
Mining Frequent Itemsets from Uncertain Data

Chun-Kit Chui1, Ben Kao1, and Edward Hung2

1 Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong

{ckchui,kao}@cs.hku.hk
2 Department of Computing, Hong Kong Polytechnic University,

Kowloon, Hong Kong
csehung@comp.polyu.edu.hk

Abstract. We study the problem of mining frequent itemsets from un-
certain data under a probabilistic framework. We consider transactions
whose items are associated with existential probabilities and give a for-
mal definition of frequent patterns under such an uncertain data model.
We show that traditional algorithms for mining frequent itemsets are
either inapplicable or computationally inefficient under such a model.
A data trimming framework is proposed to improve mining efficiency.
Through extensive experiments, we show that the data trimming tech-
nique can achieve significant savings in both CPU cost and I/O cost.

1 Introduction

Association analysis is one of the most important data-mining model. As an
example, in market-basket analysis, a dataset consists of a number of tuples,
each contains the items that a customer has purchased in a transaction. The
dataset is analyzed to discover associations among different items. An important
step in the mining process is the extraction of frequent itemsets, or sets of items
that co-occur in a major fraction of the transactions. Besides market-basket
analysis, frequent itemsets mining is also a core component in other variations
of association analysis, such as association-rule mining [1] and sequential-pattern
mining [2].

All previous studies on association analysis assume a data model under which
transactions capture doubtless facts about the items that are contained in each
transaction. In many applications, however, the existence of an item in a trans-
action is best captured by a likelihood measure or a probability. As an example,
a medical dataset may contain a table of patient records (tuples), each of which
contains a set of symptoms and/or illnesses that a patient suffers (items). Ap-
plying association analysis on such a dataset allows us to discover any potential
correlations among the symptoms and illnesses. In many cases, symptoms, being
subjective observations, would best be represented by probabilities that indicate

This research is supported by Hong Kong Research Grants Council Grant HKU
7134/06E.

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 47–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

48 C.-K. Chui, B. Kao, and E. Hung

Table 1. A diagnosis dataset

Patient ID Depression Eating Disorder
1 90% 80%
2 40% 70%

their presence in the patients’ tuples. Table 1 shows an example patient dataset.
A probability value in such a dataset might be obtained by a personal assess-
ment conducted by a physician, or it could be derived based on historical data
statistics. (For example, a patient who shows positive reaction to Test A has
a 70% probability of suffering from illness B.) Another example of uncertain
datasets is pattern recognition applications. Given a satellite picture, image pro-
cessing techniques can be applied to extract features that indicate the presence
or absence of certain target objects (such as bunkers). Due to noises and lim-
ited resolution, the presence of a feature in a spatial area is often uncertain and
expressed as a probability [3]. Here, we can model a spatial region as an object,
and the features (that have non-zero probabilities of being present in a region)
as the items of that object. The dataset can thus be considered as a collection of
tuples/transactions, each contains a set of items (features) that are associated
with the probabilities of being present. Applying association analysis on such
a dataset allows us to identify closely-related features. Such knowledge is very
useful in pattern classification [4] and image texture analysis [5].

In this paper we consider datasets that are collections of transactional records.
Each record contains a set of items that are associated with existential probabil-
ities. As we have mentioned, a core step in many association analysis techniques
is the extraction of frequent itemsets. An itemset is considered frequent if it ap-
pears in a large-enough portion of the dataset. The occurrence frequency is often
expressed in terms of a support count. For datasets that contain uncertain items,
however, the definition of support needs to be redefined. As we will discuss later,
due to the probabilistic nature of the datasets, the occurrence frequency of an
itemset should be captured by an expected support instead of a traditional sup-
port count. We will explain the Possible Worlds interpretation of an uncertain
dataset [6] and we will discuss how expected supports can be computed by a
simple modification of the well-known Apriori algorithm [1].

Since the existence of an item in a transaction is indicated by a probability,
an advantage of the existential uncertain data model is that it allows more in-
formation to be captured by the dataset. Consider again the example patient
dataset. If we adopt a binary data model, then each symptom/illness can either
be present (1) or absent (0) in a patient record. Under the binary model, data
analysts will be forced to set a threshold value for each symptom/illness to quan-
tize the probabilities into either 1 or 0. In other words, information about those
(marginally) low values is discarded. The uncertain data model, however, allows
such information be retained and be available for analysis. The disadvantage of
retaining such information is that the size of the dataset would be much larger

Mining Frequent Itemsets from Uncertain Data 49

than that under the quantized binary model. This is particularly true if most
of the existential probabilities are very small. Consequently, mining algorithms
will run a lot slower on such large datasets. In this paper we propose an efficient
technique for mining existential uncertain datasets, which exploit the statistical
properties of low-valued items. Through experiments, we will show that the
proposed technique is very efficient in terms of both CPU cost and I/O cost.

The rest of this paper is organized as follows. Section 2 describes the Possible
Worlds interpretation of existential uncertain data and defines the expected sup-
port measure. Section 3 discusses a simple modification of the Apriori algorithm
to mine uncertain data and explains why such a modification does not lead to
an efficient algorithm. Section 4 presents a data trimming technique to improve
mining efficiency. Section 5 presents some experimental results and discusses
some observations. We conclude the study in Section 6.

2 Problem Definition

In our data model, an uncertain dataset D consists of d transactions t1, . . . , td.
A transaction ti contains a number of items. Each item x in ti is associated
with a non-zero probability Pti(x), which indicates the likelihood that item x
is present in transaction ti. There are thus two possibilities of the world. In
one case, item x is present in transaction ti; in another case, item x is not
in ti. Let us call these two possibilities the two possible worlds, W1 and W2,
respectively. We do not know which world is the real world but we do know, from
the dataset, the probability of each world being the true world. In particular, if
we let P (Wi) be the probability that world Wi being the true world, then we
have P (W1) = Pti(x) and P (W2) = 1−Pti(x). We can extend this idea to cover
cases in which transaction ti contains other items. For example, let item y be
another item in ti with probability Pti(y). If the observation of item x and item y
are independently done1, then there are four possible worlds. The probability of
the world in which ti contains both items x and y, for example, is Pti(x) ·Pti (y).
We can further extend the idea to cover datasets that contains more than one
transaction. Figure 1 illustrates the 16 possible worlds derived from the patient
records shown in Table 1. In traditional frequent itemset mining, the support
count of an itemset X is defined as the number of transactions that contain
X . For an uncertain dataset, such a support value is undefined since we do not
know in the real world whether a transaction contains X with certainty. We can,
however, determine the support of X with respect to any given possible world.
Let us consider the worlds shown in Figure 1, the supports of itemset AB in
world W1 and W6 are 2 and 1, respectively. If we can determine the probability
of each possible world and the support of an itemset X in each world, we can
determine the expected support of X .

Definition 1. An itemset X is frequent if and only if its expected support not
less than ρs · d, where ρs is a user-specified support threshold.
1 For example, we can consider that different symptoms are diagnosed by independent

medical tests.

50 C.-K. Chui, B. Kao, and E. Hung

W1

A B
t1 ✔ ✔

t2 ✔ ✔

W2

A B
t1 ✔ ✔

t2 ✔ ✘

W3

A B
t1 ✔ ✔

t2 ✘ ✔

W4

A B
t1 ✔ ✘

t2 ✔ ✔

W5

A B
t1 ✘ ✔

t2 ✔ ✔

W6

A B
t1 ✔ ✔

t2 ✘ ✘

W7

A B
t1 ✘ ✘

t2 ✔ ✔

W8

A B
t1 ✔ ✘

t2 ✔ ✘

W9

A B
t1 ✘ ✔

t2 ✘ ✔

W10

A B
t1 ✘ ✔

t2 ✔ ✘

W11

A B
t1 ✔ ✘

t2 ✘ ✔

W12

A B
t1 ✘ ✘

t2 ✔ ✘

W13

A B
t1 ✘ ✘

t2 ✘ ✔

W14

A B
t1 ✘ ✔

t2 ✘ ✘

W15

A B
t1 ✔ ✘

t2 ✘ ✘

W16

A B
t1 ✘ ✘

t2 ✘ ✘

Fig. 1. 16 Possible Worlds derived from dataset with 2 transactions and 2 items

Given a world Wi and an itemset X , let us define P (Wi) be the probability of
world Pi and S(X, Wi) be the support count of X in world Wi. Furthermore, we
use Ti,j to denote the set of items that the jth transaction, i.e., tj , contains in the
world Wi. If we assume that items’ existential probabilities in transactions are
determined through independent observations2, then P (Wi) and the expected
support Se(X) of X are given by the following formulae:

P (Wi) =
d∏

j=1

⎛

⎝
∏

x∈Ti,j

Ptj (x) ·
∏

y �∈Ti,j

(1 − Ptj (y))

⎞

⎠ , and (1)

Se(X) =
|W |∑

i=1

P (Wi) × S(X, Wi). (2)

where W is the set of possible worlds derived from an uncertain dataset D.
Computing Se(X) according to Equation 2 requires enumerating all possible

worlds and finding the support count of X in each world. This is computationally
infeasible since there are 2m possible worlds where m is the total number of items
that occur in all transactions of D. Fortunately, we can show that

Se(X) =
|D|∑

j=1

∏

x∈X

Ptj (x). (3)

Thus, Se(X) can be computed by a single scan through the dataset D.

Proof. Let Stj(X, Wi) be the support of X in transaction tj w.r.t. possible world
Wi. If X ⊆ Ti,j, Stj (X, Wi) = 1; otherwise, Stj (X, Wi) = 0.

Se(X) =
|W |∑

i=1

P (Wi)S(X, Wi) =
|W |∑

i=1

P (Wi)
|D|∑

j=1

Stj (X, Wi)

=
|D|∑

j=1

|W |∑

i=1

P (Wi)Stj (X, Wi) =
|D|∑

j=1

∑

X⊆Ti,j

P (Wi) =
|D|∑

j=1

∏

x∈X

Ptj (x).

2 For example, the existential probabilities of two symptoms of the same patient are
determined independently by two lab tests.

Mining Frequent Itemsets from Uncertain Data 51

3 Preliminaries

Most of the algorithms devised to find frequent patterns (or itemsets) from
conventional transaction datasets are based on the Apriori algorithm [1]. The
algorithm relies on a property that all supersets of an infrequent itemset must
not be frequent. Apriori operates in a bottom-up and iterative fashion. In the kth

iteration, the Apriori-Gen procedure generates all size-k candidate itemsets Ck

and uses a Subset-Function procedure to verify their support counts. Candidate
itemsets with support counts larger than a user-specified support threshold are
regarded as frequent. The set of frequent k-itemsets Lk is then used by the
Apriori-Gen procedure to generate candidates for next iteration. The algorithm
terminates when Ck+1 is empty.

Under our uncertainty model, the Subset-Function procedure has to be revised
such that it can obtain the expected support count of each candidate. In the
traditional Apriori algorithm, Subset-Function processes one transaction at a
time by enumerating all size-k subsets contained in the transaction in the kth

iteration. The support count of a candidate is incremented by 1 if it is in Ck. By
Equation 3, we will instead increment the expected support count by the product
of the existential probabilities of all items x ∈ X . This modified algorithm is
called the U-Apriori algorithm.

Inherited from the Apriori algorithm, U-Apriori does not scale well on large
datasets. The poor efficiency problem becomes more serious under uncertain
datasets, as mentioned in Section 1, in particular when most of the existen-
tial probabilities are of low values. Let us consider a transaction t containing
three items A, B and C with existential probabilities 5%, 0.5% and 0.1%, re-
spectively. In the Subset-Function procedure, the product of the probabilities
(0.05 × 0.005 × 0.001 = 0.00000025) will be computed and the support count of
candidate {ABC} will be retrieved. By Equation 3, the support count of candi-
date {ABC} should be incremented by 0.00000025 which is insignificantly small.
If most of the existential probabilities are small, such insignificant increments
will dominate the Subset-Function procedure and waste computational resources
since in most cases an infrequent candidate will not be recognized as infrequent
until most of the transactions are processed.

To illustrate the impact of items with low existential probabilities on the per-
formance of U-Apriori, we conducted a preliminary experiment on five datasets.
The datasets have the same set of frequent itemsets but are fine tuned to have
different percentages of items with low existential probabilities. Let R be the
percentage of items with low probabilities in a dataset. In the five datasets, R is
set as 0%, 33.3%, 50%, 66.6% and 75% respectively. 3 In Figure 2a, we see that
U-Apriori takes different amount of time to execute even though all datasets
contain the same sets of frequent itemsets. We can conclude that when there are
more items with low existential probabilities (larger R), U-Apriori becomes more
inefficient. This result also indicates that by reducing the number of insignifi-
cant candidate increments, we might be able to reduce the execution time on all

3 Please refer to Section 5 for the details of our data generation process.

52 C.-K. Chui, B. Kao, and E. Hung

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

)

Iteration

Execution time of U-Apriori for different datasets in each iteration

R=75%
R=66.67%

R=50%
R=33.3%

R=0%

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

C
um

ul
at

iv
e

E
xp

ec
te

d
S

up
po

rt

Slot ID (α) of arrays la and lb

Determine trimming threshold (Local Trimming Technique)

p2 (α=345)

p1 (α=75)

Minimum Support
fa(α)

fb(α)

(a) (b)

Fig. 2. a) The execution time of U-Apriori in different datasets. b) Cumulative ex-
pected support of the sorted arrays la and lb of items a and b.

datasets to the time of the dataset with R = 0%. This motivates our study on an
efficient technique called Data trimming by exploiting the statistical properties
of those items with low existential probabilities.

4 Data Trimming

To improve the efficiency of the U-Apriori algorithm, we propose a data trim-
ming technique to avoid insignificant candidate support increments performed
in the Subset-Function. The basic idea is to trim away items with low existential
probabilities from the original dataset and to mine the trimmed dataset instead.
Hence the computational cost of those insignificant candidate increments can be
reduced. In addition, the I/O cost can be greatly reduced since the size of the
trimmed dataset is much smaller than the original one.

Data Trimming Framework. More specifically, the data trimming technique
works under a framework that consists three modules: the trimming module,

U-Apriori

Infrequent
k-itemsets

Frequent
itemsets in

D

Trimmed
Dataset

D

Potentially
frequent

k-itemsets

Trimming
Module

Pruning
Module

Patch Up
Module

Statistics Potentially
frequent itemsets

Frequent
itemsets

in D

Pruned itemsetsIteration k

Original
Dataset

D

T T

Fig. 3. The Data Trimming Framework

Mining Frequent Itemsets from Uncertain Data 53

pruning module and patch up module. As shown in figure 3, the mining pro-
cess starts by passing an uncertain dataset D into the trimming module. It
first obtains the frequent items by scanning D once. A trimmed dataset DT is
constructed by removing the items with existential probabilities smaller than a
trimming threshold ρt in the second iteration. Depending on the trimming strat-
egy, ρt can be either global to all items or local to each item. Some statistics
such as the maximum existential probability being trimmed for each item is kept
for error estimation.

DT is then mined by U-Apriori. Notice that if an itemset is frequent in DT ,
it must also be frequent in D. On the other hand, if an itemset is infrequent in
DT , we cannot conclude that it is infrequent in D.

Definition 2. An itemset X is potentially frequent if ST
e (X) ≤ dρs ≤ ST

e (X)+
e(X) where ST

e (X) is the expected support of X in DT and e(X) is the upper
bound of the error estimated for ST

e (X).

Lemma 1. An itemset X cannot be frequent if ST
e (X) + e(X) < dρs.

The role of the pruning module is to estimate the upper bound of the mining
error e(X) by the statistics gathered from the trimming module and to prune
the itemsets which cannot be frequent in D according to Lemma 1. After mining
DT , the expected supports of the frequent and potentially frequent itemsets are
verified against the original dataset D by the patch up module.

A number of trimming, pruning and patch up strategies can be used under
this framework. Due to limitation of space, we only present a simple method,
called the Local trimming, Global pruning and Single-pass patch up strategy (the
LGS-Trimming strategy), in this paper.

Local Trimming Strategy. The Local trimming strategy uses one trimming
threshold ρt(x) for each item x. ρt(x) can be determined based on the distribu-
tion of existential probabilities of x in D. The distribution can be obtained by
sorting the existential probabilities of x in D in descending order and putting
them in an array lx. We then plot the curve fx(α) =

∑α
i=0 lx[i] where the y-axis

is the cumulative sum of the probabilities
∑α

i=0 lx[i] and the x-axis is the slot ID
of lx. Figure 2b shows the curves fa(α) and fb(α) of two hypotheoretical items a
and b. The horizontal line labeled ”minsup” is the minimum support threshold.

We regard item a as marginally frequent because Se(a) exceeds the minimum
support by a small fraction (e.g. dρs ≤ Se(a) ≤ 1.1 × dρs). Assume fa(α) in-
tersects with the minimum support line at about α = i. In this case, the Local
trimming strategy sets the trimming threshold ρt(a) to be lx[i], which is the exis-
tential probability of the item at the ith slot of the array lx (i.e. ρt(a) = la[75]).
The rationale is that the supersets of a are likely to be infrequent, therefore
those insignificant candidate increments with existential probabilities smaller
than ρt(a) are likely to be redundant.

On the other hand, we classify item b as another type of items as Se(b) � dρs.
The Local trimming strategy determines ρt(b) based on the change of slope of
fb(α). In this case, since the chance of the supersets of b to be frequent is larger,

54 C.-K. Chui, B. Kao, and E. Hung

we adopt a more conservative approach. We use point p2 in Figure 2b as a
reference point to determine ρt(b) (i.e. ρt(b) = lb[345])4. The reason is that if one
of the supersets of b is actually infrequent, the error would be small enough for
the Pruning module to obtain a tight estimation and identify it as an infrequent
itemset by Lemma 1.

Global Pruning Strategy. We illustrate the Global pruning strategy by an
example in the second iteration. Let MT (x) be the maximum of the existen-
tial probabilities of those untrimmed item x, and similarly M∼T (x) for those
trimmed x. We also let ST

e (x) be the sum of the existential probabilities of those
untrimmed x, and similarly S∼T

e (x) for those trimmed x. If an itemset {AB} is
infrequent in DT (i.e. ST

e (AB) < dρs), we can obtain the upper bound of the
error e(AB) by the following formula:

e(AB) = ŜT,∼T
e (AB) + Ŝ∼T,T

e (AB) + Ŝ∼T,∼T
e (AB). (4)

where ŜT,∼T
e (AB) is an upper bound estimation of the expected support of {AB}

for all transactions t with Pt(A) ≥ ρt(A) and Pt(B) < ρt(B).
If we assume all the untrimmed items A exist with maximum existential prob-

ability MT (A), then the maximum number of transactions with an untrimmed
item A which may coexist with a trimmed item B is given by ST

e (A)−ST
e (AB)

MT (A) .
On the other hand, if we assume all the trimmed items B exist with maximum
probability M∼T (B), then the maximum number of transactions with a trimmed
item B is given by S∼T

e (B)
M∼T (B) . Therefore, we can obtain ŜT,∼T

e (AB) as shown in

Equation 5. Ŝ∼T,T
e (AB) is similarly obtained.

Ŝ∼T,∼T
e (AB) is an upper bound estimation of the expected support of {AB}

for all transactions t with Pt(A) < ρt(A) and Pt(B) < ρt(B), assuming that
the case of estimating ŜT,∼T

e (AB) and Ŝ∼T,T
e (AB) happens in D. It can be

calculated by Equation 7 after obtaining ŜT,∼T
e (AB) and Ŝ∼T,T

e (AB).

ŜT,∼T
e (AB) = min(

ST
e (A) − ST

e (AB)
MT (A)

,
S∼T

e (B)
M∼T (B)

) · MT (A) · M∼T (B). (5)

Ŝ∼T,T
e (AB) = min(

S∼T
e (A)

M∼T (A)
,
ST

e (B) − ST
e (AB)

MT (B)
) · M∼T (A) · MT (B). (6)

Ŝ∼T,∼T
e (AB) = min(

S∼T
e (A) − Ŝ∼T,T

e (AB)

M∼T (A)
,
S∼T

e (B) − ŜT,∼T
e (AB)

M∼T (B)
)·M∼T (A)·M∼T (B).

() (7)

Single-pass Patch Up Strategy. The Single-pass patch up strategy requires
only one scan on the original dataset D. This strategy requires the Apriori-Gen

4 Due to space limitation, we only present the abstract idea of Local trimming strategy
in this paper.

Mining Frequent Itemsets from Uncertain Data 55

procedure to include the potentially frequent itemsets during the mining process
so that the set of potentially frequent itemsets will not miss any real frequent
itemsets. In the patch up phase, the true expected supports of potentially fre-
quent itemsets are verified by a single scan on the original dataset D. At the same
time, the true expected supports of frequent itemsets in DT are also recovered.

5 Experimental Evaluation

We ran our experiments on Linux Kernel version 2.6.10 machine with 1024 MB
of memory. The U-Apriori algorithm and the LGS-Trimming technique were
implemented using C programming language.

Data were generated in the following two-step procedure. First we generate
data without uncertainty using the IBM synthetic generator used in [1]. This
step is to generate dataset which contains frequent itemsets. We set the average
number of items per transaction (Thigh) to be 20, the average length of frequent
itemsets (I) to be 6 and the number of transactions (D) to be 100K 5.

In the second step, we introduce uncertainty to each item of the dataset
generated from the first step. Since we want to maintain the frequent patterns
hidden in the dataset, we assign each items with relatively high probabilities
following a normal distribution with specified mean HB and standard deviation
HD. To simulate items with low probabilities, we add Tlow number of items into
each transaction. These items have probabilities in normal distribution with
mean LB and standard deviation LD. Therefore, the average number of items
per transaction, denoted as T , is equal to Thigh + Tlow. We use R to denote the
percentage of items with low probabilities in the dataset (i.e. R = Tlow

Thigh+Tlow
).

As an example, T 80R75I6D100KHB90HD5LB10LD6 represents an uncer-
tain dataset with 80 items per transaction on average. Of the 80 items, 20 items
are assigned with high probabilities and 60 items are assigned with low proba-
bilities. The high(low) probabilities are generated following normal distribution
with mean equal to 90%(10%) and standard deviation equal to 5%(6%). For
simplicity, we call this dataset Synthetic-1 in later sections.

5.1 Varying Number of Low Probability Items Per Transaction

We first investigate the CPU cost of U-Apriori and LGS-Trimming on datasets
with different number of low probability items per transaction. We keep the same
set of frequent itemsets in all datasets, therefore an increase in R means more
low-probability items are added during the second step of data generation. We
set ρs = 0.5% in the experiments. Figure 4a and 4b show the CPU cost and
the percentage of CPU cost saving (compare with U-Apriori) of U-Apriori and
LGS-Trimming as R varies from 0% to 90%.

5 We have conducted our experiments using different values of Thigh, I and D but due
to the space limitation we only report a representative result using Thigh20I6D100K
in this paper.

56 C.-K. Chui, B. Kao, and E. Hung

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

C
P

U
 C

os
t (

s)

Percentage of items with low existential probabilities (R)

CPU Cost vs R

LGS-Trimming
U-Apriori

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
P

U
 C

os
t S

av
in

g
(%

)

Percentage of items with low existential probabilities (R)

CPU Cost Saving (%) Compare with U-Apriori for different R

LGS-Trimming

(a) (b)

Fig. 4. CPU cost and saving with different R

From Figures 4a, we observe that the CPU cost of U-Apriori increases ex-
ponentially with the percentage of low probability items in the dataset. This is
mainly due to the combinatorial explosion of subsets contained in a transaction.
This leads to huge amounts of insignificant candidate support increments in the
Subset-Function. For instance, when R is 90%, the average number of items per
transaction with non-zero probability is about 200 (20 items with high probabil-
ities, 180 items with low probabilities), leading to 200C2 = 19900 size-2 subsets
per transaction. In other words, there are 19900 candidate searches per transac-
tion in the second iteration. When R is 50%, however, there are only 40C2 = 780
candidate searches per transaction in the second iteration.

From Figure 4b, we see that the LGS-Trimming technique achieves positive
CPU cost saving when R is over 3%. It achieves more than 60% saving when R
is 50% or larger. When R is too low, fewer low probability items can be trimmed
and the saving cannot compensate with the extra computational effort in the
patch up phase. These figures suggest that the LGS-Trimming technique is very
scalable to the percentage of low probability items in the dataset.

5.2 Varying Minimum Support Threshold

This section assesses the performance of U-Apriori and LGS-Trimming by vary-
ing ρs from 1% to 0.1%. Here we only report the result of using Synthetic-1 in
this experiment because experimental results on other datasets with different
values of HB, HD, LB and LD also lead to a similar conclusion. Figures 5a and
5b show the CPU cost and the saving (in %) of the two mining techniques.

Figure 5a shows that LGS-Trimming outperforms U-Apriori for all values of
ρs. Figure 5b shows that LGS-Trimming achieves very high and steady CPU cost
saving ranging from 60% to 80%. The percentage of CPU cost saving increases
gently when ρs increases because the low probability items become less significant
to the support of itemsets when the support threshold increases. Therefore more
low probability items can be trimmed, leading to better saving.

Mining Frequent Itemsets from Uncertain Data 57

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 C

os
t (

s)

Support Threshold (%)

CPU Cost vs Different Support Thresholds

LGS-Trimming
U-Apriori

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 C

os
t S

av
in

g
(%

)

Support Threshold(%)

CPU Cost Saving (%) Compare with U-Apriori vs Different Support Threshold

LGS-Trimming

(a) (b)

Fig. 5. CPU cost and saving with different ρs

5.3 CPU Cost and I/O Cost in Each Iteration

In this section we compare the CPU and I/O cost in each iteration of U-Apriori
and LGS-Trimming. The dataset we use is Synthetic-1 and we set ρs = 0.5%.
From Figure 6a, we see that the CPU cost of LGS-Trimming is smaller than
U-Apriori from the second to the second last iteration. In particular, LGS-
Trimming successfully relieves the computational bottleneck of U-Apriori and
achieves over 90% saving in the second iteration. In the first iteration, the CPU
cost of LGS-Trimming is slightly larger than U-Apriori because extra effort
is spent on gathering statistics for the trimming module to trim the original
dataset. Notice that iteration 8 is the patch up iteration which is the over-
head of the LGS-Trimming algorithm. These figures show that the computa-
tional overhead of LGS-Trimming is compensated by the saving from the second
iteration.

Figure 6b shows the I/O cost in terms of dataset scan (with respect to the
size of the original dataset) in each iteration. We can see that I/O saving starts
from iteration 3 to the second last iteration. The extra I/O cost in the second

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

C
P

U
 C

os
t

Iteration

CPU Cost per Iteration

U-Apriori
LGS-Trimming

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

N
um

be
r

of
 d

at
as

et
 s

ca
n

(w
.r

.t.
 D

)

Iteration

Number of dataset scan (w.r.t. D) per Iteration

U-Apriori
LGS-Trimming

(a) (b)

Fig. 6. CPU and I/O costs of U-Apriori and LGS-Trimming in each iteration

58 C.-K. Chui, B. Kao, and E. Hung

iteration is the cost of creating the trimmed dataset. In this case, LGS-Trimming
reduces the size of the original dataset by a factor of 4 and achieves 35% I/O
cost saving in total. As U-Apriori iterates k times to discover a size-k frequent
itemset, longer frequent itemsets favors LGS-Trimming and the I/O cost saving
will be more significant.

6 Conclusions

In this paper we studied the problem of mining frequent itemsets from existen-
tial uncertain data. We introduced the U-Apriori algorithm, which is a modified
version of the Apriori algorithm, to work on such datasets. We identified the com-
putational problem of U-Apriori and proposed a data trimming framework to
address this issue. We proposed the LGS-Trimming technique under the frame-
work and verified, by extensive experiments, that it achieves very high perfor-
mance gain in terms of both computational cost and I/O cost. Unlike U-Apriori,
LGS-Trimming works well on datasets with high percentage of low probability
items. In some of the experiments, LGS-Trimming achieves over 90% CPU cost
saving in the second iteration of the mining process, which is the computational
bottleneck of the U-Apriori algorithm.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, Morgan Kaufmann (1994) 487–499

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. of the 11th Inter-
national Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan, IEEE
Computer Society (1995) 3–14

3. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic spatial queries on
existentially uncertain data. In: SSTD. Volume 3633 of Lecture Notes in Computer
Science., Springer (2005) 400–417

4. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In:
KDD. (1998) 80–86

5. Rushing, A., Ranganath, S., Hinke, H., Graves, J.: Using association rules as texture
features. IEEE Trans. Pattern Anal. Mach. Intell. 23(8) (2001) 845–858

6. Zimányi, E., Pirotte, A.: Imperfect information in relational databases. In: Uncer-
tainty Management in Information Systems. (1996) 35–88

	Introduction
	Problem Definition
	Preliminaries
	Data Trimming
	Experimental Evaluation
	Varying Number of Low Probability Items Per Transaction
	Varying Minimum Support Threshold
	CPU Cost and I/O Cost in Each Iteration

	Conclusions

