
Mining Frequent Item Sets by Opportunistic Projection

Junqiang Liu * Yunhe Pan
Institute of Artificial Intelligence

Zhejiang University

liujunq@mail.hz.zj.cn
panyh@sun.zju.edu.cn

Ke Wang
School of Computing Science

Simon Fraser University

wangk@cs.sfu.ca

Jiawei Han
Department of Computer Science

UIUC

hanj@cs.uiuc.edu

ABSTRACT
In this paper, we present a novel algorithm OpportuneProject for
mining complete set of frequent item sets by projecting databases
to grow a frequent item set tree. Our algorithm is fundamentally
different from those proposed in the past in that it
opportunistically chooses between two different structures, array-
based or tree-based, to represent projected transaction subsets,
and heuristically decides to build unfiltered pseudo projection or
to make a filtered copy according to features of the subsets. More
importantly, we propose novel methods to build tree-based
pseudo projections and array-based unfiltered projections for
projected transaction subsets, which makes our algorithm both
CPU time efficient and memory saving. Basically, the algorithm
grows the frequent item set tree by depth first search, whereas
breadth first search is used to build the upper portion of the tree if
necessary. We test our algorithm versus several other algorithms
on real world datasets, such as BMS-POS, and on IBM artificial
datasets. The empirical results show that our algorithm is not only
the most efficient on both sparse and dense databases at all levels
of support threshold, but also highly scalable to very large
databases.
Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining.
General Terms
Algorithms
Keywords
Association Rules, Frequent Patterns

1. INTRODUCTION
Mining frequent item sets is a key step in many data mining
problems, such as association rule mining, sequential pattern
mining, classification, and so on. Since the pioneering work in [3],
the problem of efficiently generating frequent item sets has been
an active research topic.

Let }{ 21 mi,...,i,iI = be a set of literals, called items. Let database
D be a set of transactions, where each transaction T is a set of

items such that IT ⊆ . Each transaction is associated with a
unique identifier, called TID. Let X be a set of items. A
transaction T is said to contain X if and only if TX ⊆ . The
support of a set of items X is the number or the percentage of
transactions in the database that contain X. X is frequent if the
support of X is no less than a user defined support threshold. We
are interested in finding the complete set of frequent item sets.

Frequent item sets can be organized as a tree that is not
necessarily materialized. Mining process can be regarded as a
process of frequent item set tree growth accompanied by a process
of projecting transaction subsets. In the light of this framework,
all algorithms either grow the frequent item set tree by a breadth
first approach or by a depth first approach.

Apriori [4] is a prominent breadth first algorithm, followed by
many variants that improve Apriori by reducing the number of
candidates further [11], the number of transactions to be scanned
[4,8,11], or the number of database scans [7,13,14].
TreeProjection [1] is the latest breadth first algorithm. However,
breadth first algorithms are inefficient for dense datasets that
contain long patterns. Recently, the merits of a depth first
approach have been recognized [6], a few algorithms are proposed
[2,6,9,12]. However, algorithms proposed so far do not fully
exploit the strength of depth first search and do not scale to large
sparse databases yet. [2,5,6,10] propose algorithms that output
only maximal frequent patterns by pruning the frequent item set
tree based on superset frequency. However, maximal frequent
patterns have limitations in generation of association rules.

The representation of projected transaction subsets can be array-
based [12], tree-based [9], vertical bitmap [6], or horizontal
bitstring [2], which is the key factor in the efficiency of projection
operation and counting operation. None is good for all situations.
Actually, the maximized efficiency and scalability are achieved by
balancing the tradeoffs between different representation forms and
associated projecting methods and counting methods in different
situations.

In this paper, we present a novel algorithm, OpportuneProject, for
mining complete set of frequent item sets, which is efficient on
both sparse and dense databases at all levels of support threshold,
and scalable to very large databases. Our contributions are as
follows. First, we present novel pseudo projection methods for
tree-based representations in the depth first search, which greatly
improves the efficiency of counting and projecting operations in
dense transaction subsets. Second, we propose an array-based data
structure that is the most space efficient and the simplest for
sparse datasets. Third, we define heuristics that adapts the
algorithm to the features of the projected transaction subsets by
integrating array-based and tree-based representations, and
employing different projecting and counting methods
opportunistically. Finally, we use a hybrid approach to deal with

* Also an associate professor at Hangzhou University of Commerce.

This work is supported in part by the NSF of Zhejiang, China, and the
NSERC of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD ’02, July 23-26, 2002, Edmonton, Alberta, Canada.
Copyright 2002 ACM 1-58113-567-X/02/0007…$5.00.

very large databases, i.e., to grow the upper portion of the
frequent item set tree by breadth first search and grow the lower
portion by guided depth first search.

1.1 Related works
[1] presents a method, TreeProjection, which represents frequent
patterns as nodes of a lexicographic tree and uses the hierarchical
structure of the lexicographic tree to successively project
transactions and uses matrix counting on the reduced set of
transactions for finding frequent patterns. The algorithm looks
only at the subset of transactions, which can possibly contain the
pattern by traversing the lexicographic tree in a top down fashion.
This significantly improves the performance of counting the
number of transactions containing a frequent pattern.
TreeProjection is primarily based on pure breadth first strategy. It
encountered the same problems as Apriori, such as high cost for
pattern matching incurred by projecting on the fly, huge frequent
item set tree, and too many database scans.

[9] presents a well known depth-first algorithm, FP-growth, which
is reported to be faster than TreeProjection and Apriori. It first
builds up a compressed data structure, FP-tree, to hold the entire
database in memory and then recursively builds conditional FP-
trees to mine frequent patterns. It has performance gains since it
avoids the combinatory problem inherent to candidate generate-
and-test approach. However, the number of conditional FP-trees is
in the same order of magnitude as number of frequent item sets.
The algorithm is not scalable to sparse and very large databases.

[12] proposes a memory-based hyper structure, H-struct, to store
the sparse databases in main memory, and develops an H-struct
based pattern-growth algorithm, H-Mine. H-Mine invokes FP-
Growth to mine dense databases, hence, suffers the inefficiency
caused by recursive creations of conditional FP-tree. H-Mine uses
partition-based method to deal with very large databases. Because
the number of local frequent patterns in all partitioned databases
can be huge, H-Mine still encounters great difficulties for very
large databases.

DepthProjct [2] and MAFIA [6] are two new algorithms that find
maximal frequent item sets by depth first search. DepthProject
employs a selective projection and uses the horizontal bitstring
representation for projected transaction subsets, whereas MAFIA
uses the vertical bitmap representation with a bitmap compression
schema. Both improve the efficiency of counting over the naïve
counting method by a factor of 8. However, they are less efficient
than the array-based representation when the average number of
items in transactions is sufficiently less than the total number of
items, which is usually the case for sparse and large databases. On
the other hand, the compression ratio of the tree-based
representation is significant for dense databases in that a node
represents a relatively large number of items. Therefore, item
counting in the tree-based representation is more efficient than, at
lease comparable to, in the bitstring and bitmap representations
for dense databases. Moreover, the pseudo projection method is
more efficient than the selective projection in DepthProject and
the compression schema in MAFIA.

The organization of the paper is as follows. Section 2 defines the
frequent item set tree and discusses projection strategies. Section
3 begins with introducing an array-based representation for sparse
projected transaction sets and the corresponding projection
method. Then, novel methods for pseudo projection of tree-based

representation are developed. Based on observations and
heuristics, the algorithm OpportuneProject is presented, which
maximizes efficiency and scalability on databases of all features.
In Section 4, the algorithm is evaluated experimentally. Section 5
concludes this paper.

2. PROBLEM DESCRIPTIONS
Frequent item sets can be represented by a tree, namely frequent
item set tree, abbreviated as FIST, which is not necessarily
materialized. In order to avoid repetitiveness, we impose an
ordering on the items.

FIST is an ordered tree, where each node is labeled by an item,
and associated with a weight. The ordering of items labeling the
nodes along any path (top down) and the ordering of items
labeling children of any node (left to right) follow the imposed
ordering. Each frequent item set is represented by one and only
one path starting from the root, and the weight of the ending node
is the support of the item set. The null root corresponds to the
empty item set. For example, the path (,)–(c,4)–(f,3)–(m,3) in
Figure 1 represents the item set {c, f, m} with support of 3. The
weights associated with nodes need not be actually implemented.

(,)

(a,3) (b,3) (c,4) (f,4) (m,3) (p,3)

(c,3) (f,3) (m,3) (f,3) (m,3) (p,3) (m,3)

(f,3) (m,3) (m,3) (m,3)

(m,3) Figure 1: The FIST in the example
Mining frequent item sets can be regarded as a process of FIST
construction, which is facilitated by successively projecting the
transactions in a top down fashion. Figure 2 illustrates the basic
idea by an example (the support threshold is set to 3).

Each node has its own projected transaction set (abbreviated as
PTS). PTS consists of transactions that support the item set
represented by the path starting from the root to the node. PTS of
the null root is the original database. PTS of any node other than
the null root is obtained by projecting transactions in PTS of its
parent node, according to the a priori property. For example, the
item a in original database in Figure 2 has a support of 3 that
comes from transaction 01, 02, and 05. Hence, PTS of the child
node (a,3) of the null root consists of these three transactions.

One PTS is filtered if each transaction in the PTS only maintains
items that contribute to the further construction of descendants. In
other words, filtered PTS of a node only contains items that label
the sibling of its parent node. Otherwise, the PTS is unfiltered.
Apparently, items in filtered PTS are local frequent in its parent
PTS. In Figure 2, the PTS of the null root is unfiltered, and all
other PTSs are filtered.

Basically, FIST can be created either by breadth first search or by
depth first search. In breadth first search, all nodes at level-k are
created before nodes at level-(k+1). The PTS is a small subset of
the original database for each node. However, the total space
occupied by the PTSs over all nodes at the given level is much
larger than the original database size. Thus, algorithms follow this

strategy usually do not maintain PTSs in the memory nor on the
disk, they create PTSs on the fly. In other words, they read a
transaction from the database into the memory, recursively
projects the transaction from the null root down to the given level.
This is a CPU-bound pattern matching task. Moreover, breadth
first algorithms have to maintain the entire FIST in the memory.
For dense database or for low support threshold, the huge size of
FIST will exceed the capacity of the memory. The CPU-bound
pattern matching and memory-bound FIST size are inherent to
breadth first search strategy, even the original database can be
loaded into the main memory. The advantage of breadth first
search is that it is scalable to very large size of original database.

Figure 2: Constructing FIST by projection

(,)

(a,3) (b,3) (c,4) (f,4) (m,3) (p,3)

(c,3) (f,3) (m,3) (f,3) (m,3) (p,3) (m,3)

(f,3) (m,3) (m,3) (m,3)

(m,3)

01 a c d f g i m p
02 a b c f l m o
03 b f h j o
04 b c k p s
05 a c e f l m n p

01 c f m p
02 b c f m
05 c f m p

02 c f m
03 f
04 c p

01 f m p
02 f m
04 p
05 f m p

01 m p
02 m
05 m p

01 p
05 p

01 f m
02 f m
05 f m

01 m
02 m
05 m

01 m
02 m
05 m

01 m p
02 m
05 m p

01 p
05 p

In depth first search, PTSs are maintained for all nodes on the
path starting from the root to the node that is currently being
explored. Depth first search has the advantage that it is not
necessary to re-create PTSs. This avoids the CPU-bound pattern
matching inherent to breadth first search. Moreover, only the
branch that is currently being explored needs to be maintained in
the memory. This overcomes the limitation on the size of FIST.
Depth first search is especially efficient for dense database and for
low support threshold. Depth first search is usually memory based,
that is PTSs are maintained in the memory. Hence, depth first
search is not scalable to very large databases. Generally speaking,
depth first search is more efficient, and breadth first search is
more scalable.

3. MINING FREQUENT ITEM SETS BY
OPPORTUNISTIC PROJECTION
To achieve maximized efficiency and scalability, the algorithm
must adapt the construction strategy of FIST, the representation of
PTS, and the methods of item counting in and projection creating
of PTSs to the features of PTSs. In this section, an array-based
PTS representation and projecting method is discussed firstly, to
find complete set of frequent items by depth first search in sparse
and large databases. Secondly, novel methods for projecting tree-
based PTS representation are detailed, which is highly efficient
for dense databases. Thirdly, observations and heuristics are

discussed. This section culminates in the presentation of the
algorithm OpportuneProject that employs a hybrid approach.

3.1 Mining sparse data by projecting array-
based PTS
We use an array-based simple structure TVLA (threaded varied
length arrays) to represent PTSs. TVLA consists of three parts: a
local frequent item list (FIL), linked queues (LQ), and arrays.

Each local frequent item has an entry in the frequent item list
(FIL), with three fields: an item-id, a support count, and a pointer.
Entries in FIL are ordered by the imposed ordering. Each
transaction is stored in an array and items in the array are sorted
by the same ordering as FIL. Transactions with the same heading
item are threaded together by a linked queue (LQ) which is
attached to the entry with the same item in FIL. Apparently, the
heading item need not be stored in the array, and the LQ points to
the item next to the heading item in the transaction. For example,
Figure 3(a) shows the filtered TVLA for the PTS of the null root
of the FIST in Figure 2.

It is simple to get a child node’s PTS from its parent node’s PTS
in the TVLA form. First, the transaction arrays that support a
node’s first child are already threaded by the LQ attached to the
first entry of FIL. For example, the LQ(a) in the Figure 3(a)
threads transactions 01, 02, and 05 that support the first child
node (a,3) of the null root. The LQ(b) only threads part of
transactions that support the child node (b,3) at that time.

Second, by shifting transactions threaded in the LQ that are
currently explored to subsequent LQs, we can get PTSs that
support the second child, and so on. A transaction is shifted by
threading it into a proper LQ according to the item next to the
heading item. For example, transaction 01 shifts from LQ(a) in
Figure 3(a) to LQ(c), transaction 02 and 05 shift to LQ(b) and
LQ(c) respectively. Then, we get the Figure 3(b) where LQ(b)
threads all transactions that support the second child (b,3) of the
null root. Following the same procedure step by step, we get PTSs
that support the remaining children of the null root as shown by
Figure 3(c) through 3(f).

A child TVLA has a local FIL, local LQs, and can share
transaction arrays with its parent TVLA. In this case, it is
unfiltered. A filtered TVLA has its local copy of transactions that
trims out items irrelevant to further projection. For example, the
TVLA in Figure 4(a) is the unfiltered child TVLA that represents
PTS of the child node (a,3) of the null root in Figure 2. Figure 4(b)
is the filtered child TVLA. TVLA is space efficient in
representing PTSs for sparse database. Projecting and counting in
TVLA is also very efficient since sparse databases shrink quickly.

3.2 Intelligent projecting tree-based PTS
depth first
In this subsection, we discuss a tree-based representation for
dense PTS, which is inspired by FP-Growth. But, novel methods
we proposed to project tree-based PTS is totally different from
recursive creation of conditional FP-trees in FP-Growth.

3.2.1 Representing dense PTS by TTF
A threaded transaction forest, TTF, is a representation of PTS,
which consists of two parts: an item list (IL), and a forest.

Each local item in PTS has an entry in the IL, with three fields: an
item-id, a support count, and a pointer. Entries in IL are ordered
by the imposed ordering. Each transaction in the PTS is represent
by one and only one path in the forest. Each node in the forest is
labeled by (i, w) where i is an item and w is a count that is the
number of transactions represented by the path starting from a
root ending at the node. Items labeling nodes along any path are
sorted by the same ordering as IL. All nodes labeled by the same
item are threaded by the entry in IL with the same item. TTF is
filtered if only local frequent items appear in TTF, otherwise
unfiltered.

a 3
b 3
c 4
f 4
m 3
p 3

a
c
f
m
p

a
c
f
m
p

a
b
c
f
m

b
f

b
c
p

01
f04

02 05
03

a 3
b 3
c 4
f 4
m 3
p 3

a
c
f
m
p

a
c
f
m
p

a
b
c
f
m

b
f

b
c
p

01
f0402

05
03

(a)

(b)

a 3
b 3
c 4
f 4
m 3
p 3

a
c
f
m
p

a
c
f
m
p

a
b
c
f
m

b
f

b
c
p

01 f0402 05

(c)

a 3
b 3
c 4
f 4
m 3
p 3

a
c
f
m
p

a
c
f
m
p

a
b
c
f
m

b
f

b
c
p

01 02 05

(d)

FIL

FIL

FIL

FIL

a 3
b 3
c 4
f 4
m 3
p 3

a
c
f
m
p

a
c
f
m
p

a
b
c
f
m

b
f

b
c
p

01 05

(e)

a 3
b 3
c 4
f 4
m 3
p 3

a
c
f
m
p

a
c
f
m
p

a
b
c
f
m

b
f

b
c
p

(f)

FIL

FIL

Figure 3. Representing PTS by TVLA

For example, the filtered TTF representation for the PTS of the
null root in Figure 2 is shown in Figure 5(a), where the path (a,3)-
(c,2)-(f,2)-(m,2)-(p,2) represents transaction 01 and 05, (a,3)-
(b,1)-(c,1)-(f,1)-(m,1) represents transaction 02, and so on.

a 3
b 3
c 4
f 4
m 3
p 3

a
c
f
m
p

a
c
f
m
p

a
b
c
f
m

b
f

b
c
p

01
f04

02 05
03

(a)

c 3
f 3
m 3

01 02 05

c 3
f 3
m 3 c

f
m

c
f
m

c
f
m

01 02 05

(b)

Figure 4. Unfiltered vs. filtered TVLA

FIL(a)

FIL

FIL(a)

3.2.2 Bottom up pseudo projection of TTF
From the TTF representation of the PTS of a parent node in FIST,
we can project its children’s TTFs either in a bottom up way or in
a top down way.

In the bottom up way, the child TTF is derived from sub forest
rooted at nodes that are threaded together in its parent TTF. For
example, the sub forest rooted at the node (c,2), (c,1) and (c,1)
that are threaded by the third entry of IL in Figure 5(d)
compresses all transactions of the PTS of the third child (c,4) of
the null root in Figure 2. By traversing the sub forest, we can
count support for items in the child TTF, and re-thread nodes of
the child TTF, clearly delimitate the PTS. For example, in Figure
5(d), all nodes and entries of IL in bold face, excluding IL entry
and nodes of item c, are of the child TTF. The entries of item f, m,
and p in the IL accumulate these items’ support in the child TTF.

We call such a child TTF a pseudo projection of its parent TTF in
that the child TTF, including its IL and forest, need not be
materialized separately. The child TTF shares the same memory
space with its parent TTF. This is a recursive procedure. For
example, we can project the pseudo TTF in Figure 5(d) further
and get the pseudo TTF in Figure 6(c) that represents the PTS of
the first child node (f,3) of node (c,4) in Figure 2.

It is important to notice that the children of a node in FIST is
arranged in accordance with the imposed ordering of items from
left to right, whereas the children’s pseudo TTFs are explored in a
reverse ordering. This carefully chosen order of exploration is
named as bottom up. For example, for the null root in Figure 2,
we explore its last child (p,3) first, and its first child (a,3) at last,
as shown in Figure 5(a) through (f). For the same reason, the
children’s TTFs of node (c,4) is projected in the order of Figure
6(a) through (c).

3.2.3 Top down pseudo projection of TTF
In the top down way, the pseudo TTF of a child PTS consists of
sub forest whose leaves are threaded together in its parent TTF.
For example, sub forest together with the corresponding entries of
IL in bold face in Figure 7(a) through (f) are pseudo TTFs of

children of the null root projected by top down exploration of the
parent TTF. The key points of top down exploration of pseudo
TTF are as follows.

a 3
b 3
c 4
f 4
m 3
pppp 3333

a 3
b 3
c 4
ffff 4444
mmmm 3333
pppp 2222

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,2 p,1

a 3
b 3
c 4
f 4
mmmm 3333
pppp 2222

a 3
b 3
cccc 4444
ffff 3333
mmmm 3333
pppp 3333

aaaa 3333
bbbb 1111
cccc 3333
ffff 3333
mmmm 3333
pppp 2222

a 3
bbbb 3333
cccc 2222
ffff 2222
mmmm 1111
pppp 1111

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,1p,2

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

c,1

m,1

p,1p,2

a,3

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,1p,2

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,1p,2

a,3

b,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,2

(a)

(b)

(c)

b,2

b,2

(d)

(e)

(f)
p,1

f,1

Figure 5. Bottom up pseudo projecting TTF
First, any pseudo TTF consists of a sub forest of its parent TTF
and leaves of the sub forest are label by the same item and
threaded by the entry of IL with the same item.

Second, by traversing the sub forest, we can delimitate the PTS by
re-threading nodes in the sub forest, count the support of each

item in the sub forest by re-calculating the count of each node
according to the leaves’ support. Let us call the procedure as
DelimitateSubForest. For example, in Figure 7(d), the sub forest
whose leaves, (f,2), (f,1) and (f,1) are threaded by the entry of
item f, compresses transactions that support item f. By traversing
this sub forest, we get local support of item a, b, c of 3, 2, 3
respectively, and the count of second node label by b is changed
from 2 to 1. Therefore, the sub forest of the pseudo TTF consists
of three paths, (a,3)-(c,2), (a,3)-(b,1)-(c,1), and (b,1). The IL is
{(a,3,ptr), (b,2,ptr), (c,3,ptr)}.

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,2

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,2

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,1p,2

a 3

b 3

c 4

f 3
m 3
pppp 3333

a 3

b 3

c 4

f 3
mmmm 3333
pppp 2222

a 3

b 3

c 4

ffff 3333
mmmm 3333
pppp 2222

p,1

(a)

p,1

(b)

(c)
Figure 6. Children of the TTF in Figure 5(d)

Third, since DelimitateSubForest will change the threads of
entries that are before the current entry in the IL, and change the
count of internal nodes in the sub forest, it is very important to
explore sub forests threaded by entries of IL in a particular TTF in
the top down order. For example, the pseudo TTF shown in
Figure 7(d) has three entries for the local item a, b, and c. We
explore the sub forest threaded by the entry of item a first, and
then the sub forest threaded by the entry of item c. Therefore, we
get the pseudo child TTFs as in Figure 8(a), (b).

Fourth, the order of frequent item sets found by top down pseudo
projection of TTFs is different from by bottom up pseudo
projection as shown in Figure 9.

Our novel methods of pseudo projection avoid recursively
building projected transaction set, which is in the same number as
frequent item sets. These methods are not only space efficient in
that no additional space is needed for any child TTF, but the
counting and projecting operation is also highly CPU-efficient.
Empirical study shows that algorithms based on these methods are
much more efficient than Apriori and FP-Growth.

3.3 Observations and Heuristics
Real databases are skew, which cannot be simply classified as
purely sparse or purely dense. Some PTSs of real database are

dense. Some are sparse. Real databases are of all sizes. We are
going to propose a hybrid approach that maximizes efficiency and
scalability for mining real databases, based on following
observations and heuristics.

aaaa 3333
b 3
c 4
f 4
m 3
p 3

aaaa 3333
bbbb 2222
cccc 4444
f 4
m 3
p 3

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,2 p,1

aaaa 1111
bbbb 3333
c 4
f 4
m 3
p 3

aaaa 3333
bbbb 2222
cccc 3333
ffff 4444
m 3
p 3

aaaa 2222
bbbb 1111
cccc 3333
ffff 2222
mmmm 2222
pppp 3333

aaaa 3333
bbbb 1111
cccc 3333
ffff 3333
mmmm 3333
p 3

a,1

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,1p,2

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

c,1

m,1

p,1p,2

a,3

m,2

c,2 c,1

f,2 f,1

b,1

c,1

m,1

p,1p,2

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,2

c,1

m,1

p,1p,2

a,2

b,1

m,2

c,2 c,1

f,2 f,1

b,1

c,1

m,1

p,2

(a)

(b)

(c)

b,1

b,1

(d)

(e)

(f)
p,1

f,1

Figure 7. Top down pseudo projecting TTF

f,1

Observation 1: For very large databases, it is unrealistic to assume
that the original database can fit in memory. The number of
transactions that support item sets of length k decreases sharply
when k is greater than 2. It is reasonable to assume that the upper
portion of a FIST can fit in memory. Therefore, we can employ
breadth first search to reduce transactions although most

algorithms use database partition method. It is noticed that
breadth first search incurs heavy CPU cost since PTSs are
projected on the fly by pattern matching transactions against paths
on FIST.

Heuristic 1: Grow the FIST breadth first for very large databases.
Whenever the reduced transaction set that support all nodes at
level k can be represented by a memory based structure, either
TVLA or TTF, grow the lower portion under level k depth first.

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,1

c,1

m,1

p,2

aaaa 3333
b 2
c 3
f 4

m 3

p 3

p,1

(a)

(b)

a,3

b,1

f,1

m,2

c,2 c,1

f,2 f,1

b,1

c,1

m,1

p,2

aaaa 3333
bbbb 1111
cccc 3333
f 4

m 3

p 3

p,1

Figure 8. Children of the TTF in Figure 7(d)
Observation 2: Transactions in PTSs of nodes at high levels on
FIST are usually diversified and randomly distributed. They have
less chance to share common prefix with each other. TTF does not
compress transactions well. Since TTF needs much more
additional storage overhead than TVLA, TTF is usually space
expensive relative to TVLA at high levels on FIST. On the other
hand, it has been noted that the larger the relative support
threshold, the larger the compression ratio of TTF. At lower levels
or denser branches on FIST, there are fewer local frequent items
in PTSs and the relative support is larger, TTF compresses well.

Heuristic 2: Represent PTSs at high levels on FIST by TVLA,
unless the estimated compression ratio of TTF is sufficiently high.

Figure 9. Build FIST by top down pseudo projecting TTF

(,)

(a,3) (b,3) (c,4) (f,4) (m,3) (p,3)

(a,3) (a,3) (c,3) (a,3) (c,3) (f,3) (c,3)

(a,3) (a,3) (a,3) (c,3)

(a,3)

Observation 3: PTSs shrink very quickly at high levels or sparse
branches on FIST where PTSs are usually in the form of TVLA.
The filtered TVLA is much more efficient than unfiltered TVLA
for further counting and projecting operations. On the other hand,
PTSs at lower levels or dense branches on FIST shrink slowly
where PTSs are represented by TTF. The creation of filtered TTF
involves expensive pattern matching operations.

Heuristic 3: When projecting a parent TVLA, make a filtered copy
for the child TVLA as long as there is free memory. When
projecting a parent TTF, delimitate the pseudo child TTF first and
then make a filtered copy if it shrinks substantially sharp.

3.3.1 Estimate the size of TVLA and TTF
For a given PTS, let the number of frequent items be f, the
number of transactions be t, and total number of occurrences of
frequent items be o.

The exact size of TVLA is 3*f + 2*t + (o-t), where 3*f is the size
of FIL, 2*t is the size of LQs, and (o-t) is the size of arrays.

The size of TTF is 3*f + 6*n, where n is number of nodes of TTF.
However, the exact number of nodes of TTF is unknown before
its creation. The following formula gives the worst estimate of
nodes of TTF, where u and l are the maximal and minimal length
of filtered transactions.

∑∑

−

=

−−−
−−

=

≤−−=
1

1

11
1

1
2)12(

l

i

fiil
if

u

i

i
f CCn

In our algorithm we estimate u and l based on the average
transaction length. Numerous experiments show this estimation is
always larger than the actual size. In other words, this is a
pessimistic measure. The compression ratio of TTF is r = o/n. If r
is less than 6-(t/n), the size of TTF is greater than TVLA, which is
the case for sparse databases.

3.4 Algorithm OpportuneProject
Now we present the algorithm OpportuneProject, abbreviated as
OP, which integrates depth first and breadth first strategy, array-
based and tree-based representation, pseudo unfiltered projection
and filtered projection, as listed in Figure 10.

3.4.1 The Breadth First Search
We create the upper portion of FIST in three steps. First,
CreateCountingVector(v). We attach counting vectors to all nodes
at the current level k to accumulate local supports for items in the
PTS of each node. The counting vector has an element for the
item of each sibling node that is after the node attached according
to the imposed ordering. For example, possible items local to the
PTS of the node (a,3) in Figure 1 are b, c, f, m, and p, which are
the items of siblings that follow the node (a,3). Therefore, a length
5 counting vector is attached to accumulate the supports for item
b, c, f, m, and p.

Second, ProjectAndCount(t,D’). We project the transaction t
along the path from the root to nodes at the current level k and
accumulate counting vectors. If a transaction can be projected to a
level k node and contribute to its counting vector, it may also be
projected to level k+1, therefore record it in D’. Otherwise it can
be removed from further consideration. This results in the
reduction of the number of transactions level by level.

Third, GenerateChildren(v). We create children for each node at
the current level k for its local frequent items whose element in
the counting vector has a value over the support threshold. If the
node v has no child, it is removed at that time, and its parent will
be deleted also if v is the only child of its parent, and so on.

The BreadthFirst is a recursive procedure. We use the available
free memory as parameter to control breadth first search process.

OpportuneProject(Database: D)
begin

create a null root for frequent item set tree T;
D’= BreadthFirst(T, D);
v = the null root of T;
GuidedDepthFirst(v, D’);

end
BreadthFirst(FIST: T, CurrentLevel: L, Database: D)
begin

for each node v at level L of T do
CreateCountingVector(v);

D’ = { };
for each transaction t in D do

ProjectAndCount(t, D’);
for each node v at level L of T do

GenerateChildren(v);
if D’ cannot be represented by TVLA and TTF
then BreadthFirst(T, L+1, D’);
else return(D’);

end
GuidedDepthFirst(CurrentFISTNode: p, PTS: D)
begin

ILp = TraverseAndCount(D, p);
Dp = Represent(D, p);
For each frequent entry e in ILp by particular ordering do
begin

c = GetChild(p, e);
GuidedDepthFirst(c, Dp);

end
end
Figure 10. Algorithm OpportuneProject

3.4.2 The Guided Depth First Search
Suppose the BreadthFirst procedure stops at level k. Then, only
paths with length of k are maintained on the FIST whose lower
portion will be generated by GuidedDepthFirst as follows.

First, TraverseAndCount(D, p) scans all transactions in D that
support p, namely Dp, and get ILp which either be local frequent
item list created at that time if D is on the disk or in the form of
TVLA, or be represented in parent IL if D is in the form of TTF.

Second, Represent(D, p). If D is on the disk or in the form of
TVLA, create a TTF for Dp if the density of Dp is estimated to be
greater than a given value, otherwise create a filtered TVLA. If D
is in the form of TTF, represent Dp by a pseudo TTF, and make a
filtered copy if necessary.

Third, GetChild(p, e), for node p, either retrieve a child c that is
labeled by the same item as that of e if the child is already created
by BreadthFirst procedure, otherwise create the child at that time.

The GuidedDepthFirst procedure is more efficient than unguided
one in that it avoids re-creating paths that end at the upper portion
created by the BreadthFirst procedure.

4. PERFORMANCE EVALUATIONS
To evaluate the efficiency and effectiveness of our algorithm
OpportuneProject, we have done extensive experiments on
various kinds of datasets with different features by comparing
with Apriori [16], FP-Growth [9], and H-Mine [12] on a 800MHz
Pentium IV PC with 512MB main memory and 20GB hard drive,
running on Microsoft Windows 2000 Server.

4.1 Datasets and features
We now describe the datasets used in our experiments. The basic
features of the datasets are listed in Table 1.

BMS-POS, BMS-WebView-1 and BMS-WebView-2 are real
world datasets and categorized as sparse datasets [15]. BMS-POS
dataset contains several years worth of point-of-sale data from a
large electronics retailer. The transaction in this dataset is a
customer’s purchase transaction consisting of all the product
categories purchased at one time. BMS-POS has 122,449 frequent
patterns at the support threshold of 0.1%, and 984,531 at 0.04%.
BMS-WebView-1 and BMS-WebView-2 datasets contain several
months worth of click stream data from two e-commerce web sites.
BMS-WebView-1 has 3,991 frequent patterns at the support
threshold of 0.1%, and 1,177,607 at 0.058%. The BMS-
WebView-2 has 23,294 frequent patterns at support threshold of
0.1%, and 1,316,614 at 0.02%.

Connect4 is from UCI Machine Learning Repository [18]. Each
transaction in Connect4 contains legal 8-ply positions in the game
of connect-4 where neither player has won yet and the next move
is not forced. It is a very dense dataset in that the number of
frequent patterns grows from 27,127 to 4,129,839 and 88,316,367
when support threshold reduces from 90% to 70% and 50%.

IBM Artificial datasets, T25I20N20kL5k with D100k~D15m are
generated using a transaction data generator [4] obtained from
IBM Almaden [17]. T25I20N20.L5k can be regarded as
something between the sparse and the dense. For example for
D100k, the number of frequent patterns is 966 at support
threshold of 0.5%, 12,625 at 0.25%, 601,936 at 0.195%, and
114,220,668 at 0.15%.

Table 1. Basic features of datasets.

4.2 Empirical results
In this subsection, we describe the performance of our algorithm
versus Apriori, FP-Growth, and H-Mine on the datasets described
in the previous section. The performance measure was the
execution time of the algorithms on the datasets with different
support threshold. The execution time only includes the disk
reading time (scan datasets) and CPU time, but excludes disk
writing time (output patterns) in order to reduce the influence of
relatively slow speed of disk writing.

Figure 11 through 15 show the performance curves for the four
algorithms on the five datasets respectively. The vertical axis is on
a logarithmic scale. As we can see, the OpportuneProject
algorithm outperforms the other three algorithms on all datasets.
The performance improvements of OpportuneProject over other
algorithms were significant at reasonably low support thresholds.

For the BMS-POS, at the support thresholds over 0.4%, where the
number of frequent patterns is under 6,656, the four algorithms

have the same performance. FP-Growth behaves the same as
OpportuneProject when the support threshold is over 0.1%. When
the support threshold decreases under 0.1%, the performance gap
becomes outstanding. At the reasonable low support threshold of
0.04%, OpportuneProject requires 34 seconds, whereas FP-
Growth requires 72 seconds, H-Mine requires 277 seconds, and
Apriori requires 781 seconds. At the even lower support threshold
of 0.02%, OpportuneProject requires 52, while FP-Growth
requires 215 seconds, H-Mine requires 727 seconds, and Apriori
requires 2012 seconds. The rankings of algorithms are
OpportuneProject > FP-Growth > H-Mine > Apriori.

1

10

100

1000

10000

0 0.02 0.04 0.06 0.08 0.1
Support threshold (%)

T
i
m
e

(
S
e
c
o
n
d
s
)

Apriori FPGrowth

H-Mine OP

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1
Support threshold (%)

T
i
m
e

(
S
e
c
o
n
d
s
)

Apriori FPGrowth

H-Mine OP

Figure 11. Computational performances on BMS-POS

On BMS-WebView-1 and BMS-WebView-2, the algorithms’
rankings are OpportuneProject > H-Mine > Apriori > FP-Growth.
When the support threshold is large, such as 0.1% for BMS-
WebView-1 and 0.3% for BMS-WebView-2, three algorithms
have almost the same execution time, but that of FP-Growth is
one order of magnitude greater than others. OpportuneProject is
one order of magnitude faster than H-Mine, nearly two order of
magnitude faster than Apriori, and far over two orders of
magnitude faster than FP-Growth for support threshold under
0.06% on BMS-WebView-1, under 0.05% on BMS-WebView-2.

For connect4, the execution times of H-Mine and Apriori are
basically in the same order. OpportuneProject is over three order
of magnitude more efficient than H-Mine and Aprioi on Connect4.
And the execution times of OpportuneProject and FP-Growth are
nearly the same order when the support threshold are large.
However, the performance gap becomes significant when the
support threshold reaches below 80%. For example,
OpportuneProject finishes in 5 seconds while FP-Growth runs
over 27 seconds for the support level of 70%. And the
performance gap between OpportuneProject and FP-Growth is a
factor over 20 for support threshold less than 60%.

For IBM Artificial, T25I20D100kN20kL5k, algorithms’ ranking
are OpportuneProject > H-Mine > FP-Growth > Apriori. When
the support threshold is under 0.3%, all algorithm have the same

Trans.

Number
Dist.
Items

Max.
Trans.
Size

Aver.
Trans.
Size

BMS-POS 515,597 1,657 164 6.5
BMS-WebView-1 59,602 497 267 2.5
BMS-WebView-2 77,512 3,340 161 5.0

Connect4 67,557 150 43 43.0
IBM Artificial 100k~15m 20,000 72 28.4

performance because the maximum pattern length is 1.
OpportuneProject outstrips the other three algorithms for support
threshold over 0.3%. At the support threshold of 0.195, a
reasonably low one where there is 601,936 frequent patterns,
OpportuneProject requires 4 seconds, while H-Mine requires 30
seconds, FP-Growth requires 83 seconds, and Apriori requires
450 seconds. When the support threshold decreases to an even
lower level, improvements of OpportuneProject are more striking.

0.1

1

10

100

1000

0.05 0.06 0.07 0.08 0.09 0.1
Support threshold (%)

Ti
me
 (
Se
co
nd
s)

Apriori
FPGrowth
H-Mine
OP

0.1

1

10

100

1000

0 0.2 0.4 0.6 0.8 1
Support threshold (%)

T
i
m
e

(
S
e
c
o
n
d
s
)

Apriori

FPGrowth

H-Mine

OP

Figure 12. Computational performances on BMS-WebView-1

0.1

1

10

100

1000

10000

0 0.02 0.04 0.06 0.08 0.1
Support threshold (%)

T
i
m
e

(
S
e
c
o
n
d
s
)

Apriori FPGrowth
H-Mine OP

0.1

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1
Support threshold (%)

Ti
me
 (
Se
co
nd
s)

Apriori FPGrowth
H-Mine OP

Figure 13. Computational performances on BMS-WebView-2

The performance results we discussed so far are all under the case
that there is enough memory for all algorithms.

1

10

100

1000

10000

100000

0 20 40 60 80 100
Support threshold (%)

Ti
me
 (
Se
co
nd
s)

Apriori
FPGrowth
H-Mine
OP

Figure 14. Computational performances on Connect4

1

10

100

1000

10000

100000

0.1 0.15 0.2 0.25 0.3
support threshold (%)

Ti
me
 (
Se
co
nd
s)

Apriori
FPGrowth
H-Mine
OP

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1
support threshold (%)

T
i
m
e

(
S
e
c
o
n
d
s
)

Apriori
FPGrowth
H-Mine
OP

Figure 15. Computational performances on T25I20D100kN20kL5k

4.3 Scale up experiments
To test the efficiency and scalability of the algorithms on mining
very large databases, we have tested OpportuneProject versus H-
Mine, FP-Growth, and Apriori on datasets T25I20N20kL5k, with
D100k, D1m, and D10m at support level ranging from 0.1% to
1%, and for D100k through D15m at support level of 0.2%.

The execution time curves of the four algorithms have similar
trends on T25I20D1mN20kL5k and T25I20D10mN20kL5 as on
T25I20D100kN20kL5k reported in the last subsection, as the
three datasets have the same features although there is a shift in
the pattern distributions, for example, there are approximately
600,000 frequent patterns at support threshold of 0.195% on
D100k, whereas the support threshold should be 0.19% and
0.188% to discover the same number of frequent patterns on D1m
and D10m respectively.

OpportuneProject scales to very large database better than others.
The performance improvements are much more dramatic. For
example, OpportuneProject’s performance improvement factor
over H-Mine to discover 600,000 frequent patterns increases from
7 to 20 when the database size increases from D100k to D1m.

The factor of OpportuneProject over Apriori increases from 100
to 3000, whereas OpportuneProject over FP-Growth decreases
from 16 to 8 in the same case.

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1
support threshold (%)

T
i
m
e

(
S
e
c
o
n
d
s
)

Apriori
FPGrowth
H-Mine
OP

Figure 16 Execution time on T25I20D1mN20kL5k

Figure 18 shows the performance of algorithms on
T25I20N20kL5k, while the database size increase from 100k to
15m, at the support threshold of 0.2% where the maximum pattern
length is 13, and the number of frequent patterns is around 17K,
except 45K for D200k and 99K for D100k. Apriori fails when the
database size reaches D2m, and FP-Growth and H-Mine fails at
D4m, because they run out of memory. It is very impressive that
OpportuneProject scales almost linearly with the database size.
For example, OpportuneProject finishes in 551 seconds on D5m,
1295 seconds on D10m, and 1961 seconds on D15m, while the
memory consumed is less than 178MB.

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1
support threshold (%)

T
i
m
e

(
S
e
c
o
n
d
s
)

Apriori
FPGrowth
H-Mine
OP

Figure 17 Execution time on T25I20D10mN20kL5k

1

10

100

1000

10000

0 5 10 15
Transactions (M)

T
i
m
e

(
S
e
c
o
n
d
s
)

Apriori
FPGrowth
H-Mine
OP

Figure 18 Execution time on T25I20N20kL5k with D100k

through D15m at the support threshold of 0.2%

5. CONCLUSIONS
In this paper, we propose an efficient algorithm to find complete
set of frequent item sets for databases of all features, sparse or
dense, and of all sizes, from moderate to very large. This
algorithm combines depth first approach with breadth first
approach, opportunistically chooses between array-based

representation with tree-based representation for projected
transaction subsets, and heuristically employs different projecting
methods, such as tree-based pseudo projection, array-based
unfiltered projection, and filetered projection, and achieves the
maximized efficiency and scalability.

6. ACKNOWLEDGEMENTS
We would like to thank Blue Martini Software, Inc. for providing
us the BMS datasets.

7. REFERENCES
[1] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection

algorithm for generation of frequent itemsets. In Journal of
Parallel and Distributed Computing (Special Issue on High
Performance Data Mining), 2000.

[2] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. Depth first
generation of long patterns, in Proceedings of SIGKDD
Conference, 2000.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. In SIGMOD’93,
Washington, D.C., May 1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In VLDB'94, pp. 487-499, Santiago, Chile, Sept. 1994.

[5] R.J.Bayardo. Efficiently mining long patterns from databases. In
SIGMOD’98, pp. 85-93, Seattle, Washington, June 1998.

[6] D.Burdick, M.Calimlim, J.Gehrke. MAFIA: A maximal frequent
itemset algorithm for transactional databases. In proceedings of
the 17th Internation Conference on Data Engineering, Heidelberg,
Germany, April 2001.

[7] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, Shalom Tsur.
Dynamic Itemset Counting and Implication Rules for Market
Basket Analysis. In SIGMOD’97, 255-264. Tucson, AZ, May
1997.

[8] J. Han and Y. Fu. Discovery of multiple-level association rules
from large databases. In VLDB'95, Zuich, Switzerland, Sept.
1995.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In SIGMOD’2000, Dallas, TX, May 2000.

[10] D-I. Lin and Z. M. Kedem. Pincer-search: A new algorithm for
discovering the maximum frequent set. In 6th Intl. Conf.
Extending Database Technology, March 1998.

[11] J.S.Park, M.S.Chen, and P.S.Yu. An effective hash based
algorithm for mining association rules. In Proc. 1995 ACM-
SIGMOD, 175-186, San Jose, CA, Feb. 1995.

[12] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, H-Mine:
Hyper-Structure Mining of Frequent Patterns in Large Databases,
Proc. 2001 Int. Conf. on Data Mining (ICDM'01)}, San Jose, CA,
Nov. 2001.

[13] Ashok Sarasere, Edward Omiecinsky, and Shamkant Navathe.
An efficient algorithm for mining association rules in large
databases. In 21st Int'l Conf. on Very Large Databases (VLDB),
Zurich, Switzerland, Sept. 1995.

[14] H.Toivonen. Sampling large databases for association rules. In
Proc. 1996 Int. Conf. Very Large Data Bases (VLDB’96), 134-
145, Bombay, India, Sept. 1996.

[15] Zijian Zheng, Ron Kohavi and Llew Mason. Real World
Performance of Association Rule Algorithms. In Proc. 2001 Int.
Conf. on Knowledge Discovery in Databases (KDD'01), San
Francisco, California, Aug. 2001.

[16] http://fuzzy.cs.uni-magdeburg.de/~borgelt/src/apriori.exe
[17] http://www.almaden.ibm.com/cs/quest/syndata.html
[18] http://www.ics.uci.edu/~mlearn/MLRepository.html

