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Abstract—Pattern discovery is at the core of numerous data
mining tasks. Although many methods focus on efficiency in
pattern mining, they still suffer from the problem of choosing
a threshold that influences the final extraction result. The
goal of our study is to make the results of pattern mining
useful from a user-preference point of view. To this end, we
integrate into the pattern discovery process the idea of skyline
queries in order to mine skyline patterns in a threshold-free
manner. Because the skyline patterns satisfy a formal property
of dominations, they not only have a global interest but also
have semantics that are easily understood by the user. In
this work, we first establish theoretical relationships between
pattern condensed representations and skyline pattern mining.
We also show that it is possible to compute automatically a
subset of measures involved in the user query which allows the
patterns to be condensed and thus facilitates the computation
of the skyline patterns. This forms the basis for a novel
approach to mining skyline patterns. We illustrate the efficiency
of our approach over several data sets including a use case
from chemoinformatics and show that small sets of dominant
patterns are produced under various measures.
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I. INTRODUCTION

The process of extracting useful patterns from data, called
pattern mining, is an important tool for data analysis and
has been used in a wide range of applications and domains
such as bioinformatics [1] or chemoinformatics [2]. Since
the pioneering works of Agrawal et al. [3], Mannila et al. [4],
a large amount of work has been developed and many pattern
extraction problems are now identified and understood from
both theoretical and computational perspectives.

Most existing pattern mining approaches enumerate pat-
terns with respect to a given set of constraints that range
from extremely simple to very complex. For instance, given
a transaction database, a well-known “easy” pattern mining
task is to enumerate all itemsets (i.e., sets of items) that
appear in at least s transactions. Another mining approach
is to extract from a given graph database all subgraphs
that have a diameter larger than l, connectivity higher than
c, and where each vertex has a degree bounded by d. So
far, the community has made great efforts on sophisticated
algorithms pushing the constraints deep into the mining
process [5]. But it has paid less attention to how to define
constraints. In practice, many constraints entail choosing of

threshold values such as the well-used minimal frequency.
This notion of “thresholding” has serious drawbacks. Unless
specific domain knowledge is available, the choice is often
arbitrary and may lead to a very large number of extracted
patterns which can reduce the success of any subsequent
data analysis. This drawback is obviously even deeper when
several thresholds are needed and have to be combined.
A second drawback is the stringent enumeration aspect:
a pattern is either above or below the thresholds. What
about patterns that respect only some thresholds? With
this paradigm it is very difficult to apply subtle selection
mechanisms. There are very few works such as [6] which
propose to introduce a softness criterion into the mining
process. Other studies blend user preferences in the mining
task in order to limit the number of extracted patterns such
as the top-k patterns [7], [8]. By associating each pattern
with a rank score, this approach returns an ordered list of
the k patterns with the highest score to the user. However,
combining several measures to be reflected in a single
scoring function is difficult and the performance of top-k
approaches are often sensitive to the size of the datasets and
to the threshold value, k.

In this work, we focus on making the results of pattern
mining useful from a user-preference point of view. To this
end, we integrate into the pattern discovery process the idea
of skyline queries [9] in order to mine skyline patterns in a
threshold-free manner. Such queries have attracted consider-
able attention due to their importance in multi-criteria deci-
sion making. Briefly speaking, in a multidimensional space
where a preference is defined for each dimension, a point a
dominates another point b if a is better (i.e., more preferred)
than b in at least one dimension, and a is not worse than b on
every other dimension. For example, a user selecting a set
of patterns may prefer a pattern with a low frequency, short
length and a high confidence. In this case, we say that pattern
a dominates another pattern b if a.frequency ≤ b.frequency,
a.length ≤ b.length, a.confidence ≥ b.confidence, where at
least one strict inequality holds. Given a set of patterns, the
skyline set contains the patterns that are not dominated by
any other patterns.

We claim that skyline pattern mining is interesting for
several reasons: first, skyline processing does not require
any threshold selection or ranking function. Second, the
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formal property of domination satisfied by the skyline pat-
terns gives to the patterns a global interest with semantics
easily understood by the user. However, while this notion
of skylines has been extensively developed and researched
for database applications, it has remained unused for data
mining purposes except for a single work on extracting
skyline graphs that maximize two measures: the number of
vertices and the edge connectivity [10].

Mining skyline patterns, or skypatterns, can be done
in a brute-force manner: i.e., mine all patterns in a first
step, then run domination tests with respect to the user
preferences and finally output the skyline patterns. How-
ever, this naive approach is not feasible in practice as the
collection of patterns is often too big to be manageable.
Obviously, constraints might be introduced to limit the size
of the collection but the consistency of the result may be
lost (i.e., some skypatterns may not be produced) and the
thresholding problem would remain. A key idea of our
work is to take benefit of theoretical relationships between
pattern condensed representations and skypatterns. These
results improve skypattern extraction and we propose, as
a main contribution, an efficient approach which only takes
as an input the data set and the measures expressing the
user preferences and returns skypatterns. To the best of our
knowledge, this is the first work to study theoretically and
empirically the feasibility of the skyline pattern mining in a
fully generic way (i.e., with application to various types of
patterns).

The paper is organized as follows. Section II reviews
some related work. Section III introduces basic definitions
and a formal problem statement. The generic framework of
skypattern queries is detailed in Section IV. We report an
experimental study on several datasets and a case study from
the chemoinformatics domain in section V. We conclude in
Section VI.

II. RELATED WORK

The notion of dominance that we introduced above (see
Section III for a formal definition) is at the core of the
skyline processing. In this paradigm, the retrieved data
points are the ones that are not dominated by any other point
in the analysis space. These skyline points can be viewed
as compromise points with respect to a given set of criteria.
Skyline computation is strongly related to mathematical and
microeconomics problems such as maximum vectors [11],
Pareto set [12] and multi-objective optimization [13]. Since
its rediscovery within the database community by Börzsönyi
et al. [9], many methods have been developed for answer-
ing skyline queries that can handle various constraints in
different computational environments. Another aspect of
preference-based processing is the top-k procedure [7], [8].
A ranking function fr is applied to patterns, and the k
best patterns with the highest score with respect to fr are
returned. As previously mentioned, this approach suffers

from limitations. The choice of k is not trivial (i.e., the
horizon problem): a low value may miss useful patterns and
a too high value introduces redundancy within the produced
patterns (i.e., highly similar patterns). This limitation is the
main motivation for the most informative patterns (MIP) that
have been recently proposed in [14]. MIPs can be seen as
patterns that locally dominate other patterns according to a
scoring function. This approach shares a similar spirit to our
work as it also limits the number of enumerated patterns to
a more manageable level. However, in contrast to our study,
work on MIPs includes a notion of dominance that is only
local and specific to subsets of patterns.

One of the earliest findings in the data mining community
is that a mining process usually produces large collections
of patterns. Many researchers have proposed methods to
reduce the size of the output: the constraint-based pattern
mining framework [15], the condensed representations [16]
and the compression of the dataset by exploiting Minimum
Description Length Principle [17], to name a few. A general
observation is that patterns represent fragmented knowledge,
and often there is no clear view of how the pieces of the
puzzle interact and combine to produce a global model.
Recent approaches have therefore used schemes such as
pattern teams [18], constraint-based pattern set mining [19]
and pattern selections [20] that aim to minimize the redun-
dancy and the number of patterns. The common theme in
these studies is to select patterns from the initial large set of
patterns on the basis of their usefulness in a given context.
Often, these methods focus on optimizing a global measure
on the discovered pattern set and neglect the relationships
between patterns. Moreover, these approaches suffer from
a lack of flexibility to express the queries requested by
the analyst. For each method, the user has to understand
its semantics and express queries satisfying its algorithmic
properties and constraints. In addition, some studies take
advantage of closed patterns (according to the support mea-
sure) to maximize a specific measure such as growth rate
for emerging patterns [21] and area for tiling [22], [23].

III. PROBLEM FORMULATION AND PRELIMINARY

DEFINITIONS

Our study is interesting for several reasons. Firstly, by
carefully selecting patterns that are “the best available”
for a given set of preferences we reduce significantly the
output and limit the “pattern explosion” curse. The user
is guaranteed that only the most significant patterns are
present in the final result based on his criteria. Secondly,
our approach is parameter-free. No thresholds are required
(solely optional, depending on the analyst needs), and only
the preferences and the data set are given as an input.

A. Preliminary definitions

Although the problem can be formulated for any kind of
pattern, for simplicity, we will illustrate our definitions using
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Table I: Example of a toy data set and measures

(a) A toy data set D
Tid Items
t1 A B C D E F
t2 A B C D E F
t3 A B
t4 D
t5 A C
t6 E

Items val
A 10
B 55
C 70
D 30
E 15
F 25

(b) Some measures of M
Name Definition
area X �→ freq(X)× length(X)

mean X �→ min(X.val)+max(X.val))
2

bond X �→ freq(X)
freq∨(X)

aconf X �→ freq(X)
max(X.freq)

gr1 X �→ |D2|
|D1| ×

freq(X,D1)
freq(X,D2)

Table II: A subset of the primitive-based measures

Measure m ∈ M Primitive(s) Operand(s)
m1θm2 θ ∈ {+,−,×, /} (m1, m2) ∈ M2

θ(s) θ ∈ {freq, freq∨, length} s ∈ S
θ(s.val) θ ∈ {sum, max, min} s ∈ S

constant r ∈ �+ - -

Syntactic expression s ∈ S Primitive(s) Operand(s)
s1θs2 θ ∈ {∪,∩, \} (s1, s2) ∈ S2

θ(s) θ ∈ {f, g} s ∈ S
variable X ∈ L - -
constant l ∈ L - -

itemset patterns. Section IV discusses the computational
and theoretical aspects associated with the problem when
extracting other patterns. Let I be a set of distinct literals
called items, an itemset (or pattern) corresponds to a non-
null subset of I. These patterns are gathered together in the
language L: L = 2I\∅. A transactional dataset is a multi-
set of patterns of L. Each pattern, named transaction, is a
database entry. Table I(a) presents a transactional dataset D
where 6 transactions denoted by t1, . . . , t6 are described by
6 items denoted by A, . . . , F .

All the measures discussed in this study are based on the
set of primitive-based measures M that were first defined in
the context of constraint-based pattern mining [24]. Table II
presents general definitions of measures and Table I(b) gives
some specific examples. As presented in [24], M defines a
very large set of interesting measures.

In addition to the classical operators of �+ and L, the
function freq denotes the frequency of a pattern, and length
its cardinality. The disjunctive support is freq∨(X) =
|{t ∈ D|∃i ∈ X : i ∈ t}|. Given a function val : I → �+,
we extend it to a pattern X and note X.val the multiset
{val(i)|i ∈ X}. This kind of function is used with the
usual SQL-like primitives sum, min and max. For instance,
sum(X.val) is the sum of val for each item of X . Finally, f
is the intensive function i.e. f(T ) = {i ∈ I|∀t ∈ T, i ∈ t},
and g is the extensive function i.e. g(X) = {t ∈ T id|X ⊆
t}.

Definition 1 (Domination): Given a set of measures M ⊆
M, a pattern X dominates another pattern Y with respect
to M , denoted by X 	M Y , iff for any measure m ∈ M ,

m(X) ≥ m(Y ) and there exists m ∈M such that m(X) >
m(Y ). Two patterns X and Y are said to be indistinct with
respect to M , denoted by X =M Y , iff m(X) equals to
m(Y ) for any measure m ∈ M (if M = ∅, then X =∅ Y ).
Finally, X �M Y denotes that (X 	M Y ) ∨ (X =M Y ).

Consider our running example using the data set D in
Table I and suppose that M = {freq, area}, then the
pattern ABCDEF dominates ABC because freq(ABC)
= freq(ABCDEF ) = 2 and area(ABCDEF ) >
area(ABC). Notice in this case that ABCDEF is indis-
tinct to ABC with respect to {freq}. Similarly, suppose that
M = {freq, mean, length}, the pattern AC dominates AB
because freq(AC) = freq(AB) = 3, |AB| = |AC| = 2
and mean(AC) > mean(AB).

B. The skypattern mining problem

Given a set of measures M , if a pattern is dominated
by another, according to all measures of M , it is irrelevant
and must be discarded in the output. The notion of skyline
pattern formalizes this intuition.

Definition 2 (Skypattern operator): Given a pattern set
P ⊆ L and a set of measures M ⊆ M, a skypattern of
P with respect to M is a pattern not dominated in P with
respect to M . The skypattern operator Sky(P, M) returns
all the skypatterns of P with respect to M :

Sky(P, M) = {X ∈ P | 
 ∃Y ∈ P : Y 	M X}
Given a set of measures M ⊆ M, the skypat-

tern mining problem is thus to evaluate the query
Sky(L, M). For instance, from the toy data set in Table I,
Sky(L, {freq, length}) = {ABCDEF, AB, AC, A}, as
illustrated in Fig. 1.
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Figure 1: Example of skypattern for a given set of measures

In general, the skypattern mining problem is challenging
because of the very high number of candidate patterns (i.e
|L|). Indeed, a naive enumeration of L is not feasible. For
example, with 1000 items a naive skypattern approach will
need to compute (21000 − 1) × |M | measures and then
compare them. A less naive approach based on heuristics
(such as the anti-monotonicity of some measures) may give
some results. However, the performance will be closely
tied to the underlying properties of the data sets. For
instance, in the case of the frequency measure, the density
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of the data set plays a major role in the performance and
some algorithms are not able to extract frequent patterns at
very low thresholds. Nevertheless, considering the following
property sheds new insights into an efficient computation of
skypattern queries.

Property 1: Given a set of measures M ⊆ M,
Sky(L, M) equals to Sky(P, M) for any pattern set P
containing Sky(L, M),

(∀P ⊆ L)(Sky(L, M) ⊆ P ⇒ Sky(L, M) = Sky(P, M))

As Sky(L, M) ⊆ P ⊆ L and |P | ≤ |L|, we argue
that evaluating Sky(P, M) is significantly less costly than
evaluating Sky(L, M) since the cost of Sky(x, M) generally
decreases with the cardinality of x. Consequently, we aim to
reduce the cost of evaluating Sky(P, M) by finding a small
but relevant set P (i.e. that includes Sky(L, M)) by means
of pattern condensed representations. However, this is not an
easy task. A direct approach would be to compute a concise
representation for each measure m ∈M , but this is generally
not possible because some measures, such as area or length,
are simply not condensable. Therefore, our problem can
be reformulated as following: given a set of measures M ,
how can one identify a smaller set of measures M ′ which
allows for the computation of a concise representation on
the patterns? In addition, how to use this set of measures to
extract efficiently the skypatterns without redundancies? We
address this problem in Section IV.

IV. REFORMULATING SKYPATTERN QUERIES

Data

User 
Preferences M

User

M'

Representation

Skypatterns

Representative 
skypatterns

Minimal and maximal 
skylineable converters

Distinct
operator

Indisctinct 
operator

Sky operator

0

1

2

34

Figure 2: Overview of Aetheris.

In an effort to clarify our methodology, we illustrate in
Figure 2 the different processes of our approach called
Aetheris. In a first step, and after the user’s preferences
selection, Aetheris automatically identify a smaller set of
measures M ′ which allows for the computation of a concise
representation on the patterns using converters. Because of
redundancies that may appear in skypatterns, the second
step computes a representative (i.e., compressed) set of
skypatterns. The end-user can either output this compressed
representation or the entire list of skypatterns as a final
step depending on the application needs. Our methodology

revolves around the simple idea that to be able to extract
and analyze efficiently skypatterns, one needs to be able to
compress the patterns that will be used as an input to the
skyline operator and then to do a second compression task
over the final output (i.e., the skypatterns).

A. Skylineability of a set of measures

Given some specific measures, it is sometimes easy to
point out patterns that are excellent skyline candidates. For
instance, let us consider patterns from D that maximize the
cardinality. As the cardinality length(X) strictly increases
with X , the skypattern query Sky(L, {length(X)}) can be
defined as a subset of the maximal patterns of L occurring
in D. Unfortunately, this property doesn’t hold for other
measures such as the frequency (which is only weakly
decreasing) and the area (which is not monotonic). However,
one can notice that the area strictly increases with X when
the frequency remains constant. Such a function is said to
be maximally {freq}-skylineable.

Definition 3 (Skylineability): Given a set of measures
M ′ ⊆ M, a set of measures M is said to be minimally
(respectively maximally) M ′-skylineable iff for any patterns
X =M ′ Y such that X ⊂ Y (respectively X ⊃ Y ), one has
X �M Y .

Definition 4 (Strict skylineability): Given a set of mea-
sures M ′ ⊆ M and a set of measures M , if X 	M Y
for any patterns X =M ′ Y such that X ⊂ Y (respectively
X ⊃ Y ), then M is said to be strictly minimally (respec-
tively maximally) M ′-skylineable.

From the previous definitions, given a set of measures
M which is maximally M ′-skylineable, if X =M ′ Y
and X ⊃ Y , it is clear that X cannot be dominated
by Y on M . For instance, M = {freq, area} is strictly
maximally {freq}-skylineable because area(X) strictly in-
creases with the cardinality of X (when the frequency
remains constant). Therefore, in our example, B =freq AB
and we can directly deduce that AB 	M B. Notice
that {freq} is (weakly) maximally (or minimally) {freq}-
skylineable and that {length(X)} is strictly maximally ∅-
skylineable. Next subsections will justifiy the notion of min-
imal/maximal in M ′-skylineability by clearly refering to the
minimal/maximal patterns of equivalence classes adequate
to M ′.

Property 2: Any set of measures M is minimally and
maximally M -skylineable.

Property 2 is a very important result as it means that
a set of measures is always skylineable. Obviously, for a
set of measures M , the smaller1 M ′, the stronger its M ′-
skylineability. For instance, {freq}-skylineability is more
interesting than {freq, area}-skylineability because area
is not a condensable function: there is no pair of distinct
patterns X and Y such that X ={freq,area} Y . How to
choose automatically a subset M ′ is discussed next.

1In the sense of cardinality.
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B. Minimal and maximal skylineable converters

Let us first illustrate the general intuition behind an
automatic selection technique. Let M = {freq} be a set
of measures, X and Y be two patterns such that X ⊆ Y .
Obviously, M = {freq} is minimally ∅-skylineable because
freq decreases and X �M Y . Conversely, M = {freq}
is not maximally ∅-skylineable, but is maximally {freq}-
skylineable. Indeed, if X ={freq} Y (i.e., X and Y have
the same frequency), then X �{freq} Y . More generally,
any primitive p that is part of the measure m that hinders
the M ′-skylineability of m, has to be added to M ′. We
generalize this approach to any primitive-based measure. For
this purpose, we define two operators denoted c and c (see
Table III).

Table III: The definition of the minimal and maximal sky-
lineable converters: c and c

Expr. e Primitive(s) c(e) c(e)
e1θe2 θ ∈ {+,×,∪} c(e1) ∪ c(e2) c(e1) ∪ c(e2)
e1θe2 θ ∈ {−, /,∩} c(e1) ∪ c(e2) c(e1) ∪ c(e2)

constant - ∅ ∅
d(X) d ∈ {freq, min, g} ∅ {d(X)}
i(X) i ∈ {length, max,

sum, freq∨, f}
{i(X)} ∅

d(e1) d ∈ {freq, min, g} c(e1) c(e1)
i(e1) i ∈ {length, max,

sum, freq∨, f}
c(e1) c(e1)

Given a primitive-based measure m ∈ M, the minimal
skylineable converter returns a set of measures M ′ = c(m)
guaranteeing that for any pattern X ⊂ Y , if X =M ′ Y
then m(X) ≥ m(Y ). In other words, X dominates Y with
respect to m. Dually, the maximal converter c guarantees that
m(X) ≤ m(Y ) for any pattern X ⊂ Y such that X =c(m)

Y .
Let us illustrate c and c on the area measure. The area

is defined as a product of the frequency and length. Thus,
we report to the first definition in Table III. c(area) =
c(freq(X)) ∪ c(length(X)) = ∅ ∪ {length(X)} =
{length(X)}. Symmetrically, c(area) = c(freq(X)) ∪
c(length(X)) = {freq(X)}∪∅ = {freq(X)}. The skyline-
able converters enable us to automatically find optimization
techniques already known for specific measures such as
area [22], [23] or growth rate [21] (see Table IV (a)).
However, in this work, we generalize this principle to cover
any primitive-based measures. Note that when the converter
c returns no measure (e.g., bond or aconf ), it means that
the measure decreases with respect to the specialization.
Dually, c(m) = ∅ means that m increases with respect to
the specialization.

In practice, as the skypatterns are computed for a set of
measures, we extend the minimal and maximal converters:

Definition 5 (Minimal and maximal skylineable converters):
The minimal and maximal skylineable converters defined
by Table III for any primitive-based measure are naturally

Table IV: Applying the minimal and maximal converters

(a) Individual measures
Meas. m c(m) c(m)
area {freq(X)} {length(X)}
mean {min(X.val)} {max(X.val)}
bond {freq(X), freq∨(X)} ∅
aconf {freq(X), max(X.val)} ∅
gr1 {freq(X,D1)} {freq(X,D2)}

(b) A set of measures M = {freq(X), area(X)}
c({freq(X), area(X)})

c(freq(X)) c(freq(X) × length(X))

c(freq(X)) c(length(X))

extended to a set of primitive-based measures M ⊆ M:
c(M) =

⋃
m∈M c(m) and c(M) =

⋃
m∈M c(m).

For instance, c({freq(X), area(X)}) = c(freq(X)) ∪
c(area(X)) = {freq(X)} and c({freq(X), area(X)}) =
c(freq(X)) ∪ c(area(X)) = {length(X)}.
c({freq(X), area(X)}) = {freq(X)} means that the
most specific patterns (when the frequency remains
unchanged) maximizes the measures {freq(X), area(X)}.
The following property formalizes this observation:

Property 3: A set of primitive-based measures M ⊆
M is minimally c(M)-skylineable and maximally c(M)-
skylineable.

In our implementation, the user specified set of mea-
sures M is parsed through a syntax tree. Following this
step, the minimal and maximal skylineable converters are
recursively applied to automically compute c(M) and
c(M) (an example is provided in table IV (b) for M =
{freq(X), area(X)}). This process is illustrated in Figure
2 with the edge labelled 1. From now on, the set of measures
M ′ refers to c(M) or c(M).

C. Distinct and indistinct operators

In the previous paragraphs, we remarked the fact that
some skypatterns share exactly the same values on the whole
set of measures M ′ (e.g. B ={freq} AB). This observation
leads to the following question: Is it possible to find some
representatives for a group of indistinct skypatterns? We
show that the answer is yes and that instead of directly
evaluating the skypattern query on L, we can compute the
skypatterns on a condensed representation of L and then
regenerate the entire set of skypatterns. For this end, we
introduce the distinct operator which produces condensed
representations adequate to M :

Definition 6 (Distinct operator): Given a set of measures
M ′ ⊆M, the distinct operation for P ⊆ L with respect to
M ′ and θ ∈ {⊂,⊃} returns all the patterns X of P such that
their generalizations (or specializations) are distinct from X
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with respect to M ′:

Disθ(P, M ′) = {X ∈ P |∀Y θX : X 
=M ′ Y }
where θ ∈ {⊂,⊃}.

Given a set of measures M ′, the set of free (respectively
closed) patterns adequate to M ′ corresponds exactly
to Dis⊂(L, M ′) (respectively Dis⊃(L, M ′)). For
instance, from our toy example, Dis⊂(L, {freq}) =
{A, B, C, D, E, F, AD, AE, BC, BD, BE, CD, CE, DE}
and Dis⊃(L, {freq}) = {A, D, E, AB, AC, ABCDEF}.

We now introduce the indistinct operator that enables the
retrieval of all the indistinct patterns from their representa-
tives:

Definition 7 (Indistinct operator): Given a set of mea-
sures M ′ ⊆ M, the indistinct operation returns all the
patterns of L being indistinct with respect to M ′ with at
least one pattern in P .

Ind(L, M ′, P ) = {X ∈ L|∃Y ∈ P : X =M ′ Y }
For instance, from Table I, the set of patterns that

have exactly the same frequency as patterns B and C is
Ind(L, {freq}, {AB, AC}) = {B, C, AB, AC}.

Property 4: Given a set of preserving functions M ′, one
has the following relation for any P ⊆ L and θ ∈ {⊂,⊃}:

Ind(P, M ′,Disθ(P, M ′)) = P

In other words, the indistinct operator is the
inverse function for the distinct operator. For instance,
Ind(L, {freq},Dis⊃({B, C, AB, AC}, {freq})) =
{B, C, AB, AC}.
D. Aetheris: Evaluating skypattern query based on skyline-
ability

To compute skypatterns, we would like to confront distinct
patterns together instead of individually comparing each
pattern. Indeed, the computation of skypatterns with respect
to M = {freq, area} can be limited to Dis⊃(L, {freq})
because maximal {freq}-skylineability ensures us that the
other patterns are not dominant patterns. For instance, as
AB =freq B, the {freq}-skylineability of M gives AB 	M

B and B cannot be a skypattern. More formally, we know
that Sky(Ind(L, M ′,Disθ(L, M ′)), M) = Sky(L, M) from
Property 4. Theorem 1 now proves that the skypattern
operator can be pushed into the indistinct operator:

Theorem 1 (Operational equivalence): If a set of mea-
sures M is M ′-skylineable with respect to θ ∈ {⊂,⊃} and
M ′ is a set of measures, then one has:

Sky(L, M) = Ind(L, M,Sky(Disθ(L, M ′), M))

Proof: Let M be a set of measures M ′-skylineable with
θ ∈ {⊂,⊃}.
1.Sky(L, M) ⊇ Ind(L, M,Sky(Disθ(L, M ′), M)). Let
X ∈ Ind(L, M,Sky(Disθ(L, M ′), M)) and Y ∈ L. There
exist X ′ ∈ Sky(Disθ(L, M ′), M) such that X ′ =M

X and Y ′ ∈ Disθ(L, M ′) such that Y ′ =M ′ Y and
Y ′ �M Y (i.e., M ′-skylineability). As X ′ belongs to
Sky(Disθ(L, M ′), M), it cannot be dominated by any pat-
tern of Disθ(L, M ′): Y ′ 
	M X . Thus, X is not dominated
by Y (i.e., X is a skyline of L with respect to M ) because
X ′ =M X and Y ′ �M Y .
2.Sky(L, M) ⊆ Ind(L, M,Sky(Disθ(L, M ′), M)). Let
Y ∈ Sky(L, M). There exists Y ′ ∈ Disθ(L, M ′) such
that Y ′ =M ′ Y and Y ′ �M Y . As Y is a skypattern,
one has Y �M Y ′ and thus, Y ′ =M Y . Furthermore,
no pattern of Disθ(L, M ′) dominates Y nor Y ′: Y ′ ∈
Sky(Disθ(L, M ′), M). Finally, as Y ′ =M Y , Y belongs
to Ind(L, M,Sky(Disθ(L, M ′), M)).

It is well-known that the size of adequate condensed rep-
resentations (i.e., Dis⊂(L, M ′) or Dis⊃(L, M ′)) is smaller
than the whole collection of patterns [16]. Thus, we have
achieved our objective as mentioned in Section III-B. Fur-
thermore, note that if a set of measures is strictly M ′-
skylineable, Theorem 1 reduces to the following relation:
Sky(L, M) = Sky(Disθ(L, M ′), M) (with θ ∈ {⊂,⊃}).
Even if a set of measures is not strictly M ′-skylineable, it
is often preferable not to perform the indistinct operation as
done in our case study (see Section V-B). In such situation,
the skypatterns of Sky(Disθ(L, M ′), M) form a condensed
representation of Sky(L, M).

Figure 3 illustrates the computation of the skypat-
terns with our approach Aetheris. Suppose that M =
{freq, area}, the first step applies the maximal skylineable
converter on M . Then, the distinct operator preserves the
closed itemsets (Step 2). The skyline operator selects the
dominant patterns at Step 3 by removing D and E which
are dominated by AB (i.e., area(D) = area(E) = 3 <
area(AB) = 6). Finally, the last step computes the indistinct
patterns of skypatterns. Note that this step is unnecessary
here because the area is strictly {freq}-skylineable.

E. Discussion

As aforementioned, with itemset patterns and the fre-
quency measure, the distinct operator corresponds to the
well-known notions of closed or free frequent pattern con-
densed representations. Indeed, Dis⊂(L, {freq}) is analo-
gous to free frequent itemsets and Dis⊃(L, {freq}) corre-
sponds to closed frequent itemsets. The pattern mining com-
munity provides many efficient algorithms to extract these
concise representations. In addition, different studies extend
the notion of concise representations to any frequency-based
measures or condensable function [25]. These theoretical
and algorithmic works support our claim that discovery of
skypatterns is very efficient, but also extendable to a very
large set of measures. This measure genericity allows the
end-user to analyze patterns through multiple and useful
criteria.

Evaluating efficiently the distinct operator on more com-
plex patterns such as sequences, trees and graphs implies
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4.

3.

2.

1.

Ind

L {freq; area} Sky

{freq; area} Dis⊃

L c({freq; area})

= {A, AB, AC,ABCDEF}

= {A, AB, AC,ABCDEF}

= {A, D, E, AB,AC, ABCDEF}

= {freq}

Figure 3: Computing the skypatterns with respect to {freq; area} from running example

additional challenges. To cite one example, in the case of
sequences, convenient properties such as the free patterns
apriori property [26], which implies effective search space
pruning, cannot be used. Furthermore, in the case of complex
patterns, and to the best of our knowledge, no work focused
on building concise representations except on the frequency-
based measures.

However, it is worth mentioning that Theorem 1 holds for
any set of measures and any language. This means that the
efficient extraction of complex skyline patterns (i.e., skyline
sequential patterns or skyline graph patterns) is strongly
correlated to the advances and progress on complex pattern
condensed representations. Last, it is important to notice that
Aetheris is not an exclusive approach in the sense that it
can be coupled with other efficient approaches [27], [28] to
extract statistically significant skypatterns.

V. EXPERIMENTAL STUDY

We report an experimental study on several benchmarks
and a case study from chemoinformatics.

A. Experiments on UCI benchmarks

Protocol. Our approach is the first to mine the whole set of
skypatterns in a generic way. As a result, we cannot compare
it with earlier methods. Nevertheless, for some data sets,
skypatterns can be extracted by applying the skyline operator
Sky as a post-treatment on the collection of itemsets that
occurs at least once in the dataset, denoted by L. We call this
process the baseline approach. Our first batch of experi-
ments focus on comparing runtimes of the baseline approach
with respect to Aetheris. In our experiments, we limit the
set of measures M ′ to preserving functions only. In this way,
we can use any mining algorithm adequate to free and closed
itemsets [25]. For a fair comparison, the two approaches use
the same implementation of the operator Sky which is based
on the block nested loop (BNL) algorithm [9]. Our second
batch of experiments aims at comparing our approach to an
optimal constraint-based mining method (with thresholds).
For each measure Mi ∈ M , we set the threshold σMi to
mins∈Sky (L, M)(Mi(s)). This condition guarantees that no
skypatterns will be missed. For instance, in our running
example (Figure 1), σfreq = 2 and σlength = 1. The set
of resulting patterns is called the optimal constraint-based
patterns (or OCB patterns). This set of patterns needs to

be post-processed to find the complete set of skypatterns
Sky (L, M ). Even if this method may seem unrealistic (the
user needs to guess optimal thresholds), we still think that
this experiment has the benefit of quantifying the reduction
of patterns brought by Aetheris even in the scenario where
an ideal end-user is able to perfectly manage theresholds
selections in the constraint-based paradigm.
Datasets and measures. Experiments were carried out on 16
various (in terms of dimensions and density) benchmarks
from the UCI repository2. We considered a number of
combinations of primitive-based measures: frequency, area,
maximum, minimum, growth rate and mean. Measures using
numeric values were applied on attribute values that were
randomly generated within the range [0,1] (see Table I).
All the tests were performed on a 2.5 GHz Xeon processor
with Linux operating system and 2 GB of RAM memory.
Running times were averaged over 5 executions.
Results. Table V and VI provide an overview of 128 exper-
iments carried out on 16 benchmarks, by aggregating the
results for 8 sets of measures. Table V presents averages
and maximal results for Aetheris and the baseline approach.
Note that runtimes only consider the application of skyline
operator and do not take into account mining runtimes
to extract collection of itemsets (baseline approach) or
the pattern condensed representation (Aetheris approach).
Mining condensed representations is generally much more
efficient than extracting all itemsets [16]. This means that in
practice, the gain of Aetheris on the whole process is even
much higher than what is reported. However, because the
efficiency of the condensed representations is a well-known
result in literature, we prefer in these experiments to focus
only on the impact of the skyline operator. It should be noted
that in some cases the enumeration of all the itemsets fails
(e.g., with mushroom and sick data sets, see [25] for
more details). It means that the baseline approach cannot
be applied whereas our approach provides the proper set of
skypatterns. This point is a major benefit of our approach.

An important result is that Aetheris always outperforms
the baseline approach with at least a factor of 10. The distinct
operator used to compute skypatterns speeds up the mining
in all cases. The reason is that it drastically reduces the size
of the input considered by the skyline operator. However,

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
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when the number of measures increases, the collection
returned by the distinct operator becomes less compact and
skypattern mining becomes less efficient. Nevertheless, in
our experiments, the skyline computation remains extremely
fast: there are only 3 experiments requiring more than
1 second with the Aetheris approach (experiments with
M = {freq; max; area; mean} on austral, crx and
hepatic) whereas 61 out of the 128 experiments exceed
1 second for the baseline approach.

Figure 4 (a) depicts the performance of the skyline
operator for each of the 128 experiments according to the
baseline and Aetheris approaches. As expected, the running
time of Sky increases linearly with the number of itemsets
in input. The points corresponding to the Aetheris approach
are concentrated on the bottom left corner, showing the
efficiency of the method.
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Figure 4: Performance and gain of the skyline patterns.

For each set of measures M , Table VI reports the min-
imal/average/maximal number of skypatterns, the average
number of OCB patterns and the average gain of skypatterns
(i.e., |# of OCB patterns|/|Sky(L, M)|). The aim is to illus-
trate the problem of “pattern flooding” that is still appearing
even with the optimal constraint-based approach. In contrast,
the number of skypatterns is always extremely low. At most,
there is a maximum of 397 skypatterns (on anneal with
the frequency and the growth rate measures). Except for the
growth rate measure, a higher number of measures leads to
a higher number of skypatterns. The explanation is that a
pattern rarely dominates all other patterns on the whole set
of measures. Interestingly, the gain of a skyline approach
(see the last column in Table VI) is always important
(greater than 10 and much greater in almost all the cases).
Figure 4 (b) summarizes this result by reporting for each
experiment the number of OCB patterns compared to the
number of skypatterns. The line y = x highlights the gain
of our approach: all the points are above the line and in most
cases by several orders of magnitude.

B. Case Study: discovering toxicophores

A necessary step in the elaboration of chemicals’ pro-
tective measures is the thorough identification of their
potentially harmful aspects. Consequently, a major issue

in chemoinformatics is to establish relationships between
chemicals and a given activity (e.g., LC50 in ecotoxicity).
Chemical fragments3 which cause toxicity are called toxi-
cophores and their discovery is a major issue as they are
at the core of prediction models in (eco)toxicity [2]. The
aim of this case study, which is part of a larger research
collaboration with a laboratory of medicinal chemistry, is
to investigate the use of skypatterns in order to discover
toxicophores.

The dataset is collected from the ECB web site4. For
each chemical, the chemists associate the data with hazard
statement codes (HSC) in 3 acute categories: H400 (very
toxic, LC50 ≤ 1 mg/L), H401 (toxic, 1 mg/L < LC50 ≤
10 mg/L), and H402 (harmful, 10 mg/L < LC50 ≤ 100
mg/L). We focus solely on the H400 and H402 classes.
The dataset D consists of 567 chemicals, 372 from the
H400 class and 195 from the H402 class. The chemicals are
encoded using 129 frequent subgraphs previously extracted
from D5. The subgraphs are extracted using a 10% relative
frequency threshold (experiments with lower thresholds did
not bring significant results for the chemists).

The goal of the first experiment is to evaluate the sky-
pattern approach with measures typically used in contrast
mining such as the growth rate since toxicophores are linked
to a classification problem with respect to the HSC. When
associated together, the growth rate and the frequency mea-
sures convey the intuitive notion that a candidate toxicophore
is a set of fragments whose frequency is strongly higher in
the H400 class than the H402 class and is representative
enough (i.e., the higher the frequency, the better it is). We
do not specify mining runtimes as they are negligible and
we only focus on a qualitative analysis for skypatterns.

A first major result is that the number of skypatterns is
very small. Using the growth rate and frequency measures,
only 8 skypatterns are enumerated and this allows for a direct
expert inspection. The chemists emphasize three patterns
based on well-known environmental toxicophores, namely
the phenol ring, the chloro-substituted aromatic ring, and
the organo-phosphorus moiety. The toxicity of the phenol
rings is related to hydrophobocity and formation of free
radicals [29]. The chloro-substituted aromatic rings and
organo-phosphorus moieties are components of widespread
pesticides. Moreover, the organo-phosphorus moiety pattern
has a high growth rate (∞ value) and a high frequence. This
pattern is thus a jumping emerging pattern and the experts
compared it furthermore to jumping emerging fragments
(JEF) extracted from previous experiments [30]. It appears
that the organo-phosphorus moiety pattern is a generalization

3A fragment denominates a connected part of a chemical structure
containing at least one chemical bond

4ECB, European Chemicals Bureau http://ecb.jrc.ec.europa.eu/
documentation/ now http://echa.europa.eu/

5A chemical Ch contains an item A if Ch supports A, and A is a
frequent subgraph of D.
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Table V: Performance analysis of skypattern mining on UCI benchmarks (time in s)

Measures M / θ Average |L| Average
|Disθ(L)|

Average
time
base.

Maximal
time
base.

Average
time
Aetheris

Maximal
time
Aetheris

Average gain
of Aetheris

{freq; area} / maximal (i.e. θ =⊃) 3,754,792.13 63,977.88 3.192 20.110 0.056 0.184 53.82
{freq; min} / minimal (i.e. θ =⊂) 3,754,792.13 187,709.69 4.115 26.116 0.194 0.722 18.13

{freq; max} / maximal 3,754,792.13 92,459.75 4.150 25.624 0.103 0.396 28.74
{freq; max;area} / maximal 3,754,792.13 92,459.75 4.808 29.562 0.122 0.446 28.76

{gr; area} / maximal 2,559,789.75 45,489.94 2.280 10.180 0.050 0.176 36.94
{freq; gr; area} / maximal 2,559,789.75 45,489.94 2.709 11.146 0.059 0.184 36.97

{freq; max; area; mean} / maximal 3,754,792.13 239,017.19 6.361 39.968 0.445 1.600 10.22
{freq; gr} / maximal 2,559,789.75 45,489.94 2.274 9.242 0.046 0.144 35.95

Table VI: Effectiveness of skypattern mining on UCI benchmarks

Measures M Minimal # of
skypatterns

Average # of
skypatterns

Maximal # of
skypatterns

Average # of
OCB patterns

Average gain
of skypatterns

{freq; area} 1.00 4.13 8.00 91.81 13.34
{freq; min} 1.00 4.19 8.00 14403.56 2061.81
{freq; max} 2.00 10.75 42.00 46748.50 1036.90

{freq; max; area} 2.00 14.94 57.00 52912.13 1838.87
{gr; area} 3.00 16.06 71.00 19125.50 1021.52

{freq; gr; area} 4.00 33.75 75.00 20453.06 399.32
{freq; max; area; mean} 4.00 35.06 164.00 201596.25 1905.12

{freq; gr} 6.00 48.44 397.00 2025.94 52.79

of around 90 JEFs and can be seen as a kind of maximum
common structure (i.e., consensus structure) of these frag-
ments. The experts highly appreciate that Aetheris is able to
provide a synthetic view summarizing the information of a
large set of JEFs.

The aim of our second experiment is to integrate and eval-
uate measures conveying a notion of background knowledge.
In ecotoxicity, chemists consider that the aromaticity and
the density measures may yield an interest for candidate
toxicophores. For instance, a common hypothesis is that
the higher the chemical density, the stronger its chemical
behavior. In addition, chemists know that the aromatic-
ity is a chemical property that favors toxicity since their
metabolites can lead to very reactive species which can
interact with biomacromolecules in a harmful way. Besides,
from a biodegradability point of view, aromatic compounds
are among the most recalcitrant of the pollutants. Using
chemical knowledge, we are able to compute aromaticity
and density on chemical fragments. The aromaticity (or the
density) of a pattern is calculated using the mean function
defined in Table I based on the aromaticity (or density) of
each of the 129 listed subgraphs.

Adding only the density to the growth rate and frequency
measures do not deeply change the results: 9 skypatterns
are obtained and they are similar to the set of 8 skypat-
terns previously mined with the growth rate and frequency
measures. On the contrary, adding the aromaticity and, even
better, both the aromaticity and density, leads to skypatterns
with novel chemical characteristics. Once again, the whole
set of skypatterns remains small (27 when adding the
aromaticity and 38 when adding both the aromaticity and
the density) and can be directly analyzed by the chemists.

They were especially interested in the following skypattern
(provided in Smiles code6): {Clc(ccc)c, cc, ccc,
cccc, ccccc, ccc(cc)N}. This skypattern, including
an amine function, was not detected during the first experi-
ment and can be exemplified by the chloroaniline derivatives.
Indeed, these derivatives are environmentally hazardous
since they are very toxic for aquatic species [31]. The ex-
periment shows that background knowledge can successfully
be translated to preferences and that Aetheris is straightfor-
wardly able to discover few and promising patterns.

VI. CONCLUSION

In this paper, we introduce the skyline pattern mining
problem. Our goal is to make the result of pattern mining
useful from a user-preference point of view. We propose
Aetheris, the first approach to mine skypatterns in a generic
way (i.e., with set of measures and applications to various
pattern domains). Aetheris is threshold-free and only needs,
as parameters, the measures and the data set. Our approach
is based on the key notion of skylineability that supports
efficient skypattern computation thanks to an adequate con-
densed representation of patterns. Experiments performed on
several datasets and a use case from chemoinformatics show
the efficiency of Aetheris according to both quantitative and
qualitative aspects.

An important direction for future work is to improve even
further the performance of the algorithm. An idea that we
want to investigate is the assimilation of the skyline operator
with a pruning strategy. Indeed, Aetheris still applies the
skyline operators on pattern collections that may be still
relatively large. Other perspectives lie in the improvement

6http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
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of adequate condensed representations on more complex
patterns (i.e., sequences, graphs and dynamic graphs) which
is a timely challenge.
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