding assigns shorter codewords for small

gaps, thus penalizing pattern occurrences with longer

gaps. It is shown to be more effective than the

encoding proposed in our prior work [6]. Moreover,

by using the Elias code for gaps [7], it allows to

encode interleaved patterns which is prohibited in

the encoding proposed recently in Ref. [8].

2. We discuss the complexity of mining compressing

patterns from sequence database. The main result

shows that this problem is NP-hard and belongs to

the class of inapproximable problems.

3. We propose SeqKrimp, a two-phase candidate-based

algorithm for mining compressing patterns inspired

by the original Krimp algorithm.

4. We propose GoKrimp, an efficient algorithm that

directly mines compressing patterns from the data

by greedily extending patterns until no additional

compression benefit is observed. In order to avoid

exhaustive checks of all possible extensions a depen-

dency test technique is proposed which considers

only related events for extension. This technique

helps the GoKrimp algorithm to be faster than

SeqKrimp and the state-of-the-art algorithms while

being able to find patterns with similar quality.

5. We perform an empirical study with one synthetic

and eight real-life datasets to compare different

sets of patterns based on the interpretability of the

patterns and on the classification accuracy when they

are used as attributes for classification tasks.

2. RELATED WORK

Mining useful patterns is an active research topic of

data mining. Recent approaches can be classified into three

major categories: statistical approaches based on hypothesis

tests, MDL-based approaches, and information-theoretic

approaches.

The first direction is concerned with statistical hypothesis

testing. Data are assumed to follow a user-defined null

hypothesis. Subsequently, standard statistical hypothesis

testing is used to test the significance of patterns assuming

that the data follow the null hypothesis. If a pattern passes

the test it is considered significant and interesting. For

example, Gionis et al. [9,10] use swap randomization

to generate random transactional data from the original

data. The significance of a given pattern is estimated on

randomized data. A similar method is proposed for graph

data by Hanhijärvi et al. [11] and Milo et al. [12]. In those

works, random graphs with prescribed degree distribution

are generated, and significance of a subgraph is estimated

on the set of random generated graphs. A similar approach

has also been applied to find interesting motifs in time-

series data by Castro et al. [13].

A drawback of such approaches is that the null hypothesis

must be chosen explicitly by the users. This task is not

Statistical Analysis and Data Mining DOI:10.1002/sam

36 Statistical Analysis and Data Mining, Vol. 7 (2014)

trivial in different types of data. Frequently, the null

hypothesis is too naive and does not fit the real-life data. As

a result, all the patterns may pass the test and be considered

as significant.

Other research tries to identify interesting sets of patterns

without making any assumptions on the underlying data

distribution. The approach is based on the MDL principle:

it searches for patterns that compress the given data most.

Examples of this direction include the Krimp algorithm

[2] and direct mining descriptive patterns algorithm [14]

for itemset data and the algorithms for graph data [15,16].

The usefulness of compressing patterns was demonstrated

in various applications such as classification [2], component

identification [4], and change detection [5].

The idea of using data compression for data mining was

first proposed by Cilibrasi et al. [17] for data clustering

problem. This idea was also explored by Keogh et al.

[18], who proposed to use compressibility as a measure of

distance between two sequences. They empirically showed

that by using this measure for classification, they were

able to avoid setting complicated parameters, which is not

trivial in many data mining tasks, while obtaining promising

classification results. Another related work by Faloutsos et

al. [19] suggested that there is a connection between data

mining and Kolmogorov complexity. While the connection

was explained informally there, this notion quickly became

the central idea for a lot of recent work on the same topic.

Our work is a continuation of this idea in the specific con-

text of sequence data. In particular, it focuses on using the

MDL principle to discover interesting sequential patterns.

This article is an extended version of our previous work

on the same topic [6]. That work used an encoding scheme

which assumes that the cost of storing a number or a symbol

is always a constant. Therefore, it does not punish the gaps

between events of a pattern which results in using a window

constraint parameter to limit a match with a pattern within

the constraint window size. Following that work, Tatti and

Vreeken [8] proposed the SQS-Search (SQS) approach that

punishes gaps by using an encoding with zero cost for

encoding non-gaps and higher cost for encoding events with

larger gaps. The approach was shown to be very effective in

mining meaningful descriptive patterns in text data. How-

ever, it does not handle the case of interleaving patterns. In

practice, patterns generated by independent processes may

frequently overlap. In this work, we propose an encoding

that both punishes gaps and handles interleaving patterns.

3. PRELIMINARIES

3.1. Sequential Pattern Mining

Let S = (e1, t (e1)), (e2, t (e2)), . . . , (en, t (en)) denote a

sequence of events, where ei ∈ � is an event symbol from

an alphabet � and t (ei) is a timestamp of the event ei .

Given a sequence P , we say that S matches P if P is a

subsequence of S.

Let S = {S1, S2, . . . , SN } be a database of sequences.

The number of sequences in the database matching P is the

support fP of the given sequence. The frequent sequential

pattern mining problem is defined as follows:

DEFINITION 1: (Frequent Pattern Mining): Given a

sequence database S a minimum support value minsup,

find all sequences of events P such that fP ≥ minsup.

A pattern P is called closed if it is frequent and there is

no frequent pattern Q such that fP = fQ and P ⊂ Q. The

problem of mining all closed frequent patterns is formulated

as follows:

DEFINITION 2: (Closed Pattern Mining): Given a

database of sequences S and a minimum support value

minsup, find all patterns P such that fP ≥ minsup and P

is closed.

3.2. MDL Principle

We briefly introduce the MDL principle and MDL-based

pattern mining approaches in this section. A model M is

a set of patterns M = {P1, P2, . . . , Pm} used to compress

a database S. Let LC(M) be the description length of the

model M and LC(S|M) be the description length of the

database S when it is encoded with the help of the model M

in an encoding C. Therefore, the total description length of

the data is LC

M(S) = LC(M) + LC(S|M). Different models

and encodings will lead to different description lengths of

the database. Informally, the MDL principle states that

the best model is the one that compresses the data the

most. Therefore, the MDL principle [3] suggests that we

should look for the model M and the encoding C such that

LC

M(S) = LC(M) + LC(S|M) is minimized.

The central question in designing an MDL-based algo-

rithm is how to encode data given a model. In an encod-

ing, the data description length is fully determined by

an implicit probability distribution assumed to be the

true distribution generating the data. Therefore, design-

ing an encoding scheme is as important as choosing an

explicit probability distribution generating data in classical

Bayesian statistics.

4. DATA ENCODING SCHEME

In this section, we explain how to encode the data given

a set of sequential patterns.

Statistical Analysis and Data Mining DOI:10.1002/sam

Lam et al.: Making Sequential Patterns Useful 37

Fig. 2 An example of two dictionaries and two encodings of the same sequence S = abcadbcaebc. In every dictionary, words are
associated with codewords. Words with more usage are assigned with shorter codewords. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

4.1. Dictionary Presentation

Let
∑

= {a1, a2, . . . , an} be an alphabet containing

a set of characters ai . A dictionary D is a table

with two columns: the first column contains a list of

words w1, w2, . . . , wm including also all the characters

in the alphabet
∑

, while the second column contains

a list of codewords of every word wi in the dictionary

denoted as C(wi). Codewords are unique identifiers of

the corresponding words and may have different length

depending on the word usage, as defined in Section 4.3.

The binary representation of a dictionary is given as

follows: it starts with n codewords of all the characters

in the alphabet followed by the binary representations of

all non-singleton dictionary words. For any non-singleton

word w, its binary representation contains a sequence

of codewords of its characters followed by its codeword

C(w). For instance, the word w = abc is represented

in the dictionary as C(a)C(b)C(c)C(w). This binary

representation of the dictionary allows us to get any word

from the dictionary given its codeword.

EXAMPLE 1: (Dictionary) In Fig. 2, two different dic-

tionaries D1 and D2 are shown. The first dictionary contains

both singleton and non-singleton words while the second

one has only singletons. As an example, the binary repre-

sentation of the first dictionary is C1(a)C1(b)C1(c)C1(d)

C1(e)C1(a)C1(b)C1(c)C1(abc).

4.2. Natural Number Encoding

In our sequence encoding, we need a binary represen-

tation of natural numbers used to indicate gaps between

Fig. 3 An example of Elias codes of the first eight natural
numbers. Code length of E(n) is equal to 2⌊log2(n)⌋ + 1. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

characters in an encoded word. For any natural number n

when the upper-bound on n is undefined in advance, the

Elias code is usually used [7].

The Elias code of any natural number n denoted as

E(n) starts with exactly ⌊log2(n)⌋ zero bits followed by

the actual binary representation of the natural number n. In

this way, the Elias code length is equal to 2⌊log2(n)⌋ + 1

bits which makes the encoding universal in the sense

that when the upper-bound of n is unknown in advance,

the Elias code length is at most twice as long as the

optimal code length. In the Elias coding, the larger the

value of n is the longer the code length |E(n)| is,

therefore, short gaps is encoded more succinct than long

gaps.

EXAMPLE 2: (Elias encoding) An example of Elias

codes is depicted in Fig. 3 where the Elias codes of the

first eight natural numbers are shown. The number 8 has the

Elias code as E(8) = 0001000 starting with ⌊log2(n)⌋ = 3

zeros and followed by the binary representation 1000 of the

number n = 8.

Statistical Analysis and Data Mining DOI:10.1002/sam

38 Statistical Analysis and Data Mining, Vol. 7 (2014)

Decoding a binary string containing several Elias codes

is simple. In fact, the decoder first reads the leading zero

bits until it reaches a one bit. At this moment, it knows

how many more bits it needs to read to reach the end of

the current Elias code. This process is repeated for every

block of Elias code to decode the binary string completely.

EXAMPLE 3: (Elias decoding) The binary string 000

100000100 can be decoded as follows: the decoder reads

the first 3 zero bits, it knows that it needs to read 4 more

bits to finish the current block. The obtained Elias code is

decoded as the number 8. It continues to read the following

2 zero bits and reads another 3 bits to get the complete

representation of the next number which is decoded as 4 in

this case.

4.3. Sequence Encoding

Given a dictionary D, a sequence S is encoded by

replacing instances of dictionary words in the sequence by

pointers. A pointer p replacing an instance of a word w in

a sequence S is a sequence of bits starting by the codeword

C(w) followed by a list of Elias codes of the gaps indicating

the difference between positions of consecutive characters

of the instances of word in S. In the case the word is a

singleton, the pointer contains only the codeword of the

corresponding singleton.

EXAMPLE 4: (pointers) In the sequence S = abcabd

caebc three instances of the word w = abc at positions

(1, 2, 3), (4, 5, 7), and (8, 10, 11) are underlined. If the

word abc already exists in the dictionary with the codeword

C(w) then the three occurrences can be replaced by three

pointers p1 = C(w)E(1)E(1), p2 = C(w)E(1)E(2), and

p3 = C(w)E(2)E(1).

A sequence encoding can be defined as follows:

DEFINITION 3: (Sequence Encoding) Given a dictio-

nary, a sequence encoding of S is a replacement of instances

of dictionary words by pointers.

The encoding in Definition 3 is complete if all characters

in the sequence S are encoded. In this work, we consider

only complete encoding. In an encoding C of a sequence

S, the usage of a word w denoted as fC(w) is defined as

the number of times the word w is replaced by a pointer

plus the number of times the word is present in the binary

representation of the dictionary.

EXAMPLE 5: (Sequence encoding) In Fig. 2, two

dictionaries D1 and D2 are created based upon two

encodings C1 and C2 of the sequence S = abcabdcaebc.

The first encoding C1 replaces three occurrences of the

word abc in the sequence S by pointers. Therefore, the

usage of abc in that encoding is counted as the number of

pointers replacing abc plus the number of the occurrences

of abc in the dictionary, thus, fC1
(abc) = 4. Meanwhile,

although a is not replaced by any pointers it is present

twice in the binary representation of the dictionary, so

fC1
(a) = 2. Similarly, the usages of the other words are

shown in the same figure.

For every word w, the binary representation of the

codeword C(w) depends on its usage in the encoding.

Denote FC =
∑

w∈D fC(w) as the sum of the usages of

all dictionary words in an encoding C. Relative usages of

every word w defined as
fC (w)

FC
which can be considered

as a probability distribution defined on the space of all

dictionary words because
∑

w∈D
fC (w)

FC
= 1.

According to Grünwald [3], there exists a prefix-free

encoding C(w) such that the codeword length |C(w)| is

proportional to the entropy of the word, i.e. |C(w)| ∼

— log
fC (w)

FC
, i.e. shorter codewords are assigned to words

with more usage. Such encoding is optimal over all

encodings resulting in the same usage distribution of the

dictionary words [3]. When the dictionary contains only

singletons, the aforementioned encoding corresponds to

the Huffman code [7]. In this work, we denote Huffman

code as C0 and consider the data in this encoding as the

uncompressed representation of the data. In Fig. 2 the

second encoding corresponds to the Huffman code.

4.4. Sequence Decoding

In this section, we discuss the decoding algorithm for an

encoded sequence. First, we show how to read the content

of a dictionary from its binary representation. A binary

representation of a dictionary can be decoded as follows:

1. Read codewords of all singletons until encountering

a duplicate of any singleton codeword.

2. Step by step read codewords of every non-singleton

w by reading the contents of w (a sequence of

familiar codewords of singletons) until reaching

a completely unseen codeword C(w) which is

considered as the codeword of w in the dictionary.

EXAMPLE 6: (Dictionary decoding) The dictionary D1

in Fig. 2 has the binary representation C1(a)C1(b)C1(c)

C1(d)C1(e)C1(a)C1(b)C1(c)C1(abc). The decoder starts

by reading codewords of all singletons a, b, c, d and e.

It stops when a repeat of a codeword of a singleton is

encountered, in this particular case, when it sees a repeat of

C1(a). The decoder knows that the codeword corresponds

Statistical Analysis and Data Mining DOI:10.1002/sam

Lam et al.: Making Sequential Patterns Useful 39

to the beginning of a non-singleton so it continuously reads

the following codewords of singletons until reaching a

never-seen-before codeword C1(abc). The latter codeword

corresponds to the non-singleton abc in the dictionary.

Given the dictionary, a sequence can be decoded by

reading every block of the binary string corresponding

to a word replaced by a pointer. Each block is read as

follows:

1. Read the codeword C(w) and refer to the dictionary

to get information about the word w.

2. If the word w is a singleton then it continues reading

the next block. Otherwise, it uses the Elias decoder

to get |w| − 1 gap numbers before continuing with

the next block.

The following example shows how to decode the sequence

C1(abc) E(1) E(1) C1(abc) E(1) E(2) C1(d) C1(abc)

E(2) E(1) C1(e) with the help of the dictionary D1:

EXAMPLE 7: (Sequence decoding) The decoder first

reads C1(abc) then it refers to the dictionary and knows that

the word length is three, therefore, it reads two numbers by

using the Elias decoder. The decoder continues reading the

next block C1(abc) E(1) E(2) in the same way to decode

another instance of abc. After that it reaches the codeword

C1(d); a reference to the dictionary tells the decoder that

there is no following gap number so the decoder continues

to read the next blocks in a similar way to decode the last

instance of abc and the singleton e.

4.5. Data Description Length

Denote gC(w) as the total cost of encoding the gaps by

the Elias codes of the word w in an encoding C. It is

important to notice that the gap cost of singleton is always

equal to zero. The description length of the database S

encoded by the encoding C can be calculated as follows:

LC(S) =
∑

w∈D

(|C(w)| ∗ fC(w) + gC(w)) (1)

=
∑

w∈D

(

log
FC

fC(w)
∗ fC(w) + gC(w)

)

(2)

5. PROBLEM DEFINITION

We denote L
C∗

D

D (S) as the length of the database S in

the optimal encoding C∗
D when the dictionary D is given.

The problem of finding compressing patterns is formulated

as follows:

DEFINITION 4: (Compressing Sequences Problem)

Given a sequence database S, find an optimal dictionary

D∗ and also optimal the encoding C∗
D∗ that use words

in the dictionary D∗ to encode the database S such that

D∗ = argminDL
C∗

D

D (S).

To solve the compressing sequences problem we need to

find at the same time the optimal dictionary D∗ and the

optimal encoding C∗
D that uses the dictionary D∗ to encode

the database S.

6. COMPLEXITY ANALYSIS

This section discusses the complexity of the mining

compressing sequences problems. Finding a dictionary that

compresses the database most is equivalent to finding a set

of patterns that gives the most compression benefit defined

as the difference between database description length before

and after compression. The following theorem shows that

even finding a dictionary containing all the singletons and

one non-singleton pattern that gives the most compression

benefit is inapproximable:

THEOREM 1: Finding the most compressing pattern is

inapproximable.

To prove Theorem 1, we reduce the most compressing

pattern problem to the maximum tile in database problem

[20]. Given an itemset database D = {T1, T2, . . . , Tn},

where every Ti is an itemset defined over an alphabet
∑

=

{a1, a2, . . . , am}. The area of an itemset I ⊂
∑

denoted

as A(I) is calculated as the size of I multiplying by the

frequency of I in the database. The maximum tile problem

looks for the itemset having the largest area. Mining the

maximum tile is equivalent to finding the maximum clique

in a bipartite graph known as an inapproximable problem

in the literature [21].

From the itemset database D we create a sequence

database S = {S1, S2, . . . , Sn} as follows. First, distinct

symbols b1, b2, . . . , bM are added to
∑

to obtain a

new alphabet
∑+

. Each transaction Ti ∈ D is sorted

increasingly according to any lexicographical order defined

over
∑+

. Assume that Ti has the form ai1 , ai2 , . . . , aik after

sorting, therefore, a sequence Si is created as such Si =

(ai1 , 1), (ai2 , 2), . . . , (aik , k). Besides, in the database S we

add an additional sequence Sn+1 such that it contains all the

symbols in {b1, b2, . . . , bM} sorted increasing according to

the lexicographical order. Let N > 1 be the sum of the

lengths of all sequences except the last sequence in S.

Statistical Analysis and Data Mining DOI:10.1002/sam

40 Statistical Analysis and Data Mining, Vol. 7 (2014)

In the Huffman encoding C0 of S using only singletons

the description length of S is:

LC0(S) =

m
∑

i=1

fC0
(ai) log

FC0

fC0
(ai)

+

M
∑

i=1

fC0
(bi) log

FC0

fC0
(bi)

= FC0
log FC0

−

m
∑

i=1

fC0
(ai) log fC0

(ai)

− 2M.

Let P = ai1ai2 . . . ai|P |
be any non-singleton word with

|P | characters and let CP be an encoding that use a

dictionary DP containing only one non-singleton P to

encode the data S by replacing fCP
(P) − 1 occurrences of

P in the database. The description length of the database

S is:

LCP (S) =

m
∑

i=1

fCP
(ai) log

FCP

fCP
(ai)

+

M
∑

i=1

fCP
(bi) log

FCP

fCP
(bi)

+fCP
(P) log

FCP

fCP
(P)

+ gCP
(P)

= FCP
log FCP

−

m
∑

i=1

fCP
(ai) log fCP

(ai) − 2M

−fCP
(P) log fCP

(P) + gCP
(P).

We first prove two supporting lemmas from which Theorem

1 is a direct consequence.

LEMMA 1 If M is chosen such that FC0
> N8 + N then:

0.5 log
FC0

− N

N8
≤

LC0(S) − LCP (S)

|P |fCP
(P)

≤ 3 log FC0

.

Proof: First since function x
log x

is increasing for any x > 2

so we have a support inequality x
log x

>
y

log y
for any x >

y > 2.

Since FC0
= FCP

+ |P |fCP
(P) − |P | − fCP

(P) we have

FC0
> FCP

and |P |fCP
(P) > FC0

− FCP
>

|P |fCP
(P)

2
.

From which we first imply that:

FC0
log FC0

− FCP
log FCP

≥
|P |fCP

(P) log FCP

2

≥
|P |fCP

(P) log (FC0
− N)

2
.

Moreover, since FC0
> FCP

we have
FC0

log FC0
>

FCP

log FCP

from

which we further imply that:

(FC0
− FCP

)(log FC0
+ log FCP

)

≥ FC0
log FC0

− FCP
log FCP

2|P |fCP
(P) log FC0

≥ FC0
log FC0

− FCP
log FCP

.

Besides, fC0
(ai) = fCP

(ai) ∀ai �∈ P , fCP
(P) > fC0

(ai) −

fCP
(ai) > 0 ∀ai ∈ P and fC0

(ai) < N . Therefore, we

have:

0 ≥

m
∑

i=1

fCP
(ai) log fCP

(ai) −

m
∑

i=1

fC0
(ai) log fC0

(ai)

≥
∑

ai∈P

(fCP
(ai) − fC0

(ai))(log fCP
(ai) + log fC0

(ai))

≥ −2|P |fCP
(P) log N

Moreover, since the gaps value always less than N , we

have 0 > −g(P) > −2|P |fCP
(P) log N and |P |fCP

(P)

log FC0
> fCP

(P) log fCP
(P) > 0. Sum up all the last

obtained inequalities, we have:

0.5 log
FC0

− N

N8
≤

LC0(S) − LCP (S)

|P |fCP
(P)

≤ 3 log FC0

from which the lemma is proved. �

LEMMA 2 If there is an algorithm approximating the best

compressing pattern of S within a constant factor α in

polynomial time then there exists a constant factor β such

that we can approximate the maximum tile of the database

D within a constant factor β.

Proof: Let P∗ denote the maximum tile of the database D.

Let P be the pattern that approximates the best compressing

pattern of S within the constant factor α. We have:

LC0(S) − LCP (S) ≥ α(LC0(S) − LCP∗ (S)).

On the basis of the results in Lemma 1, we can imply that:

3|P |fCP
(P) log FC0

≥ 0.5α|P ∗|fCP∗ (P
∗) log

FC0
− N

N8
.

Statistical Analysis and Data Mining DOI:10.1002/sam

Lam et al.: Making Sequential Patterns Useful 41

If M is chosen such that FC0
> N16 + 2N , we have

log
FC0

−N

N8 >
log FC0

2
, from which we further imply that:

|P |fCP
(P) ≥ β|P ∗|fP ∗(P ∗)

where β = α
12

from which the lemma is proved. �

It is obvious that Theorem 1 is a direct corollary of

Lemma 2 because the reduction can be done in polynomial

time of the size of the database (M is chosen such that

FC0
is a polynomial of the size of the data, in this case

FC0
> N16 + 2N). A direct corollary of Theorem 1 is that

the compressing sequences problem is NP-Hard:

THEOREM 2: The compressing pattern problem is

NP-hard.

7. ALGORITHMS

This section discusses two heuristic algorithms inspired

by the idea of the Krimp algorithm to solve the compressing

pattern mining problem. Before explaining these algorithms

we first explain how to compress a sequence database using

a single pattern as this procedure is used in both algorithms

as a subtask.

7.1. Compress a Database by a Pattern

As mining compressing patterns is NP-hard, the heuristic

solution greedily chooses the next pattern that gives the best

compression benefit when added to the dictionary. Thus

as a subtask of the greedy selection we need to evaluate

the compression benefit of adding a given non-singleton

pattern. This step can be performed by considering the

following greedy encoding of the database S using a

pattern P .

Algorithm 1 looks for instances of P in S such that the

positions of the characters in the match are close to each

other. Intuitively, those matches give shorter encodings.

Therefore, for every individual sequence S in the database

it first looks for a match of P in S having the minimum cost

to encode the gaps between consecutive characters of the

match (Line 6). Subsequently, this match is replaced with

a pointer and is removed from the sequence (Line 7). This

step is repeated to find any other matches of P in S. The

same procedure is applied for encoding the other sequences

in the database. The algorithm returns the compression

benefit of adding the pattern P to the dictionary and

encoding the database by the greedy encoding procedure.

EXAMPLE 8: As an example, Fig. 4 shows every step

of Algorithm 1 with a sequence S and a pattern P = abc.

Fig. 4 An example of the greedy encoding of the sequence S by
the pattern P = abc. In every step it picks the match of P in S
that has the minimum gap cost in the sequence S and replaces it
with a pointer. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

In the first step, the match with smallest gap cost is chosen

and it is removed from the sequence. The following two

matches are chosen by the same procedure that looks for

the match with minimum gap cost.

An important task of the greedy encoding is to find

the instance of P = a1a2 . . . ak having the minimum

gap cost. This task can be done by using a dynamic

programming method as follows. Let la1
, la2

, . . . , lak
be the

lists associated with the characters of the pattern P : The

j th element of a list lai
contains two fields denoted as l1

ai
[j]

and l2
ai

[j]. The first field l1
ai

[j] contains a position of ai in

the sequence S and the second field l2
ai

[j] contains the gap

cost of the match of the word a1a2 . . . ai with minimum

gap cost given that the match must end at the position

l1
ai

[j]. Algorithm 2 finds the match of the word P with

minimum gap cost by scanning through all the lists lai

for i = 1, 2, . . . , k and for the j th element of the list li
it calculates l2

ai
[j] by using the following formula:

l2
ai

[j] = min
p

{l2
ai−1

[p] + E(l1
ai

[j] − l1
ai−1

[p])}, (3)

where l2
a1

[j] = 0 for j = 1, 2, . . . , |la1
|.

Statistical Analysis and Data Mining DOI:10.1002/sam

42 Statistical Analysis and Data Mining, Vol. 7 (2014)

Fig. 5 An example of dynamic programming algorithm to find the match of a pattern P = abc with minimum gap cost in the sequence
S. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

EXAMPLE 9: [match with minimum gap cost] Figure 5

illustrates the basic steps of Algorithm 2 finding the

match with minimum gap cost of the word w = abc in

the sequence S = (b, 0)(a, 1)(a, 2)(b, 4)(a, 5)(c, 6)(b, 7)

(b, 9)(c, 11).

Step 1: la contains three elements with l1
a [1] = 1, l1

a[2] =

2 and l1
a [3] = 5 indicating the positions of a in the sequence

S. First, we can initialize the second field of every element

of the list la to zero.

Step 2: lb contains four elements with l1
b [1] = 0, l1

b[2] =

4, l1
b [3] = 7 and l1

b[4] = 9 indicating the positions of b in

the sequence S. According to formula 3 we can calculate

the second field of every element of the list lb as follows,

for instance for l2
b[2]:

l2
b [2] = min

p
{l2

a[p] + E(l1
b [2] − l1

a [p])}

= l2
a [2] + E(l1

b [2] − l1
a [2])

= 3

We draw an arrow connecting la[2] and lb[2] in order to

keep track of the best match so far. The value of l2
a [3] and

l2
a [4] can be calculated in a similar way.

Step 3: lc contains two elements with l1
c [1] = 6 and

l1
c [2] = 11 indicating the positions of c in the sequence S.

The values of l2
c [1] and l2

c [2] can be obtained in the same

way as in Step 2. Among them l2
c [1] = 6 bits is smallest so

the match of abc in S with minimum gap cost corresponds

to the instance of abc at positions (2, 4, 6).

7.2. SeqKrimp, A Krimp-Based Algorithm

for Sequence Database

In this section, we introduce an algorithm for mining

compressing patterns from a sequence database similar

to Krimp for itemset data. The SeqKrimp described in

Algorithm 3 consists of two phases. In the first phase, a

set of candidate patterns is generated by using a frequent

closed sequential patterns mining algorithm (Line 3).

In the second phase, the SeqKrimp algorithm chooses

a good set of patterns from the set of candidates based

upon a greedy procedure. It first calculates the compression

benefit of adding a pattern P ∈ C to the current dictio-

nary. The compression benefit is calculated with the help

of Algorithm 1. The pattern P ∗ with the most additional

compression benefit is included in the dictionary. Addi-

tionally, once P ∗ has been chosen, Algorithm 1 is used to

replace all the instances of P ∗ in the data D by pointers to

P ∗ in the dictionary. These actions are repeated as long as

the candidate set C is not empty and there is still additional

positive compression benefit to add a pattern.

EXAMPLE 10: [SeqKrimp] As an example, Fig. 6

shows each step of the SeqKrimp algorithm for a database

and a candidate set. In the first step, the compression benefit

of adding every candidate is calculated. The word abc is

chosen because it gives the best additional compression

Statistical Analysis and Data Mining DOI:10.1002/sam

Lam et al.: Making Sequential Patterns Useful 43

Fig. 6 An example illustrates how the SeqKrimp algorithm works. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

benefit among the candidates. When abc is chosen the

database is updated by replacing every instance of abc

by a pointer. Subsequently, the compression benefit of the

remaining candidates is recalculated accordingly. Finally,

in Step 2, since there is no additional compression benefit

of adding a new pattern, the algorithm stops.

SeqKrimp suffers from the dependency on the candidate

generation step that is very expensive for low minimum

support thresholds. Even for moderate-size datasets state of

the art algorithms for extracting frequent or closed patterns

from sequence database such as PrefixSpan [22] or BIDE

algorithm [23,24] are very time-consuming.

7.3. Direct Mining of Compressing Patterns

This section discusses a direct algorithm for mining

compressing patterns. In particular, GoKrimp depicted in

Algorithm 4 directly looks for the next most compressing

pattern P ∗. When a pattern has been obtained, the Compress

procedure in Algorithm 1 is used to replace every instance

of this pattern in the database by a pointer. These actions

are repeated until there is no more additional compression

benefit of adding a new pattern.

The most important subtask of the GoKrimp algorithm

is a greedy procedure to obtain the next good compressing

Statistical Analysis and Data Mining DOI:10.1002/sam

44 Statistical Analysis and Data Mining, Vol. 7 (2014)

Fig. 7 An example of how dependency test is carried out. If the
event e is independent from the pattern P = cab then it must
occur in two equal-length subintervals L and R with the same
chance. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

pattern from the data. GetNextPattern(S) depicted in

Algorithm 5 step by step extends every frequent event until

no more additional compression benefit can be obtained.

When all the extensions have been obtained the algorithm

chooses the one with highest compression benefit to return

as an output pattern among them.

The evaluation of each extension is very time consuming

because it involves multiple searches for minimum gap

matches of the extension in the database. Therefore, the set

of events chosen to extend a pattern is limited to the set of

events being related to the occurrences of the given pattern.

Indeed, the GetNextPattern algorithm adopts a dependency

test to collect all the related events. Subsequently, the

event when added to the given pattern giving the most

compression benefit is chosen to extend that pattern. When

an event has been chosen the database is projected to the

event and the algorithm keeps extending the pattern as long

as the extensions still add more compression benefit.

To test the dependency between a pattern P and an

event e we use the statistical sign test [25]. Given m pairs

of numbers (X1, Y1)(X2, Y2), . . . , (Xm, Ym), denote N+ as

the number of pairs such that Xi > Yi for i = 1, 2, . . . , m.

If two sequences X1, X2, . . . , Xm and Y1, Y2, . . . , Ym are

generated by the same probability distribution then the test

statistics N+ follows a binomial distribution B(0.5,m).

The sign test is applied to test the dependency between

a pattern P and an event e as follows. For every sequence

S ∈ S and an event c ∈ P denote S(c) as the leftmost

instance of c in S. Consider the interval right after the

last position of S(c) as illustrated in Fig. 7. This interval is

divided into two equal-length subintervals L and R. Denote

the frequency of the event e in the two subintervals as Le

and Re, respectively. If the event e is independent from

the occurrence of S(c), we would expect that the chance

e occurring in left and the right intervals is the same.

Therefore, the number of sequences in which we observe

Le > Re can be used as a test statistics in the sign test

for testing the dependency between the event e and the

pattern c. The test is done for every event c ∈ P , an event

e is considered as related to pattern P if it passes all the

dependency tests regarding all the event belong to P . When

a test has been done we keep log of the dependency results

for reusing next time. In the next section, we empirically

show that the dependency test speeds up the GoKrimp

algorithm significantly while preserving the quality of the

compressing patterns.

8. EXPERIMENTS AND RESULTS

This section discusses results of experiments carried out

several real-life and one synthetic dataset. We will compare

the set of patterns produced by SeqKrimp and GoKrimp

algorithms to the following baseline algorithms:

• BIDE: BIDE was chosen because it is a state

of the art approach for closed sequential pattern

mining. BIDE is also used to generate the set of

candidates for SeqKrimp, i.e. an implementation

of the GetCandidate(.) function in Line 3 of

Algorithm 3.

• SQS: proposed recently by Tatti and Vreeken [8] for

mining compressing patterns in sequence database

• pGOKRIMP: the prior version of the GoKrimp

algorithm (denoted as pGoKrimp) published in our

previous work [6]. We include pGOKRIMP in

the comparison to demonstrate the effectiveness of

the revised encoding adopted by the GOKRIMP

algorithm.

We use seven different real-life datasets introduced in

Ref [26] to evaluate the proposed approaches in term

Statistical Analysis and Data Mining DOI:10.1002/sam

Lam et al.: Making Sequential Patterns Useful 45

Fig. 8 Patterns discovered by the SeqKrimp, GoKrimp, SQS, and the pGoKrimp algorithm. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Table 1. Summary of datasets

Datasets Events Sequences Classes

jmlr 787 75 646 NA
parallel 1 000 000 10 000 NA
aslbu 36 500 441 7
aslgt 178 494 3493 40
auslan2 1800 200 10
pioneer 9766 160 3
context 25 832 240 5
skating 37 186 530 7
unix 295 008 11,133 10

of classification accuracy. Each dataset is a database of

symbolic interval sequences with class labels. For our

experiments the interval sequences are converted to event

sequences by considering the start and end points of every

interval as different events. A brief summary of the datasets

is given in Table 1. All the benchmark datasets are available

for download upon request at the Web site1.

Besides, other two datasets are also used for evaluating

the proposed approaches in term of pattern interpretability.

The first dataset JMLR contains 787 abstracts of the Journal

of Machine Learning Research. JMLR is chosen because

the potential important patterns are easily interpreted. The

second dataset is a synthetic one with known patterns. For

this dataset we evaluate the proposed algorithms based

on the accuracy of the set of patterns returned by each

1 http://www.timeseriesknowledgemining.org.

algorithms. These datasets along with the source code of the

GoKrimp and the SeqKrimp algorithms written in Java are

available for download at our project Web site.2 Evaluation

was done in a 4 × 2.4 GHz, 4 GB of RAM, Fedora 10/64-bit

station.

In summary, the proposed approaches are evaluated

according to the following criteria:

1. Interpretability —to informally assess the meaning-

fulness and redundancy of the patterns.

2. Run time —to measure the efficiency of the

approaches.

3. Compression —to measure how well the data is

compressed.

4. Classification accuracy —to measure the usefulness

of a set of patterns.

8.1. Pattern Interpretability

8.1.1. JMLR

As descriptive pattern mining is unsupervised, it is very

hard to compare different sets of patterns in the general

case. However, for text data it is possible to interpret

2 http://www.win.tue.nl/∼lamthuy/gokrimp.htm.

Statistical Analysis and Data Mining DOI:10.1002/sam

http://www.timeseriesknowledgemining.org.
http://www.win.tue.nl/~lamthuy/gokrimp.htm

46 Statistical Analysis and Data Mining, Vol. 7 (2014)

Fig. 9 Precision and recall at K of the patterns discovered by the GoKrimp, SQS, and the pGoKrimp algorithm in the Parallel dataset.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

the extracted patterns. In this work, we compare different

algorithms on the JMLR dataset.

For the GoKrimp algorithm, the significance level used in

the sign test is set to 0.01 and the minimum number of pairs

needed to perform a sign test is set to 25 as recommended

in Ref. [25]. For the SeqKrimp algorithm the minimum

support was set to 0.1 at which the top 20 patterns returned

by each of these algorithm does not change when the

minimum support is set smaller. Figure 8 shows the top 20

patterns from the JMLR dataset extracted by the SeqKrimp,

the GoKrimp, the SQS, and the pGoKrimp algorithm.

Comparing with the top 20 most frequent closed patterns

depicted in Fig. 1, these sets of patterns are obviously less

redundant. The results of the GoKrimp, SeqKrimp, and SQS

are quite similar. Most of the patterns corresponds to well-

known research topics in machine learning.

The pGoKrimp algorithm, i.e. a prior version of the

GoKrimp algorithm returns a lots of uninteresting patterns

being combinations of frequent events. A possible reason is

that in contrast to the SQS and the GoKrimp algorithm, the

pGoKrimp algorithm uses an encoding that does not punish

gaps and it does not consider the usage of a pattern when

assigning codeword to the patterns.

8.1.2. Parallel

Parallel is a synthetic dataset which mimics a typical sit-

uation in practice where the data stream is generated by

five independent parallel processes. Each process Pi gen-

erates one event from the set of events {Ai, Bi, Ci,Di, Ei}

in that order. In each step, the generator chooses one of

five processes uniformly at random and generates an event

by using that process until the stream length is 1 000 000.

For this dataset, we know the ground truth since all the

sequences containing a mixture of events from different

parallel processes are not the right patterns.

We get the first 10 patterns extracted by each algorithm

and calculate the precision and recall at K . Precision at K

is calculated as the fraction of the number of right patterns

in the first K patterns selected by each algorithm. While the

recall is measured as the fraction of the number of types

of true patterns in the first K patterns selected be each

algorithm. For instance, if the set of the first 10 patterns

contains only events from the set {Ai, Bi, Ci,Di, Ei} for

a given i then the precision at K = 10 is 100% while

the recall at K = 10 is 20%. The precision measures the

accuracy of the set of patterns and the recall measures the

diversity of the set of patterns.

For this dataset, the BIDE algorithm was not able to

finish its running after a week even if the minimum support

was set to 1.0. The reason is that all possible combination

of the 25 events are frequent patterns. Therefore, the results

of the BIDE and the SeqKrimp algorithm for this dataset

are missing. Figure 9 shows the precision and the recall of

the set of K patterns returned by the three algorithms SQS,

GoKrimp, and pGoKrimp when K (x-axis) is varied.

In terms of precision all the algorithms are good because

the top patterns selected by each of them are all correct

ones. However, in term of recall the SQS algorithm is worse

than the other two algorithms. A possible explanation is

that the SQS algorithm uses an encoding that does not

allow encoding interleaving patterns. For this particular

dataset where interleaved patterns are observed frequently

the SQS algorithm misses patterns that are interleaved with

the chosen patterns.

8.2. Running Time

We perform experiments to compare running time of

different algorithms. For the SeqKrimp algorithm and

the BIDE algorithm, we first fix the minimum support

parameter to the smallest values used in the experiment

where patterns are used as features for classification tasks

Statistical Analysis and Data Mining DOI:10.1002/sam

Lam et al.: Making Sequential Patterns Useful 47

in Section 8.4. The SQS algorithm is parameter-free while

the GoKrimp algorithm uses standard parameter setting

recommended for sign test so their running time only

depends upon the size of the data.

The experimental result is illustrated in Fig. 10. As

we can see in this figure, the SeqKrimp algorithm is

always slower than the BIDE algorithm because it needs

an extra procedure to select compressing patterns from the

set of candidates returned by the BIDE algorithm. The

GoKrimp algorithm is 1 to 2 orders of magnitude faster than

SeqKrimp or the BIDE algorithms, giving results ‘to go’

when in a hurry. The SQS algorithm is very fast on small

datasets (though still slower than GoKrimp); however, it

is several times slower than the other algorithms on larger

datasets such as the Unix and the aslgt.

Figure 10 also reports the number of patterns returned

by each of algorithms. The BIDE algorithm as usual

returns a lot of patterns depending on the minimum support

parameter. When this parameter is set low the number of

patterns returned by the BIDE algorithm is even larger

than the size of the datasets. On the other hand, the

SeqKrimp, the SQS and the GoKrimp algorithm returned

just a few patterns. The total number of patterns seems to

be dependent only on the size of the datasets.

8.3. Classification Accuracy

Classification is one of the most important applications

of pattern mining algorithms. In this section, we discuss

results of using the extracted patterns, together with all

singletons, as binary attributes for classification tasks. We

will refer to the approach of using only singletons as

features as Singletons. This algorithm together with the

BIDE algorithm are considered as baseline approaches in

our comparison.

We use the implementations of classification algorithms

available in the Weka package.3 All the parameters are set

to default values. The classification results were obtained

by averaging the classification accuracy over 10 folds cross-

validations. In the experiments, there are two important

parameters: the minimum support value for the BIDE and

the SeqKrimp algorithm, and the classification algorithm

used to build the classifiers.

Therefore, we perform two different experiments to

evaluate the proposed approaches when these parameters

are varied. In the first experiment, the minimum supports

were set to the smallest values reported in Fig. 12. At

first, the parameter K is set to infinite to get as many

patterns as possible. In doing so, we obtain sets of patterns

with different size and the patterns are ordered decreasingly

according to the ranks defined by every algorithm. To make

3 http://www.cs.waikato.ac.nz/ml/weka/.

the comparison fair enough, the patterns at the end of each

pattern set are removed such that all the sets have the same

number of patterns being equal to the minimum number of

patterns discovered by every algorithm. Moreover, different

classifiers are used to evaluate the classification accuracy.

This helps us to choose the best classifier for the next

experiment.

Figure 11 shows the results of the first experiment. Eight

different popular classifiers were chosen for classification.

The numbers in each cell show the percentage of correctly

classified instances. The last column in this figure summa-

rizes the best result, i.e. the highest number in each row.

Besides, in each cell of this column, the highest value cor-

responding to the best classification result in a dataset is

also highlighted.

The highlighted numbers in the last column show

that the top patterns returned by the SeqKrimp and the

GoKrimp algorithm are more predictive than the top

patterns returned by the BIDE algorithms. On each dataset

either SeqKrimp or GoKrimp achieved the best results.

Besides, the highlighted numbers in each row show that

the linear support vector machine (SVM) classifier is the

most appropriate classifier for this type of data because it

gives the best results in most of the cases.

In the next experiment, the minimum support parameter

was varied to see how classification results change. Because

the linear SVM classifier gave the best results in most of

the datasets, we choose this classifier for this experiment.

Figure 12 shows the results. Because the GoKrimp and

Singletons features do not depend on minimum support

settings, the results of these algorithms do not change

across different minimum support settings and are shown

as straight lines.

The results show that, in most of the datasets, adding

more patterns to the singleton set gives better classification

results. However, the benefit of adding more patterns is

very sensitive to the minimum support settings. Especially,

it varies significantly from one dataset to another.

Behavior of the BIDE algorithm in particular is very

unstable. For example, in the aslgt and the skating datasets

adding more patterns, i.e. lowering the minimum support,

actually improves the classification results of the BIDE

algorithm. However, in the auslan2, aslbu, context, and

Unix datasets the effect of adding more patterns is very

ambiguous. The behavior of the SeqKrimp algorithm is

also very unstable as it uses patterns extracted by BIDE

as candidate patterns. Therefore, in these cases, extra effort

on parameter tuning is needed.

On the other hand, the classification results of the

GoKrimp algorithm do not depend on minimum support. It

is better than the singleton approach in most of the cases.

It is also much better than the BIDE algorithm in dense

datasets such as the context, aslgt, and Unix data.

Statistical Analysis and Data Mining DOI:10.1002/sam

http://www.cs.waikato.ac.nz/ml/weka/

48 Statistical Analysis and Data Mining, Vol. 7 (2014)

Fig. 10 Running time in seconds and the number of patterns returned by each algorithm on nine datasets. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

Fig. 11 Classification results with patterns used as binary attributes. The number of patterns used in each algorithm were balanced.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

8.4. Compressibility

We calculate the compression benefit of the set of pat-

terns returned by every algorithm. To make the comparison

fair, all sets of patterns have the same size, being equal to

the minimum of the number of patterns returned by all algo-

rithms. For the SeqKrimp and the GoKrimp algorithms the

compression benefits were calculated as the sum of the com-

pression benefit returned after each greedy step. For closed

patterns, compression benefit was calculated according to

the greedy encoding procedure used in the SeqKrimp algo-

rithm. For the SeqKrimp and the BIDE algorithm, the

minimum support is fixed to the smallest values in the corre-

sponding experiment shown in Fig. 12. Compression benefit

is measured as the number of bits saved when encoding the

original data using the pattern set as the dictionary. Because

the SQS algorithm uses different encoding for data before

Statistical Analysis and Data Mining DOI:10.1002/sam

Lam et al.: Making Sequential Patterns Useful 49

Fig. 12 Classification results with linear SVM when using the full set of patterns and varying minimum support. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Fig. 13 Compression benefit (in number of bits) when using the top patterns selected by each algorithm to compress the data. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

compression we cannot compare the compressibility of that

algorithm to ours in terms of bits (see below for a compari-

son by ratios). Figure 13 shows the obtained results in eight

different datasets (the result of the algorithm on the paral-

lel dataset is omitted because both SeqKrimp and BIDE

did not scale to the size of this dataset). As we expect, in

most of the datasets, SeqKrimp and GoKrimp are able to

find better compressing patterns than BIDE. Especially, in

most of the large datasets such as aslgt, aslbu, Unix, context

and skating the differences between SeqKrimp, GoKrimp,

and BIDE are very significant. The GoKrimp algorithm is

able to find compressing patterns with similar quality as

Statistical Analysis and Data Mining DOI:10.1002/sam

50 Statistical Analysis and Data Mining, Vol. 7 (2014)

Fig. 14 Compression ratio comparison of different algorithms.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

the SeqKrimp algorithm in most of the datasets and is even

better than the SeqKrimp algorithm in several cases such

as in the pioneer, skating, and context.

Finally we perform another experiment to compare the

GoKrimp algorithm with the SQS algorithm based on

compression ratio calculated by dividing the size of the

data before compression with the size after compression.

It is important to note that the compression ratio is highly

dependent how we calculate the size of uncompressed data

and how we choose the encoding for gaps. Therefore, in

order to make the comparison fair the compression ratios

were calculated when using the same uncompressed data

representation. However, there is another practical issue of

the comparison as follows.

The current implementation of SQS uses an ideal code

length for gaps. It calculates the usage of a gap and a

non-gap then assigns code length to a gap and a non-

gap by considering the entropy of the gap or the non-gap.

When the number of non-gaps dominates, which is actual

the case in the experiments with our datasets, a non-gap

can be assigned a codelength close to zero. This is an ideal

case because in practice one cannot assign a codeword with

length close to zero. In contrast, GoKrimp uses actual Elias

codewords for gaps. Therefore there is a practical issue of

comparing two algorithm one use ideal code length and

another use actual code length for gaps. Therefore, for

GoKrimp we calculate the ideal code length of a gap n

as log n, the result of this ideal case will be reported as

GoKrimp∗ in the experiments.

Figure 14 shows the compression ratio of three algo-

rithms on nine datasets. The SQS algorithms show a bet-

ter compression ratio in most of the cases except for the

parallel dataset when non-gap is not popular. For that

dataset the effect of using ideal codelength is not vis-

ible. However, a version of GoKrimp with ideal code

length for gaps gives better compression ratios than SQS

in most of the cases. These results shows that variation

of codeword length calculation can influence the com-

pression ratio significantly. Therefore, interpretation of

the results with compression ratios is quite hard in such

cases.

8.5. Effectiveness of Dependencies Test

In this section, we perform experiments to demonstrate

the effectiveness of the dependency test proposed for

speeding up the GoKrimp algorithm. We recall that the

dependency test is proposed to avoid exhaustive evaluation

of all possible extensions of a pattern. Once a test is done,

the results of the test is kept for the next time so in the

worst case the maximum number of tests is at most equal

to the size of the alphabet. Besides, the set of related events

to a given event is quite small compared to the size of the

alphabet so the dependency test also helps to reduce the

number of extension evaluations.

Fig. 15 The compression ratios of patterns by the GoKrimp algorithm with and without sign test are almost the same, but with sign test the
GoKrimp algorithm is much more efficient. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Statistical Analysis and Data Mining DOI:10.1002/sam

Lam et al.: Making Sequential Patterns Useful 51

Figure 15 shows the running time of the GoKrimp

algorithm with and without dependency test. It is obvious

that the GoKrimp algorithm is much more efficient

when dependency testing is used. More importantly, the

compression ratio is almost the same in both cases.

Therefore the dependency test helps speed up the GoKrimp

algorithm significantly while preserving the quality of the

pattern set in all the datasets. This result is consistent with

an intuition that using patterns with unrelated events for

compression does not result in good compression ratios.

9. CONCLUSIONS AND FUTURE WORK

We have explored mining of sequential patterns that

compress the data well utilizing the MDL principle. A key

contribution is our encoding scheme targeted at sequence

data. We have shown that mining the most compressing

pattern set is NP-Hard and designed two algorithms to

approach the problem. SeqKrimp is a candidate-based

algorithm that turned out to be sensitive to parameter

settings and inefficient due to the candidate generation

phase. GoKrimp is an algorithm that directly looks for

compressing patterns and was shown to be effective and

efficient.

The experiments show that the most compressing patterns

are less redundant and better than the frequent closed

patterns as feature sets for different classifiers. The

dependency test technique used in the GoKrimp algorithm

was shown to be very useful to speed up the GoKrimp

algorithm significantly. Both GoKrimp and SeqKrimp

are shown to be effective in finding non-redundant and

meaningful patterns. However, the GoKrimp algorithm is 1

to 2 orders of magnitude faster than the SeqKrimp algorithm

and the SQS algorithm.

As is the case on itemset data, compressing patterns are

likely to be useful for other data mining tasks where class

labels are unavailable or rare, such as change detection

or outlier detection. Future work will include further

improvements to the mining algorithms using ideas from

compression, but keeping the focus on usefulness for data

mining.

ACKNOWLEDGMENTS

This work was done when one of the authors was

visiting Siemens Corporate Research, a division of Siemens

Corporation, in Princeton, NJ. The work is also funded

by the NWO project Mining Complex Pattern in Streams

(COMPASS). We would like to thank all the anonymous

reviewers for the useful comments which help improving

our work significantly.

NOTATIONS

S A database
S A sequence
D A dictionary
C An encoding
∑

An alphabet
e An event represented by a symbol in

∑

t (e) Timestamp of the event e
C(w) Binary representation of w
|C(w)| Binary representation length
L(S) Length of data before compression

LC(D) Length of the dictionary

LC(S|D) Length of the data given it is
encoded by D with the encoding C

LC

D(S) Total description length of the data
in the encoding C with dictionary D

REFERENCES

[1] F. Mörchen, Unsupervised pattern mining from symbolic
temporal data, SIGKDD Explor Newsl 9(1) (2007), 41–55.

[2] J. Vreeken, M. van Leeuwen, and A. Siebes, A. Krimp:
mining itemsets that compress, Data Mining Knowl Discov
23(1) (2011), 169–214.

[3] P. Grünwald, The Minimum Description Length Principle,
Cambridge, Massachusetts, USA, The MIT Press, 2007.

[4] M. van Leeuwen, J. Vreeken, and A. Siebes, Identifying
the components, Data Mining Knowl Discov 19(2) (2009),
176–193.

[5] M. van Leeuwen and A. Siebes, StreamKrimp: detecting
change in data streams, ECML/PKDD (1) Part I (2008),
672–687.

[6] H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders,
Mining Compressing Sequential Patterns, SDM, SIAM,
Philadelphia, PA, USA, 2012.

[7] I. Witten, A. Moffat, and T. Bell, Managing Gigabytes:
Compressing and Indexing Documents and Images, Burling-
ton, Massachusetts, Morgan Kaufmann, 1999.

[8] J. Vreeken and N. Tatti, The Long and the Short of
It: Summarizing Event Sequences with Serial Episodes,
SIGKDD, ACM, 2012, 462–470.

[9] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas,
Assessing data mining results via swap randomization,
TKDD 1(3) (2007).

[10] A. Miettinen, T. Mielikainen, A. Gionis, G. Das, and H.
Mannila, IEEE Transactions on The discrete basis problem
knowledge and data engineering, 2008.

[11] S. Hanhijärvi, G. C. Garriga, and K. Puolamäki, Random-
ization Techniques for Graphs, SDM, 2009, 780–791.

[12] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D.
Chklovskii, and U. Alon, Network motifs: simple build-
ing blocks of complex networks, Science 298(5594) (2002),
824–827.

[13] N. Castro and P. Azevedo, Time Series Motifs Statistical
Significance, SDM, 2011, 687–698

[14] K. Smets and J. V. Slim, Directly Mining Descriptive
Patterns, SIAM SDM, 2012, 236–247.

[15] L. Holder, D. Cook, S. Djoko, Substructure discovery in the
SUBDUE system, KDD Workshop, 1994, 169–180.

[16] D. Chakrabarti, S. Papadimitriou, D. Modha, and C.
Faloutsos, Fully automatic cross-associations, KDD, 2004,
79–88.

Statistical Analysis and Data Mining DOI:10.1002/sam

52 Statistical Analysis and Data Mining, Vol. 7 (2014)

[17] R. Cilibrasi and P. Vitányi, Clustering by compression, IEEE
Trans Inf Theory 51 (2005), 4.

[18] E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei,
S.-H. Lee, and J. Handley, Compression-based data mining
of sequential data, Data Mining Knowl Disco 14(1) (2007).

[19] C. Faloutsos and V. Megalooikonomou, On data mining,
compression, and Kolmogorov complexity, Data Mining
Knowl Discov 15(1) (2007), 3–20.

[20] F. Geerts, B. Goethals, and T. Mielikainen, Tiling databases,
Discov Sci (2004), 278–289.

[21] C. Ambuhl, M. Mastrolilli, and O. Svensson, Inapproxima-
bility results for maximum edge biclique, minimum linear
arrangement, and sparsest cut, SIAM J Comput 40(2) (2011),
567–596.

[22] J. Pei, J. Han, Mortazavi-Asl, J. W. Pinto, Q.C. Dayal and
M.-C. Hsu, Mining Sequential Patterns by Pattern-Growth:
The PrefixSpan Approach, TKDE, (2004), 1424–1440.

[23] Jianyong and J. Han, BIDE: Efficient mining of frequent
closed sequences, In Proceedings of the 20th International
Conference on Data Engineering (ICDE), Washington DC,
USA, IEEE Press, (2004), 79–90.

[24] D. Fradkin and F. Moerchen, Margin-Closed Frequent
Sequential Pattern Mining, Workshop on Mining Useful
Patterns, KDD, 2010.

[25] W. Conover, Practical Nonparametric Statistics, (2nd ed.),
New York, Wiley, 1980.

[26] F. Moerchen and D. Fradkin, Robust mining of time inter-
vals with semi-interval partial order patterns, In Proceedings
of SIAM SDM, 2010, 315–326.

[27] J. Vreeken, Making pattern mining useful, ACM SIGKDD
Explor 12(1) (2010), 75–76.

[28] N. Tatti and J. Vreeken, Finding good itemsets by packing
data, ICDM (2008), 588–597.

[29] T. De Bie, Maximum entropy models and subjective
interestingness: an application to tiles in binary databases.
DMKD J 23(3) (2011), 407–446.

[30] T. De Bie, K.-N. Kontonasios, E. Spyropoulou, A frame-
work for mining interesting pattern sets, SIGKDD Explor
12(2) (2010), 92–100.

[31] J. Han, Mining useful patterns: my evolutionary view.
Keynote talk at the Mining Useful Patterns workshop KDD
(2010).

[32] F. Moerchen, T. Michael, and U. Alfred, Efficient mining
of all margin-closed itemsets with applications in temporal
knowledge discovery and classification by compression,
Knowl Inf Syst 29(1) (2010), 55–80.

[33] D. Huffman, A method for the construction of minimum-
redundancy codes, Proc IRE 40(9) (1952), 1098–1102.

[34] J. Storer, Data compression via textual substitution, J ACM
29(4) (1982), 928–951.

[35] M. Warmuth and D. Haussler, On the complexity of iterated
shuffle, J Comput Syst Sci 28(3) (1984), 345–358.

Statistical Analysis and Data Mining DOI:10.1002/sam

