
 Open access Proceedings Article DOI:10.1109/IRI.2013.6642522

Mining features from the object-oriented source code of software variants by
combining lexical and structural similarity — Source link

Ra'Fat Al-Msie'deen, Abdelhak-Djamel Seriai, Marianne Huchard, Christelle Urtado ...+1 more authors

Institutions: Mines ParisTech

Published on: 14 Aug 2013 - Information Reuse and Integration

Topics: Software product line, Feature model, Software framework, Software visualization and Software

Related papers:

 Feature Location in a Collection of Software Product Variants Using Formal Concept Analysis

Automatic Documentation of [Mined] Feature Implementations from Source Code Elements and Use-Case
Diagrams with the REVPLINE Approach

 Extraction of feature models from formal contexts

Mining Features from the Object-Oriented Source Code of a Collection of Software Variants Using Formal Concept
Analysis and Latent Semantic Indexing.

 Feature Identification from the Source Code of Product Variants

Share this paper:

View more about this paper here: https://typeset.io/papers/mining-features-from-the-object-oriented-source-code-of-
55kzvjv63a

https://typeset.io/
https://www.doi.org/10.1109/IRI.2013.6642522
https://typeset.io/papers/mining-features-from-the-object-oriented-source-code-of-55kzvjv63a
https://typeset.io/authors/ra-fat-al-msie-deen-2un9uuw689
https://typeset.io/authors/abdelhak-djamel-seriai-17jkse9b8m
https://typeset.io/authors/marianne-huchard-18ofrs1zq0
https://typeset.io/authors/christelle-urtado-3bhs1c14ej
https://typeset.io/institutions/mines-paristech-30sh0nw6
https://typeset.io/conferences/information-reuse-and-integration-pgoya3sx
https://typeset.io/topics/software-product-line-17flemp4
https://typeset.io/topics/feature-model-13ilzks4
https://typeset.io/topics/software-framework-q4ezc89n
https://typeset.io/topics/software-visualization-29dgo10f
https://typeset.io/topics/software-2ejyxl2f
https://typeset.io/papers/feature-location-in-a-collection-of-software-product-x8mjmrki3w
https://typeset.io/papers/automatic-documentation-of-mined-feature-implementations-lwjcq6yy3n
https://typeset.io/papers/extraction-of-feature-models-from-formal-contexts-3455d8nnbz
https://typeset.io/papers/mining-features-from-the-object-oriented-source-code-of-a-eextc90xei
https://typeset.io/papers/feature-identification-from-the-source-code-of-product-2asciaravb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/mining-features-from-the-object-oriented-source-code-of-55kzvjv63a
https://twitter.com/intent/tweet?text=Mining%20features%20from%20the%20object-oriented%20source%20code%20of%20software%20variants%20by%20combining%20lexical%20and%20structural%20similarity&url=https://typeset.io/papers/mining-features-from-the-object-oriented-source-code-of-55kzvjv63a
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/mining-features-from-the-object-oriented-source-code-of-55kzvjv63a
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/mining-features-from-the-object-oriented-source-code-of-55kzvjv63a
https://typeset.io/papers/mining-features-from-the-object-oriented-source-code-of-55kzvjv63a

HAL Id: lirmm-00862512
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00862512

Submitted on 16 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Features from the Object-Oriented Source Code
of Software Variants by Combining Lexical and

Structural Similarity
Ra’Fat Ahmad Al-Msie’Deen, Abdelhak-Djamel Seriai, Marianne Huchard,

Christelle Urtado, Sylvain Vauttier

To cite this version:
Ra’Fat Ahmad Al-Msie’Deen, Abdelhak-Djamel Seriai, Marianne Huchard, Christelle Urtado, Sylvain
Vauttier. Mining Features from the Object-Oriented Source Code of Software Variants by Combining
Lexical and Structural Similarity. IRI: Information Reuse and Integration, Aug 2013, Las Vegas, NV,
United States. pp.586-593, 10.1109/IRI.2013.6642522. lirmm-00862512

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00862512
https://hal.archives-ouvertes.fr

Mining Features from the Object-Oriented Source Code of Software Variants by

Combining Lexical and Structural Similarity

R. AL-msie’deen, A.-D. Seriai, M. Huchard

LIRMM / CNRS & Montpellier 2 University, Montpellier, France

Al-msiedee, Abdelhak.Seriai, huchard@lirmm.fr

C. Urtado and S. Vauttier

LGI2P / Ecole des Mines d’Alès, Nı̂mes, France

Christelle.Urtado, Sylvain.Vauttier@mines-ales.fr

Abstract

Migrating software product variants which are deemed

similar into a product line is a challenging task with main

impact in software reengineering. To exploit existing

software variants to build a software product line (SPL),

the first step is to mine the feature model of this SPL

which involves extracting common and optional features.

Thus, we propose, in this paper, a new approach to mine

features from the object-oriented source code of software

variants by using lexical and structural similarity. To

validate our approach, we applied it on ArgoUML, Health

Watcher and Mobile Media software. The results of this

evaluation showed that most of the features were identified1.

Keywords: feature mining, software product variants,

structural similarity, code dependencies, Formal Concept

Analysis, Latent Semantic Indexing, Software Product Line.

1 Introduction

A software product line (SPL) is a family of related pro-

gram variants that share a common code base [5]. In the

commonly encountered software development cycles, soft-

ware product variants often evolve from an initial product

developed for and successfully used by the first customers.

When software variants become numerous, switching to a

rigorous software product line engineering (SPLE) process

is a solution to tame the increase in complexity of all en-

gineering tasks. To switch to SPLE starting from a collec-

tion of existing variants, the first step is to mine a feature

model that describes the SPL. This further implies to iden-

1This work has been funded by grant ANR 2010 BLAN 021902

tify the software family’s common and variable features.

Manual reverse engineering of the feature model for the

existing software variants is time-consuming, error-prone,

and requires substantial effort [14]. Assistance tools may

be of great interest in this task. In our previous work [2] we

have presented an approach for feature location in a collec-

tion of software product variants based on Formal Concept

Analysis (FCA). Our approach identifies functional features

through the identification of their respective implementa-

tions which consist of object-oriented building elements

(OBEs) of the source code such as packages, classes, at-

tributes, methods or method body elements (local variable,

attribute access, method invocation). Our hypothesis is that

optional (resp. common) features appear in some but not all

(resp. all) variants, thus they are implemented by OBEs that

appear in some but not in all (resp. all) variants. Then our

proposal consisted in dividing the OBE set in some specific

subsets: The Common Block of OBEs (CB) and a set of

blocks composed of variables OBE (Blocks of Variations,

denoted as BVs). In a second work [1] we extended our

first approach to gain more precision on the sets of OBEs

candidates to be the implementations of features. We split

the common block and the blocks of variation using lexi-

cal similarity between OBEs, through the Latent Seman-

tic Indexing technique (LSI). In this paper, we investigate

a new approach, inspired by our previous results, which

consists in enhancing the use of FCA and LSI, with the

use of structural dependencies between OBEs. We con-

sider only variants whose variability is expressed by the

existence or not of some packages and classes (i.e., vari-

ability is expressed through packages and classes). Based

on our previous experience on the case studies, we found

that a feature was at most implemented at package or class

levels (e.g., ArgoUML-SPL and Mobile Media variants are

expressed at package and class level respectively). Our ap-

proach is detailed in the remainder of this paper as follows.

rafa
Text Box
IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA 978-1-4799-1050-2/13/$31.00 ©2013 IEEE

rafa
Text Box
586

Section 2 briefly presents the background needed to under-

stand the proposal. Section 3 shows an overview of our

approach. Section 4 presents the feature mining process.

Section 5 describes the experiments that were conducted to

validate our proposal. Section 6 discusses the related work,

while section 7 concludes and provides perspectives for this

work.

2 Background

This section quickly introduces Formal Concept Analy-

sis (FCA), Latent Semantic Indexing (LSI) and the struc-

tural dependencies between object-oriented building ele-

ments which we consider relevant for our approach.

2.1 Formal Concept Analysis (FCA)

Galois lattices and concept lattices [7] are core structures

of a data analysis framework (Formal Concept Analysis)

for extracting an ordered set of concepts from a dataset,

called a formal context, composed of objects described by

attributes. In our approach, we consider the AOC-poset

(for Attribute-Object-Concept poset), which is the sub-

order of the concept lattice restricted to object-concepts and

attribute-concepts. AOC-posets scale much better than lat-

tices. The interested reader can find more information about

our use of FCA in [2].

2.2 Latent Semantic Indexing

LSI is an advanced Information Retrieval (IR) method.

The heart of LSI is Singular Value Decomposition (SVD)

technique. This technique is used to mitigate noise intro-

duced by stop words (e.g., ”the”, ”an”, ”above”) and to over-

come two classical problems arising in natural language

processing: synonymy and polysemy [9]. We chose LSI

(see [1]) because it already had positive results in address-

ing maintenance tasks such as concept location [12] and

recovery of traceability links between source code and doc-

umentation [10]. LSI assumes that all software artifacts are

in textual format. Then, it computes the lexical similarity

between two software artifacts based on the cosine similar-

ity matrix (cf. Section 4.2.2). The interested reader can find

more information about our use of LSI in [1].

2.3 Structural similarity

Using structural dependency information contained in

source code has been proposed in [10] to increase the pre-

cision and recall of an IR method. When the candidate

links were correct, then the dependency information could

help locate additional correct links. Our process is based

on the identification of object oriented building elements

(OBEs) and their relationships which include inheritance,

composition, invocation relationship, etc. We will use a

coupling metric which measures the degree to which classes

are linked to one another. Such coupling is an indication of

the connections between elements of the object-oriented de-

sign [8]. It also measures the degree of interdependence and

interaction between modules. Another definition is ”Cou-

pling is a measure of the association, whether by inheri-

tance or otherwise, between classes in a software product”

[4]. Though coupling is a notion from structured design,

it is still applicable to OO design at the levels of modules,

classes and objects. We are concerned only with coupling

between classes and we will consider these main dependen-

cies [8] [4]:

1. Inheritance coupling: When a general class (super-

class) is connected to its specialized classes (sub-

classes).

2. Method invocation coupling: When methods of one

class use methods of another class.

3. Composition coupling: When an instance of one class

is referred to in another class.

4. Attribute access coupling: When methods of one

class use attributes of another class.

5. Combined coupling: It is the union of the other

couplings (i.e., two or more couplings) between two

classes.

3 Approach Overview

This section provides the main concepts and hypotheses

used in our approach for mining features from source code.

It also shortly describes the example that illustrates the re-

maining of the paper.

3.1 Key ideas

In this paper we focus on the mining of functional fea-

tures. We consider software systems in which functional

features are implemented at the programming language

level (i.e., source code). We also restrict to OO software.

Thus, features are implemented using object-oriented build-

ing elements (OBEs) and we restrict our study to packages

and classes. We consider that a feature corresponds to one

and only one set of OBEs. We also consider that feature

implementations may overlap: a given OBE can be shared

between several features’ implementation. In this paper we

rely on structural similarity between OBEs to refine the

splitting of blocks, which was done in our previous work

only through lexical similarity. For two OBEs the structural

similarity is based on coupling (cf. Section 2.3). Whether

two OBEs (i.e., classes) are structurally similar depends on

the degree of coupling between these OBEs. Thus structural

similarity between each pair of OBEs is computed based on

the coupling measures.

3.2 Features versus Objectoriented Building El
ements: the Mapping Model

Mining a feature from the source code of variants con-

sists in identifying a candidate group of OBEs that consti-

tutes its implementation. This group of OBEs must either

be present in all variants (case of a common feature) or in

some but not all variants (case of an optional feature). As

the number of OBEs is large, mining features requires to re-

duce this search space. Our proposal consists in dividing the

OBE set in specific subsets to obtain candidates for the com-

mon feature set – also called common block (CB) – and sev-

eral optional feature sets (Block of Variations, denoted as

BVs). Optional (resp. common) features appear in some but

not all (resp. all) variants, they are implemented by OBEs

that appear in some but not in all (resp. all) variants. Based

on the lexical and structural similarity between the OBEs

we identify atomic blocks of variation (ABV) (i.e., optional

feature) amongst each BV. A BV is thus composed of sev-

eral ABVs. The same process applies for common features:

we identify common atomic blocks (CAB) from CB based

on the lexical and structural similarity between the OBEs.

A CB is thus composed of several CABs. All concepts we

defined for mining features are illustrated in the OBE to fea-

ture mapping model of Figure 1.

Figure 1. OBE to Feature mapping model

3.3 An Illustrative Example

As an illustrative example, we consider five drawing

shapes software variants. This software allows a user to

draw seven different kinds of shapes. Drawing shapes soft-

ware variants represent a small case study (e.g. version 5

consists of 8 packages, 25 classes and 600 lines of code)2.

4 The Feature Mining process

The mapping model between OBEs and features defines

associations between these features and blocks of OBEs.

The process takes the variants’ source code as its input. The

first step of this process aims at identifying BVs and the CB

based on FCA (cf. Section 4.1). In the second step, we rely

on structural similarity to determine the dependencies be-

tween OBEs (cf. Section 4.2.1). In the third step, we rely

on LSI to determine the lexical similarity between OBEs

(cf. Section 4.2.2). In the fourth step, we rely on lexical

and structural similarity (cf. Section 4.2.3) to determine all

possible similarity links between OBEs. Finally these sim-

ilarity links are used to identify candidates atomic blocks

based on OBE clusters (cf. Section 4.2.4). Figure 2 shows

our feature mining process.

Figure 2. Feature mining process

4.1 Identifying the Common Block and Blocks of
Variation

The technique used to identify the CB and BVs relies

on FCA. First, a formal context where objects are product

variants and attributes are OBEs is defined (cf. Table 1).

The corresponding AOC-poset is then calculated. The in-

tent of each concept represents OBEs common to two or

more products. As concepts of AOC-posets are ordered, the

intent of the most general (i.e., top) concept gathers OBEs

that are common to all products. They constitute the CB.

The intents of all remaining concepts are BVs. They gather

sets of OBEs common to a subset of products and corre-

spond to the implementation of one or more features. The

2https://code.google.com/p/svariants/

extent of each of these concepts is the set of products having

these OBEs in common (cf. Figure 3).

Figure 3. The AOCposet for the Formal Con

text of Table 1

4.2 Mining Features from CB and BVs

The CB and BVs might implement several features.

Identifying the OBEs that characterize a feature’s imple-

mentation thus consists in splitting the CB and the BVs in

smaller sets that we call atomic blocks. Atomic blocks are

identified based on the calculation of the similarity between

the OBEs of a block. In this paper we consider lexical and

structural similarity. Atomic blocks are clusters of the most

similar OBEs. These clusters are built with FCA as detailed

in the following.

4.2.1 Measuring OBEs’ Similarity Based on Struc-

tural Dependency

Structural similarity is used to capture and represent the

dependencies between classes of a block. We use a De-

pendency Structure Matrix (DSM), which is a square ma-

trix in which the classes being analyzed correspond to the

rows and columns. An entry in the matrix indicates that

the class on the corresponding column depends on the

class on the corresponding row. Dependencies on the di-

agonal, from upper left to lower right, are not of inter-

est because they would only indicate that an item depends

on itself. In DSM, a character ’×’ means that a depen-

dency exists (cf. Table 2). We used a class DSM to rep-

resent the dependency among classes in the common block

and inside each block of variation. We use the structural

relations that are introduced in Section 2.3. For exam-

ple, in the dependency structure matrix (cf. Table 2), the

OBE ”Class (ArcSettings Drawing.Shapes.Arc)” is linked

to the OBE ”Class (ArcAngle Drawing.Shapes.Arc)” be-

cause there is a structural link between these two classes

(i.e., inheritance coupling). However, the OBE ”Class

(Text Drawing.Shapes.Text)” and the OBE ”Class (ArcAn-

gle Drawing.Shapes.Arc)” are not linked because there is

no structural link between these two classes.

Table 2. DSM of Concept 1

C
la

ss
(A

rc
S

et
ti

n
g
s

D
ra

w
in

g
.S

h
a
p

es
.A

rc
)

C
la

ss
(A

rc
D

ra
w

in
g
.S

h
a
p

es
.A

rc
)

C
la

ss
(A

rc
A

n
g
le

D
ra

w
in

g
.S

h
a
p

es
.A

rc
)

C
la

ss
(M

y
T

ex
tS

h
a
p

e
D

ra
w

in
g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(T

ex
t

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(T

ex
tI

n
fo

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(M

y
T

ex
t

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

Class (ArcSettings Drawing.Shapes.Arc) × ×

Class (Arc Drawing.Shapes.Arc) × ×

Class (ArcAngle Drawing.Shapes.Arc) × ×

Class (MyTextShape Drawing.Shapes.Text) ×

Class (Text Drawing.Shapes.Text) × × ×

Class (TextInfo Drawing.Shapes.Text) ×

Class (MyText Drawing.Shapes.Text) ×

4.2.2 Measuring OBEs’ Similarity Based on LSI

In order to apply LSI, we build a corpus that represents a

collection of documents and queries. In our case, each class

in CB and BVs represents both a document and a query.

To be processed, the document and query must be normal-

ized (e.g., all capitals turned into lower case letters, articles,

punctuation marks or numbers removed). The normalized

document generated by analyzing the source code of a class

is split into terms and, at last, word stemming is performed.

To create a document for each class, we must consider all

useful information that describes the class (i.e., package

name, class name, attributes names, methods names and

method body elements names, e.g., parameter name, local

variable name, method invocation name, attribute access

name). The most important parameter of LSI is the number

of chosen term-topics. A term-topic is a collection of terms

that co-occur frequently in the documents of the corpus. We

need enough term-topics to capture real term relations. In

our work we cannot use a fixed number of topics for LSI

because we have blocks of variation (i.e., partitions) with

different sizes. The number of term-topics (# term-topics)

is equal to ”K ∗N”, where K is a variable, its value depends

on the size of each BV and N is the number of columns of

the term-document matrix that is generated by LSI [1]. To

compute similarity between each pair of OBEs in the CB

and BVs and produce Lexical Similarity Matrix (LSM), we

Table 1. A formal context describing drawing shapes software variants

C
la

ss
(P

a
in

tJ
P

a
n

el
D

ra
w

in
g
.S

h
a
p

es
.C

o
re

)

C
la

ss
(D

ra
w

in
g
S

h
a
p

es
D

ra
w

in
g
.S

h
a
p

es
.C

o
re

)

C
la

ss
(M

y
S

h
a
p

e
D

ra
w

in
g
.S

h
a
p

es
.C

o
re

)

C
la

ss
(L

in
eS

et
ti

n
g
s

D
ra

w
in

g
.S

h
a
p

es
.L

in
e)

C
la

ss
(L

in
eP

o
si

ti
o
n

D
ra

w
in

g
.S

h
a
p

es
.L

in
e)

C
la

ss
(M

y
L

in
e

D
ra

w
in

g
.S

h
a
p

es
.L

in
e)

C
la

ss
(I

m
a
g
eP

a
th

D
ra

w
in

g
.S

h
a
p

es
.I

m
a
g
e)

C
la

ss
(M

y
Im

a
g
e

D
ra

w
in

g
.S

h
a
p

es
.I

m
a
g
e)

C
la

ss
(I

m
a
g
eP

o
st

io
n

D
ra

w
in

g
.S

h
a
p

es
.I

m
a
g
e)

C
la

ss
(A

rc
S

et
ti

n
g
s

D
ra

w
in

g
.S

h
a
p

es
.A

rc
)

C
la

ss
(A

rc
D

ra
w

in
g
.S

h
a
p

es
.A

rc
)

C
la

ss
(A

rc
A

n
g
le

D
ra

w
in

g
.S

h
a
p

es
.A

rc
)

C
la

ss
(M

y
T

ex
tS

h
a
p

e
D

ra
w

in
g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(T

ex
t

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(T

ex
tI

n
fo

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(M

y
T

ex
t

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(O

v
a
lS

et
ti

n
g
s

D
ra

w
in

g
.S

h
a
p

es
.O

v
a
l)

C
la

ss
(O

v
a
l

D
ra

w
in

g
.S

h
a
p

es
.O

v
a
l)

C
la

ss
(M

y
O

v
a
l

D
ra

w
in

g
.S

h
a
p

es
.O

v
a
l)

C
la

ss
(R

ec
ta

n
g
le

S
et

ti
n

g
s

D
ra

w
in

g
.S

h
a
p

es
.R

ec
ta

n
g
le

)

C
la

ss
(M

y
R

ec
ta

n
g
le

D
ra

w
in

g
.S

h
a
p

es
.R

ec
ta

n
g
le

)

C
la

ss
(R

ec
ta

n
g
le

D
ra

w
in

g
.S

h
a
p

es
.R

ec
ta

n
g
le

)

C
la

ss
(T

h
re

eD
R

ec
ta

n
g
le

S
et

ti
n

g
s

D
ra

w
in

g
.S

h
a
p

es
.T

h
re

eD
R

ec
ta

n
g
le

)

C
la

ss
(T

h
re

eD
R

ec
ta

n
g
le

D
ra

w
in

g
.S

h
a
p

es
.T

h
re

eD
R

ec
ta

n
g
le

)

C
la

ss
(M

y
T

h
re

eD
R

ec
ta

n
g
le

D
ra

w
in

g
.S

h
a
p

es
.T

h
re

eD
R

ec
ta

n
g
le

)

Drawing Shapes Software 1 × × × × × × × × ×

Drawing Shapes Software 2 × × × × × × × × × × × × × × × ×

Drawing Shapes Software 3 × × × × × × × × × × × ×

Drawing Shapes Software 4 × × × × × × × × × × × ×

Drawing Shapes Software 5 ×

proceed in two steps: building the cosine similarity matrix,

transform cosine similarity matrix into the Lexical Similar-

ity Matrix. The interested reader can find more information

about these two steps in [1].

Cosine similarity matrix: Similarity between OBEs is de-

scribed by a cosine similarity matrix [9] which columns

and rows both represent vectors of OBEs: documents as

columns and queries as rows. In our work, we con-

sider the most widely used threshold for cosine similar-

ity to be 0.70 [9]. Cosine similarity matrix is a nu-

merical matrix encoding similarity. As an example, in

the cosine similarity matrix, the OBE ”Class (ArcSet-

tings Drawing.Shapes.Arc)” is similar to the OBE ”Class

(ArcAngle Drawing.Shapes.Arc)” because their similarity

value is 0.97, which is greater than the threshold. However,

the OBE ”Class (Text Drawing.Shapes.Text)” and the OBE

”Class (ArcSettings Drawing.Shapes.Arc)” are not linked

because their similarity is 0.12, thus less than the threshold.

In this example, the K value for this BV (i.e., Concept 1)

is equal to 0.29 (i.e., the number of topics in this block is

equal to 2).

Transform cosine similarity matrix into the LSM: LSM

is a square matrix (cf. Table 3) where each entry ci,j repre-

sents a lexical similarity between class i and class j higher

than a chosen threshold (here 0.70). The diagonal entries

(ci,i) always have value ’×’ to indicate that a class is sim-

ilar to itself. We used class LSM to represent the lexical

similarity between classes in the CB and for each of the

BVs. Table 3 shows the formal context (i.e., LSM) obtained

by transforming the similarity matrix corresponding to the

BV of Concept 1 from Figure 3.

Table 3. LSM of Concept 1

C
la

ss
(A

rc
S

et
ti

n
g
s

D
ra

w
in

g
.S

h
a
p

es
.A

rc
)

C
la

ss
(A

rc
D

ra
w

in
g
.S

h
a
p

es
.A

rc
)

C
la

ss
(A

rc
A

n
g
le

D
ra

w
in

g
.S

h
a
p

es
.A

rc
)

C
la

ss
(M

y
T

ex
tS

h
a
p

e
D

ra
w

in
g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(T

ex
t

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(T

ex
tI

n
fo

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(M

y
T

ex
t

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

Class (ArcSettings Drawing.Shapes.Arc) × × ×

Class (Arc Drawing.Shapes.Arc) × × ×

Class (ArcAngle Drawing.Shapes.Arc) × × ×

Class (MyTextShape Drawing.Shapes.Text) × × × ×

Class (Text Drawing.Shapes.Text) × × × ×

Class (TextInfo Drawing.Shapes.Text) × × × ×

Class (MyText Drawing.Shapes.Text) × × × ×

4.2.3 Measuring OBEs’ Similarity Based on Lexical

and Structural Similarity

To combine both lexical and structural similarity between

OBEs in the common block or blocks of variation we intro-

duce what we call a combined matrix. A combined matrix

(CM) is a square matrix which integrates the previous two

matrices. In other word, this matrix represents both DSM

and LSM between a set of classes. The CM is an adjacency

matrix where a cell represents a link between two classes

based on the structural or lexical similarity ((cf. Table 4)).

All possible links between OBEs are considered in this ma-

trix. The combined matrix of Table 4 also constitutes the

formal context which is used as input for applying FCA in

the next step.

Table 4. CM of Concept 1

C
la

ss
(A

rc
S

et
ti

n
g
s

D
ra

w
in

g
.S

h
a
p

es
.A

rc
)

C
la

ss
(A

rc
D

ra
w

in
g
.S

h
a
p

es
.A

rc
)

C
la

ss
(A

rc
A

n
g
le

D
ra

w
in

g
.S

h
a
p

es
.A

rc
)

C
la

ss
(M

y
T

ex
tS

h
a
p

e
D

ra
w

in
g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(T

ex
t

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(T

ex
tI

n
fo

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

C
la

ss
(M

y
T

ex
t

D
ra

w
in

g
.S

h
a
p

es
.T

ex
t)

Class (ArcSettings Drawing.Shapes.Arc) × × ×

Class (Arc Drawing.Shapes.Arc) × × ×

Class (ArcAngle Drawing.Shapes.Arc) × × ×

Class (MyTextShape Drawing.Shapes.Text) × × × ×

Class (Text Drawing.Shapes.Text) × × × ×

Class (TextInfo Drawing.Shapes.Text) × × × ×

Class (MyText Drawing.Shapes.Text) × × × ×

4.2.4 Identifying Features Using FCA

We then use FCA to identify, from each BV and from the

CB, OBE sets the elements of which are similar based on

lexical and structural similarity. The interest of FCA for

this task is to help extracting concepts which represent mu-

tually similar OBEs. For the drawing shapes example, the

AOC-poset of Figure 4 shows two atomic blocks of varia-

tion (that correspond to two distinct features) mined from

a single block of variation (Concept 1 from Figure 3). The

same feature mining process is used for the CB and for each

of the BVs.

Figure 4. Atomic Blocks Mined from Concept 1

5 Experimentation

This section presents the case studies in which we apply

our approach. We present the evaluation metrics in this

section. We also describe our prototype implementation

and, at last, we present the feature mining results and

threats to validity of our approach.

Case studies: To validate our approach, we ran ex-

periments on three Java open-source softwares: Mobile

media3 (small), Health watcher4 (medium) and ArgoUML-

3homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
4http://ptolemy.cs.iastate.edu/design-study/

SPL5 (large). We used 5 variants for Mobile media, 10

variants for Health watcher and 10 variants for ArgoUML-

SPL. Mobile media, Health watcher and ArgoUML

variants are well documented. Their variants feature model

is available for comparison to our results and validation of

our proposal. Mobile media is a Java-based open source

application which manipulates photo, music, and video on

mobile devices, such as mobile phones. Health Watcher

is a Java-based open source web application that manages

health related records and complaints. ArgoUML is a Java-

based open source tool widely used for designing systems

in UML. Mobile media, Health watcher and ArgoUML

variants are presented in Table 5 characterized by metrics

LOC (Lines of Code), NOP (Number of Packages), NOCl

(Number of Classes) and NOCo (Number of Couplings).

Table 5. Mobile media, Health watcher and Ar

goUML software product variants

Product # Mobile Media Product Description LOC NOP NOCl NOCo

P1 Mobile photo - Base 760 10 16 30

P2 Exception handling included 1,050 15 25 38

P3 New feature added to send/receive photo 1,823 17 38 192

P4 New feature added to manage music 2,214 17 47 310

P5 New feature added to manage videos 2,645 17 51 420

Product # Health Watcher Product Description LOC NOP NOCl NOCo

P1 Base - no extensions applied 5,288 22 88 776

P2 Command pattern applied 5,646 23 92 932

P3 State pattern applied 6,112 24 104 1076

P4 Observer pattern applied 6,222 26 106 1082

P5 Adapter pattern applied 6,379 26 108 1112

P6 Abstract Factory pattern applied 6,417 27 112 1122

P7 Adapter pattern applied 6,441 27 116 1202

P8 Abstract Factory pattern applied 6,468 28 120 1214

P9 New functionality added 7,709 28 132 1992

P10 Exception handling applied 7,591 29 135 1956

Product # ArgoUML Product Description LOC NOP NOCl NOCo

P1 All Optional Features disabled 82,924 55 1,243 6626

P2 All Optional Features enabled 120,348 81 1,666 17690

P3 Only Logging disabled 118,189 81 1,666 17388

P4 Only Cognitive disabled 104,029 73 1,451 8574

P5 Only Sequence diagram disabled 114,969 77 1,608 17110

P6 Only Use case diagram disabled 117,636 78 1,625 17368

P7 Only Deployment diagram disabled 117,201 79 1,633 15338

P8 Only Collaboration diagram disabled 118,769 79 1,647 17554

P9 Only State diagram disabled 116,431 81 1,631 17098

P10 Only Activity diagram disabled 118,066 79 1,648 17584

Evaluation Measures: In order to evaluate our approach

and based on our knowledge about software variants and

their features (i.e., OBEs for each feature) we have used

three measures: precision, recall and F-Measure [3].

Recall is the percentage of correctly retrieved OBEs to

the total number of relevant OBEs, while precision is the

percentage of correctly retrieved OBEs to the total number

of retrieved OBEs. F-Measure defines a tradeoff between

precision and recall so that it gives a high value only in

case where both recall and precision are high. All measures

have values in [0, 1]. If recall equals 1, all relevant OBEs

are retrieved. However, some retrieved OBEs might not

be relevant. If precision equals 1, all retrieved OBEs are

relevant. However, relevant OBEs might not be retrieved.

If F-Measure equals 1, all relevant OBEs are retrieved.

5http://argouml-spl.tigris.org/

However, some retrieved OBEs might not be relevant.

Implementation: To analyze product variants source

code and extract OBEs we used the Eclipse Java Develop-

ment Tools (JDT) which is based on Eclipse AST (Abstract

Syntax Tree). JDOM library is used to present OBEs for

each software variant in XML format. For applying FCA

we used the Eclipse eRCA platform6; eRCA is a frame-

work that eases the use of Formal and Relational Concept

Analysis. For the purpose of our approach, we developed

our LSI tool7. The FeatureIDE8 plugin is integrated to

represent the feature models of software variants9.

Result: Table 6 summarizes the obtained results. For

readability’s sake, we manually associated feature names

to atomic blocks, based on the study of the content of

each block and on our knowledge on software. Of course,

this does not impact the quality of our results. Results

Table 6. Features mined from Mobile media,

Health watcher and ArgoUML softwares

Case Study Feature Evaluation Metrics

M
an

d
at

o
ry

O
p
ti

o
n
al

N
O

C
l

N
O

C
o

K P
re

ci
si

o
n

R
ec

al
l

F
-M

ea
su

re

ArgoUML-SPL Features

Class x 55 170 0.03 72% 100% 82%

Diagram x 18 16 0.06 100% 100% 100%

Sequence x 57 140 0.02 100% 100% 100%

Deployment x 20 8 0.05 100% 100% 100%

Collaboration x 19 2 0.06 100% 100% 100%

Cognitive x 207 6556 0.01 100% 99% 99%

Use case x 39 14 0.03 100% 100% 100%

State x 35 48 0.03 100% 100% 100%

Activity x 18 8 0.06 100% 100% 100%

Health Watcher Features

Special Complaint x 10 18 0.20 83% 100% 90%

Food Complaint x 10 20 0.20 83% 100% 90%

Animal Complaint x 10 20 0.20 83% 100% 90%

Update Health Unit x 5 10 0.20 60% 100% 75%

Distribution x 6 8 0.20 100% 100% 100%

Update employee x 6 16 0.20 100% 100% 100%

Infrastructure Management x 22 506 0.09 100% 95% 97%

Complaint Management x 12 40 0.09 100% 100% 100%

Java RMI x 3 2 0.34 100% 100% 100%

Database x 4 4 0.25 100% 100% 100%

Support services for users x 4 0 0.25 100% 100% 100%

Computer infrastructure x 4 6 0.25 100% 100% 100%

Update Complaint x 12 98 0.09 100% 100% 100%

Java Servlets x 19 342 0.06 100% 100% 100%

Exception Handling x 4 3 0.40 100% 80% 88%

Mobile Media Features

Album Managment x 6 6 0.25 85% 100% 92%

Photo Management x 5 4 0.25 71% 100% 83%

Exception x 8 6 0.13 100% 100% 100%

Photo List Screen x 5 6 0.20 100% 100% 100%

Video Management x 6 8 0.17 100% 100% 100%

SMS Transfer x 12 50 0.09 100% 100% 100%

Music Management x 17 92 0.06 100% 100% 100%

show that precision appears to be high for all optional

features. This means that all mined OBEs grouped as

features are relevant. This result is due to search space

reduction. In most cases, each BV corresponds to one and

6http://code.google.com/p/erca/
7Available at http://code.google.com/p/lirmmlsi
8http://www.fosd.de/featureide/
9Available at https://code.google.com/p/refm/

only feature. For mandatory features, precision is also

quite high thanks to our clustering technique that identifies

ABVs based on lexical and structural similarity. However,

precision is smaller than the one obtained for optional

features. This deterioration can be explained by the fact

that we do not perform search space reduction for the CB.

Considering the recall metric, its average value is 100%

for Mobile Media, Health Watcher and ArgoUML. This

means that all OBEs that compose features are mined.

Considering the F-Measure metric, our approach has values

that range from 70% to 100%. This means that most

OBEs that compose features are mined and provides initial

evidence with regard to the efficiency of our approach.

All common and optional features are mined for all case

studies except logging feature in ArgoUML-SPL and

create album/photo and delete album/photo features in

Mobile Media software variants; the reason behind this

limitation is that the logging, create album/photo and delete

album/photo features are implemented by method body and

our approach only considers the software variants whose

variability is represented mainly in the package or class

level. The results of this evaluation showed that most of the

features were identified and proves the scalability of our

feature mining approach. In our approach we use a variable

K with different ratios to determine the number of topics in

each block. The column (K) in Table 6 shows the K value

for each feature. Figure 5 shows the mined feature model

for ArgoUML-SPL. The mined feature model consists of

optional and mandatory features with only one level of

hierarchy and without cross-tree constraints and groups of

features constraints.

Figure 5. ArgoUML feature model

In our previous work [1], we applied experimentation

on Mobile Media and ArgoUML software variants based

on the lexical similarity only. Comparing with our new re-

sults when we combine both lexical and structural similarity

we find that all evaluation measures now have values quite

higher than lexical similarity alone (cf. Table 7). This is

especially true for recall measure; with our new proposal,

we get all OBEs that compose the feature and recall mea-

sure value is 100% for all features (except cognitive support

where its value is 99%).

Threats to validity: One threat to the validity of our ap-

proach is that we only investigate product variants in which

the variability is represented in the packages or classes with-

out considering software variants where the variability is

represented in the method level or in the method body level.

Table 7. Comparing the two approaches
Lexical similarity Lexical and structural similarity

Measure / Average Mobile Media ArgoUML Mobile Media ArgoUML

Precision 87% 97% 96% 97%

Recall 66% 67% 100% 100%

F-Measure 75% 79% 98% 98%

In this paper, we use different software variants. Fortu-

nately, in the three softwares, there is a common vocabulary

which helped us in having good results from the lexical sim-

ilarity. As another limitation of our approach, developers

might not use the same vocabularies to name OBEs across

software variants. This means that lexical similarity may be

not reliable (or should be improved with other techniques)

in all cases to identify common and variable features.

6 Related work

In our previous work [2] we present an approach for

feature mining in a collection of software product variants

based on FCA by distinguishing between the common block

and blocks of variation. We extended our previous work [2]

by splitting blocks of source code elements based on the

lexical similarity [1]. In this paper we rely on the lexical and

structural similarity to mine features. The results showed

that the combined approach is better than the lexical simi-

larity alone. Rubin et al. [11] present an approach to locate

optional features from two product variants’ source code.

They do not consider common features and limit their pro-

posal to two variants. The approach proposed by Ziadi et

al. [14] is the closest one. They identify all common fea-

tures as a single mandatory feature. However, they do not

distinguish between optional features that appear together

in a set of variants. McMillan et al. [10] propose an ap-

proach to identify traceability links between source code

and documentation by combining both textual and structural

analysis. Yang et al. [13] analyzed open source applications

for multiple existing domain applications with similar func-

tionalities. They propose an approach to recover domain

feature models using FCA, concept pruning/merging, struc-

ture reconstruction and variability analysis. Duszynski et

al. [6] describe a framework for the analysis and visualiza-

tion of similarities (i.e., commonalities) and variations (i.e.,

variabilities) across related software variants based on clone

detection.

7 Conclusion and perspectives

In this paper, we proposed an approach for mining fea-

tures from object-oriented source code of software product

variants based on lexical and structural similarity. We have

implemented our approach and evaluated its produced re-

sults on three case studies. Results showed that most of the

features were identified. In this paper, we manually asso-

ciated feature names to atomic blocks, based on the study

of the content of each block. As a future work we plan to

automatically propose feature names for the atomic blocks.

We also plan to use the mined common and variable fea-

tures and the lattices to automate the building of the studied

software family’s feature model with its constraints.

References

[1] R. AL-Msie’deen, A. Seriai, M. Huchard, C. Urtado,

S. Vauttier, and H. E. Salman. Mining Features from the

Object-Oriented Source Code of a Collection of Software

Variants Using Formal Concept Analysis and Latent Seman-

tic Indexing. In 25th SEKE Conference, 2013.

[2] R. AL-Msie’deen, A. D. Seriai, M. Huchard, C. Urtado,

S. Vauttier, and H. E. Salman. Feature location in a col-

lection of software product variants using Formal Concept

Analysis. In 13th ICSR, pages 302–307. Springer, 2013.

[3] T. F. Bissyand, F. Thung, S. Wang, D. Lo, L. Jiang, and

L. Réveillère. Empirical Evaluation of Bug Linking. In

CSMR 17th Conference, pages 89–98. IEEE, 2013.

[4] S. Budhkar and A. Gopal. Component-based architecture

recovery from object oriented systems using existing depen-

dencies among classes. International Journal of Computa-

tional Intelligence Techniques, 3(1):56–59, 2012.

[5] P. C. Clements and L. M. Northrop. Software product lines:

practices and patterns. Addison-Wesley, 2001.

[6] S. Duszynski, J. Knodel, and M. Becker. Analyzing the

Source Code of Multiple Software Variants for Reuse Po-

tential. In 18th WCRE, pages 303–307. IEEE, 2011.

[7] B. Ganter and R. Wille. Formal Concept Analysis, Mathe-

matical Foundations. Springer, 1999.

[8] A.-E. E. Hamdouni, A. D. Seriai, and M. Huchard.

Component-based Architecture Recovery from Object Ori-

ented Systems via Relational Concept Analysis. In CLA ’10

Conference, pages 259–270, 2010.

[9] A. Marcus and J. Maletic. Recovering documentation-to-

source-code traceability links using latent semantic index-

ing. In ICSE Conference, pages 125–135. IEEE, 2003.

[10] C. McMillan, D. Poshyvanyk, and M. Revelle. Combining

textual and structural analysis of software artifacts for trace-

ability link recovery. In TEFSE ’09 Workshop, pages 41–48.

IEEE, 2009.

[11] J. Rubin and M. Chechik. Locating distinguishing features

using diff sets. In 27th ASE Conference, ASE 2012, pages

242–245. ACM, 2012.

[12] S. Wang, D. Lo, Z. Xing, and L. Jiang. Concern Localization

using Information Retrieval: An Empirical Study on Linux

Kernel. In WCRE ’11 Conference, pages 92–96. IEEE, 2011.

[13] Y. Yang, X. Peng, and W. Zhao. Domain Feature Model Re-

covery from Multiple Applications Using Data Access Se-

mantics and Formal Concept Analysis. In WCRE ’09 Con-

ference, pages 215–224. IEEE, 2009.

[14] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane. Feature

identification from the source code of product variants. In

CSMR’2012, pages 417–422, 2012.

