
 1

Mining Data Records in Web Pages
Bing Liu

Department of Computer Science
University of Illinois at Chicago

851 S. Morgan Street
Chicago, IL 60607-7053

liub@cs.uic.edu

Robert Grossman
Dept. of Mathematics, Statistics, and

Computer Science
University of Illinois at Chicago
851 S. Morgan Street, IL 60607

grossman@uic.edu

Yanhong Zhai
Department of Computer Science

University of Illinois at Chicago
851 S. Morgan Street

Chicago, IL 60607-7053

yzhai@cs.uic.edu

ABSTRACT
A large amount of information on the Web is contained in
regularly structured objects, which we call data records. Such
data records are important because they often present the essential
information of their host pages, e.g., lists of products and services.
It is useful to mine such data records in order to extract
information from them to provide value-added services. Existing
approaches to solving this problem mainly include the manual
approach, supervised learning, and automatic techniques. The
manual method is not scalable to a large number of pages.
Supervised learning needs manually prepared positive and
negative training data and thus also require substantial human
effort. Current automatic techniques are still unsatisfactory
because of their poor performances. In this paper, we propose a
much more effective automatic technique to perform the task.
This technique is based on two important observations about data
records on the Web and a string matching algorithm. The
proposed technique is able to mine both contiguous and non-
contiguous data records. By non-contiguous data records, we
mean that two or more data records intertwine in terms of their
HTML codes. When they are displayed on a browser, each of
them appears contiguous. Existing techniques are unable to mine
such records. Our experimental results show that the proposed
technique outperforms existing techniques substantially.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: statistical and structural.
H.2.8 [Database Applications]: data mining

Keywords
Web data records, Web mining

1. INTRODUCTION
A large amount of information on the Web is presented in
regularly structured objects. A list of such objects in a Web page
often describes a list of similar items, e.g., a list of products or
services. They can be regarded as database records displayed in
Web pages with regular patterns. In this paper, we also call them
data records. Mining data records in Web pages is useful because
it allows us to extract and integrate information from multiple

sources to provide value-added service, e.g., customizable Web
information gathering, comparative-shopping, meta-search, etc.
Figure 1 gives an example, which is a segment of a Web page that
lists two Apple notebooks. The full description of each notebook
is a data record. The objective of the proposed technique is to
automatically mine all the data records in a given Web page.

Figure 1. An example: two data records

Several approaches have been reported in the literature for mining
data records (or their boundaries) from Web pages. The first
approach is the manual approach. By observing a Web page and
its source code, the programmer can find some patterns and then
writes a program to identify each data record. This approach is
not scalable to a large number of pages. Other approaches [2][4]
[6][7][8][9][10][12][14][16][17][18][19][21][22][23] all have
some degree of automation. They rely on some specific HTML
tags and/or machine learning techniques to separate objects.
These methods either require prior syntactic knowledge or human
labeling of specific regions in the Web page to mark them as
interesting. [10] presents an automatic method which uses a set of
heuristics and domain ontology to perform the task. Domain
ontology is costly to build (about 2-man weeks for a given Web
site) [10]. [2] extends this approach by designing some additional
heuristics without using any domain knowledge. We will show in
the experiment section that the performance of this approach is
poor. [4] proposes another automatic method, which uses Patricia
tree [11] and approximate sequence alignment to find patterns
(which represent a set of data records) in a Web page. Due to the
inherent limitation of Patricia tree and inexact sequence matching,
it often produces many patterns and most of them are spurious. In
many cases, none of the actual data records is found. Again, this
method performs poorly. [19] proposes a method using clustering
and grammar induction of regular languages. As shown in [19],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

 2

the results are not satisfactory. More detailed discussions on these
and other related works will be given in the next section.
Another problem with existing automatic approaches is that they
assume that the relevant information of a data record is contained
in a contiguous segment of the HTML code. This model is
insufficient because in some Web pages, the description of one
object (or a data record) may intertwine with the descriptions of
some other objects in the HTML source code. For example, the
descriptions of two objects in the HTML source may follow this
sequence, part1 of object1, part1 of object2, part2 of object1,
part2 of object2. Thus, the descriptions of both object1 and
object2 are not contiguous. However, when they are displayed on
a Web browser, they appear contiguous to human viewers.

In this paper, we propose a novel and more effective method to
mine data records in a Web page automatically. The algorithm is
called MDR (Mining Data Records in Web pages). It currently
finds all data records formed by table and form related tags, i.e.,
table, form, tr, td, etc. A large majority of Web data records are
formed by them. Note that it is also possible to find nested data
records. Our method is based on two observations:

1. A group of data records that contains descriptions of a set of
similar objects are typically presented in a contiguous region
of a page and are formatted using similar HTML tags. Such a
region is called a data record region (or data region in short).
For example, in Figure 1 two notebooks are presented in one
contiguous region. They are also formatted using almost the
same sequence of HTML tags. If we regard the HTML
formatting tags of a page as a long string, we can use string
matching to compare different sub-strings to find those similar
ones, which may represent similar objects or data records.

The problem with this approach is that the computation is
prohibitive because a data record can start from anywhere and
end anywhere. A set of data records typically do not have the
same length in terms of their tag strings because they may not
contain exactly the same pieces of information (see Figure 1).
The next observation helps us to deal with this problem.

2. The nested structure of HTML tags in a Web page naturally
forms a tag tree [3]. Our second observation is that a group of
similar data records being placed in a specific region is
reflected in the tag tree by the fact that they are under one
parent node, although we do not know which parent (our
algorithm will find out). For example, the tag tree for the page
in Figure 1 is given in Figure 2 (some details are omitted).
Each notebook (a data record) in Figure 1 is wrapped in 5 TR
nodes with their sub-trees under the same parent node
TBODY (Figure 2). The two data records are in the two dash-
lined boxes. In other words, a set of similar data records are
formed by some child sub-trees of the same parent node.

A further note is that it is very unlikely that a data record
starts inside of a child sub-tree and ends inside another child
sub-tree. Instead, it starts from the beginning of a child sub-
tree and ends at the same or a later child sub-tree. For
example, it is unlikely that a data record starts from TD* and
ends at TD# (Figure 2). This observation makes it possible to
design a very efficient algorithm to mine data records.

Our experiments show that these observations are true. So far, we
have not seen any Web page containing a list of data records that
violates these observations. Note that we do not assume that a
Web page has only one data region that contains data records. In
fact, a Web page may contain a few data regions. Different
regions may have different data records. Our method only

requires that a data region to have two or more data records.
Given a Web page, the proposed technique works in three steps:

Step 1: Building a HTML tag tree of the page.
Step 2: Mining data regions in the page using the tag tree and

string comparison. Note that instead of mining data records
directly, which is hard, our method mines data regions first and
then find the data records within them. For example, in Figure
2, we first find the single data region below node TBODY.

Step 3: Identifying data records from each data region. For
example, in Figure 2, this step finds data record 1 and data
record 2 in the data region below node TBODY.

Figure 2. Tag tree of the page in Figure 1

Our contributions
1. A novel and effective technique is proposed to automatically

mine data records in a Web page. Extensive evaluation using a
large number of Web pages from diverse domains show that
the proposed technique is able to produce dramatically better
results than the state-of-the-art automatic systems in [2][4]
(even without considering non-contiguous data records).

2. Our new method is able to discover non-contiguous data
records, which cannot be handled by existing methods. Our
technique is able to handle such cases because it explores the
nested structure and presentation features of Web pages.

2. RELATED WORK
Web information extraction from regularly structured data records
is an important problem. Identifying individual data records is
often the first step. So far, several attempts have been made to
deal with the problem. We discuss them below.

Related works to ours are mainly in the area of wrapper
generation. A wrapper is a program that extracts data from a
website and put them in a database [3][12][13][16]. There are
several approaches to wrapper generation. The first approach is to
manually write a wrapper for each Web page based on observed
format patterns of the page. This approach is labor intensive and
very time consuming. It cannot scale to a large number of pages.

The second approach is wrapper induction, which uses supervised
learning to learn data extraction rules. A wrapper induction
system is typically trained by using manually labeled positive and
negative data. Thus, it still needs substantial manual effort as

HTML

HEAD
BODY

TR
 |
TD

TD TD TD TD

TR TR
 |
TD

TR TR TR
|

 TD

TR
 |
TD

TR
 |
TD

TR
 |
TD

TABLE P

TR

TD* TD TD TD

TD TD TD# TD

TABLE

TBODY

data
record 1

data
record 2

 3

labeling of data is also labor intensive and time consuming.
Additionally, for different sites or even pages in the same site, the
manual labeling process may need to be repeated. Example
wrapper induction systems include WIEN [17], Softmealy [14],
Stalker [21], WL [6], etc. Our technique requires no human
involvement. It mines data records in a page automatically. [19]
reports a unsupervised method based on clustering and grammar
induction. However, the results are unsatisfactory due to the
deficiencies of the techniques as noted in [19].

[9] reports a comparative shopping agent, which also tries to
identify each product from search results. A number of heuristics
rules are used to find individual products, e.g., price information,
and required attributes from the application domain

In [10], a more general study is made to automatically identify
data record boundaries. The method is based on 5 heuristic rules.

(1) Highest-count tags: This rule says that those highest-count
tags are more likely to be record boundary tags.

(2) Identifiable “separate” tags: This rule says that tags, such as
ht, td, tr, table, p, h1, etc., are more likely to be boundary tags.

(3) Standard deviation: This rule computes the number of
characters between each occurrence of a candidate separator
tag. Those with smallest standard deviation are assumed to be
more likely boundary tags.

(4) Repeating-tag pattern: This rule says that boundaries often
have consistent patterns of two or more adjacent tags.

(5) Ontology-matching: This rule uses domain knowledge to find
those domain specific terms that only appear once and only
once in data records.

A combination technique (based on certainty factor [10] in AI) is
used to combine the heuristics to make the final decision.

[2] proposes some more heuristics to perform the task, e.g.,
sibling tag heuristic, which counts the pairs of tags that are
immediate siblings in a tag tree, and partial path heuristic, which
lists the paths from a node to all other reachable nodes and counts
the number of occurrences of each path. It is shown in [2] that the
new method (OMINI) performs better than the system in [10],
even without using domain ontology. Our technique is very
different from these tag based heuristic techniques. We will show
that our method outperforms these existing methods dramatically.

[4] proposes a method (IEPAD) to find patterns from the HTML
tag string, and then use the patterns to extract objects. The method
uses a PAT tree (a Patricia tree [11]) to find patterns. The problem
with the PAT tree is that it is only able to find exact match of
patterns. In the context of the Web, data records are seldom
exactly the same. Thus, [4] also proposes a heuristic method
based on string alignment to find inexact matches. However, this
method results in many patterns, most of which are spurious. For
example, for the same segment of a tag string many patterns may
be found and they intersect one another. In many cases the right
patterns in the page are not found. As we will see in the
experiment section, the result of this method is also poor.

Finally, all the above automatic methods assume that each record
is contiguous in the HTML source. This is not true in some Web
pages as we will see in Sections 3.3 and 4. Our method does not
make this assumption. Thus, it is able to deal with the problem.

3. THE PROPOSED TECHNIQUE
As mentioned earlier, the proposed method has three main steps.
This section presents them in turn.

3.1 Building the HTML Tag Tree
Web pages are hypertext documents written in HTML that
consists of plain texts, tags and links to image, audio and video
files, etc. In this work, we only use tags in string comparison to
find data records. Most HTML tags work in pairs. Each pair
consists of an opening tag and a closing tag (indicated by <> and
</> respectively). Within each corresponding tag-pair, there can
be other pairs of tags, resulting in nested blocks of HTML codes.
Building a tag tree from a Web page using its HTML code is thus
natural. In our tag tree, each pair of tags is considered as one
node, and the nested pairs of tags within it are the children of the
node. This step performs two tasks:

1. Preprocessing of HTML codes: Some tags do not require
closing tags (e.g., and <hr>). Hence, additional closing
tags are inserted to ensure all tags are balanced. Next, useless
or redundant tags are removed. Examples include tags related
to HTML comments <!--, <script>, and others.

2. Building a tag tree: It follows the nested blocks of the HTML
tags in the page to build a tag tree. This is fairly easy. We will
not discuss it further. Figure 2 shows an example.

3.2 Mining Data Regions
This step mines every data region in a Web page that contains
similar data records. Instead of mining data records directly,
which is hard, we first mine generalized nodes (defined below) in
a page. A sequence of adjacent generalized nodes forms a data
region. From each data region, we will identify the actual data
records (discussed in Section 3.3). Below, we define generalized
nodes and data regions using the HTML tag tree:
Definition: A generalized node (or a node combination) of length

r consists of r (r ≥ 1) nodes in the HTML tag tree with the
following two properties:

 1) the nodes all have the same parent.
 2) the nodes are adjacent.
The reason that we introduce the generalized node is to capture
the situation that an object (or a data record) may be contained in
a few sibling tag nodes rather than one. For example, in Figures 1
and 2, we can see that each notebook is contained in five table
rows (or 5 TR nodes). Note that we call each node in the HTML
tag tree a tag node to distinguish it from a generalized node.

Definition: A data region is a collection of two or more
generalized nodes with the following properties:
1) the generalized nodes all have the same parent.
2) the generalized nodes all have the same length.
3) the generalized nodes are all adjacent.
4) the normalized edit distance (string comparison) between

adjacent generalized nodes is less than a fixed threshold.

For example, in Figure 2, we can form two generalized nodes, the
first one consists of the first 5 children TR nodes of TBODY, and
the second one consists of the next 5 children TR nodes of
TBODY. It is important to notice that although the generalized
nodes in a data region have the same length (the same number of
children nodes of a parent node in the tag tree), their lower level
nodes in their sub-trees can be quite different. Thus, they can
capture a wide variety of regularly structured objects.

To further explain different kinds of generalized nodes and data
regions, we make use of an artificial tag tree in Figure 3. For
notational convenience, we do not use actual HTML tag names
but ID numbers to denote tag nodes in a tag tree. The shaded
areas are generalized nodes. Nodes 5 and 6 are generalized nodes

 4

of length 1 and they together define the data region labeled 1 if
the edit distance condition 4) is satisfied. Nodes 8, 9 and 10 are
also generalized nodes of length 1 and they together define the
data region labeled 2 if the edit distance condition 4) is satisfied.
The pairs of nodes (14, 15), (16, 17) and (18, 19) are generalized
nodes of length 2. They together define the data region labeled 3
if the edit distance condition 4) is satisfied.
It should be emphasized that a data region includes the sub-trees
of the component nodes, not just the component nodes alone.

Figure 3: An illustration of generalized nodes and data regions

We end this part with some important notes:
1. In practice, the above definitions are very robust as our

experiments show. The key assumption here is that nodes
forming a data region are from the same parent, which is
reasonable. For example, it is unlikely that a data region starts
at node 7 and ends at node 14 (see also Figure 2).

2. A generalized node may not represent a final data record (see
Section 3.3). It will be used to find the final data records.

3. It is possible for a single parent node to cover more than one
data region, e.g., node 2 in Figure 3. Nodes adjacent to a data
region may or may not be part of that region. For example, in
Figure 3, nodes 7, 13, and 20 are not part of any data region.

3.2.1 Comparing Generalized Nodes
In order to find each data region in a Web page, the mining
algorithm needs to find the following. (1) Where does the first
generalized node of a data region start? For example, in Region 2
of Figure 3, it starts at node 8. (2) How many tag nodes or
components does a generalized node in each data region have?
For example, in Region 2 of Figure 3, each generalized node has
one tag node (or one component).

Let the maximum number of tag nodes that a generalized node
can have be K, which is normally a small number (< 10). In order
to answer (1), we can try to find a data region starting from each
node sequentially. To answer (2), we can try: one node, two node
combination, …, K node combination. That is, we start from each
node and perform all 1-node string comparisons, all 2-node string
comparisons, and so on (see the example below). We then use the
comparison results to identify each data region.
The number of comparisons is actually not very large because:
• Due to our assumption, we only perform comparisons among

the children nodes of a parent node. For example, in Figure 3,
we do not compare node 8 with node 13.

• Some comparisons done for earlier nodes are the same as for
later nodes (see the example below).

We use Figure 4 to illustrate the comparison process. Figure 4 has
10 nodes, which are below a parent node, p. We start from each
node and perform string comparison of all possible combinations
of component nodes. Let the maximum number of components
that a generalized node can have be 3 in this example.

Figure 4: combination and comparison

Start from node 1: We compute the following string comparisons.
• (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10)
• (1-2, 3-4), (3-4, 5-6), (5-6, 7-8), (7-8, 9-10)
• (1-2-3, 4-5-6), (4-5-6, 7-8-9)
(1, 2) means that the tag string of node 1 is compared with the
tag string of node 2. The tag string of a node includes all the
tags of the sub-tree of the node. For example, in Figure 2, the
tag string for the second TR node below TBODY is <TR TD
TD … TD TD>, where “…”denotes the sub-string of sub-tree
below the second TD node. The tag string for the third TR node
below TBODY is <TR TD TD>.

(1-2, 3-4) means that the combined tag string of nodes 1 and 2
is compared with the combined tag string of nodes 3 and 4.

Start from node 2: We only compute:
• (2-3, 4-5), (4-5, 6-7), (6-7, 8-9)
• (2-3-4, 5-6-7), (5-6-7, 8-9-10)
We do not need to do 1-node comparisons because they have
been done when we started from node 1 above.

Start from node 3: We only need to compute:
• (3-4-5, 6-7-8)
Again, we do not need to do 1-node comparisons. Here, we
also do not need to do 2-node comparisons because they have
been done when we started from node 1.

We do not need to start from any other nodes after node 3 because
all the computations have been done. It is fairly easy to prove that
the process is complete. It is omitted here due to space limitations.

The overall algorithm (MDR) for computing all the comparisons
at each node of a tag tree is given in Figure 5. It traverses the tag
tree from the root downward in a depth-first fashion (lines 3 and
4). At each internal node, procedure CombComp (Figure 6)
performs string comparisons of various combinations of the
children sub-trees. Line 1 says that the algorithm will not search
for data regions if the depth of the sub-tree from Node is 2 or 1 as
it is unlikely that a data region is formed with only a single level
of tag(s) (data regions are formed by the children of Node).

 Algorithm MDR(Node, K)
 1 if TreeDepth(Node) >= 3 then
 2 CombComp(Node.Children, K);
 3 for each ChildNode ∈ Node.Children
 4 MDR(ChildNode, K);
 5 end

Figure 5: The overall algorithm

The main idea of CombComp has been discussed above. In line 1
of Figure 6, it starts from each node of NodeList. It only needs to
try up to the Kth node. In line 2, it compares different
combinations of nodes, beginning from i-component combination

1

3

10

2

7 8 9

Region 2

5 6

Region 1

4

11 12

14 15 2016 17 19 18 13

Region 3

2 1 3 4 6 5 7 8 9 10

p

 5

to K-components combination. Line 3 tests to see whether there is
at least one pair of combinations. If not, no comparison is needed.
Lines 4-8 perform string comparisons of various combinations by
calling procedure EditDist, which compares two strings using edit
distance [1][11].

CombComp(NodeList, K)
1 for (i = 1; i <= K; i++) /* start from each node */
2 for (j = i; j <= K; j++) /* comparing different combinations
3 if NodeList[i+2*j-1] exists then
4 St = i;
5 for (k = i+j; k < Size(NodeList); k+j)
6 if NodeList[k+j-1] exists then
7 EditDist(NodeList[St..(k-1)],
 NodeList[k..(k+j-1)]);
8 St = k;

 9 end
Figure 6: The structure comparison algorithm

Assume that the number of element in NodeList is n. Without
considering the edit distance comparison, the time complexity of
CombComp is O(nK), which is the number of times that we need
to run EditDist. To see this, let us do the following analysis:

Starting at node 1, we need at most the following number of
comparisons (running EditDist) (we assume that n is much large
than K or n / K ≥ 2).

Starting from node 2, we have at most:

...... ……
Starting from node K, we have at most:

Adding all together, we have

2
)1(+

−
KKnK , which gives O(nK)

(we assume that n is much larger than K). Since K is normally
small (< 10), the algorithm can be considered linear in n. Assume
that the total number of nodes in the tag tree is N, the complexity
of MDR is O(NK) without considering string comparison.

3.2.2 String Comparison Using Edit Distance
The string comparison method that we use is based on edit
distance (also known as Levenshtein distance) [1][11], which is a
widely-used string similarity measure. In this work, we used a
normalized version of edit distance to compare similarity between
two strings. The edit distance of two strings, s1 and s2, is defined
as the minimum number of point mutations required to change s1
into s2, where a point mutation is one of: (1) change a letter, (2)
insert a letter and (3) delete a letter. As edit distance is a well
known technique, we will not discuss it further in this paper.

The Normalized edit distance ND(s1, s2) is obtained by dividing
the edit distance by the mean length of the two strings s1 and s2:

The time-complexity of the algorithm is O(|s1||s2|) [1]. In our
application, the computation can be substantially reduced because
we are only interested in very similar strings. The computation is
only large when the strings are long. If we want the strings to

have the similarity of more than 50%, we can use the following
method to reduce the computation:
• If |s1| > 2|s2| or |s2| > 2|s1|, no comparison is needed because

they are obviously too dissimilar.

3.2.3 Determining Data Regions
After all string comparisons have been done, we are ready to
identify each data region by finding its generalized nodes. We use
Figure 7 to illustrate the main issues. There are 8 data records (1-
8) in this page. Our algorithm reports each row as a generalized
node, and the whole area (the dash-lined box) as a data region.

Figure 7. A possible configuration of data records
The algorithm basically uses the string comparison results at each
parent node to find similar children node combinations to obtain
candidate generalized nodes and data regions of the parent node.
Three main issues are important for making the final decisions.

1. If a higher level data region covers a lower level data region,
we report the higher level data region and its generalized
nodes. Cover here means that a lower level data region is
within a higher level data region. For example, in Figure 7, at
a low level we find that cell 1 and cell 2 are candidate
generalized nodes and they together form a candidate data
region, row 1. However, they are covered by the data region
including all the 4 rows at a higher level. In this case, we only
report each row is a generalized node. The reason for taking
this approach is to avoid the situations where many very low
level nodes (with very small sub-trees) are very similar but do
not represent true data records.

2. A property about similar strings is that if a set of strings s1, s2,
s3, …., sn, are similar to one another, then a combination of
any number of them is also similar to another combination of
them of the same number. Thus, we only report generalized
nodes of the smallest length that cover a data region, which
helps us to find the final data records later. In Figure 7, we
only report each row as a generalized node rather than a
combination of two rows (rows 1-2, and rows 3-4).

3. An edit distance threshold is needed to decide whether two
strings are similar. We used a set of training pages to decide it
to be 0.3, which performs very well in general (see Section 4).

The algorithm for this step is given in Figure 8. It finds every data
region and its generalized nodes in a page. T is the edit distance
threshold. Node is any node. K is the maximum number of tag
nodes in a generalized node (we use 10 in our experiments, which
is sufficient). Node.DRs is the set of data regions under Node, and
tempDRs is a temporal variable storing the data regions passed up
from every Child of Node. Line 1 is the same as line 1 in Figure 5.

row 1

row 2

row 3

row 4

1 2

3 4

5 6

8

)1(...)1
3

()1
2

()1(−++−+−+−
K
nnnn

)1(...)1
3

()1
2

(−++−+−
K
nnn

)1(−
K
n

2/))()((

),(
),(

21

21
21

slengthslength

ssd
ssND

+
=

7

 6

The basic idea of the algorithm is to traverse the tag tree top-
down in a depth-first fashion. It performs one function at each
node when it goes down (line 2), and performs another when it
backs up before going down to another branch of the tree (line 6).

1. When it goes down, at each node it identifies all the data
regions of the node using procedure IdentDRs (line 2). Note
that these are not the final data regions of the Web page, but
only the candidate ones of this node (see below).

2. When it backs up, it checks to see whether the parent level
data regions in Node.DRs cover the child level data regions.
Those covered child level data regions are discarded. We take
the parent level data regions as we believe they are more
likely to be true data regions. Those uncovered data regions in
Child.DRs are returned and stored in tempDRs (line 6). After
all the children nodes of Node are processed, Node.DRs ∪
tempDRs gives the current data regions discovered from the
sub-tree starting from Node (line 7).

 Algorithm FindDRs(Node, K, T)
 1 if TreeDepth(Node) => 3 then
 2 Node.DRs = IdenDRs(1, Node, K, T);
 3 tempDRs = ∅;
 4 for each Child ∈ Node.Children do
 5 FindDRs(Child, K, T);
 6 tempDRs = tempDRs∪UnCoveredDRs(Node, Child);
 7 Node.DRs = Node.DRs ∪ tempDRs
 8 end

Figure 8: Finding all data regions in the tag tree

We now discuss procedure IdentDRs. Recall that the previous
step has computed the distance values of all possible child node
combinations. This procedure uses these values and the threshold
T to find data regions of Node. That is, it needs to decide which
combinations represent generalized nodes, where the beginning is
and where the end is for each data region.

Procedure IdentDRs is given in Figure 9, which ensures the
smallest generalized nodes are identified.

Procedure IdentDRs(start, Node, K, T)
1 maxDR = [0, 0, 0];
2 for (i = 1; i <= K; i++) /* compute for each i-combination */
3 for (f = start; f <= start+i; f++) /* start from each node */
4 flag = true;
5 for (j = f; j < size(Node.Children); j+i)
6 if Distance(Node, i, j) <= T then
7 if flag=true then
8 curDR = [i, j, 2*i];
9 flag = false;
10 else curDR[3] = curDR[3] + i;
11 elseif flag = false then Exit-inner-loop;
12 end;
13 if (maxDR[3] < curDR[3]) and
 (maxDR[2] = 0 or (curDR[2]<= maxDR[2]) then
14 maxDR = curDR;
15 end
16 if (maxDR[3] != 0) then
17 if (maxDR[2]+maxDR[3]-1 != size(Node.Children)) then
18 return {maxDR}∪
 IdentDRs(maxDR[2]+maxDR[3], Node, K, T)
19 else return {maxDR}
20 end;
21 return ∅;

Figure 9. Identifying data regions below a node.

The IdentDRs procedure is recursive (line 18). In each recursion,

it extracts the next data region maxDR that covers the maximum
number of children nodes. maxDR is described by three members
(line 1), (1) the number of nodes in a combination, (2) the
location of the start child node of the data region, and (3) the
number of nodes involved in or covered by the data region.
curDR is the current candidate data region being considered.
String comparison results are stored in a data structure attached
with each node. The value can be obtained by calling procedure
Distance(Node, i, j) (which is just a table lookup, and thus it is not
listed in the paper), where i represents i-combination, and j
represents the jth child of Node. IdentDRs basically checks each
combination (line 2) and each starting point (line 3). For each
possibility, it finds the first continuous region with a set of
generalized nodes (line 5 - line 12). Lines 13 and 14 update the
maximum data region maxDR. The conditions (line 13) ensure
that smaller generalized nodes are used unless the larger ones
cover more (tag) nodes and starts no later than the smaller ones.

Finally, procedure UnCoveredDRs is given in Figure 10..

 Procedure UnCoveredDRs(Node, Child)
 1 for each data region DR in Node.DRs do
 2 if Child in range DR[2] .. (DR[2] + DR[3] - 1) then
 3 return null
 4 return Child.DRs

Figure 10: The UnCoveredDRs procedure
Assume that the total number of nodes in the tag tree is N, the
complexity of FindDRs is O(NK2). Since K is normally very
small. Thus, the computation requirement of the algorithm is low.

Finally, it is important to note that the algorithm can also find
nested data records if FindDRs uses post-order traversal.

3.3 Identify Data Records
After all data regions and their generalized nodes are found from
a page, we are ready to identify the data records in each region.
As noted earlier, a generalized node (a combination of tag nodes)
may not be a data record containing the description of a single
object because procedure UnCoveredDR reports higher level data
regions. The actual data records may be at a lower level. That is, a
generalized node may contain one or more data records.

Let us see an example (Figure 11). Figure 11 shows a data region
that contains two table rows, row 1 and row 2. Row 1 and row 2
are generalized nodes as identified in Section 3.2. However, they
are not individual data records. Each row actually contains two
data records in the two table cells, which are descriptions of two
objects. It is important that we report each cell (an object
description) as a data record rather than each row.

Figure 11: Each row with more than one data record

To find data records from each generalized node in a data region,
the following constraint is useful:

If a generalized node contains two or more data records, these
data records must be similar in terms of their tag strings.

This constraint is clear because we assume that a data region
contains descriptions of similar objects (i.e., similar data records).
Identifying data records from each generalized node in a data
region is relatively easy because they are nodes (together with

Object 1 Object 2

Object 3 Object 4

row 1

row 2

 7

their sub-trees) at the same level as the generalized node, or nodes
at a lower level of the tag tree. Our experiments show that we
only need to go down one level to check if data records are there.
If not, the data records are at the same level as the generalized
node. This is easily done based on the above constraint because
all string comparisons have been done by procedure CombComp.

This step, however, needs heuristic knowledge of how people
present data objects. Let a data region be DR. We have two cases:

1. Each generalized node G in DR consists of only one tag node
(or component) in the tag tree. We go one level down the tag
tree from G to check its children nodes (Figure 12).

 Procedure FindRecords-1(G)
 1 If all children nodes of G are similar
 2 AND G is not a data table row then
 3 each child node of R is a data record
 4 else G itself is a data record.

Figure 12. Finding data records in a one-component
generalized node

 Line 1 means that the tag strings of the sub-trees of the
children nodes are similar. Figure 11 shows an example for
line 3 (Figure 12), where a table row contains multiple
objects. Each row is a generalized node, but not a data record.
The data records are the cells (children nodes) of each row.

 In line 2, “G is not a data table” means that if G is a data table
row, and its data region DR actually represents a data table. A
data table is like a spreadsheet or a relational table, where all
the cells in a row are similar (since we only consider tags) and
each cell has only one piece of text or a number. Instead of
reporting each cell as a data record, G should be reported as a
data record. Figure 13 shows a data table example. Each cell is
an attribute value of an object description.

Figure 13: A data table example

 Figure 14 gives an example for the case in line 4 of Figure 12.
Each row (G) is a data record in DR.

Figure 14: A generalized node being a single data record

2. A generalized node G in DR consists of n tag nodes (n > 1) or
components. We identify data records as follows:

 Procedure FindRecords-n(G)
 1 If the children nodes of each node in G are similar AND

each node also has the same number of children then
 2 The corresponding children nodes of every node in G

form a non-contiguous object description
 3 else G itself is a data record.
Figure 15. Finding data records in an n-component generalized node

The case in line 2 is discussed below. An example of the case
in line 3 is given in Figure 16. Here, every two rows (a
generalized node) form a data record. The cells (children
nodes) of the first row in G are different and the second row in
G has only one child (or cell).

Figure 16: One object in multiple rows

Non-contiguous object descriptions
In some Web pages, the description of an object (a data record) is
not in a contiguous segment of the HTML code. There are two
main cases. Figure 17 shows an example of the first case. Objects
are listed in two columns (can be more). Each object is also
described in two table rows. One row lists the names of the two
objects in two cells, and the next row lists the other pieces of
information of the objects also in two cells. This results in the
following sequence in the HTML code,

name 1, name 2, description 1, description 2, name 3, name 4,
description 3, description 4.

We can see that different pieces of information of an object are
not contiguous in the HTML source code.

Figure 17: Four objects with non-contiguous descriptions

Figure 18: Tag tree of the objects in Figure 17.

Figure 18 shows the part of the tag tree. This data region has two
generalized nodes. Each generalized node has two tag nodes, i.e.,
two rows (1 and 2, or 3 and 4). Since in line 1 of Figure 15, we
already know that node 1 (row 1) has two similar children nodes,
5 and 6, and node 2 (row 2) also has two similar children nodes, 7
and 8. We simply group the corresponding children of nodes 1
and 2, i.e., to join nodes 5 and 7 to form one data record and join
nodes 6 and 8 to form another data record. Likewise, we can find
the data records under node 3 and node 4.

We now turn to the second case. In this case, we do not have row
3 and row 4, but only row 1 and row 2 in Figure 17. Row 1 will
form a data region and row 2 will form another data region. We
handle this case by detecting adjacent data regions and then check
to see whether these data regions are similar. If they are not, we
can join the corresponding nodes to give the final data records.
We realize that this heuristic may not be safe because the two data
regions may contain unrelated objects and should not be merged.
However, the heuristic seems to work because people seldom put
two types of objects right next to each other with no separators.

3.4 Data Records not in Data Regions
In some situations, some data records are not covered by any data
region. Yet, they describe similar objects as data records in some

0

5 8 6 7

1 2

12 10 11

3 4

9 attr1-v attr1-v attr1-v attr1-v

attr2-v attr2-v attr2-v attr2-v

row 1
row 2

Object 1
Object 2

row 1
row 2
row 3
row 4

Object 1

Object 2

name 1 name 2

description 1 description 2
name 3 name 4

description 3 description 4

row 1
row 2

row 3

row 4

Object 1

Object 2

row 1

row 2

 8

data regions. These situations occur due to various reasons. Figure
19 shows one example. Due to an odd number of objects, Object 5
will not be covered in a data region, which only includes row 1
and row 2, since row 3 is not sufficiently similar to row 2. Row 3
also will not form a data region itself because our algorithm in
Section 3.2 requires that at least two nodes (with their sub-trees)
with the same parent are similar.

Figure 19: An odd number of objects

Figure 20 gives this part of the HTML tag tree. Rows 1, 2, and 3
(r1, r2, r3) are at the same level. Rows 1 and 2 (two generalized
nodes) form a data region, which does not include row 3. The data
records are Objects 1 to 5 (i.e., O1, O2, O3, O4, and O5).

It is easy to find object O5 after finding O1 to O4. We can simply
use the tag string of O4 (or any of the 4 objects or data records) to
match each tag string of the children of the sibling nodes of r1 and
r2. In this case, r3 is the only sibling node of r1 and r2. We will
find that r3’s only child O5 matches O4 well.

Figure 20: The tag tree for the objects in Figure 19

4. EXPERIMENT RESULTS
This section evaluates our system (MDR) that implements the
proposed technique. We also compare it with two state-of-the-art
existing systems, OMINI [2] (which is an improvement of [10]),
and IEPAD [4]. Both systems are available on the Web (OMINI:
http://disl.cc.gatech.edu/Omini/, IEPAD: http://140.115.155.99). In
running both OMINI and IEPAD, we used their default settings.
The experimental results are given in Table 1. Below, we first
describe some experimental settings and then discuss the results.

Experiment Web pages: Our experimental Web pages include:

1. The set of 18 pages from the OMINI system at OMINI’s Web
site. Since most Web pages change frequently, three pages in
OMINI did not contain any regularly structured data record
when we performed our experiments. Thus, these 3 pages are
not included in our experiments.

2. A large number of other pages from a wide range of domains,
books, travel, software, auctions, jobs, electronic products,
shopping, and search engine results (IEPAD is only evaluated
using search engine results). These pages were provided by a
colleague who was not involved in the project. We used all
the pages provided by him except four (4) that do not use
table tags to form data records. Note that we did not perform
evaluation using many pages from a single site as was done in
[2][4] because the pages in a single site are often similar. It is
more useful to test pages from a large number of diverse sites.

Edit distance threshold: We used a number of training pages in
building our systems and in selecting our default edit distance

threshold. These pages are:
• Some notebook and book pages from www.amazon.com.
• Some notebook pages from www.hp.com.
• Some news pages and shopping pages from www.yahoo.com.
• First 4 pages in the OMINI site (the first 4 pages in Table 1).
These training pages were not used in testing our system except
the four pages from OMINI, which are included for completeness
of OMINI pages (the first 4 pages in Table 1).

Using these training pages, we select an edit distance threshold
value of 0.3, which is set as the default value for our system. It is
used in all our experiments.

Evaluation measures: We use the standard measure of precision
and recall to evaluate the results from different systems. In order
to give readers a clearer idea of the experiment results, we also
describe the errors made by OMINI and IEPAD.

Outputs of OMINI, IEPAD and MDR: Given a page, OMINI
first identifies the region that contains main objects, it then
extracts these objects. IEPAD produces a set of extraction rules.
One needs to try each rule to find the rules that extract those
objects that one is interested in. This step is used because a page
typically has a number of data regions, and the system will not
know which one is of interest to the user. Our MDR system
outputs each data region and its data records. The results of the
systems are fairly easy to judge because one can visually compare
their results with those data records in the actual Web pages.

Experimental results: We now discuss the results in Table 1.
Columns 1 and 2: Column 1 gives the id number of each

experiment or Web page. The first 15 pages are from OMINI.
Column 2 gives the URL of each page.

Column 3: It gives the number of data records contained in each
page. These are those obvious data records of the page (e.g.,
product list, and search results). They do not include navigation
areas, which can have regular patterns as well. Since OMINI
tries to identify the main objects in the page, it does not give
navigation areas or other smaller regions. However, both
IEPAD and MDR are able to report such regions if they exist.
Although it may be possible to remove them by using some
heuristics, we choose to keep them because they may be useful
to some users. We do not use these areas in our comparison in
Table 1 because OMINI does not find them.

Column 4: It shows the number of data records found by our
system MDR. It gives perfect results for all pages except one,
page 44. For this page, MDR lost one data record.

Columns 5, 6 and 7: Column 5 shows the number of correct data
records found by OMINI. Column 6 gives the total number of
data records (which may not be correct) found by OMINI.
Column 7 gives some remarks about the problems with OMINI.

Columns 8, 9 and 10: These three columns give the three
corresponding results of IEPAD for each page. IEPAD often
produces a large number of extraction rules (see below), which
extract information from the data records. We tried every rule
and present here the best result in column 8 for each page (the
results may come from more than one rule).

The last three rows of the table give the total number of data
records in each column, the recall and the precision of each
system. The precision and the recall are computed based on the
total number of data records found in all the pages by each system
and the total number of data records that exist in all the pages.

Before further discussing the experimental results, we first

O1 O4 O2 O3

r1 r2 r3

O5

Object 1 Object 2

Object 3 Object 4

Object 5

row 1
row 2
row 3

 9

explain the problem descriptions used in the table:
all-in-n (m-in-n) with noise: It means that all (or m) data records

are identified as n data records (m > n). For example, “all-in-1”
means that the system is unable to separate the data records but
identified them together as one. “with noise” means that some
items in the data records that are not part of the data records.

n-err.: It means that n (extra) incorrect data records are found.
miss n objects: n correct data records are not identified.

split into n: This means that the correct data records are split into
n smaller ones, i.e., a data record is not found as one but a few.

none-found: None of the correct data records is found.
all-miss-info (n-miss-info): This means that all (or n) data records

found by the system with some parts missing.
The following summarizes the experimental results in Table 1.
1. Our system MDR is able to give perfect results for every page

except for page 44. For this page, one data record is not found

OMINI IEPAD
URL

Obj.

MDR corr. found remark corr. found remark

1 http://www.bookbuyer.com 4 4 2 4 all-miss-info 4 5 all-miss-info
2 http://www.powells.com 4 4 4 5 1 err. 0 0 none-found
3 http://www.barnesandnoble.com 4 4 0 5 all-in-1 with noise 0 7 none-found
4 http://www.codysbooks.com 6 6 0 3 all-in-1 with noise 6 7 all-miss-info
5 http://www.bookpool.com 25 25 25 26 1 err. 0 12 none-found
6 http://www.borders.com 25 25 25 25 14 14 miss 9 objects
7 http://www.alphabetstreet.infront.co.uk 10 10 0 8 none-found 10 10
8 http://www.ebay.com 7 7 0 1 all-in-1 with noise 7 7
9 http://auctions.yahoo.com 6 6 0 3 all-in-1 with noise 6 7 1 err, all-miss-info

10 http://www.drugstore.com 8 8 0 0 none-found 7 7 miss 1 object
11 http://www.epicurious.com 3 3 0 0 none-found 0 12 none-found
12 http://www.mymenus.com 6 6 0 2 none-found 0 6 none-found
13 http://www.cooking.com 11 11 0 3 none-found 9 14 2 split into 5
14 http://www.eve.com/ 9 9 0 2 all-in-1 with noise 9 9
15 http://www.etoys.com 5 5 4 4 miss 1 object 5 5 all-miss-info
16 http://www.tourvacationstogo.com 70 70 70 70 0 5 none-found
17 http://www.tourturkey.com 6 6 5 6 1 err. 0 0 none-found
18 http://www.asiatravel.com 18 18 0 4 all-in-1 with noise 15 15 all-miss-info
19 http://www.mapquest.com 2 2 0 4 all-in-1 with noise 0 5 none-found
20 http://www.travelocity.com 5 5 0 7 all-in-1 with noise 5 5
21 http://www.ubid.com 22 22 0 2 all-in-1 with noise 13 27 extra 14 wrong
22 http://www.grijns.net/ 62 62 0 14 all-in-12 with noise 5 5 miss 57 object
23 http://journeys.20m.com 8 8 3 5 miss 5 objects 8 10 extra 2 wrong
24 http://www.softwareoutlet.com 9 9 0 3 all-in-1 with noise 8 9 extra 1 wrong
25 http://qualityinks.com/index.php 66 66 0 22 all-in-22 with noise 0 0 none-found
26 http://www.nothingbutsoftware.com 17 17 14 17 3-in-1 with noise 14 14
27 http://www.newegg.com 12 12 0 5 6-in-3 with noise 6 6
28 http://chemstore.cambridgesoft.com 5 5 5 5 5 5
29 http://www.godaddy.com 4 4 0 2 all-in-1 with noise 4 11 7 err, all-miss-info
30 http://www.compusa.com 8 8 0 3 all-in-1 with noise 8 8
31 http://www.radioshack.com 9 9 3 4 miss 6 objects 9 9
32 http://www.earlemu.com 4 4 4 5 0 0 none-found
33 http://www.kadybooks.com 20 20 0 50 split into 50 10 10
34 http://www.kidsfootlocker.com 9 9 0 1 all-in-1 with noise 9 9 2-miss-info
35 http://shop.lycos.com 13 13 0 2 all-in-1 with noise 5 5
36 http://thenew.hp.com 4 4 0 5 all-in-1 with noise 0 10 split into 10
37 http://www.dell.com 5 5 5 5 5 5
38 http://www.circuitcity.com 4 4 0 0 none-found 0 6 none-found
39 http://www.overstock.com 3 3 3 3 0 8 split into 8
40 http://www.kodak.com 3 3 0 6 none-found 0 6 none-found
41 http://www.flipdog.com 25 25 25 28 3 err. 0 0 none-found
42 http://www.summerjobs.com 20 20 0 3 none-found 0 7 none-found
43 http://search.lycos.com 10 10 0 8 all-in-2 with noise 10 10
44 http://www.northernlight.com 10 9 10 11 1 err. 10 10 all-miss-info
45 http://www.coolhits.com 20 20 20 21 1 err. 0 0 none-found
46 http://www.mamma.com 15 15 15 20 5 err. 15 15
 Total 621 620 242 432 241 357
 Recall 99.8% 39% 39%
 Precision 100% 56% 67%

Table 1: Experimental results

 10

because it is too dissimilar to its neighbors. From the last two
rows, we can see that MDR has a 99.8% recall and 100%
precision, which are remarkable. Both OMINI and IEPAD
only have a recall of 39%. In the recall computation, those
data records with missing information are considered correct
for both OMINI and IEPAD (MDR does not lose any
information). If such data records are not considered correct,
the recall of OMINI is 38.3%, and the recall of IEPAD is
reduced to only 29%. The precision values of both systems are
also low, 56% for OMINI and 67% for IEPAD.

2. In columns 7 and 10, those cells that do not contain remarks
show that the system finds all data records correctly. We can
see that OMINI only gives perfect results for 6 pages out of
46, while IEPAD gives perfect results for only 14 pages. Our
MDR system is able to give perfect results for all the pages
except page 44.

3. We observed in our experiments that IEPAD and OMINI tend
to work well only when the page is simple in the sense that
there are a large number of similar data records, and there is
little other information in the page. However, most Web
pages, e.g., product pages, are often more complex, and they
may not contain a large number of products.

4. In column 7, we see that in 20 pages, many data records are
identified together as one by OMINI and also include some
noise items. This clearly shows the serious weakness of
OMINI’s tag based heuristic approach.

5. IEPAD does poorly when data records follow similar patterns
but not exactly the same pattern. We believe that this problem
with IEPAD is due to its use of Patricia tree, which only finds
exact repetitive patterns. Its sequence alignment algorithm
could not remedy the situation in many cases. Even when the
alignment algorithm works, it tends to lose information.
Another problem with IEPAD is that it often generates a large
number of extraction rules. For our 46 pages in Table 1,
IEPAD generates more than 20 rules per page for 5 pages, and
more than 10 rules per page for 11 pages. There are often
many rules extracting the same piece of information with
minor variations. This shows that IEPAD is unable to decide
data record boundaries, but provides some possible ones. The
user needs to try every rule to see which gives the best result.
This is time consuming. In contrast, MDR does not have this
problem. It identifies the boundaries of the objects very well.

6. Both OMINI and IEPAD are unable to find non-contiguous
structures. Such cases occur in pages 1, 4 and 36.

From our experiments, we can conclude that MDR is very
accurate and is dramatically better than OMINI and IEPAD.
Execution time of MDR: Section 3.2 analyzed the complexity of
our algorithm, which indicated that the algorithm is efficient. Our
system is implemented in Visual C++. All the experiments were
conducted on a Pentium 4 1.4GHz PC with 512 MB RAM. The
execution time for every page is always less than 0.5 second.

5. CONCLUSIONS
In this paper, we proposed a novel and effective technique to
mine data records in a Web page. Our algorithm is based on two
important observations about data records on the Web and a string
matching algorithm. It is automatic and thus requires no manual
effort. In addition, our algorithm is able to discover non-
contiguous data records, which cannot be handled by existing
techniques. Experimental results show that our new method is
extremely accurate. It outperforms the two existing state-of-the-

art systems dramatically. In our future work, we plan to find data
records that are not formed by HTML table related tags.

Acknowledgement: We thank Chris Livadas for identifying
some errors in the original pseudo-code.
6. REFERENCES
[1] Baeza-Yates, R. “Algorithms for string matching: A survey.”

ACM SIGIR Forum, 23(3-4):34--58, 1989
[2] Buttler, D., Liu, L., Pu, C. "A fully automated extraction

system for the World Wide Web." IEEE ICDCS-21, 2001.
[3] Chakrabarti, S . Mining the Web: Discovering Knowledge

from Hypertext Data. Morgan Kaufmann Publishers, 2002.
[4] Chang, C-H., Lui, S-L. “IEPAD: Information extraction

based on pattern discovery.” WWW-10, 2001.
[5] Chen, H.-H., Tsai, S.-C., and Tsai, J.-H. “Mining tables from

large scale html texts.” COLING-00, 2000.
[6] Cohen, W., Hurst, M., and Jensen, L. “A flexible learning

system for wrapping tables and lists in HTML documents.
WWW-2002, 2002.

[7] Cohen, W., McCallum, A., Quass, D. Learning to
Understand the Web. IEEE Data Engineering Bulletin, Vol.
23, No. 3. pp. 17-24, 2000.

[8] Craven, M., DiPasquo, D., Freitag, D., McCallum, A.,
Mitchell, T., Nigam, K. & Slattery, S. “Learning to construct
knowledge base from the World Wide Web” Artificial
Intelligence, 118(1-2), 2000.

[9] Doorenbos, R., Etzioni, O., Weld, D. “A scalable comparison
shopping agent for the World Wide Web.” Agents-97, 1997.

[10] Embley, D., Jiang, Y and Ng, Y. “Record-boundary
discovery in Web documents.” SIGMOD-99, 1999.

[11] Gusfield, D. Algorithms on strings, tree, and sequence,
Cambridge. 1997.

[12] Hammer, J. Garcia-Molina, H, and Cho, J. Aranha. R and
Crespo, A. “Extracting semi-structured information from the
Web.” Proceedings of the Workshop on Management of
Semi-structured Data, 1997.

[13] Han, J. and Chang, K. C.-C. “Data mining for Web
intelligence.” IEEE Computer, Nov. 2002.

[14] Hsu, C.-N. and Dung, M.-T. “Generating finite-state
transducers for semi-structured data extraction from the
Web.” Information Systems. 23(8): 521-538, 1998.

[15] Kleinberg, J. “Authoritative sources in a hyperlinked
environment.” ACM-SIAM Sym. on Discrete Algo., 1998.

[16] Knoblock, A. et al., Eds. Proceedings of the 1998 Workshop
on AI and Information Integration. 1998.

[17] Kushmerick, N.; Weld, D. and Doorenbos, R. “Wrapper
induction for information extraction.” IJCAI-97, 1997.

[18] Kushmerick, N. “Wrapper induction: efficiency and
expressiveness.” Artificial Intelligence, 118:15-68, 2000.

[19] Lerman, K. Knoblock, C., and Minton, S. “Automatic data
extraction from lists and tables in web sources.” IJCAI-01
Workshop on Adaptive Text Extraction and Mining, 2001.

[20] Liu, L., Pu, C. and Han, W. “XWrap: an XML-enabled
wrapper construction system for Web information sources.”
ICDE-2000, 2000.

[21] Muslea, I., Minton, S. and Knoblock, C. “A hierarchical
approach to wrapper induction.” Agents-99, 1999.

[22] Sahuget, A. and Azavant, F. “WysiWyg Web wrapper
Factory (W4F).” WWW8, 1999.

[23] Soderland, S. “Learning to extract text-based information
from the World Wide Web.” KDD-1997, 1997.

[24] Wang, Y., Hu, J. “A machine learning based approach for
table detection on the Web.” WWW-2002, 2002.

