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ABSTRACT 
In this paper, we present a novel algorithm OpportuneProject for 
mining complete set of frequent item sets by projecting databases 
to grow a frequent item set tree. Our algorithm is fundamentally 
different from those proposed in the past in that it 
opportunistically chooses between two different structures, array-
based or tree-based, to represent projected transaction subsets, 
and heuristically decides to build unfiltered pseudo projection or 
to make a filtered copy according to features of the subsets. More 
importantly, we propose novel methods to build tree-based 
pseudo projections and array-based unfiltered projections for 
projected transaction subsets, which makes our algorithm both 
CPU time efficient and memory saving. Basically, the algorithm 
grows the frequent item set tree by depth first search, whereas 
breadth first search is used to build the upper portion of the tree if 
necessary. We test our algorithm versus several other algorithms 
on real world datasets, such as BMS-POS, and on IBM artificial 
datasets. The empirical results show that our algorithm is not only 
the most efficient on both sparse and dense databases at all levels 
of support threshold, but also highly scalable to very large 
databases.  
Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining. 
General Terms 
Algorithms 
Keywords 
Association Rules, Frequent Patterns 

1. INTRODUCTION 
Mining frequent item sets is a key step in many data mining 
problems, such as association rule mining, sequential pattern 
mining, classification, and so on. Since the pioneering work in [3], 
the problem of efficiently generating frequent item sets has been 
an active research topic. 

Let }{ 21 mi,...,i,iI = be a set of literals, called items. Let database 
D be a set of transactions, where each transaction T is a set of 

items such that IT ⊆ . Each transaction is associated with a 
unique identifier, called TID. Let X be a set of items. A 
transaction T is said to contain X if and only if TX ⊆ . The 
support of a set of items X is the number or the percentage of 
transactions in the database that contain X. X is frequent if the 
support of X is no less than a user defined support threshold.  We 
are interested in finding the complete set of frequent item sets. 

Frequent item sets can be organized as a tree that is not 
necessarily materialized. Mining process can be regarded as a 
process of frequent item set tree growth accompanied by a process 
of projecting transaction subsets. In the light of this framework, 
all algorithms either grow the frequent item set tree by a breadth 
first approach or by a depth first approach. 

Apriori [4] is a prominent breadth first algorithm, followed by 
many variants that improve Apriori by reducing the number of 
candidates further [11], the number of transactions to be scanned 
[4,8,11], or the number of database scans [7,13,14]. 
TreeProjection [1] is the latest breadth first algorithm. However, 
breadth first algorithms are inefficient for dense datasets that 
contain long patterns. Recently, the merits of a depth first 
approach have been recognized [6], a few algorithms are proposed 
[2,6,9,12]. However, algorithms proposed so far do not fully 
exploit the strength of depth first search and do not scale to large 
sparse databases yet. [2,5,6,10] propose algorithms that output 
only maximal frequent patterns by pruning the frequent item set 
tree based on superset frequency. However, maximal frequent 
patterns have limitations in generation of association rules. 

The representation of projected transaction subsets can be array-
based [12], tree-based [9], vertical bitmap [6], or horizontal 
bitstring [2], which is the key factor in the efficiency of projection 
operation and counting operation. None is good for all situations. 
Actually, the maximized efficiency and scalability are achieved by 
balancing the tradeoffs between different representation forms and 
associated projecting methods and counting methods in different 
situations.  

In this paper, we present a novel algorithm, OpportuneProject, for 
mining complete set of frequent item sets, which is efficient on 
both sparse and dense databases at all levels of support threshold, 
and scalable to very large databases. Our contributions are as 
follows. First, we present novel pseudo projection methods for 
tree-based representations in the depth first search, which greatly 
improves the efficiency of counting and projecting operations in 
dense transaction subsets. Second, we propose an array-based data 
structure that is the most space efficient and the simplest for 
sparse datasets. Third, we define heuristics that adapts the 
algorithm to the features of the projected transaction subsets by 
integrating array-based and tree-based representations, and 
employing different projecting and counting methods 
opportunistically. Finally, we use a hybrid approach to deal with 
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very large databases, i.e., to grow the upper portion of the 
frequent item set tree by breadth first search and grow the lower 
portion by guided depth first search. 

1.1 Related works 
[1] presents a method, TreeProjection, which represents frequent 
patterns as nodes of a lexicographic tree and uses the hierarchical 
structure of the lexicographic tree to successively project 
transactions and uses matrix counting on the reduced set of 
transactions for finding frequent patterns. The algorithm looks 
only at the subset of transactions, which can possibly contain the 
pattern by traversing the lexicographic tree in a top down fashion. 
This significantly improves the performance of counting the 
number of transactions containing a frequent pattern. 
TreeProjection is primarily based on pure breadth first strategy. It 
encountered the same problems as Apriori, such as high cost for 
pattern matching incurred by projecting on the fly, huge frequent 
item set tree, and too many database scans. 

[9] presents a well known depth-first algorithm, FP-growth, which 
is reported to be faster than TreeProjection and Apriori. It first 
builds up a compressed data structure, FP-tree, to hold the entire 
database in memory and then recursively builds conditional FP-
trees to mine frequent patterns. It has performance gains since it 
avoids the combinatory problem inherent to candidate generate-
and-test approach. However, the number of conditional FP-trees is 
in the same order of magnitude as number of frequent item sets. 
The algorithm is not scalable to sparse and very large databases. 

[12] proposes a memory-based hyper structure, H-struct, to store 
the sparse databases in main memory, and develops an H-struct 
based pattern-growth algorithm, H-Mine. H-Mine invokes FP-
Growth to mine dense databases, hence, suffers the inefficiency 
caused by recursive creations of conditional FP-tree. H-Mine uses 
partition-based method to deal with very large databases. Because 
the number of local frequent patterns in all partitioned databases 
can be huge, H-Mine still encounters great difficulties for very 
large databases. 

DepthProjct [2] and MAFIA [6] are two new algorithms that find 
maximal frequent item sets by depth first search. DepthProject 
employs a selective projection and uses the horizontal bitstring 
representation for projected transaction subsets, whereas MAFIA 
uses the vertical bitmap representation with a bitmap compression 
schema. Both improve the efficiency of counting over the naïve 
counting method by a factor of 8. However, they are less efficient 
than the array-based representation when the average number of 
items in transactions is sufficiently less than the total number of 
items, which is usually the case for sparse and large databases. On 
the other hand, the compression ratio of the tree-based 
representation is significant for dense databases in that a node 
represents a relatively large number of items. Therefore, item 
counting in the tree-based representation is more efficient than, at 
lease comparable to, in the bitstring and bitmap representations 
for dense databases. Moreover, the pseudo projection method is 
more efficient than the selective projection in DepthProject and 
the compression schema in MAFIA. 

The organization of the paper is as follows. Section 2 defines the 
frequent item set tree and discusses projection strategies. Section 
3 begins with introducing an array-based representation for sparse 
projected transaction sets and the corresponding projection 
method. Then, novel methods for pseudo projection of tree-based 

representation are developed. Based on observations and 
heuristics, the algorithm OpportuneProject is presented, which 
maximizes efficiency and scalability on databases of all features. 
In Section 4, the algorithm is evaluated experimentally. Section 5 
concludes this paper. 

2. PROBLEM DESCRIPTIONS 
Frequent item sets can be represented by a tree, namely frequent 
item set tree, abbreviated as FIST, which is not necessarily 
materialized. In order to avoid repetitiveness, we impose an 
ordering on the items. 

FIST is an ordered tree, where each node is labeled by an item, 
and associated with a weight. The ordering of items labeling the 
nodes along any path (top down) and the ordering of items 
labeling children of any node (left to right) follow the imposed 
ordering. Each frequent item set is represented by one and only 
one path starting from the root, and the weight of the ending node 
is the support of the item set. The null root corresponds to the 
empty item set. For example, the path (,)–(c,4)–(f,3)–(m,3) in 
Figure 1 represents the item set {c, f, m} with support of 3. The 
weights associated with nodes need not be actually implemented. 

( ,)

(a,3) (b,3) (c,4) (f,4) (m,3) (p,3)

(c,3) (f,3) (m,3) (f,3) (m,3) (p,3) (m,3)

(f,3) (m,3) (m,3) (m,3)

(m,3) Figure 1: The FIST in the example  
Mining frequent item sets can be regarded as a process of FIST 
construction, which is facilitated by successively projecting the 
transactions in a top down fashion. Figure 2 illustrates the basic 
idea by an example (the support threshold is set to 3). 

Each node has its own projected transaction set (abbreviated as 
PTS). PTS consists of transactions that support the item set 
represented by the path starting from the root to the node. PTS of 
the null root is the original database. PTS of any node other than 
the null root is obtained by projecting transactions in PTS of its 
parent node, according to the a priori property. For example, the 
item a in original database in Figure 2 has a support of 3 that 
comes from transaction 01, 02, and 05. Hence, PTS of the child 
node (a,3) of the null root consists of these three transactions. 

One PTS is filtered if each transaction in the PTS only maintains 
items that contribute to the further construction of descendants. In 
other words, filtered PTS of a node only contains items that label 
the sibling of its parent node. Otherwise, the PTS is unfiltered. 
Apparently, items in filtered PTS are local frequent in its parent 
PTS. In Figure 2, the PTS of the null root is unfiltered, and all 
other PTSs are filtered. 

Basically, FIST can be created either by breadth first search or by 
depth first search. In breadth first search, all nodes at level-k are 
created before nodes at level-(k+1). The PTS is a small subset of 
the original database for each node. However, the total space 
occupied by the PTSs over all nodes at the given level is much 
larger than the original database size. Thus, algorithms follow this 



strategy usually do not maintain PTSs in the memory nor on the 
disk, they create PTSs on the fly. In other words, they read a 
transaction from the database into the memory, recursively 
projects the transaction from the null root down to the given level. 
This is a CPU-bound pattern matching task. Moreover, breadth 
first algorithms have to maintain the entire FIST in the memory. 
For dense database or for low support threshold, the huge size of 
FIST will exceed the capacity of the memory. The CPU-bound 
pattern matching and memory-bound FIST size are inherent to 
breadth first search strategy, even the original database can be 
loaded into the main memory. The advantage of breadth first 
search is that it is scalable to very large size of original database. 

Figure 2: Constructing FIST by projection
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In depth first search, PTSs are maintained for all nodes on the 
path starting from the root to the node that is currently being 
explored. Depth first search has the advantage that it is not 
necessary to re-create PTSs. This avoids the CPU-bound pattern 
matching inherent to breadth first search. Moreover, only the 
branch that is currently being explored needs to be maintained in 
the memory. This overcomes the limitation on the size of FIST. 
Depth first search is especially efficient for dense database and for 
low support threshold. Depth first search is usually memory based, 
that is PTSs are maintained in the memory. Hence, depth first 
search is not scalable to very large databases. Generally speaking, 
depth first search is more efficient, and breadth first search is 
more scalable. 

3. MINING FREQUENT ITEM SETS BY 
OPPORTUNISTIC PROJECTION 
To achieve maximized efficiency and scalability, the algorithm 
must adapt the construction strategy of FIST, the representation of 
PTS, and the methods of item counting in and projection creating 
of PTSs to the features of PTSs. In this section, an array-based 
PTS representation and projecting method is discussed firstly, to 
find complete set of frequent items by depth first search in sparse 
and large databases. Secondly, novel methods for projecting tree-
based PTS representation are detailed, which is highly efficient 
for dense databases. Thirdly, observations and heuristics are 

discussed. This section culminates in the presentation of the 
algorithm OpportuneProject that employs a hybrid approach. 

3.1 Mining sparse data by projecting array-
based PTS 
We use an array-based simple structure TVLA (threaded varied 
length arrays) to represent PTSs. TVLA consists of three parts: a 
local frequent item list (FIL), linked queues (LQ), and arrays.  

Each local frequent item has an entry in the frequent item list 
(FIL), with three fields: an item-id, a support count, and a pointer. 
Entries in FIL are ordered by the imposed ordering. Each 
transaction is stored in an array and items in the array are sorted 
by the same ordering as FIL. Transactions with the same heading 
item are threaded together by a linked queue (LQ) which is 
attached to the entry with the same item in FIL. Apparently, the 
heading item need not be stored in the array, and the LQ points to 
the item next to the heading item in the transaction. For example, 
Figure 3(a) shows the filtered TVLA for the PTS of the null root 
of the FIST in Figure 2. 

It is simple to get a child node’s PTS from its parent node’s PTS 
in the TVLA form. First, the transaction arrays that support a 
node’s first child are already threaded by the LQ attached to the 
first entry of FIL. For example, the LQ(a) in the Figure 3(a) 
threads transactions 01, 02, and 05 that support the first child 
node (a,3) of the null root. The LQ(b) only threads part of 
transactions that support the child node (b,3) at that time. 

Second, by shifting transactions threaded in the LQ that are 
currently explored to subsequent LQs, we can get PTSs that 
support the second child, and so on. A transaction is shifted by 
threading it into a proper LQ according to the item next to the 
heading item. For example, transaction 01 shifts from LQ(a) in 
Figure 3(a) to LQ(c), transaction 02 and 05 shift to LQ(b) and 
LQ(c) respectively. Then, we get the Figure 3(b) where LQ(b) 
threads all transactions that support the second child (b,3) of the 
null root. Following the same procedure step by step, we get PTSs 
that support the remaining children of the null root as shown by 
Figure 3(c) through 3(f). 

A child TVLA has a local FIL, local LQs, and can share 
transaction arrays with its parent TVLA. In this case, it is 
unfiltered. A filtered TVLA has its local copy of transactions that 
trims out items irrelevant to further projection. For example, the 
TVLA in Figure 4(a) is the unfiltered child TVLA that represents 
PTS of the child node (a,3) of the null root in Figure 2. Figure 4(b) 
is the filtered child TVLA. TVLA is space efficient in 
representing PTSs for sparse database. Projecting and counting in 
TVLA is also very efficient since sparse databases shrink quickly. 

3.2 Intelligent projecting tree-based PTS 
depth first 
In this subsection, we discuss a tree-based representation for 
dense PTS, which is inspired by FP-Growth. But, novel methods 
we proposed to project tree-based PTS is totally different from 
recursive creation of conditional FP-trees in FP-Growth. 

3.2.1 Representing dense PTS by TTF  
A threaded transaction forest, TTF, is a representation of PTS, 
which consists of two parts: an item list (IL), and a forest.  



Each local item in PTS has an entry in the IL, with three fields: an 
item-id, a support count, and a pointer. Entries in IL are ordered 
by the imposed ordering. Each transaction in the PTS is represent 
by one and only one path in the forest. Each node in the forest is 
labeled by (i, w) where i is an item and w is a count that is the 
number of transactions represented by the path starting from a 
root ending at the node. Items labeling nodes along any path are 
sorted by the same ordering as IL. All nodes labeled by the same 
item are threaded by the entry in IL with the same item. TTF is 
filtered if only local frequent items appear in TTF, otherwise 
unfiltered. 
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Figure 3. Representing PTS by TVLA 

For example, the filtered TTF representation for the PTS of the 
null root in Figure 2 is shown in Figure 5(a), where the path (a,3)-
(c,2)-(f,2)-(m,2)-(p,2) represents transaction 01 and 05, (a,3)-
(b,1)-(c,1)-(f,1)-(m,1) represents transaction 02, and so on. 
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Figure 4. Unfiltered vs. filtered TVLA
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3.2.2 Bottom up pseudo projection of TTF 
From the TTF representation of the PTS of a parent node in FIST, 
we can project its children’s TTFs either in a bottom up way or in 
a top down way.  

In the bottom up way, the child TTF is derived from sub forest 
rooted at nodes that are threaded together in its parent TTF. For 
example, the sub forest rooted at the node (c,2), (c,1) and (c,1) 
that are threaded by the third entry of IL in Figure 5(d) 
compresses all transactions of the PTS of the third child (c,4) of 
the null root in Figure 2. By traversing the sub forest, we can 
count support for items in the child TTF, and re-thread nodes of 
the child TTF, clearly delimitate the PTS. For example, in Figure 
5(d), all nodes and entries of IL in bold face, excluding IL entry 
and nodes of item c, are of the child TTF. The entries of item f, m, 
and p in the IL accumulate these items’ support in the child TTF. 

We call such a child TTF a pseudo projection of its parent TTF in 
that the child TTF, including its IL and forest, need not be 
materialized separately. The child TTF shares the same memory 
space with its parent TTF. This is a recursive procedure. For 
example, we can project the pseudo TTF in Figure 5(d) further 
and get the pseudo TTF in Figure 6(c) that represents the PTS of 
the first child node (f,3) of node (c,4) in Figure 2. 

It is important to notice that the children of a node in FIST is 
arranged in accordance with the imposed ordering of items from 
left to right, whereas the children’s pseudo TTFs are explored in a 
reverse ordering. This carefully chosen order of exploration is 
named as bottom up. For example, for the null root in Figure 2, 
we explore its last child (p,3) first, and its first child (a,3) at last, 
as shown in Figure 5(a) through (f). For the same reason, the 
children’s TTFs of node (c,4) is projected in the order of Figure 
6(a) through (c). 

3.2.3 Top down pseudo projection of TTF 
In the top down way, the pseudo TTF of a child PTS consists of 
sub forest whose leaves are threaded together in its parent TTF. 
For example, sub forest together with the corresponding entries of 
IL in bold face in Figure 7(a) through (f) are pseudo TTFs of 



children of the null root projected by top down exploration of the 
parent TTF. The key points of top down exploration of pseudo 
TTF are as follows. 
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Figure 5. Bottom up pseudo projecting TTF  
First, any pseudo TTF consists of a sub forest of its parent TTF 
and leaves of the sub forest are label by the same item and 
threaded by the entry of IL with the same item. 

Second, by traversing the sub forest, we can delimitate the PTS by 
re-threading nodes in the sub forest, count the support of each 

item in the sub forest by re-calculating the count of each node 
according to the leaves’ support. Let us call the procedure as 
DelimitateSubForest. For example, in Figure 7(d), the sub forest 
whose leaves, (f,2), (f,1) and (f,1) are threaded by the entry of 
item f, compresses transactions that support item f. By traversing 
this sub forest, we get local support of item a, b, c of 3, 2, 3 
respectively, and the count of second node label by b is changed 
from 2 to 1. Therefore, the sub forest of the pseudo TTF consists 
of three paths, (a,3)-(c,2), (a,3)-(b,1)-(c,1), and (b,1). The IL is 
{(a,3,ptr), (b,2,ptr), (c,3,ptr)}.  
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Figure 6. Children of the TTF in Figure 5(d)  

Third, since DelimitateSubForest will change the threads of 
entries that are before the current entry in the IL, and change the 
count of internal nodes in the sub forest, it is very important to 
explore sub forests threaded by entries of IL in a particular TTF in 
the top down order. For example, the pseudo TTF shown in 
Figure 7(d) has three entries for the local item a, b, and c. We 
explore the sub forest threaded by the entry of item a first, and 
then the sub forest threaded by the entry of item c. Therefore, we 
get the pseudo child TTFs as in Figure 8(a), (b).  

Fourth, the order of frequent item sets found by top down pseudo 
projection of TTFs is different from by bottom up pseudo 
projection as shown in Figure 9. 

Our novel methods of pseudo projection avoid recursively 
building projected transaction set, which is in the same number as 
frequent item sets. These methods are not only space efficient in 
that no additional space is needed for any child TTF, but the 
counting and projecting operation is also highly CPU-efficient. 
Empirical study shows that algorithms based on these methods are 
much more efficient than Apriori and FP-Growth. 

3.3 Observations and Heuristics 
Real databases are skew, which cannot be simply classified as 
purely sparse or purely dense. Some PTSs of real database are 



dense. Some are sparse. Real databases are of all sizes. We are 
going to propose a hybrid approach that maximizes efficiency and 
scalability for mining real databases, based on following 
observations and heuristics. 
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Observation 1: For very large databases, it is unrealistic to assume 
that the original database can fit in memory. The number of 
transactions that support item sets of length k decreases sharply 
when k is greater than 2. It is reasonable to assume that the upper 
portion of a FIST can fit in memory. Therefore, we can employ 
breadth first search to reduce transactions although most 

algorithms use database partition method. It is noticed that 
breadth first search incurs heavy CPU cost since PTSs are 
projected on the fly by pattern matching transactions against paths 
on FIST. 

Heuristic 1: Grow the FIST breadth first for very large databases. 
Whenever the reduced transaction set that support all nodes at 
level k can be represented by a memory based structure, either 
TVLA or TTF, grow the lower portion under level k depth first. 
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Observation 2: Transactions in PTSs of nodes at high levels on 
FIST are usually diversified and randomly distributed. They have 
less chance to share common prefix with each other. TTF does not 
compress transactions well. Since TTF needs much more 
additional storage overhead than TVLA, TTF is usually space 
expensive relative to TVLA at high levels on FIST. On the other 
hand, it has been noted that the larger the relative support 
threshold, the larger the compression ratio of TTF. At lower levels 
or denser branches on FIST, there are fewer local frequent items 
in PTSs and the relative support is larger, TTF compresses well. 

Heuristic 2: Represent PTSs at high levels on FIST by TVLA, 
unless the estimated compression ratio of TTF is sufficiently high. 

Figure 9. Build FIST by top down pseudo projecting TTF
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Observation 3: PTSs shrink very quickly at high levels or sparse 
branches on FIST where PTSs are usually in the form of TVLA. 
The filtered TVLA is much more efficient than unfiltered TVLA 
for further counting and projecting operations. On the other hand, 
PTSs at lower levels or dense branches on FIST shrink slowly 
where PTSs are represented by TTF. The creation of filtered TTF 
involves expensive pattern matching operations. 



Heuristic 3: When projecting a parent TVLA, make a filtered copy 
for the child TVLA as long as there is free memory. When 
projecting a parent TTF, delimitate the pseudo child TTF first and 
then make a filtered copy if it shrinks substantially sharp. 

3.3.1 Estimate the size of TVLA and TTF 
For a given PTS, let the number of frequent items be f, the 
number of transactions be t, and total number of occurrences of 
frequent items be o. 

The exact size of TVLA is 3*f + 2*t + (o-t), where 3*f is the size 
of FIL, 2*t is the size of LQs, and (o-t) is the size of arrays.  

The size of TTF is 3*f + 6*n, where n is number of nodes of TTF. 
However, the exact number of nodes of TTF is unknown before 
its creation. The following formula gives the worst estimate of 
nodes of TTF, where u and l are the maximal and minimal length 
of filtered transactions. 

 
∑∑

−

=

−−−
−−

=

≤−−=
1

1

11
1

1
2)12(

l

i

fiil
if

u

i

i
f CCn

 
In our algorithm we estimate u and l based on the average 
transaction length. Numerous experiments show this estimation is 
always larger than the actual size. In other words, this is a 
pessimistic measure. The compression ratio of TTF is r = o/n. If r 
is less than 6-(t/n), the size of TTF is greater than TVLA, which is 
the case for sparse databases. 

3.4 Algorithm OpportuneProject 
Now we present the algorithm OpportuneProject, abbreviated as 
OP, which integrates depth first and breadth first strategy, array-
based and tree-based representation, pseudo unfiltered projection 
and filtered projection, as listed in Figure 10. 

3.4.1  The Breadth First Search 
We create the upper portion of FIST in three steps. First, 
CreateCountingVector(v). We attach counting vectors to all nodes 
at the current level k to accumulate local supports for items in the 
PTS of each node. The counting vector has an element for the 
item of each sibling node that is after the node attached according 
to the imposed ordering. For example, possible items local to the 
PTS of the node (a,3) in Figure 1 are b, c, f, m, and p, which are 
the items of siblings that follow the node (a,3). Therefore, a length 
5 counting vector is attached to accumulate the supports for item 
b, c, f, m, and p.  

Second, ProjectAndCount(t,D’). We project the transaction t 
along the path from the root to nodes at the current level k and 
accumulate counting vectors. If a transaction can be projected to a 
level k node and contribute to its counting vector, it may also be 
projected to level k+1, therefore record it in D’. Otherwise it can 
be removed from further consideration. This results in the 
reduction of the number of transactions level by level. 

Third, GenerateChildren(v). We create children for each node at 
the current level k for its local frequent items whose element in 
the counting vector has a value over the support threshold. If the 
node v has no child, it is removed at that time, and its parent will 
be deleted also if v is the only child of its parent, and so on. 

The BreadthFirst is a recursive procedure. We use the available 
free memory as parameter to control breadth first search process. 

OpportuneProject(Database: D) 
begin 

create a null root for frequent item set tree T; 
D’= BreadthFirst(T, D); 
v = the null root of T; 
GuidedDepthFirst(v, D’); 

end 
BreadthFirst(FIST: T, CurrentLevel: L, Database: D) 
begin 

for each node v at level L of T do   
CreateCountingVector(v); 

D’ = { }; 
for each transaction t in D do   

ProjectAndCount(t, D’); 
for each node v at level L of T do   

GenerateChildren(v); 
if D’ cannot be represented by TVLA and TTF  
then BreadthFirst(T, L+1, D’); 
else return(D’); 

end 
GuidedDepthFirst(CurrentFISTNode: p, PTS: D) 
begin 

ILp = TraverseAndCount(D, p); 
Dp = Represent(D, p); 
For each frequent entry e in ILp by particular ordering do 
begin 

c = GetChild(p, e); 
GuidedDepthFirst(c, Dp); 

end 
end 
Figure 10. Algorithm OpportuneProject 

3.4.2  The Guided Depth First Search 
Suppose the BreadthFirst procedure stops at level k. Then, only 
paths with length of k are maintained on the FIST whose lower 
portion will be generated by GuidedDepthFirst as follows. 

First, TraverseAndCount(D, p) scans all transactions in D that 
support p, namely Dp, and get ILp which either be local frequent 
item list created at that time if D is on the disk or in the form of 
TVLA, or be represented in parent IL if D is in the form of TTF. 

Second, Represent(D, p). If D is on the disk or in the form of 
TVLA, create a TTF for Dp if the density of Dp is estimated to be 
greater than a given value, otherwise create a filtered TVLA. If D 
is in the form of TTF, represent Dp by a pseudo TTF, and make a 
filtered copy if necessary. 

Third, GetChild(p, e), for node p, either retrieve a child c that is 
labeled by the same item as that of e if the child is already created 
by BreadthFirst procedure, otherwise create the child at that time.  

The GuidedDepthFirst procedure is more efficient than unguided 
one in that it avoids re-creating paths that end at the upper portion 
created by the BreadthFirst procedure. 

4. PERFORMANCE EVALUATIONS 
To evaluate the efficiency and effectiveness of our algorithm 
OpportuneProject, we have done extensive experiments on 
various kinds of datasets with different features by comparing 
with Apriori [16], FP-Growth [9], and H-Mine [12] on a 800MHz 
Pentium IV PC with 512MB main memory and 20GB hard drive, 
running on Microsoft Windows 2000 Server. 



4.1 Datasets and features 
We now describe the datasets used in our experiments. The basic 
features of the datasets are listed in Table 1. 

BMS-POS, BMS-WebView-1 and BMS-WebView-2 are real 
world datasets and categorized as sparse datasets [15]. BMS-POS 
dataset contains several years worth of point-of-sale data from a 
large electronics retailer. The transaction in this dataset is a 
customer’s purchase transaction consisting of all the product 
categories purchased at one time. BMS-POS has 122,449 frequent 
patterns at the support threshold of 0.1%, and 984,531 at 0.04%. 
BMS-WebView-1 and BMS-WebView-2 datasets contain several 
months worth of click stream data from two e-commerce web sites. 
BMS-WebView-1 has 3,991 frequent patterns at the support 
threshold of 0.1%, and 1,177,607 at 0.058%. The BMS-
WebView-2 has 23,294 frequent patterns at support threshold of 
0.1%, and 1,316,614 at 0.02%. 

Connect4 is from UCI Machine Learning Repository [18]. Each 
transaction in Connect4 contains legal 8-ply positions in the game 
of connect-4 where neither player has won yet and the next move 
is not forced. It is a very dense dataset in that the number of 
frequent patterns grows from 27,127 to 4,129,839 and 88,316,367 
when support threshold reduces from 90% to 70% and 50%. 

IBM Artificial datasets, T25I20N20kL5k with D100k~D15m are 
generated using a transaction data generator [4] obtained from 
IBM Almaden [17]. T25I20N20.L5k can be regarded as 
something between the sparse and the dense. For example for 
D100k, the number of frequent patterns is 966 at support 
threshold of 0.5%, 12,625 at 0.25%, 601,936 at 0.195%, and 
114,220,668 at 0.15%. 

Table 1. Basic features of datasets. 

4.2 Empirical results 
In this subsection, we describe the performance of our algorithm 
versus Apriori, FP-Growth, and H-Mine on the datasets described 
in the previous section. The performance measure was the 
execution time of the algorithms on the datasets with different 
support threshold. The execution time only includes the disk 
reading time (scan datasets) and CPU time, but excludes disk 
writing time (output patterns) in order to reduce the influence of 
relatively slow speed of disk writing. 

Figure 11 through 15 show the performance curves for the four 
algorithms on the five datasets respectively. The vertical axis is on 
a logarithmic scale. As we can see, the OpportuneProject 
algorithm outperforms the other three algorithms on all datasets. 
The performance improvements of OpportuneProject over other 
algorithms were significant at reasonably low support thresholds. 

For the BMS-POS, at the support thresholds over 0.4%, where the 
number of frequent patterns is under 6,656, the four algorithms 

have the same performance. FP-Growth behaves the same as 
OpportuneProject when the support threshold is over 0.1%. When 
the support threshold decreases under 0.1%, the performance gap 
becomes outstanding. At the reasonable low support threshold of 
0.04%, OpportuneProject requires 34 seconds, whereas FP-
Growth requires 72 seconds, H-Mine requires 277 seconds, and 
Apriori requires 781 seconds. At the even lower support threshold 
of 0.02%, OpportuneProject requires 52, while FP-Growth 
requires 215 seconds, H-Mine requires 727 seconds, and Apriori 
requires 2012 seconds. The rankings of algorithms are 
OpportuneProject > FP-Growth > H-Mine > Apriori. 
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Figure 11. Computational performances on BMS-POS 

On BMS-WebView-1 and BMS-WebView-2, the algorithms’  
rankings are OpportuneProject > H-Mine > Apriori > FP-Growth. 
When the support threshold is large, such as 0.1% for BMS-
WebView-1 and 0.3% for BMS-WebView-2, three algorithms 
have almost the same execution time, but that of FP-Growth is 
one order of magnitude greater than others. OpportuneProject is 
one order of magnitude faster than H-Mine, nearly two order of 
magnitude faster than Apriori, and far over two orders of 
magnitude faster than FP-Growth for support threshold under 
0.06% on BMS-WebView-1, under 0.05% on BMS-WebView-2. 

For connect4, the execution times of H-Mine and Apriori are 
basically in the same order. OpportuneProject is over three order 
of magnitude more efficient than H-Mine and Aprioi on Connect4. 
And the execution times of OpportuneProject and FP-Growth are 
nearly the same order when the support threshold are large. 
However, the performance gap becomes significant when the 
support threshold reaches below 80%. For example, 
OpportuneProject finishes in 5 seconds while FP-Growth runs 
over 27 seconds for the support level of 70%. And the 
performance gap between OpportuneProject and FP-Growth is a 
factor over 20 for support threshold less than 60%.  

For IBM Artificial, T25I20D100kN20kL5k, algorithms’ ranking 
are OpportuneProject > H-Mine > FP-Growth > Apriori. When 
the support threshold is under 0.3%, all algorithm have the same 

 
Trans. 

Number
Dist. 
Items 

Max. 
Trans. 
Size 

Aver. 
Trans. 
Size

BMS-POS 515,597 1,657 164 6.5
BMS-WebView-1 59,602 497 267 2.5
BMS-WebView-2 77,512 3,340 161 5.0

Connect4 67,557 150 43 43.0
IBM Artificial 100k~15m 20,000 72 28.4



performance because the maximum pattern length is 1. 
OpportuneProject outstrips the other three algorithms for support 
threshold over 0.3%. At the support threshold of 0.195, a 
reasonably low one where there is 601,936 frequent patterns, 
OpportuneProject requires 4 seconds, while H-Mine requires 30 
seconds, FP-Growth requires 83 seconds, and Apriori requires 
450 seconds. When the support threshold decreases to an even 
lower level, improvements of OpportuneProject are more striking. 
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Figure 12. Computational performances on BMS-WebView-1 
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Figure 13. Computational performances on BMS-WebView-2 

The performance results we discussed so far are all under the case 
that there is enough memory for all algorithms. 
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Figure 14. Computational performances on Connect4 
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Figure 15. Computational performances on T25I20D100kN20kL5k 

4.3 Scale up experiments 
To test the efficiency and scalability of the algorithms on mining 
very large databases, we have tested OpportuneProject versus H-
Mine, FP-Growth, and Apriori on datasets T25I20N20kL5k, with 
D100k, D1m, and D10m at support level ranging from 0.1% to 
1%, and for D100k through D15m at support level of 0.2%. 

The execution time curves of the four algorithms have similar 
trends on T25I20D1mN20kL5k and T25I20D10mN20kL5 as on 
T25I20D100kN20kL5k reported in the last subsection, as the 
three datasets have the same features although there is a shift in 
the pattern distributions, for example, there are approximately 
600,000 frequent patterns at support threshold of 0.195% on 
D100k, whereas the support threshold should be 0.19% and 
0.188% to discover the same number of frequent patterns on D1m 
and D10m respectively. 

OpportuneProject scales to very large database better than others. 
The performance improvements are much more dramatic. For 
example, OpportuneProject’s performance improvement factor 
over H-Mine to discover 600,000 frequent patterns increases from 
7 to 20 when the database size increases from D100k to D1m.  



The factor of OpportuneProject over Apriori increases from 100 
to 3000, whereas OpportuneProject over FP-Growth decreases 
from 16 to 8 in the same case. 
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Figure 16 Execution time on T25I20D1mN20kL5k 

Figure 18 shows the performance of algorithms on 
T25I20N20kL5k, while the database size increase from 100k to 
15m, at the support threshold of 0.2% where the maximum pattern 
length is 13, and the number of frequent patterns is around 17K, 
except 45K for D200k and 99K for D100k. Apriori fails when the 
database size reaches D2m, and FP-Growth and H-Mine fails at 
D4m, because they run out of memory. It is very impressive that 
OpportuneProject scales almost linearly with the database size. 
For example, OpportuneProject finishes in 551 seconds on D5m, 
1295 seconds on D10m, and 1961 seconds on D15m, while the 
memory consumed is less than 178MB. 
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Figure 17 Execution time on T25I20D10mN20kL5k 
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Figure 18 Execution time on T25I20N20kL5k with D100k 

through D15m at the support threshold of 0.2% 

5. CONCLUSIONS 
In this paper, we propose an efficient algorithm to find complete 
set of frequent item sets for databases of all features, sparse or 
dense, and of all sizes, from moderate to very large. This 
algorithm combines depth first approach with breadth first 
approach, opportunistically chooses between array-based 

representation with tree-based representation for projected 
transaction subsets, and heuristically employs different projecting 
methods, such as tree-based pseudo projection, array-based 
unfiltered projection, and filetered projection, and achieves the 
maximized efficiency and scalability. 
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