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Abstract: The increase of greenhouse gas emissions into the atmosphere, and their adverse effects on

the environment, have prompted the search for alternative energy sources to fossil fuels. One of the

solutions gaining ground is the electrification of various human activities, such as the transport sector.

This trend has fueled a growing need for electrical energy storage in lithium batteries. Precisely

knowing the degree of degradation that this type of battery accumulates over its useful life is

necessary to bring economic benefits, both for companies and citizens. This paper aims to answer the

current need by proposing two research questions about electric motor vehicles. The first focuses

on habits EV owners practice, which may harm the battery life, and the second on factors that may

keep consumers from purchasing this type of vehicle. This research work sought to answer these two

questions, using a methodology from data science and statistical analysis applied to three surveys

carried out on electric vehicle owners. The results allowed us to conclude that, except for the Year

variable, all other factors had a marginal effect on the vehicles’ absolute autonomy degradation.

Regarding obstacles of the adoption of electric vehicles, the biggest encountered was the insufficient

coverage of the network of charging stations.

Keywords: electric vehicles; charging process; behavior

1. Introduction

The central topic of this research work is aligned with the urgent need to electrify
most human activities [1], which is part of ongoing European and national policy. For
example, the European Green Deal of 2020 [2] aims to reduce greenhouse gases (GHG) in
2030 to at least 55% of 1990 values. Likewise, the Portuguese National Plan for Energy
and Climate PNEC 2030 (2019) [3] foresees, by 2030, a reduction between 45% and 55% in
greenhouse gas emissions of 2005 levels and a 20% incorporation of renewable energies in
the transportation sector.

Human activities have been emitting considerable amounts of GHG into the atmo-
sphere, notably in the last century, from trade to transportation, industry, and agriculture.
The 2021 Intergovernmental Panel on Climate Change (IPCC) [4] report recently stated
with high confidence that there is a near-linear relationship between cumulative anthro-
pogenic CO2 emissions and global warming consequences. Therefore, the current living
generations of people must take a decisive step to accelerate the transition of powering our
energy needs with renewable sources.

Hence, the theme of this research work focuses on a small part of the bigger problem,
the transition to electric passenger vehicles. Any energy storage solution developed with
optimization can diminish the importance of the current lackluster battery capacities.
Moreover, this study aims to find the critical factors regarding the usage and charging of
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an electric vehicle (EV) that can most negatively influence its battery’s remaining useful
life (RUL).

To tackle this problem and answer the following research question, which will be
detailed in on the next page, we adopted a traditional exploratory statistical analysis that
was used on a dataset with Tesla vehicles to the results of three surveys.

Additionally, a systematic literature review was performed based on the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology [5],
which focused on Machine Learning (ML) classification models, later applied in our analy-
sis. Additionally, three surveys were created in the research work framework and shared
online with current and prospective EV users to further enrich and diversify the Tesla
dataset’s answers. Data from these three surveys were merged with the Tesla dataset and
were subject to statistical analysis with Statistical Product and Service Solutions (SPSS)
software from IBM. The aim was to uncover valuable insight into the satisfaction degree of
the current charging network in Portugal.

The main results from the battery degradation analysis showed that factors such as
the frequency of charging an EV in fast-charging stations, such as the Tesla Supercharger
network, may not have a measurable impact on battery degradation. Instead, based on the
results of this sample, the car’s age may be the central factor. Future research can produce
more precise and detailed models and better explain these factors’ impact on car range.

Regarding the systematic literature review (SLR), it was possible to identify a gap
in the current state of the art: a single article [6] referred to the degradation of batteries
from the standpoint of EV user behavior and battery charging patterns. All other articles
mentioned battery degradation solely from the point of view of the electrochemistry field,
explaining in detail how the batteries’ components and the environmental conditions
affected battery longevity. Furthermore, they also mentioned that Li-ion batteries lose
capacity depending on the intensity of their use or lack thereof. These drawbacks add to
the list of disadvantages mentioned previously. They may further deepen hesitancy to
adopt EVs by EV users in Portugal, which is an exciting topic for further research.

To answer these research gaps about battery degradation that constitute the dissuasive
factors preceding the purchase of electric vehicles, the following research question (RQ)
was formulated:

RQ: Which factors may present themselves as a hindrance to the adoption of EV
vehicles by citizens?

The main objective of this paper is to identify and understand user satisfaction and
how it may hinder the adoption of EVs. In Table 1, the methodology to answer the identified
research question is presented. To address the objective proposed in Table 1, a descriptive
statistical analysis in SPSS was developed to obtain a general exploratory overview of the
dataset distribution.

Table 1. Research question methodology.

Research Question Objective Methodology

RQ—Which factors may present
themselves as a hindrance to the

adoption of EV vehicles by
citizens?

OBJ—To identify and understand
user satisfaction and how that

may hinder the adoption of
electric vehicles.

Descriptive Statistics
and Content Analysis

2. Literature Review

The upcoming sub-sections describe the process of our systematic literature survey.
Although the topic of EVs is recent, there is much interest in it, and as a result, there is
considerable pertinent, available literature online. Therefore, it was necessary to employ a
systematic analysis method to efficiently filter out the works less relevant and highlight the
ones most related to the theme of the research work.

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [5]
is a method for obtaining literature reviews with systematic and objective results. It is
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a method where findings can be reproduced and verified easily by other researchers.
PRISMA is used to write systematic reviews of research, particularly in the Medicine, Social
Sciences, and Exact Sciences areas.

It thus presents as a set of recommendations followed by authors who wish to publish
and report comprehensively and transparently about how they reached their conclusions
at the time of their bibliographic research. In other words, the PRISMA guidelines help
authors to describe the conducted literature work best, findings achieved, and what they
are planning to do.

Keyword identification is the first step of PRISMA and was performed by an iterative
search for specific keywords on the collected articles from the selected repositories. The
final set of collected academic papers was determined through the following logical query
on their metadata:

“Electric vehicle” AND “predictive model” AND “aging” AND ”degradation” AND
“battery” OR “SoH”.

The search for keywords was performed on known academic repositories: Scopus,
Institute of Electrical and Electronics Engineers (IEEE), and Web of Science.

The same query parameters mentioned were used on all three repositories to obtain
relevant and comparable results.

By applying PRISMA, we end with a paper set for further quantitative and qualitative
analysis: our SLR collection. This one was structured using the Mendeley reference
manager tool [7] that allowed the extraction of papers’ metadata and duplicated entries.
The following metadata elements were extracted from each publication: author’s name,
number of publications, publication data, references, and number of citations.

We used VOSviewer [8], a tool to map and visualize bibliometric networks of the SLR
publications. This allowed us to identify network properties, such as clusters and node
centrality, and derive characteristics of the SLR papers. These networks were built based on
the number of common citations, bibliographic coupling, co-citations, and co-authorship
relations, representing the bibliographic data of our scientific literature survey, visually.

The PRISMA flow diagram in Figure 1. illustrates our SLR process for further quanti-
tative and qualitative analyses. In the first step, we identified the publications through a
database search, using the logical query described previously, resulting in a total of 149
publications (Scopus: 30; IEEE: 69; Web of Science: 50).

The two main factors for selection were papers written in English and published by
peer-reviewed journals during the last five years, i.e., the 2017–2021 period. Additionally,
we manually added 12 extra papers that proved to be relevant for this paper’s scope.
Finally, the research did not include review papers, conferences, position papers, and
reports.

In the next step, we removed the exact duplicates. In this case, there were none
(n = 0). Afterward, we performed vetting of the collected abstracts. In the first review,
the methodology excluded articles from our research scope (n = 80). The second review
excluded articles not related to prediction models (n = 4). Finally, the remaining 47 papers’
full texts were read, assessed, and fitted on the research scope. In the full-text screening
phase, all papers were considered and were eligible for a systematic review and analysis.
As such, this eligibility phase excluded a total of zero of such remaining papers.

Based on the systematic literature review mentioned in the previous sub-section, a
total of 47 academic articles were subjected to full-text reading and analysis. The themes
were closely linked to the chosen keywords. Table 2 shows the collected articles and the
methods applied.

The identified journal papers covered a broad spectrum of research fields that were
ranked by importance, as follows: engineering, energy, computer science, materials science,
chemistry, physics, and mathematics, as shown in Table 3. This demonstrates a broad
interest in this dissertation subject across many fields of research.
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Figure 1. PRISMA methodology flowchart.

Table 2. Literature results obtained with PRISMA tool.

Title Author Method

Lifetime of Self-Reconfigurable Batteries Compared with
Conventional Batteries [9]

Bouchhima, N., Gossen, M., Schulte,
S., Birke, K.P.

Semi-empirical aging model.

Hybrid VARMA and LSTM Method for Lithium-Ion
Battery State-of-Charge and Output Voltage Forecasting

in Electric Motorcycle Applications [10]
Caliwag, A.-C., Lim, W.

Neural Networking State of
Charge (SoC) prediction

method.

Predicting Life-Cycle Estimation of Electric Vehicle
Battery Pack through Degradation by Self Discharge and

Fast Charging [11]

Singh Ceng, M., Janardhan Reddy,
K.

Battery pack SoC estimation of
self-discharge simulation.

SoH Estimation for Lithium-Ion Batteries Based on
Fusion of Autoregressive Moving Average Model and

Elman Neural Network [12]

Chen, Z., Xue, Q., Xiao, R., Liu, Y.,
Shen, J.

Neural Network prediction
method.

Lifecycle Comparison of Selected Li-Ion Battery
Chemistries under Grid and Electric Vehicle Duty Cycle

Combinations [13]

Crawford, A.J., Huang, Q.,
Kintner-Meyer, M.C.W., Zhang,
J.-G., Reed, D.M., Sprenkle, V.L.,

Viswanathan, V.V., Choi, D.

Neural Network State of Energy
prediction method.

SoH Diagnosis and RUL Prediction for Lithium-Ion
Battery Based on Data Model Fusion Method [14]

Cui, X., Hu, T.
Neural Network prediction

method.

Battery Health Prognosis Using Brownian Motion
Modeling and Particle Filtering [15]

Dong, G., Chen, Z., Wei, J., Ling, Q.
Particle Filtering prediction

model.

Online State-of-Health Estimation for Li-Ion Battery
Using Partial Charging Segment Based on Support

Vector Machine [16]

Feng, X., Weng, C., He, X., Han, X.,
Lu, L., Ren, D., Ouyang, M.

SoH and SVM prediction model.

Co-Estimation of SoC and the SoH for Lithium-Ion
Batteries Based on Fractional-Order Calculus [17]

Hu, X.S., Yuan, H., Zou, C F., Li, Z.,
Zhang, L.

SoC and SoH estimation model.
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Table 2. Cont.

Title Author Method

Charging, Power Management, and Battery Degradation
Mitigation in Plug-in Hybrid Electric Vehicles: A

Unified Cost-Optimal Approach [18]
Hu, X., Martinez, C.M., Yang, Y.

Battery Management System
(BMS) estimation model.

State Estimation for Advanced Battery Management:
Key Challenges and Future Trends [19]

Hu, X.S., Feng, F., Liu, K.L., Zhang,
L., Xie, J.L., Liu, B.

BMS estimation model.

Bayesian Network-Based State-of-Health Estimation for
Battery on Electric Vehicle Application and Its

Validation Through Real-World Data [20]

Huo, Q., Ma, Z., Zhao, X., Zhang, T.,
Zhang, Y.

Bayesian Network SoH
estimation model.

SoH Estimation for Lithium-Ion Battery Using Empirical
Degradation and Error Compensation Models [21]

Jiang, Y., Zhang, J., Xia, L., Liu, Y. SoH predictive model.

Batteries SoH Estimation via Efficient Neural Networks
with Multiple Channel Charging Profiles [22]

Khan, N., Ullah, F.U.M., Afnan,
Ullah, A., Lee, M.Y., Baik, S.W.

SoH Neural Network prediction
model.

Data-Driven SoH Estimation of Li-Ion Batteries with
RPT-Reduced Experimental Data [23]

Kim, J., Chun, H., Kim, M., Yu, J.,
Kim, K., Kim, T., Han, S.

SoH prediction model.

Reliable Online Parameter Identification of Li-Ion
Batteries in Battery Management Systems Using the

Condition Number of the Error Covariance Matrix [24]
Kim, M., Kim, K., Han, S. SoH prediction model.

A Practical Lithium-Ion Battery Model for the State of
Energy and Voltage Responses Prediction Incorporating

Temperature and Ageing Effects [25]

Li, K., Wei, F., Tseng, K.J., Soong,
B.H.

SoE predictive model.

State-of-Health Estimation for Li-Ion Batteries by
Combing the Incremental Capacity Analysis Method

with Grey Relational Analysis [26]

Li, X.Y., Wang, Z.P., Zhang, L., Zou,
C.F., Dorrell, D.D.

SoH and RUL predictive model.

Lithium-Ion Battery SoH Monitoring Based on
Ensemble Learning [27]

Li, Y., Zhong, S., Zhong, Q., Shi, K. Grey Relational Analysis model.

Optimal BP Neural Network Algorithm for SoC
Estimation of Lithium-Ion Battery Using PSO with PCA

Feature Selection [28]

Hossain Lipu, M.S., Hannan, M.A.,
Hussain, A., Saad, M.H.M.

SoC estimation
Back-Propagation Neural

Network model.

A Review of SoH and RUL Estimation Methods for
Lithium-Ion Battery in Electric Vehicles: Challenges and

Recommendations [29]

Lipu, M.S.H., Hannan, M.A.,
Hussain, A., Hoque, M.M., Ker, P.J.,

Saad, M.H.M., Ayob, A.
SoH prediction model.

An On-Line SoH Estimation of Lithium-Ion Battery
Using Unscented Particle Filter [30]

Liu, D., Yin, X., Song, Y., Liu, W.,
Peng, Y.

Neural Networking SoH
prediction model.

Modified Gaussian Process Regression Models for
Cyclic Capacity Prediction of Lithium-Ion Batteries [31]

Liu, K., Hu, X., Wei, Z., Li, Y., Jiang,
Y.

Gaussian Process Regression
model.

RUL Prediction of Lithium-Ion Battery Based on
Gauss-Hermite Particle Filter [32]

Ma, Y., Chen, Y., Zhou, X W., Chen,
H.

RUL and SoH prediction model.

Battery-Degradation Model Based on the ANN
Regression Function for EV Applications [33]

May, G., El-Shahat, A.
Neural Network-based

prediction model.

Lithium-Ion Batteries Health Prognosis Considering
Aging Conditions [34]

El Mejdoubi, A., Chaoui, H.,
Gualous, H., Van Den Bossche, P.,

Omar, N., Van Mierlo, J.
RUL predictive model.

A Design-Based Predictive Model for Lithium-Ion
Capacitors [35]

Moye, D.G., Moss, P.L., Chen, X.J.,
Cao, W.J., Foo, S.Y.

A predictive model of
Capacitors.
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Table 2. Cont.

Title Author Method

A Neural-Network-Based Method for RUL Prediction
and SoH Monitoring of Lithium-Ion Battery [36]

Qu, J., Liu, F., Ma, Y., Fan, J. Neural Network-based model.

Empirical Electrical and Degradation Model for Electric
Vehicle Batteries [37]

Saldaña, G., Martín, J.I.S., Zamora,
I., Asensio, F.J., Oñederra, O.,

González, M.

Degradation model based on
actual LG battery cell.

The Co-Estimation of SoC, SoH, and State of Function
for Lithium-Ion Batteries in Electric Vehicles [38]

Shen, P., Ouyang, M.G., Lu, L.G., Li,
J.Q., Feng, X.N.

SoH predictive model.

Real-Time State-of-Health Estimation of Lithium-Ion
Batteries Based on the Equivalent Internal

Resistance [39]

Tan, X., Tan, Y., Zhan, D., Yu, Z.,
Fan, Y., Qiu, J., Li, J.

SoH and SoC predictive model.

A Health Monitoring Method Based on Multiple
Indicators to Eliminate Influences of Estimation

Dispersion for Lithium-Ion Batteries [40]

Tang, J., Liu, Q., Liu, S.,Xie, X.,
Zhou, J., Li, Z.

SoH estimation of Lithium-ion
batteries.

Fractional-Order Model-Based Incremental Capacity
Analysis for Degradation State Recognition of Li-Ion

Batteries [41]
Tian, J.P., Xiong, R., Yu, Q.Q. SoH predictive model.

ML Applied to Electrified Vehicle Battery SoC and SoH
Estimation: State-of-the-Art [42]

Vidal, C., Malysz, P., Kollmeyer, P.,
Emadi, A.

ML-based prediction model.

State-of-Health Estimation for Lithium-Ion Batteries
Based on the Multi-Island Genetic Algorithm and the

Gaussian Process Regression [43]
Wang, Z., Ma, J., Zhang, L.

SoH estimation of Lithium-ion
batteries.

RUL Prediction and SoH Diagnosis for Lithium-Ion
Batteries Using Particle Filter and Support Vector

Regression [44]
Wei, J.W., Dong, G.Z., Chen, Z.H. RUL and SoH estimation model.

SoH Estimation for Lithium-Ion Batteries Based on
Healthy Features and Long Short-Term Memory [45]

Wu, Y., Xue, Q., Shen, J., Lei, Z.,
Chen, Z., Liu, Y.

Neural Network SoH estimation
model.

State-of-Health Prognosis for Lithium-Ion Batteries
Considering the Limitations in Measurements via

Maximal Information Entropy and Collective Sparse
Variational Gaussian Process [46]

Xiang, M., He, Y., Zhang, H., Zhang,
C., Wang, L., Wang, C., Sui, C.

Neural Network SoH estimation
model.

State-of-Health Estimation for Lithium-Ion Batteries
Based on Wiener Process with Modeling the Relaxation

Effect [47]

Xu, X., Yu, C., Tang, S., Sun, X., Si,
X., Wu, L.

SoH estimation of Lithium-ion
batteries.

Novel Lithium-Ion Battery State-of-Health Estimation
Method Using a Genetic Programming Model [48]

Yao, H., Jia, X., Zhao, Q., Cheng, Z.,
Guo, B.

SoH estimation model.

RUL Estimation of Lithium-Ion Batteries Based on
Optimal Time Series Health Indicator [49]

Yun, Z., Qin, W.
Bayesian Monte Carlo

prediction model.

Capacity Prognostics of Lithium-Ion Batteries Using
EMD Denoising and Multiple Kernel RVM [50]

Zhang, C., He, Y., Yuan, L., Xiang, S. Monte Carlo prediction model.

RUL Prediction for Lithium-Ion Batteries Based on
Exponential Model and Particle Filter [51]

Zhang, L., Mu, Z., Sun, C. RUL prediction model.

Lithium-Ion Battery RUL Prediction with Box-Cox
Transformation and Monte Carlo Simulation [52]

Zhang, Y., Xiong, R., He, H., Pecht,
M.G.

RUL prediction model.

Hybrid Lithium Iron Phosphate Battery and Lithium
Titanate Battery Systems for Electric Buses [6]

Zhang, X., Peng, H., Wang, H.,
Ouyang, M.

Novel hybrid battery system
accounting for behavior.

State-of-Health Prediction for Lithium-Ion Batteries with
Multiple Gaussian Process Regression Model [53]

Zheng, X., Deng, X. SoH Grey Relational Analysis.

SoH Monitoring and RUL Prediction of Lithium-Ion
Batteries Based on Temporal Convolutional

Network [54]

Zhou, D., Li, Z., Zhu, J., Zhang, H.,
Hou, L.

RUL prediction model.
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Table 3. Description of literature review.

Journal No. Rank Publisher Country Field

IEEE Access 25 Q1 IEEE Inc. United States Computer Science

IEEE Transactions on
Industrial Electronics

5 Q1 United States Computer Science, Engineering

IEEE Transactions on
Vehicular Technology

4 Q1 IEEE Inc. United States

Aerospace Engineering, Applied
Mathematics, Automotive

Engineering, Computer Networks
and Communications, Electrical and

Electronic Engineering

Journal of Power Sources 3 Q1 Elsevier The Netherlands Chemistry, Energy, and Engineering

Journal of Energy Storage 2 Q1 Elsevier The Netherlands Energy and Engineering

IEEE Global Humanitarian
Tech. Conference

1 United States
Business, Engineering, Management

and Accounting

IEEE Transactions on Control
Systems Technology

1 Q1 IEEE Inc. United States Engineering

IEEE Transactions on
Transportation Electrification

1 Q1 IEEE Inc. United States
Energy, Engineering and Social

Sciences

Journal of Cleaner Production 1 Q1 Elsevier Ltd. The Netherlands
Business, Energy, Engineering and

Environmental Science

Mechanical Systems and
Signal Processing

1 Q1
Academic
Press Inc.

United States Computer Science, Engineering

Renewable and Sustainable
Energy Reviews

1 Q1 Elsevier Ltd. The Netherlands Energy

From an initial collection of 149 papers, 47 journal papers were analyzed, including
from IEEE Access (25) and IEEE Transactions on Industrial Electronics (5). As shown in
Table 2, most journals were SCImago journals [55] ranked as Q1-quartile (45), representing
96%, while the remaining (2) were Q3 articles. The five primary areas of expertise identified
in the analysis were computer science, engineering, environmental science, transportation,
and mathematics.

Publishers from the 46 selected articles originate from two countries, with the most
extensive set coming from the United States (40), followed by the Netherlands (7). The top
publishers identified are Elsevier Ltd. (6), Institute of Electrical and Electronics Engineers
Inc. (3), the American Institute of Physics (1), Academic Press Inc. (1), and SAE International
(1). The most frequent keywords used in the titles and abstracts of the articles collected are
represented in Figure 2. It is possible to assess three distinct groups, in three assorted colors,
related to different subjects: in red, we show words linked with the theme of forecasting
models, in green, the keywords related to the second model that refers to the theme
of electric batteries, and in blue color, the third model associated with the temperature
conditions under which the batteries operate. In this case, the most relevant topic present
in the literature is “model.”

In Figure 3, we depict the paper’s authors. To have a fitted representation of the
authors, we performed an initial visualization with all 1826 authors. The visualization
of all the authors showed a too crowded and convoluted network, making it difficult to
picture. Hence, we selected authors with a minimum of five published works, resulting in
60 authors. This analysis showed that the scientific community is mostly of Chinese origin.
No filtering on nationality was applied in the papers screening.
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Figure 2. Title and abstract fields analysis in the literature review.

 
Figure 3. Most crucial authors in the literature review.

Figure 4 shows the different keywords present in the text of the consulted articles.
There are four distinct themes highlighted by different colors: a less prevalent theme is
linked to electronics. There is a second cluster, a slightly more important theme, colored in
blue on the theme of ML; the third theme colored in green focuses on EVs; and finally, a
fourth theme displayed in red on Li-ion batteries.

In Table 4, the most important contributors are listed, coupled with their quartile rank
and the insight they provided to this paper:

The most significant contributions retained from this literature review were those of
the following authors: Zhang [6] proposed a hybrid model of electric buses powered by
two types of batteries: one Lithium iron phosphate and one Lithium-titanate-oxide battery,
which would enable buses to be charged in 20 min at fast-charging stations. Thus, Zhang
predicted the buses would suffer a maximum degradation of 20% of total capacity after
eight years of service. Similar studies [56–58] have addressed the same topic in the scope
of passenger and freight mobility with electrical.
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Figure 4. Keyword co-occurrence in the literature review.

Table 4. List of most important papers and their specific contributions.

Author Title Rank Contributions

Qu, J., Liu, F., Ma, Y.,
Fan, J.

A Neural Network-based Method for
RUL Prediction and SoH Monitoring

of Li-Ion Battery [36]
Q1

Data-driven methods are faster and less
complex than model-based methods.

ML methods can improve model accuracy.

Saldaña, G., Martín,
J.I.S., Zamora, I.,

Asensio, F.J., Oñederra,
O., González, M.

Empirical Electrical and Degradation
Model for EV Batteries [37]

Q1

Knowing the rate of battery degradation is
necessary for technology delivery and

performance improvement.
Aging depends on the level of electrical
current, the depth of discharge, and the

number of cycles made.
Temperature, current level, and the number
of cycles are the variables that have the most

significant impact on battery degradation.
The driving environment is also considered

to be of great relevance to battery
degradation.

Singh Ceng, M.,
Janardhan Reddy, K.

Predicting Life-Cycle Estimation of
Electric Vehicle Battery Pack through
Degradation by Self Discharge and

Fast Charging [11]

Q1
Rising need to increase the working life of

battery packs used in electric vehicles.

Vidal, C., Malysz, P.,
Kollmeyer, PEmadi, A.

ML Applied to Electrified Vehicle
Battery SoC and SoH Estimation:

State-of-the-Art [42]
Q1

AI and ML have actively contributed to an
increase in research and development of new

methods to estimate the states of EVs.
Few studies focus on SoC and SoH at

negative temperatures.

Zhang, X., Peng, H.,
Wang, H., Ouyang, M.

Hybrid Li Iron Phosphate Battery and
Lithium Titanate Battery Systems for

Electric Buses [6]
Q1

Novel hybrid battery system.
Accounts for driving behavior and charging

patterns.

Vidal [42] reinforced the importance of applying ML techniques to ascertain the SoH
of the batteries with precision. In addition, he frequently mentioned how there are few
studies about the battery pack performance under cold temperatures. This is of notable
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consequence in, for example, colder regions and, to a lesser degree, to vehicles directly
exposed to the elements, i.e., parked outside [42].

Saldaña [37], similar to Vidal [42], also alluded to the essential nature of knowing the
rate of battery degradation. Furthermore, he stated that battery endurance depends not
only on electrochemical factors such as the temperature to which the batteries are subjected,
on operational aspects such as the degree to which EV users allow their packs to discharge,
but also on the total number of charging/discharging cycles that are completed throughout
the useful life of the car. Finally, he mentioned that the driving environments where the
cars are used are of great relevance to determine how well the batteries will mitigate their
decay.

The convergence point among the paper topics is the relevance that the authors gave
to the application of ML techniques to determine, with higher precision, the batteries’ SoC
and SoH.

3. Surveys

Following the work and analysis performed in the previous sections with the Tesla
dataset, we conducted three surveys to find the habits of electric vehicles drivers. However,
after evaluating the results of the CRISP-DM methodology, we concluded that this method-
ology partially answered the RQ. Furthermore, after cleaning its data, we had to work
with a dataset that was reduced to a third of its original size. Thus, we decided to obtain
more data through surveys to seek more confident conclusions drawn from a dataset with
a more significant number of observations.

3.1. Survey Creation

These questionnaires were developed in either Portuguese or English languages,
depending on their target audiences. The surveys were created on Qualtrics [59], a survey
software tool, and comprised an introduction for the study objectives and its scope and the
questionnaire. Unfortunately, personal data from the respondents was scrubbed from the
database following the European Union General Data Protection Regulation [60]. Overall,
all three surveys had, in everyday choice, eleven multiple items, three of which were on a
Likert scale, scored from 1 to 8 (1—never; 2—once or twice a year; 3—a few times a year;
4—monthly; 5—twice a month, 6—weekly, 7—twice a week and 8—daily).

In the first survey, the target audience was members of the Portuguese Association
of Electric Vehicle Users (UVE—Utilizadores de Veículos Elétricos) [61]. This institution’s
mission is to promote electric mobility and inform the public about the use of electric
vehicles. This association plays an essential role in the success of the adoption of electric
vehicles in Portugal. It has one thousand associated members, and for this reason, it was
considered a potentially attractive data source.

At the suggestion of authors J.C.F and M.S.D, we contacted a representative of the
association to better understand its mission and possibilities of cooperation. Since there
was an agreement between their mission and the purpose of this work, we requested them
to disclose the survey on their associates’ loading and parking habits.

The survey’s decision to disclose to this group was taken because the original dataset
only had Tesla vehicles. With the contribution of this community, we aimed to obtain more
recent data on the same types of vehicles. Likewise, the Tesla survey, the UVE survey,
was shared in the last week of February 2021, two months available to collect responses,
resulting in 54 valid responses.

The second survey reached a more international and broader audience of Tesla drivers
to complement the original dataset for this study that included Tesla vehicles only. Most
of the Tesla vehicles of this group were mainly from before 2017 and exclusively Model S
vehicles. In order to minimize this sample imbalance of Tesla Model S vehicles, an attempt
was made to diversify the data by querying specific Tesla fan groups to obtain a more
diverse and newer sample of new Tesla models owners. The aim was to obtain responses
from owners of the newer Model 3 vehicles, which have improvements to their range
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from previous generations, and some occasional responses from Model Y owners; the
most recent model was released in early 2020, before the CoVID-19 pandemic. The second
survey’s target audience comprised the Reddit online platform subscribers, namely the
TeslaMotors [62] and TeslaLounge [63] Reddit subgroups. By the end of February 2021,
the first Reddit group mentioned had about one million subscribers (equivalent to the
Cyprus population), and the second group had around thirty thousand subscribers. Due to
the international nature of the previously mentioned Reddit groups, the Tesla survey was
performed in English. Therefore, some of the original questions were removed, such as
inquiring about the EV car manufacturer. This step was necessary since these two Reddit
group forums were exclusive for fans of Tesla vehicles.

The TeslaMotors group had strict publication rules, prohibiting the sharing of surveys
within their group. For this reason, this specific survey was limited to the Tesla Lounge
group only. Conversely, several questions were added to the Tesla survey. An example
was an additional question regarding the distance units used by the car. Some car owners
were originally from the United States of America; thus, this specific question was added
to cater to them. This survey was created at the end of February 2021, was published in the
Internet and publicly available for two months, and resulted in 30 valid responses.

A third survey was created and shared with subscribers of the Portuguese magazine
DECO-Proteste [64], a magazine in Portugal. This magazine has a leading role in informing
and advising consumers in Portuguese about the quality and price of various types of
services and goods marketed in Portugal. The DECO survey was created because of the
identified need to obtain more diverse data and more participation. In addition, this survey
was more extensive and sought to obtain answers on electric batteries and the degree of
satisfaction that current EV owners have about the charging infrastructure operating in
Portugal. There was a suspicion that the charging network’s coverage would hinder the
massification of electric vehicles adoption by the public.

The dissertation supervisors contacted a representative of DECO, a journalist, and
scheduled an interview. Their objective was to raise DECO awareness on the relevance and
growing international interest that this topic has sparked. Before the interview, we had
preparation meetings to discuss the specific questions and details of the survey, tailoring
them specifically to DECO’s userbase. As in the previous surveys, the DECO canvas was
also created with the Qualtrics platform. The inquiry was tested on its quality, length, and
conciseness.

The survey had the following requirements: it had to be in Portuguese to satisfy
DECO’s readers; it had to be shared online due to the ongoing Covid pandemic; user
anonymity needed to be assured by The Qualtrics platform by not registering the answerers’
IP addresses; the questionnaire had to be completed in eight or fewer minutes for user
convenience; it had to be answerable on both desktop and mobile devices to assure easy
access. After the requirements were met, we had a meeting with DECO. The DECO survey
was performed after the previous two and published on the last week of March 2021, with
availability through a link. This link was open until the date of writing this research work
(June 2021). This survey yielded ten valid responses, despite being available online for
more time and published in a national reference magazine.

During the past months, several efforts have been made to circumvent the scarcity of
data. The publication of an article by DECO magazine, coupled with a link to the survey,
was an excellent opportunity to populate and diversify the replies of the original dataset.
At the same time, it served the purpose of raising awareness in society on this subject.
The objective was to obtain a substantial number of answers that can lead to more solid
conclusions, which it managed to accomplish, but with modest results.

3.2. Survey Shared Questions

The three surveys followed the same structure process, although they were created in
different stages of the research. The surveys had a different number of questions, but all
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had eleven common questions. These common questions were tailor-made and matched
among all three questionnaires for future comparisons and aggregations.

The list below shows the 11 questions in common between all three surveys and
the reasoning behind their inclusion. These questions were inserted into the SPSS file as
variables or dimensions:

Country—This was a critical variable, which was included due to the international
nature of the Tesla survey with responses from foreign users. However, it is a nominal
qualitative variable, constituted as a simple list of countries—no direct relationship between
a vehicle’s country and its expected mileage.

Year—A continuous quantitative variable, included due to the need to distinguish
different versions of identical EVs. Its values ranged from the year 2010 to 2021. It was
expected that this variable would find a direct relationship between the age of a vehicle
and increasing battery degradation.

Maker—The carmaker was a nominal qualitative variable included in the UVE and
DECO surveys. It was conjectured that this variable would pose some degree of effect over
the cars’ mileage because most cars were from the Tesla manufacturer.

Model—A nominal qualitative variable, which collected data specific to each elec-
tric vehicle model. Similar to the previous variable, it was qualitative and nominal. It
distinguishes different models such that each car manufacturer was not treated as a ho-
mogeneous group. It was expected that different models, even from the same car brand,
would have different behaviors.

Charging Place—This was a nominal qualitative variable that asked people where they
recharged their vehicles. Charging options included their garage, a condominium garage
or a box, public charging stations, or a company’s station. This variable was expected to
explain in part whether vehicles parked outside, and therefore exposed to more significant
variations in ambient temperatures, had a more remarkable degradation of their range.

Freq. Fast—This categorical qualitative variable gave the respondent the chance to
give one of eight answers, following the Likert scale (answers ranged from 1 to 8, where
1 meant a sporadic event, and eight a recurring occurrence). This variable asked people
about the frequency with which they charged their vehicle at a fast public charging station.
In Portugal, fast-charging stations are when power delivery exceeds the 22 kW mark [65].

Freq. Full—A categorical qualitative variable with the same Likert scale as the previous
question. This question asked people how often they charged to the maximum charge their
vehicle battery would allow. It was expected that the vehicles most frequently charged to
their maximum capacity would have worse results in their range.

Freq. Empty—A categorical qualitative variable, with a Likert scale of eight answers,
similar to the previous two questions. This question asked EV owners how often their
vehicle battery is discharged below the ten percent charge threshold. The purpose of
including this variable was to assess how this discharging practice can negatively impact
the battery charge.

Parking Place—The Parking Place column sought to capture the different solutions
that EV owners had found to park their vehicles during the day when they were not on the
road. The purpose of this question was to find a relationship between the vehicles being
parked and a hypothesized degenerative effect on their batteries’ longevity since Li-ion
batteries do not fare well in extreme temperatures.

Mileage—Mileage was a nominal, continuous variable that gauges the vehicles’ current
mileage, measured in kilometers. This variable was expected to have an inverse relationship
with vehicles’ range.

Max Range—was a continuous nominal variable representing the maximum range of
electric vehicles, measured by their owners, and expressed in kilometers. This variable
was used as a dependent variable. Through linear regressions, attempts were made to find
relationships between it and all the previously mentioned variables.
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It was questioned if the frequency of charging and vehicle age variables would impact
the maximum range, at the least. This assumption would translate into a significant
diminishing effect on the vehicle range.

In Section 3, the data cleaning process reduced the Tesla dataset from 1425 initial
responses to a small sample of 500 useable observations. This lower number of observations
was the outcome of the removal of null values and outliers. Due to the shortage of useable
observations and alternative data sources, it was necessary to conduct additional surveys
to provide more data and substance to the conclusions.

Based on our literature review, a gap in state of the art was identified: few
articles [6,37,66,67] referred to the degradation of batteries from the point of view of
electric vehicles user behavior. In most cases, articles only mentioned the point of view of
Electrochemistry. It is known that lithium batteries lose capacity depending on their use
if they are not in use [68]. These drawbacks may constitute a barrier to the adoption of
electric vehicles by EV users.

3.3. Survey Unique Questions

Some surveys had to include specific questions tailored to their different target audi-
ences to their purposes:

UVE survey—this survey was prepared while thinking of a national public that is
more familiar with the reality of Portuguese charging stations. Thus, their specific ques-
tions were more related to satisfaction with the current service provided by the various
charging stations. In addition, it tried to know their enthusiasm for a possible expansion of
the network through financing a charging station in the garages of their condominiums.
Therefore, the questions included were as follows:

• What are the biggest obstacles you face when loading?
• Indicate the degree of satisfaction with the following charging options for Electric

Vehicles.
• How do you see the possibility of having a shared charging system in your condo-

minium’s garage with personal consumption accounting (through the condominium
account)?

• How much would you be willing to pay to install a charging system that would make
your day-to-day easier?

• How much would you be willing to pay for the monthly fee for a charging system
that would make your day-to-day easier?

• How do you see the possibility of having a shared charging system in your company’s
garage with personal consumption accounting (through the company’s account)?

• How often do you take the following types of trips?

Tesla Survey—The Tesla inquiry was aimed at an international audience. For that
reason, there was a high probability of obtaining responses from American respondents.
Hence, the Tesla survey included the following question to lead respondents to answer in
their favorite measurement system: How many Miles/Kilometers does your car have, roughly?
Later, unit conversions were performed in Python and SPSS.

DECO Survey—The DECO survey sought to obtain responses from a wider audience,
both from enthusiastic and experienced users of electric vehicles, as well as from people
who have never tried them. He also tried to capture their feelings and beliefs about this type
of vehicle, particularly the advantages and disadvantages. The following questions were
more opinionated than the reports of their habits or the counting of kilometers traveled
with their vehicles, as in the previous surveys:

• Do you have an electric vehicle?
• Have you ever driven an electric vehicle?
• What are, in your opinion, the main advantages of a 100% electric vehicle?
• Indicate your degree of agreement on each of the following statements:

# EVs are quieter than other vehicles.
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# EVs have great acceleration.
# EVs are environmentally friendly because they produce zero direct emissions.
# The cost of charging an EV is less than the fuel cost of internal combustion

vehicles.
# EVs cost the same as ICE vehicles.
# The technology of electric vehicles has improved, and now they have a much

longer range.
# Charging EVs is difficult.

• What is the probability that the next vehicle you buy will be an electric vehicle?
• Please indicate the importance you place on each of the following factors when

purchasing an Electric Vehicle:

# EV environmental benefits
# EV performance
# EV looks
# Number of available charging stations
# Operating costs
# Charging costs
# EV maximum range
# EV purchase cost
# Ease of buying a second-hand electric vehicle

• What is the maximum charging time you consider acceptable in an electric
vehicle (in hours)?

• How far must an electric vehicle be able to travel on a single charge for you to consider
buying one (in kilometers)?

3.4. Surveys Data Cleaning and Merging Process

The methodology for processing these three datasets in SPSS followed the steps before
the analysis. The steps accomplished were the following:

Standardization of units and formats: Values of dates and distances appeared in indiffer-
ent units. This step focused mainly on the variable Mileage conversion from the Imperial
system to the metric system.

Variable Type adjustments: Importing some variables into SPSS resulted in data type
errors. It was necessary to manually adjust its type according to its nominal, categorical,
and continuous data.

Elimination of null records: Some of the observations from the original dataset had
missing fields. These cases were extracted without content and can be excluded from the
dataset.

Removal of outliers: naturally, some values were too distant from the others, hence the
need to remove them. The outlier removal process focused on the sample percentiles was
also performed in Python as in the data cleaning. All observations outside the interval,
formed by the 5th and 95th percentiles, were considered potential outliers and removed.

3.5. Results and Discussion

The results obtained from the three conducted surveys were focused on the topic about
the EV users’ degree of satisfaction with Portugal’s current EV charging options. The results
of both topics are presented in this section using a similar methodology, both performed
with SPSS program, software owned by IBM, and dedicated to statistical analysis.

After obtaining and processing the data from the three surveys, an analysis was carried
out on the distribution of vehicles according to their mileage.

As seen in Figure 5, most vehicles from the sample traveled few kilometers because
the vast majority have a mileage below 100,000 km. This aligned with the fact that most
vehicles in the sample were less than ten years old. Thus, it came with no surprise that
the least populated group of vehicles were the vehicles with more mileage, in this case,
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with more than 300 thousand kilometers. In contrast, the most numerous vehicles were
precisely the group with less mileage, which is below fifty thousand kilometers.
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Figure 5. Car sample mileage distribution.

Regarding the distribution of the studied vehicles, it follows a normal distribution
(see Figure 6). Many of the vehicles in this sample have a range between three hundred and
eight hundred kilometers. This significant autonomy is explained as most of the vehicles
in this sample are Tesla’s Model S, a specific model with greater autonomy than most EVs.
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Figure 6. Car maximum range distribution.

The distribution of vehicles in the sample by country, the original dataset has a
disproportionate representation of Asia and the Pacific vehicles. This is because there are
mainly vehicles from mainland China. The three surveys conducted aimed to add new
vehicles to the sample and thus obtain vehicles from other continents/countries, with
different ages and miles traveled. However, due to the low participation in the survey
responses, this objective was not successfully achieved.

Figure 7 shows the sample composition by country. It is possible to see that the
surveys carried out managed to add 28 observations to the dataset for Portugal’s country.
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However, this number was small due to the necessary data processing that included, for
instance, the removal of outlier values and duplicates.
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Figure 7. Car sample distribution by country.

After studying the distribution of variables, an analysis was made of how the various
variables influenced the continuous variable Mileage. Then, using the SPSS program, a
linear regression was performed. According to the specifics of the problem at hand, it is
the most suitable approach to measure the future values of a continuous variable. Linear
regression is of the most basic types of regression in Machine Learning. Logistic Regression
needs a predictor variable and a dependent variable (Mileage) linearly related to each other,
and it involves the use of a best-fit line.

Linear regression is instrumental in this case because the variables are related lin-
early. Thus, the more significant the effect of charging, the bigger should be the battery
degradation effect. In addition, linear regression analysis is particularly susceptible to
outliers; thus, it should not be used to analyze big data sets. Fortunately, this dataset is
small of observations, and it was cleaned of outliers; thus, it should not pose any problems.
In Table 5, we can observe that many variables positively correlate with the dependent
variable, Mileage. Those variables were Country, Year, Maker, Charging Place, and Parking
Place.

Table 5. SPSS coefficients table with all variables.

Model Unstandardized B
Coefficients Std.

Error
Standardized Coefficients

Beta
t Sig.

(Constant) −57,621.016 22,213.139 −2.594 0.14
Country 18.187 28.668 0.080 0.634 0.530

Year 28.626 11.015 0.482 2.599 0.014
Maker 7.249 3.603 0.275 2.012 0.052
Model −0.543 4.627 −0.016 −0.117 0.907

Charging place 6.255 8.600 0.098 0.727 0.472
Freq. Fast −12.153 9.883 −0.142 −1.230 0.228
Freq. Full 6.294 6.372 0.114 0.988 0.331

Freq. Empty −5.934 7.133 −0.097 −0.832 0.411
Parking place 27.391 17.142 0.181 1.598 0.120

Mileage 0.000 0.000 −0.068 −0.383 0.704

However, there is a smaller group of variables, Model, Freq. Fast, Freq. Empty, that
scaled inversely to the Mileage variable. This means the more prominent the values of
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these variables were, the less mileage the car was likely to achieve. However, it was not
significant enough to explain the mileage variance verified on all vehicles.

Finally, one direct variable with enough significance confirmed the null hypothesis:
the variable Year. This hinted that the older a vehicle was, most likely it had less available
mileage on a full charge.

The model’s effectiveness was analyzed, considering all the variables shown below in
Table 6.

Table 6. Model Summary—Variable: Max Range.

Model R R Square
Adjusted R

Square
Std. Error of the

Estimate

1 0.799 a 0.639 0.529 102.80863
a Predictors: (Constant), Mileage, Model, Freq. Fast, Freq. Full, Parking Place, Freq. Empty, Charging Place,
Maker, Year.

The Max Range variable was defined as the dependent variable and juxtaposed against
the remaining ones who acted as independent variables. By employing a linear regression
method, results were obtained and expressed above in Table 6 It shows that the ten
dependent variables can obtain an R Squared of 63.9%, meaning these variables explain
two-thirds of the Max Range variability. Conversely, around one-third of the Max Range
variable remains unexplained due most likely to external factors not considered.

The model summary results shown in Table 6 do not account for each variable’s
weight on the model and achieve such a high level of performance. It treats all variables
as a monolith. A new analysis of variance (ANOVA) test was created to determine the
relative weight of each variable, which considered the variation of the R squared value.
This way, it was possible to discover the change in R Squared for each predictor. All was
performed without the need for extra computations and fitting every variable on a single
model. Table 7 below shows in the Sig column the individual importance each variable has.

Table 7. Analysis of Variance test—ANOVA—Variable: Max range (km).

Sum of Squares df Mean Square F Sig. R Square Change

Subset Tests Country 4253.863 1 4253.863 0.402 0.530 a 0.004
Year 71,381.357 1 71,381.357 6.753 0.014 a 0.074

Maker 42,770.419 1 42,770.419 4.047 0.052 a 0.044
Model 145.619 1 145.619 0.014 0.907 a 0.000

Charging
place

5592.195 1 5592.195 0.529 0.472 a 0.006

Freq. Fast 15,981.447 1 15,981.447 1.512 0.228 a 0.017
Freq. Full 10,310.086 1 10,310.086 0.975 0.331 a 0.011

Freq. Empty 7315.523 1 7315.523 0.692 0.411 a 0.008
Parking Place 26,985.191 1 26,985.191 2.553 0.120 a 0.028

Mileage 1548.508 1 1548.508 0.147 0.704 a 0.002
Regression 616,605.593 10 61,660.559 5.834 0.000 b

Residual 348,797.272 33 10,569.614
Total 965,402.865 43

a Tested against the entire model. b Predictors in the Full Model: (Constant), Mileage, Model, Freq. Fast, Freq. Full, Country, Parking Place,
Freq. Empty, Charging place, Maker, Year.

Regarding the significance of the variables studied, the Maker variable has not proven
to be significant on the variability of the Max Range variable. The Maker variable reached a
value of 0.52, directly below the significance threshold, as illustrated in Table 7.

The R Square Change column displays the change in R Square resulting from a new
predictor (or block of predictors). It highlights the reduction in the explanatory power
of the model if each of the variables is removed. It is a helpful way to assess the unique
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contribution of new predictors (or blocks) to explaining variance in the outcome. In the
case of this sample, the most impactful variable was the variable Year.

3.5.1. EV Adoption Obstacles—UVE and DECO Surveys

The UVE and DECO surveys were carried out to understand how satisfied respondents
were with electric vehicles. The objective of this sub-section was to obtain data and to
answer the research question— “Which factors might present themselves as a hindrance to
the adoption of EV vehicles by citizens”?

A demographic analysis of the people surveyed was carried out. Ranging from
Figures 8–11 show representations of the demographic distribution results. Most people
that responded to the survey were male, representing 77% of the responses.
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Figure 8. Gender distribution of survey respondents.
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Concerning age distribution, Figure 9 shows that nearly two-thirds were between
40 and 59 years old. The second-largest group was young adults aged between 26 and
39 years old. Lastly, adults over 60 years of age represent 14.29% of the total respondents.

The following distribution was obtained regarding the household size of the people
surveyed, shown in Figure 9. First, the majority, comprising more than half of the responses
received, referred to people whose households had three or more members, second came
households with two elements per household, and finally, people living alone. Therefore,
Figure 9 may indicate a need for more than one vehicle per household, confirmed in
Figure 10.

As expected, more people per household is equivalent to more vehicles per household.
Figure 10 corroborates this assumption: a majority between homes with two and three
vehicles and a small minority of households with only one vehicle.

This survey showed that the public is becoming sensitive to environmental issues. For
instance, in a multiple-choice question on the main advantages of an electric vehicle, the
most voted answer (23) was the environmental advantage (see Figure 12). The second most
selected answer was the low operating cost that an EV has. These results are encouraging
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because they suggest a will for EV adoption and savings opportunities for the consumer.
Opposite to this trend, a minority of nine people responded that EVs do not have any
advantage over internal combustion vehicles.
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Figure 12. Perceived main advantages of an electric vehicle.

Figure 13 below reports the main difficulties that current electric vehicles users face
during the daily operation of their vehicles. The most frequent problem was the great
distance to the charging stations (public and private networks). It indicates a significant
deficit in national infrastructure. “Range anxiety” is a frequent problem mentioned by the
scientific community [69,70], referred to as a source of stress due to the combination of
reduced autonomy with inefficient charging stations network.
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Figure 13. Predominant charging obstacles identified by UVE users in Portugal.

Second, the high price of these stations was indicated as an obstacle. However, it is
impossible to confirm with the surveys which would be a more suitable price for Portuguese
consumers. It was also not mentioned on which of the available charging networks these
costly charging sessions were made.

Third, 15.38% of the users indicated the impossibility of loading EVs at their workplace.
This indicates that Portuguese companies still resist transitioning to EVs and providing the
necessary charging infrastructure to their employees. Instead, companies should install
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electric charging stations in their car park facilities, and municipalities should install
stations in nearby car parks to office buildings.

Other inconveniences reported were conflicts in the condominium, which indicate a
lack of conditions for installing this type of infrastructure in Portuguese condominiums.
The prominent loading locations preferred by UVE members are presented in Figure 14.
Half of the respondents prefer to make their shipments from home. Allied to the previous
graph, which denounced a considerable distance between charging stations and perhaps an
insufficient national coverage, this preference for domestic charges is not surprising. The
second largest group preferred to upload in the public network, Mobi.E network, which
has a greater expression in the country.

 

47.06%

26.47%

8.82%

4.41%

2.94%

1.47%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Home

Public grid

Firm

Condo

Private grid

Outro local

23.53%

2.94%

61.76%

2.94%

8.82%

0% 10% 20% 30% 40% 50% 60% 70%

A few days per week

Every 2 weeks

Most days in a week

Once per month

Once per week

Figure 14. Preferred charging locations.

There is a preference for collective solutions, such as loading at the firm (8.82%) and the
condominium garage (4.41%). However, these solutions still show low levels of adherence.
The least used solution is charging in a private network (2.94%), with few users. The Tesla
network, an example of a private grid, has few charging stations in Portugal. For example,
when this research work was performed, there were no Tesla charging stations operating
in the country’s two main cities, Lisbon, and Oporto. Despite that, it has eight stations that
allow the country’s crossing from end to end with Tesla vehicles.

Drivers’ driving habits can perhaps explain the preferred use of charging at home.
Most drivers travel short distances. Figure 15 below shows that most drivers (61.76%)
make daily trips less than 50m in length that may be the commuting route from home to
work. For this reason, in the survey, most expressed the need to have a charging station
close by, and in the absence, they preferred to charge their vehicles at home.

Regarding the users’ satisfaction with the existing charging solutions, the consumers’
preferences are represented in Figure 16. In first and second places are Mobi.E network
(20.41%) and its Miio application (19.39%), an optional service, followed by the recent
charging network of the Continente group and by other undifferentiated service stations
not belonging to any of the leading suppliers (16.33%).

Figure 16 below represents users and their degree of satisfaction with the country’s
different available charging station networks. Again, most users were disappointed with
the quality of the charging stations networks, and only a tiny minority is happy or does
not use them at all.

Below 7% are the least popular options in this study: the Tesla-branded charging net-
work, private charging solutions at home, collective garage solutions, workplace solutions,
or startup ChargeSurfing’s app.
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Figure 15. Frequency of trips up to 50 Km per daily.
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Figure 16. Satisfaction with EV charging solutions in Portugal.

There is a relationship between the number of charging stations that a network has
available to its customers and its popularity: the Mobi.E network, the most popular
solution, has 2390 charging stations in mainland Portugal [71], the most significant number
of stations per network. In addition, there is also their proprietary application, the Miio
app, which allows users to locate charging stations. Furthermore, the Miio app informs
users in real-time about whether the station is available or has any impediment, such as
breakdowns or users occupying the station. In addition, the application allows the user to
make payments and integrates all steps in the same platform as an extra convenience.

Respondents’ second most popular option is the Continente network, the solution
with the second broadest national coverage, with roughly 27 charging stations operating
throughout the country, strategically installed next to Continente supermarkets.

Tesla’s network has the lowest coverage of all the networks listed and has only eight
superchargers operating in the country. This number of Tesla chargers may seem low,
but the spacing between them is enough to drive across the country, both transversely
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and longitudinally. In addition, Tesla has a network of partner stations compatible with
Tesla vehicles, called Destination Chargers, usually located in hotels and supermarkets to
complement the superchargers, but with the added drawback of providing a lower voltage
and thus a slower charging speed.

3.5.2. Potential for Expansion—DECO Survey

DECO asked us to include a different subject in our study, tangential to this disser-
tation’s topic and to document the respondents’ answers: EV owners’ opinion regarding
the current service provided by the Portuguese EV charging networks, their acceptance
of future network coverage expansions, and an overall improvement of the user charging
experience. These different topics do not aim to answer any of the two research questions.
Instead, they were included as a compromise to obtain our survey published to their
subscriber base.

Regarding the attractiveness of the existing network expansion, Figure 17 shows that
most survey participants expressed a high interest in having a shared charging system
installed in their condominium’s garage. All that had a positive feeling were added to this
first group. People with a favorable opinion represent most reported cases, meaning they
had a greater interest in adopting this domestic solution. However, the second biggest
group voiced no significant interest in receiving this technology for unspecified reasons. It
can probably be because of this offshoot of people charging their EV cars elsewhere, other
than their homes/condominiums. Still, it is worthy to mention the interest this solution
raised among the respondents. Furthermore, it tried to quantify this interest in costs for
users.
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Figure 17. Importance given to a shared charging system in the condominium’s garage.

Another common topic among respondents was the importance that people gave
to charging stations in the vicinity of their homes. In Figure 18, most people responded
positively to this question, suggesting a need to be fulfilled to potential buyers of EV. It
confirms the previous Figure interpretation that EV owners of this sample are charging
their vehicles more at any charging station near the condominiums. This outcome indicates
considerable interest in the expansion and densification of charging networks, notably in
public roads.



World Electr. Veh. J. 2021, 12, 233 24 of 31

 

question, “How much would you be willing to pay fo

0.00 €

0€ 100€

100€ 200€

500€ 1000€

>1.000€

Figure 18. Importance of nearby available charging stations.

Next, people were asked what monetary amount they would consider acceptable for
installing a charger in their condominium garage, regardless of other existing factors. Most
respondents (46%) replied that they would not accept to pay any amount. This response
had a dominant expression and was expected when the survey was launched. However,
these answers may be related to multiple factors that the DECO survey did not predict,
such as the economic situation of respondents or simply a pure lack of interest in the
announced solution. Thus, we are interested in analyzing the people willing to pay for
this service, representing 54%. A smaller group of 31% declared that they would accept a
one-time expenditure of up to 200 euros, and a more favored minority declared willingness
to pay above 1000 euros, as shown in Figure 19.
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Figure 19. Amount accepted for the installation of chargers.

Nevertheless, the installation of a charger is one of the expenses involved. It is also
necessary to account for the monthly cost of its everyday use. This cost is a monthly fee
that each owner must pay for the service maintenance. Responses to the following survey
question, “How much would you be willing to pay for the monthly fee for a charging
system that would make your day-to-day easier?”, show that most people do not want to
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pay again for this service. Only a third of people declared that they would accept to pay a
monthly fee, according to the distribution made in Figure 20 below.
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Figure 20. Acceptable monthly fee for the installation of a charger.

Furthermore, only 5% would agree to pay more than €40 extra per month. This
reluctance in spending makes it challenging to accept the service as a first step.

Following this descriptive statistical study, a search was performed between all vari-
ables for strong, positive, and statistically significant correlations. To this end, several
correlations were found that can attest to the potential and market to expand the current
EV station coverage.

The first correlation found was between the Indoor/Outdoor variable, a new variable
created through feature engineering, and the variables Importance: of EV maximum range,
Agreement: Charging EVs is difficult, and Importance: number of charging stations.

The Indoor/Outdoor variable expresses in percentage the probability that the user
prefers to charge at public stations rather than at home. Values of this variable closer
to zero represent a greater appetence to charging the car with solely domestic solutions
(wall chargers at home or the condominium). In contrast, values closer to 1 represent the
probability of using domestic, public, and private charging solutions.

In Table 8, the model summary compares the dependent variable Indoor/Outdoor
against all its predictors. SPSS reached an R Squared value of 0.444. This value means that
the model had a positive and moderate correlation and can explain 44.4% of the variability
between its independent and dependent variables.

Table 8. Model Summary—Usage of outdoor charging solutions and obstacles found.

Model R R Square
Adjusted
R Square

Std. Error of the
Estimate

Change Statistics
R Square
Change

F Change df1 df2
Sig. F

Change

1 0.667 a 0.444 −1.222 1.63299 0.444 0.267 3 1 0.852

a Predictors: (Constant), Importance: EV maximum range, Agreement: Charging EVs is difficult, Importance: number of charging stations.

By analyzing variance (see Table 9 below), the model reached a significance or p value
of 0.012, a value below 0.05, which confirms it is statistically significant. A value of 0.012
signals evidence against the null hypothesis (that the variables are not correlated), as there
is less than a 5% probability of being correct. Therefore, the null hypothesis is rejected,
and the alternative hypothesis is accepted (the dependent and independent variables are
correlated).
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Table 9. Analysis of variance—Importance of the number of available charging stations.

Model
Sum of
Squares

df
Mean

Square
F p Value

Regression 2.133 3 0.711 7.267 0.012 a

Residual 2.667 1 2.667
Total 4.800 4

Dependent Variable: Indoor/Outdoor charging. a Predictors: (Constant), Importance: EV maximum range,
Agreement: Charging EVs is difficult.

After experiments, we found another correlation between a dependent variable Impor-
tance: having a shared charging system, and the following variables as independent ones:
Age distribution, Agreement: Charging EVs is difficult, Agreement: EV charging cost is
low, Frequency of trips between 50 and 100 Km per day, Frequency of trips up to 50 Km per
day, Frequency of trips with more than 100 Km per day, Gender distribution, Importance:
EV maximum range, Importance: operating costs, Importance: operating costs, Maximum
acceptable charging time for an EV (Hours), Number of elements per household, Minimum
range in kilometers to consider buying an EV and lastly Number of vehicles per household.
With this selection of independent variables, this model obtained an R Squared of 69.0%,
suggesting a positive and strong correlation, as shown in Table 10.

Table 10. Model Summary—Shared charging system b.

Model R R Square
Adjusted
R Square

Std. Error of the
Estimate

Change Statistics
R Square
Change

F Change df1 df2
Sig. F

Change

1 0.831 a 0.690 0.450 1.317 0.690 2.867 14 18 0.019

a Predictors: (Constant), Number of vehicles per household, Frequency of trips between 50 and 100 Km per day, Maximum acceptable
charging time for an EV (Hours), Frequency of trips up to 50 Km per day, Gender distribution, Agreement: Charging EVs is difficult,
Frequency of trips with more than 100 Km per day, Agreement: EV charging cost is lower, Number of elements per household, Importance:
operating costs, Age distribution, Minimum range in kilometers to consider buying an EV, Importance: EV maximum range, Importance:

charging costs. b Dependent Variable: Importance of having a shared charging system in the condominium’s garage with individual
consumption accounting (through the condominium account)?

As with the previous model, it is necessary to analyze its variance to determine
whether the results of the surveys are significant. In addition, we need to know whether we
reject the null hypothesis (whether the predictor elements explain the dependent variable)
or not. The results of this analysis are shown in Table 11 below.

Table 11. Analysis of Variance—Importance of having a shared charging system.

ANOVA a

Model
Sum of
Squares

df
Mean

Square
F p Value

1

Regression 69.667 14 4.976 2.867 0.019 b

Residual 31.242 18 1.736

Total 100.909 32
a Dependent Variable: Importance of having a shared charging system in the condominium’s garage with

individual consumption accounting (through the condominium account)? b Predictors: (Constant), Number of
vehicles per household, Frequency of trips between 50 and 100 Km per day, Maximum acceptable charging time
for an EV (Hours), Frequency of trips up to 50 Km per day, Gender distribution, Agreement: Charging EVs is
difficult, Frequency of trips with more than 100 Km per day, Agreement: EV charging cost is lower, Number
of elements per household, Importance of operating costs, Age distribution, Minimum range in kilometers to
consider buying an EV, Importance of EV maximum range, Importance of charging costs.

As shown in Table 11, the analysis of variance obtained a p value of 0.019, and therefore
below 0.05, which allows us to confirm that this model has a positive, strong, and significant
correlation.
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It is possible to gauge which variables had the most significant weight in the correla-
tion found. Studying the coefficients represented in Table 12 makes it possible to determine
which variables are most important. However, only two variables from this model were
statistically significant, with a significance value below 0.05. These variables were: Agree-
ment: EV charging cost is lower and 100 Km per day and Frequency of trips with more
than 100 Km per day.

Table 12. Coefficients table—Importance of having a shared charging system.

Coefficients a

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

Correlations

B
Std.

Error
Beta Zero-Order Partial Part

(Constant) −5.693 5.288 −1.077 0.296

Agreement: Charging EVs is
difficult

−0.319 0.259 −0.199 −1.233 0.233 −0.270 −0.279 −0.162

Importance: charging costs 0.752 0.776 0.269 0.968 0.346 0.382 0.222 0.127

Importance: EV maximum
range

−0.242 0.514 −0.117 −0.471 0.644 0.045 −0.110 −0.062

Maximum acceptable
charging time for an EV

(Hours)
0.059 0.137 0.103 0.429 0.673 0.113 0.101 0.056

Agreement: EV charging
cost is lower

0.593 0.230 0.465 2.577 0.019 0.435 0.519 0.338

Importance: operating costs 1.033 0.791 0.357 1.307 0.208 0.443 0.294 0.171

Minimum range in
kilometers to consider buy

an EV
−0.001 0.002 −0.119 −0.605 0.552 −0.286 −0.141 −0.079

Frequency of trips up to 50
Km per day

0.204 0.265 0.114 0.771 0.451 −0.068 0.179 0.101

Frequency of trips between
50 and 100 Km per day

0.009 0.138 0.012 0.068 0.946 0.075 0.016 0.009

Frequency of trips with
more than 100 Km per day

0.275 0.126 0.327 2.185 0.042 0.429 0.458 0.287

Gender distribution 0.178 0.708 0.047 0.251 0.805 −0.110 0.059 0.033

Age distribution −0.185 0.515 −0.068 −0.359 0.723 −0.143 −0.084 −0.047

Number of elements per
household

−0.062 0.425 −0.025 −0.146 0.886 −0.241 −0.034 −0.019

Number of vehicles per
household

0.107 0.425 0.050 0.253 0.803 −0.221 0.060 0.033

a Dependent Variable: Importance: having a shared charging system in the condominium’s garage with individual consumption accounting
(through the condominium account)?

Therefore, this allows us to state that respondents’ importance to having a joint
charging system is even more significant as they agree that EVs are cheaper to use than
internal combustion vehicles. Moreover, this seems more critical; the greater the frequency
of trips a person makes corresponds to a longer distance of more than 100 km a day.

4. Conclusions

This research work aimed to identify the main behavioral factors that impact Li-ion
battery performance by studying everyday human actions when interacting with EVs.
Based on the three surveys created, it was possible to conclude that charging and parking
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habits are negligible at best and may even be irrelevant, at least for the sample of EVs
(Electric vehicles) studied. Furthermore, charging habits did not negatively impact the
batteries’ longevity as initially speculated. The results have shown that the cars’ increasing
age is by far the most significant variable. Vehicles from this sample who were regularly
fully charged did not display a significantly lower max range than the other vehicles that
avoid that practice.

The research question focused on the lack of EV massification in Portuguese society.
Its objective was to ascertain the factors that may be present and hinder EV adoption
by citizens. To this end, the respondents of the three surveys were asked questions that
sought to measure their degree of satisfaction with the current electrical charging network
in Portugal, identify the main obstacles they encountered while using these charging
networks, and measure their acceptability in funding the installation of smaller chargers in
their condominiums. First, the results from the statistical analysis showed that the users
were satisfied with the service quality provided by Mobi.E network. Second, the main
obstacles pointed out were the long distance between public and private chargers. Finally,
a large portion of the EV userbase was willing to fund in part the installation of chargers in
their condominiums.

Contributions

This paper sought answers to the research question: RQ— “What are the factors
that present themselves as barriers to the adoption of EV vehicles?” The question was
answered by analyzing the Tesla dataset and the three questionnaire results. It was shown
in Section 3.5.2 that the most significant variable for this disappointment was the high
distance between charging stations.

Concerning the literature review conducted in Section 3, the work clarifies that only
one scientific paper [6] quantified the battery degradation from the drivers’ charging and
operating habits of this type of vehicle. Most of the papers collected by employing the
PRISMA methodology were centered around the electrochemistry field of expertise. These
studies focused primarily on physical factors the batteries were subjected to, such as
voltage, materials composition, and the varying range of temperatures.

During the research, it was possible to reach several conclusions that challenged some
initial questions we had. First, the question of a higher frequency of using a fast-charging
station harms the vehicle’s range was questioned. Likewise, the assumption that the
frequency with which drivers allowed the batteries to charge to 100% or discharge below
10% would each hurt autonomy was also challenged. For the sample studied, these two
theories seem to have had no adverse effect on battery autonomy. The effect of these three
categorical variables (Freq. Fast, Freq. Full, and Freq. Empty) was unexpected, as it was
anticipated that they would affect full range to some degree of significance. Instead, the
values of these three variables in this sample seemed to disprove that belief. Finally, the
idea that Li-ion batteries in EVs degrade in the same way as cell phone lithium batteries
after several years pass by or after several hundred cycles are completed seems to be
refuted. Additional evidence on this will be needed to draw definitive conclusions.

Conversely, the research allowed to state that the price of EVs is the main factor
preventing the purchase of these types of vehicles. However, while the price is a vital factor
since EVs and ICE cars have not yet reached price parity, it was found that there were other
factors at play, specifically the EV’s short-range and the high distance between charging
stations. These observations can be confirmed in Section 3.5.2, where a correlation was
found between the following questions: 1—EVs cost the same as ICE vehicles, 2—EVs have
great acceleration, and 3—The cost of charging an EV is less than the fuel cost of internal
combustion vehicles, and the probability that the respondents’ next car will be an EV.
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