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Abstract. Mining frequent patterns in transaction databases, time-series databases, and many other kinds of
databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like
candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there
exist a large number of patterns and/or long patterns.

In this study, we propose a novel frequent-pattern tree (FP-tree) structure, which is an extended prefix-tree
structure for storing compressed, crucial information about frequent patterns, and develop an efficient FP-tree-
based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth.
Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a condensed,
smaller data structure, FP-tree which avoids costly, repeated database scans, (2) our FP-tree-based mining adopts
a pattern-fragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a
partitioning-based, divide-and-conquer method is used to decompose the mining task into a set of smaller tasks for
mining confined patterns in conditional databases, which dramatically reduces the search space. Our performance
study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns,
and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported
new frequent-pattern mining methods.
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1. Introduction

Frequent-pattern mining plays an essential role in mining associations (Agrawal et al.,
1993, 1996; Agrawal and Srikant, 1994; Mannila et al., 1994), correlations (Brin et al.,
1997), causality (Silverstein et al., 1998), sequential patterns (Agrawal and Srikant, 1995),
episodes (Mannila et al., 1997), multi-dimensional patterns (Lent et al., 1997; Kamber
et al., 1997), max-patterns (Bayardo, 1998), partial periodicity (Han et al., 1999), emerging
patterns (Dong and Li, 1999), and many other important data mining tasks.

Most of the previous studies, such as Agrawal and Srikant (1994), Mannila et al. (1994),
Agrawal et al. (1996), Savasere et al. (1995), Park et al. (1995), Lent et al. (1997), Sarawagi
et al. (1998), Srikant et al. (1997), Ng et al. (1998) and Grahne et al. (2000), adopt an
Apriori-like approach, which is based on the anti-monotone Apriori heuristic (Agrawal and
Srikant, 1994): if any length k pattern is not frequent in the database, its length (k + 1)
super-pattern can never be frequent. The essential idea is to iteratively generate the set of
candidate patterns of length (k +1) from the set of frequent-patterns of length k (for k ≥ 1),
and check their corresponding occurrence frequencies in the database.

The Apriori heuristic achieves good performance gained by (possibly significantly) re-
ducing the size of candidate sets. However, in situations with a large number of frequent
patterns, long patterns, or quite low minimum support thresholds, an Apriori-like algorithm
may suffer from the following two nontrivial costs:

– It is costly to handle a huge number of candidate sets. For example, if there are 104

frequent 1-itemsets, the Apriori algorithm will need to generate more than 107 length-2
candidates and accumulate and test their occurrence frequencies. Moreover, to discover
a frequent pattern of size 100, such as {a1, . . . , a100}, it must generate 2100 − 2 ≈ 1030

candidates in total. This is the inherent cost of candidate generation, no matter what
implementation technique is applied.

– It is tedious to repeatedly scan the database and check a large set of candidates by pattern
matching, which is especially true for mining long patterns.

Can one develop a method that may avoid candidate generation-and-test and utilize some
novel data structures to reduce the cost in frequent-pattern mining? This is the motivation
of this study.

In this paper, we develop and integrate the following three techniques in order to solve
this problem.

First, a novel, compact data structure, called frequent-pattern tree, or FP-tree in short,
is constructed, which is an extended prefix-tree structure storing crucial, quantitative infor-
mation about frequent patterns. To ensure that the tree structure is compact and informative,
only frequent length-1 items will have nodes in the tree, and the tree nodes are arranged in
such a way that more frequently occurring nodes will have better chances of node sharing
than less frequently occurring ones. Our experiments show that such a tree is compact,
and it is sometimes orders of magnitude smaller than the original database. Subsequent
frequent-pattern mining will only need to work on the FP-tree instead of the whole data set.

Second, an FP-tree-based pattern-fragment growth mining method is developed, which
starts from a frequent length-1 pattern (as an initial suffix pattern), examines only its
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conditional-pattern base (a “sub-database” which consists of the set of frequent items co-
occurring with the suffix pattern), constructs its (conditional) FP-tree, and performs mining
recursively with such a tree. The pattern growth is achieved via concatenation of the suffix
pattern with the new ones generated from a conditional FP-tree. Since the frequent itemset
in any transaction is always encoded in the corresponding path of the frequent-pattern trees,
pattern growth ensures the completeness of the result. In this context, our method is not
Apriori-like restricted generation-and-test but restricted test only. The major operations of
mining are count accumulation and prefix path count adjustment, which are usually much
less costly than candidate generation and pattern matching operations performed in most
Apriori-like algorithms.

Third, the search technique employed in mining is a partitioning-based, divide-and-
conquer method rather than Apriori-like level-wise generation of the combinations of fre-
quent itemsets. This dramatically reduces the size of conditional-pattern base generated at
the subsequent level of search as well as the size of its corresponding conditional FP-tree.
Moreover, it transforms the problem of finding long frequent patterns to looking for shorter
ones and then concatenating the suffix. It employs the least frequent items as suffix, which
offers good selectivity. All these techniques contribute to substantial reduction of search
costs.

A performance study has been conducted to compare the performance of FP-growth with
two representative frequent-pattern mining methods, Apriori (Agrawal and Srikant, 1994)
and TreeProjection (Agarwal et al., 2001). Our study shows that FP-growth is about an
order of magnitude faster than Apriori, especially when the data set is dense (containing
many patterns) and/or when the frequent patterns are long; also, FP-growth outperforms
the TreeProjection algorithm. Moreover, our FP-tree-based mining method has been im-
plemented in the DBMiner system and tested in large transaction databases in industrial
applications.

Although FP-growth was first proposed briefly in Han et al. (2000), this paper makes
additional progress as follows.

– The properties of FP-tree are thoroughly studied. Also, we point out the fact that, although
it is often compact, FP-tree may not always be minimal.

– Some optimizations are proposed to speed up FP-growth, for example, in Section 3.2,
a technique to handle single path FP-tree has been further developed for performance
improvements.

– A database projection method has been developed in Section 4 to cope with the situation
when an FP-tree cannot be held in main memory—the case that may happen in a very
large database.

– Extensive experimental results have been reported. We examine the size of FP-tree as
well as the turning point of FP-growth on data projection to building FP-tree. We also
test the fully integrated FP-growth method on large datasets which cannot fit in main
memory.

The remainder of the paper is organized as follows. Section 2 introduces the FP-tree
structure and its construction method. Section 3 develops an FP-tree-based frequent-pattern
mining algorithm, FP-growth. Section 4 explores techniques for scaling FP-growth in large
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databases. Section 5 presents our performance study. Section 6 discusses the issues on
further improvements of the method. Section 7 summarizes our study and points out some
future research issues.

2. Frequent-pattern tree: Design and construction

Let I = {a1, a2, . . . , am} be a set of items, and a transaction database DB = 〈T1, T2, . . . ,

Tn〉, where Ti (i ∈ [1 . . . n]) is a transaction which contains a set of items in I . The support1

(or occurrence frequency) of a pattern A, where A is a set of items, is the number of
transactions containing A in DB. A pattern A is frequent if A’s support is no less than a
predefined minimum support threshold, ξ .

Given a transaction database DB and a minimum support threshold ξ , the problem of
finding the complete set of frequent patterns is called the frequent-pattern mining problem.

2.1. Frequent-pattern tree

To design a compact data structure for efficient frequent-pattern mining, let’s first examine
an example.

Example 1. Let the transaction database, DB, be the first two columns of Table 1, and the
minimum support threshold be 3 (i.e., ξ = 3).

A compact data structure can be designed based on the following observations:

1. Since only the frequent items will play a role in the frequent-pattern mining, it is necessary
to perform one scan of transaction database DB to identify the set of frequent items (with
frequency count obtained as a by-product).

2. If the set of frequent items of each transaction can be stored in some compact structure,
it may be possible to avoid repeatedly scanning the original transaction database.

3. If multiple transactions share a set of frequent items, it may be possible to merge the
shared sets with the number of occurrences registered as count. It is easy to check whether
two sets are identical if the frequent items in all of the transactions are listed according
to a fixed order.

Table 1. A transaction database as running example.

TID Items bought (Ordered) frequent items

100 f, a, c, d, g, i, m, p f, c, a, m, p

200 a, b, c, f, l, m, o f, c, a, b, m

300 b, f, h, j, o f, b

400 b, c, k, s, p c, b, p

500 a, f, c, e, l, p, m, n f, c, a, m, p
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4. If two transactions share a common prefix, according to some sorted order of frequent
items, the shared parts can be merged using one prefix structure as long as the count is
registered properly. If the frequent items are sorted in their frequency descending order,
there are better chances that more prefix strings can be shared.

With the above observations, one may construct a frequent-pattern tree as follows.
First, a scan of DB derives a list of frequent items, 〈( f :4), (c:4), (a:3), (b:3), (m:3), (p:3)〉

(the number after “:” indicates the support), in which items are ordered in frequency-
descending order. This ordering is important since each path of a tree will follow this order.
For convenience of later discussions, the frequent items in each transaction are listed in this
ordering in the rightmost column of Table 1.

Second, the root of a tree is created and labeled with “null”. The FP-tree is constructed
as follows by scanning the transaction database DB the second time.

1. The scan of the first transaction leads to the construction of the first branch of the tree:
〈( f :1), (c:1), (a:1), (m:1), (p:1)〉. Notice that the frequent items in the transaction are
listed according to the order in the list of frequent items.

2. For the second transaction, since its (ordered) frequent item list 〈 f, c, a, b, m〉 shares a
common prefix 〈 f, c, a〉 with the existing path 〈 f, c, a, m, p〉, the count of each node
along the prefix is incremented by 1, and one new node (b:1) is created and linked as a
child of (a:2) and another new node (m:1) is created and linked as the child of (b:1).

3. For the third transaction, since its frequent item list 〈 f, b〉 shares only the node 〈 f 〉 with
the f -prefix subtree, f ’s count is incremented by 1, and a new node (b:1) is created and
linked as a child of ( f :3).

4. The scan of the fourth transaction leads to the construction of the second branch of the
tree, 〈(c:1), (b:1), (p:1)〉.

5. For the last transaction, since its frequent item list 〈 f, c, a, m, p〉 is identical to the first
one, the path is shared with the count of each node along the path incremented by 1.

To facilitate tree traversal, an item header table is built in which each item points to its
first occurrence in the tree via a node-link. Nodes with the same item-name are linked in
sequence via such node-links. After scanning all the transactions, the tree, together with the
associated node-links, are shown infigure 1.

Based on this example, a frequent-pattern tree can be designed as follows.

Definition 1 (FP-tree). A frequent-pattern tree (or FP-tree in short) is a tree structure
defined below.

1. It consists of one root labeled as “null”, a set of item-prefix subtrees as the children of
the root, and a frequent-item-header table.

2. Each node in the item-prefix subtree consists of three fields: item-name, count, and
node-link, where item-name registers which item this node represents, count registers
the number of transactions represented by the portion of the path reaching this node, and
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Figure 1. The FP-tree in Example 1.

node-link links to the next node in the FP-tree carrying the same item-name, or null if
there is none.

3. Each entry in the frequent-item-header table consists of two fields, (1) item-name and
(2) head of node-link (a pointer pointing to the first node in the FP-tree carrying the
item-name).

Based on this definition, we have the following FP-tree construction algorithm.

Algorithm 1 (FP-tree construction).

Input: A transaction database DB and a minimum support threshold ξ .
Output: FP-tree, the frequent-pattern tree of DB.
Method: The FP-tree is constructed as follows.

1. Scan the transaction database DB once. Collect F , the set of frequent items, and the
support of each frequent item. Sort F in support-descending order as FList, the list of
frequent items.

2. Create the root of an FP-tree, T , and label it as “null”. For each transaction Trans in DB
do the following.
Select the frequent items in Trans and sort them according to the order of FList. Let the
sorted frequent-item list in Trans be [p | P], where p is the first element and P is the
remaining list. Call insert tree([p | P], T ).

The function insert tree([p | P], T ) is performed as follows. If T has a child N such
that N.item-name = p.item-name, then increment N ’s count by 1; else create a new node
N , with its count initialized to 1, its parent link linked to T , and its node-link linked to
the nodes with the same item-name via the node-link structure. If P is nonempty, call
insert tree(P, N ) recursively.

Analysis. The FP-tree construction takes exactly two scans of the transaction database: The
first scan collects the set of frequent items, and the second scan constructs the FP-tree. The
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cost of inserting a transaction Trans into the FP-tree is O(|freq(Trans)|), where freq(Trans)
is the set of frequent items in Trans. We will show that the FP-tree contains the complete
information for frequent-pattern mining.

2.2. Completeness and compactness of FP-tree

There are several important properties of FP-tree that can be derived from the FP-tree
construction process.

Given a transaction database DB and a support threshold ξ . Let F be the frequent items in
DB. For each transaction T , freq(T ) is the set of frequent items in T , i.e., freq(T ) = T ∩ F ,
and is called the frequent item projection of transaction T . According to the Apriori
principle, the set of frequent item projections of transactions in the database is sufficient
for mining the complete set of frequent patterns, because an infrequent item plays no role
in frequent patterns.

Lemma 2.1. Given a transaction database DB and a support threshold ξ, the complete
set of frequent item projections of transactions in the database can be derived from DB’s
FP-tree.

Rationale. Based on the FP-tree construction process, for each transaction in the DB, its
frequent item projection is mapped to one path in the FP-tree.

For a path a1a2 . . . ak from the root to a node in the FP-tree, let cak be the count at the
node labeled ak and c′

ak
be the sum of counts of children nodes of ak . Then, according to

the construction of the FP-tree, the path registers frequent item projections of cak − c′
ak

transactions.
Therefore, the FP-tree registers the complete set of frequent item projections without

duplication.

Based on this lemma, after an FP-tree for DB is constructed, it contains the complete
information for mining frequent patterns from the transaction database. Thereafter, only the
FP-tree is needed in the remaining mining process, regardless of the number and length of
the frequent patterns.

Lemma 2.2. Given a transaction database DB and a support threshold ξ . Without con-
sidering the (null) root, the size of an FP-tree is bounded by

∑
T ∈DB |freq(T )|, and the

height of the tree is bounded by maxT ∈DB{|freq(T )|}, where freq(T ) is the frequent item
projection of transaction T .

Rationale. Based on the FP-tree construction process, for any transaction T in DB, there
exists a path in the FP-tree starting from the corresponding item prefix subtree so that the set
of nodes in the path is exactly the same set of frequent items in T . The root is the only extra
node that is not created by frequent-item insertion, and each node contains one node-link
and one count. Thus we have the bound of the size of the tree stated in the Lemma.

The height of any p-prefix subtree is the maximum number of frequent items in any
transaction with p appearing at the head of its frequent item list. Therefore, the height of
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the tree is bounded by the maximal number of frequent items in any transaction in the
database, if we do not consider the additional level added by the root.

Lemma 2.2 shows an important benefit of FP-tree: the size of an FP-tree is bounded by the
size of its corresponding database because each transaction will contribute at most one path
to the FP-tree, with the length equal to the number of frequent items in that transaction. Since
there are often a lot of sharings of frequent items among transactions, the size of the tree is
usually much smaller than its original database. Unlike the Apriori-like method which may
generate an exponential number of candidates in the worst case, under no circumstances,
may an FP-tree with an exponential number of nodes be generated.

FP-tree is a highly compact structure which stores the information for frequent-pattern
mining. Since a single path “a1 → a2 → · · · → an” in the a1-prefix subtree registers all
the transactions whose maximal frequent set is in the form of “a1 → a2 → · · · → ak” for
any 1 ≤ k ≤ n, the size of the FP-tree is substantially smaller than the size of the database
and that of the candidate sets generated in the association rule mining.

The items in the frequent item set are ordered in the support-descending order: More
frequently occurring items are more likely to be shared and thus they are arranged closer
to the top of the FP-tree. This ordering enhances the compactness of the FP-tree structure.
However, this does not mean that the tree so constructed always achieves the maximal com-
pactness. With the knowledge of particular data characteristics, it is sometimes possible
to achieve even better compression than the frequency-descending ordering. Consider the
following example. Let the set of transactions be: {adef , bdef , cdef , a, a, a, b, b, b, c, c, c},
and the minimum support threshold be 3. The frequent item set associated with sup-
port count becomes {a:4, b:4, c:4, d:3, e:3, f :3}. Following the item frequency ordering
a → b → c → d → e → f , the FP-tree constructed will contain 12 nodes, as shown in
figure 2(a). However, following another item ordering f → d → e → a → b → c, it will
contain only 9 nodes, as shown in figure 2(b).

The compactness of FP-tree is also verified by our experiments. Sometimes a rather small
FP-tree is resulted from a quite large database. For example, for the database Connect-4 used
in MaxMiner (Bayardo, 1998), which contains 67,557 transactions with 43 items in each
transaction, when the support threshold is 50% (which is used in the MaxMiner experiments

Figure 2. FP-tree constructed based on frequency descending ordering may not always be minimal.
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(Bayardo, 1998)), the total number of occurrences of frequent items is 2,219,609, whereas
the total number of nodes in the FP-tree is 13,449 which represents a reduction ratio of
165.04, while it still holds hundreds of thousands of frequent patterns! (Notice that for
databases with mostly short transactions, the reduction ratio is not that high.) Therefore,
it is not surprising some gigabyte transaction database containing many long patterns may
even generate an FP-tree that fits in main memory. Nevertheless, one cannot assume that
an FP-tree can always fit in main memory no matter how large a database is. Methods for
highly scalable FP-growth mining will be discussed in Section 5.

3. Mining frequent patterns using FP-tree

Construction of a compact FP-tree ensures that subsequent mining can be performed with
a rather compact data structure. However, this does not automatically guarantee that it will
be highly efficient since one may still encounter the combinatorial problem of candidate
generation if one simply uses this FP-tree to generate and check all the candidate patterns.

In this section, we study how to explore the compact information stored in an FP-tree,
develop the principles of frequent-pattern growth by examination of our running exam-
ple, explore how to perform further optimization when there exists a single prefix path in
an FP-tree, and propose a frequent-pattern growth algorithm, FP-growth, for mining the
complete set of frequent patterns using FP-tree.

3.1. Principles of frequent-pattern growth for FP-tree mining

In this subsection, we examine some interesting properties of the FP-tree structure which
will facilitate frequent-pattern mining.

Property 3.1 (Node-link property). For any frequent item ai , all the possible patterns
containing only frequent items and ai can be obtained by following ai ’s node-links, starting
from ai ’s head in the FP-tree header.

This property is directly from the FP-tree construction process, and it facilitates the access
of all the frequent-pattern information related to ai by traversing the FP-tree once following
ai ’s node-links.

To facilitate the understanding of other properties of FP-tree related to mining, we first
go through an example which performs mining on the constructed FP-tree (figure 1) in
Example 1.

Example 2. Let us examine the mining process based on the constructed FP-tree shown
in figure 1. Based on Property 3.1, all the patterns containing frequent items that a node ai

participates can be collected by starting at ai ’s node-link head and following its node-links.
We examine the mining process by starting from the bottom of the node-link header table.

For node p, its immediate frequent pattern is (p:3), and it has two paths in the FP-tree:
〈 f :4, c:3, a:3, m:2, p:2〉 and 〈c:1, b:1, p:1〉. The first path indicates that string
“( f, c, a, m, p)” appears twice in the database. Notice the path also indicates that string
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〈 f, c, a〉 appears three times and 〈 f 〉 itself appears even four times. However, they only
appear twice together with p. Thus, to study which string appear together with p, only p’s
prefix path 〈 f :2, c:2, a:2, m:2〉 (or simply, 〈 f cam:2〉) counts. Similarly, the second path
indicates string “(c, b, p)” appears once in the set of transactions in DB, or p’s prefix path
is 〈cb:1〉. These two prefix paths of p, “{( f cam:2), (cb:1)}”, form p’s subpattern-base,
which is called p’s conditional pattern base (i.e., the subpattern-base under the condition of
p’s existence). Construction of an FP-tree on this conditional pattern-base (which is called
p’s conditional FP-tree) leads to only one branch (c:3). Hence, only one frequent pattern
(cp:3) is derived. (Notice that a pattern is an itemset and is denoted by a string here.) The
search for frequent patterns associated with p terminates.

For node m, its immediate frequent pattern is (m:3), and it has two paths, 〈 f :4, c:3,

a:3, m:2〉 and 〈 f :4, c:3, a:3, b:1, m:1〉. Notice p appears together with m as well, however,
there is no need to include p here in the analysis since any frequent patterns involving p
has been analyzed in the previous examination of p. Similar to the above analysis, m’s
conditional pattern-base is {(fca:2), (fcab:1)}. Constructing an FP-tree on it, we derive m’s
conditional FP-tree, 〈 f :3, c:3, a:3〉, a single frequent pattern path, as shown in figure 3.
This conditional FP-tree is then mined recursively by calling mine(〈 f :3, c:3, a:3〉 | m).

Figure 3 shows that “mine(〈 f :3, c:3, a:3〉 | m)” involves mining three items (a), (c), ( f )
in sequence. The first derives a frequent pattern (am:3), a conditional pattern-base {(fc:3)},
and then a call “mine(〈 f :3, c:3〉 | am)”; the second derives a frequent pattern (cm:3), a
conditional pattern-base {( f :3)}, and then a call “mine(〈 f :3〉 | cm)”; and the third derives
only a frequent pattern (fm:3). Further recursive call of “mine(〈 f :3, c:3〉 | am)” derives two
patterns (cam:3) and (fam:3), and a conditional pattern-base {( f :3)}, which then leads
to a call “mine(〈 f :3〉 | cam)”, that derives the longest pattern (fcam:3). Similarly, the call
of “mine(〈 f :3〉 | cm)” derives one pattern (fcm:3). Therefore, the set of frequent patterns
involving m is {(m:3), (am:3), (cm:3), ( f m:3), (cam:3), (fam:3), (fcam:3), (fcm:3)}. This
indicates that a single path FP-tree can be mined by outputting all the combinations of the
items in the path.

Similarly, node b derives (b:3) and it has three paths: 〈 f :4, c:3, a:3, b:1〉, 〈 f :4, b:1〉, and
〈c:1, b:1〉. Since b’s conditional pattern-base {(fca:1), ( f :1), (c:1)} generates no frequent
item, the mining for b terminates. Node a derives one frequent pattern {(a:3)} and one
subpattern base {( f c:3)}, a single-path conditional FP-tree. Thus, its set of frequent patterns

Figure 3. Mining FP-tree | m, a conditional FP-tree for item m.
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Table 2. Mining frequent patterns by creating conditional (sub)pattern-bases.

Item Conditional pattern-base Conditional FP-tree

p {( f cam:2), (cb:1)} {(c:3)}|p

m {( f ca:2), (fcab:1)} {( f :3, c:3, a:3)}|m
b {( f ca:1), ( f :1), (c:1)} ∅
a {( f c:3)} {( f :3, c:3)}|a
c {( f :3)} {( f :3)}|c
f ∅ ∅

can be generated by taking their combinations. Concatenating them with (a:3), we have
{( f a:3), (ca:3), (fca:3)}. Node c derives (c:4) and one subpattern-base {( f :3)}, and the
set of frequent patterns associated with (c:3) is {(fc:3)}. Node f derives only ( f :4) but no
conditional pattern-base.

The conditional pattern-bases and the conditional FP-trees generated are summarized in
Table 2.

The correctness and completeness of the process in Example 2 should be justified.
This is accomplished by first introducing a few important properties related to the mining
process.

Property 3.2 (Prefix path property). To calculate the frequent patterns with suffix ai , only
the prefix subpathes of nodes labeled ai in the FP-tree need to be accumulated, and the
frequency count of every node in the prefix path should carry the same count as that in the
corresponding node ai in the path.

Rationale. Let the nodes along the path P be labeled as a1, . . . , an in such an order that
a1 is the root of the prefix subtree, an is the leaf of the subtree in P , and ai (1 ≤ i ≤ n) is
the node being referenced. Based on the process of FP-tree construction presented in Algo-
rithm 1, for each prefix node ak (1 ≤ k < i), the prefix subpath of the node ai in P occurs
together with ak exactly ai .count times. Thus every such prefix node should carry the same
count as node ai . Notice that a postfix node am (for i < m ≤ n) along the same path also
co-occurs with node ai . However, the patterns with am will be generated when examining
the suffix node am , enclosing them here will lead to redundant generation of the patterns that
would have been generated for am . Therefore, we only need to examine the prefix subpath
of ai in P .

For example, in Example 2, node m is involved in a path 〈 f :4, c:3, a:3, m:2, p:2〉, to
calculate the frequent patterns for node m in this path, only the prefix subpath of node m,
which is 〈 f :4, c:3, a:3〉, need to be extracted, and the frequency count of every node in the
prefix path should carry the same count as node m. That is, the node counts in the prefix
path should be adjusted to 〈 f :2, c:2, a:2〉.
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Based on this property, the prefix subpath of node ai in a path P can be copied and
transformed into a count-adjusted prefix subpath by adjusting the frequency count of every
node in the prefix subpath to the same as the count of node ai . The prefix path so transformed
is called the transformed prefix path of ai for path P .

Notice that the set of transformed prefix paths of ai forms a small database of patterns
which co-occur with ai . Such a database of patterns occurring with ai is called ai ’s con-
ditional pattern-base, and is denoted as “pattern base | ai ”. Then one can compute all
the frequent patterns associated with ai in this ai -conditional pattern-base by creating a
small FP-tree, called ai ’s conditional FP-tree and denoted as “FP-tree | ai ”. Subsequent
mining can be performed on this small conditional FP-tree. The processes of construction of
conditional pattern-bases and conditional FP-trees have been demonstrated in Example 2.

This process is performed recursively, and the frequent patterns can be obtained by a
pattern-growth method, based on the following lemmas and corollary.

Lemma 3.1 (Fragment growth). Let α be an itemset in DB, B be α’s conditional pattern-
base, and β be an itemset in B. Then the support of α ∪β in DB is equivalent to the support
of β in B.

Rationale. According to the definition of conditional pattern-base, each (sub)transaction
in B occurs under the condition of the occurrence of α in the original transaction database
DB. If an itemset β appears in B ψ times, it appears with α in DB ψ times as well. Moreover,
since all such items are collected in the conditional pattern-base of α, α ∪ β occurs exactly
ψ times in DB as well. Thus we have the lemma.

From this lemma, we can directly derive an important corollary.

Corollary 3.1 (Pattern growth). Let α be a frequent itemset in DB, B be α’s conditional
pattern-base, and β be an itemset in B. Then α ∪ β is frequent in DB if and only if β is
frequent in B.

Based on Corollary 3.1, mining can be performed by first identifying the set of frequent
1-itemsets in DB, and then for each such frequent 1-itemset, constructing its conditional
pattern-bases, and mining its set of frequent 1-itemsets in the conditional pattern-base, and
so on. This indicates that the process of mining frequent patterns can be viewed as first
mining frequent 1-itemset and then progressively growing each such itemset by mining
its conditional pattern-base, which can in turn be done similarly. By doing so, a frequent
k-itemset mining problem is successfully transformed into a sequence of k frequent 1-
itemset mining problems via a set of conditional pattern-bases. Since mining is done by
pattern growth, there is no need to generate any candidate sets in the entire mining process.

Notice also in the construction of a new FP-tree from a conditional pattern-base obtained
during the mining of an FP-tree, the items in the frequent itemset should be ordered in the
frequency descending order of node occurrence of each item instead of its support (which
represents item occurrence). This is because each node in an FP-tree may represent many
occurrences of an item but such a node represents a single unit (i.e., the itemset whose
elements always occur together) in the construction of an item-associated FP-tree.
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3.2. Frequent-pattern growth with single prefix path of FP-tree

The frequent-pattern growth method described above works for all kinds of FP-trees. How-
ever, further optimization can be explored on a special kind of FP-tree, called single prefix-
path FP-tree, and such an optimization is especially useful at mining long frequent patterns.

A single prefix-path FP-tree is an FP-tree that consists of only a single path or a single
prefix path stretching from the root to the first branching node of the tree, where a branching
node is a node containing more than one child.

Let us examine an example.

Example 3. Figure 4(a) is a single prefix-path FP-tree that consists of one prefix path,
〈(a:10) → (b:8) → (c:7)〉, stretching from the root of the tree to the first branching node (c:7).
Although it can be mined using the frequent-pattern growth method described above, a better
method is to split the tree into two fragments: the single prefix-path, 〈(a:10) → (b:8) →
(c:7)〉, as shown in figure 4(b), and the multipath part, with the root replaced by a pseudo-
root R, as shown in figure 4(c). These two parts can be mined separately and then combined
together.

Let us examine the two separate mining processes. All the frequent patterns associated
with the first part, the single prefix-path P = 〈(a:10) → (b:8) → (c:7)〉, can be mined by
enumeration of all the combinations of the subpaths of P with the support set to the minimum
support of the items contained in the subpath. This is because each such subpath is distinct
and occurs the same number of times as the minimum occurrence frequency among the
items in the subpath which is equal to the support of the last item in the subpath. Thus, path
P generates the following set of frequent patterns, freq pattern set(P) = {(a:10), (b:8),
(c:7), (ab:8), (ac:7), (bc:7), (abc:7)}.

Let Q be the second FP-tree (figure 4(c)), the multipath part rooted with R. Q can be
mined as follows.

First, R is treated as a null root, and Q forms a multipath FP-tree, which can be mined
using a typical frequent-pattern growth method. The mining result is: freq pattern set(Q)
= {(d:4), (e:3), ( f :3), (d f :3)}.

Figure 4. Mining an FP-tree with a single prefix path.
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Second, for each frequent itemset in Q, R can be viewed as a conditional frequent
pattern-base, and each itemset in Q with each pattern generated from R may form a dis-
tinct frequent pattern. For example, for (d:4) in freq pattern set(Q), P can be viewed as
its conditional pattern-base, and a pattern generated from P , such as (a:10), will generate
with it a new frequent itemset, (ad:4), since a appears together with d at most four times.
Thus, for (d:4) the set of frequent patterns generated will be (d:4) × freq pattern set(P) =
{(ad:4), (bd:4), (cd:4), (abd:4), (acd:4), (bcd:4), (abcd:4)}, where X × Y means that ev-
ery pattern in X is combined with every one in Y to form a “cross-product-like” larger
itemset with the support being the minimum support between the two patterns. Thus,
the complete set of frequent patterns generated by combining the results of P and Q
will be freq pattern set(Q) × freq pattern set(P), with the support being the support of
the itemset in Q (which is always no more than the support of the itemset
from P).

In summary, the set of frequent patterns generated from such a single prefix path consists
of three distinct sets: (1) freq pattern set(P), the set of frequent patterns generated from the
single prefix-path, P; (2) freq pattern set(Q), the set of frequent patterns generated from
the multipath part of the FP-tree, Q; and (3) freq pattern set(Q) × freq pattern set(P), the
set of frequent patterns involving both parts.

We first show if an FP-tree consists of a single path P , one can generate the set of frequent
patterns according to the following lemma.

Lemma 3.2 (Pattern generation for an FP-tree consisting of single path). Suppose an
FP-tree T consists of a single path P. The complete set of the frequent patterns of T can
be generated by enumeration of all the combinations of the subpaths of P with the support
being the minimum support of the items contained in the subpath.

Rationale. Let the single path P of the FP-tree be 〈a1:s1 → a2:s2 → · · · → ak :sk〉. Since
the FP-tree contains a single path P , the support frequency si of each item ai (for 1 ≤ i ≤ k)
is the frequency of ai co-occurring with its prefix string. Thus, any combination of the items
in the path, such as 〈ai , . . . , a j 〉 (for 1 ≤ i, j ≤ k), is a frequent pattern, with their co-
occurrence frequency being the minimum support among those items. Since every item in
each path P is unique, there is no redundant pattern to be generated with such a combi-
national generation. Moreover, no frequent patterns can be generated outside the FP-tree.
Therefore, we have the lemma.

We then show if an FP-tree consists of a single prefix-path, the set of frequent patterns
can be generated by splitting the tree into two according to the following lemma.

Lemma 3.3 (Pattern generation for an FP-tree consisting of single prefix path). Suppose
an FP-tree T, similar to the tree in figure 4(a), consists of (1) a single prefix path P, similar
to the tree P in figure 4(b), and (2) the multipath part, Q, which can be viewed as an
independent FP-tree with a pseudo-root R, similar to the tree Q in figure 4(c).
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The complete set of the frequent patterns of T consists of the following three portions:

1. The set of frequent patterns generated from P by enumeration of all the combinations
of the items along path P, with the support being the minimum support among all the
items that the pattern contains.

2. The set of frequent patterns generated from Q by taking root R as “null.”
3. The set of frequent patterns combining P and Q formed by taken the cross-product

of the frequent patterns generated from P and Q, denoted as freq pattern set(P) ×
freq pattern set(Q), that is, each frequent itemset is the union of one frequent itemset
from P and one from Q and its support is the minimum one between the supports of the
two itemsets.

Rationale. Based on the FP-tree construction rules, each node ai in the single prefix path
of the FP-tree appears only once in the tree. The single prefix-path of the FP-tree forms a
new FP-tree P , and the multipath part forms another FP-tree Q. They do not share nodes
representing the same item. Thus, the two FP-trees can be mined separately.

First, we show that each pattern generated from one of the three portions by following
the pattern generation rules is distinct and frequent. According to Lemma 3.2, each pattern
generated from P , the FP-tree formed by the single prefix-path, is distinct and frequent.
The set of frequent patterns generated from Q by taking root R as “null” is also distinct
and frequent since such patterns exist without combining any items in their conditional
databases (which are in the items in P . The set of frequent patterns generated by combining
P and Q, that is, taking the cross-product of the frequent patterns generated from P and
Q, with the support being the minimum one between the supports of the two itemsets, is
also distinct and frequent. This is because each frequent pattern generated by P can be
considered as a frequent pattern in the conditional pattern-base of a frequent item in Q,
and whose support should be the minimum one between the two supports since this is the
frequency that both patterns appear together.

Second, we show that no patterns can be generated out of this three portions. Since
according to Lemma 3.1, the FP-tree T without being split into two FP-trees P and Q gen-
erates the complete set of frequent patterns by pattern growth. Since each pattern generated
from T will be generated from either the portion P or Q or their combination, the method
generates the complete set of frequent patterns.

3.3. The frequent-pattern growth algorithm

Based on the above lemmas and properties, we have the following algorithm for mining
frequent patterns using FP-tree.

Algorithm 2 (FP-growth: Mining frequent patterns with FP-tree by pattern fragment
growth).

Input: A database DB, represented by FP-tree constructed according to Algorithm 1, and
a minimum support threshold ξ .

Output: The complete set of frequent patterns.
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Method: call FP-growth(FP-tree, null).

Procedure FP-growth(Tree, α)
{
(1) if Tree contains a single prefix path // Mining single prefix-path FP-tree
(2) then {
(3) let P be the single prefix-path part of Tree;
(4) let Q be the multipath part with the top branching node replaced by a null root;
(5) for each combination (denoted as β) of the nodes in the path P do
(6) generate pattern β ∪ α with support = minimum support of nodes in β;
(7) let freq pattern set(P) be the set of patterns so generated; }
(8) else let Q be Tree;
(9) for each item ai in Q do { // Mining multipath FP-tree
(10) generate pattern β = ai ∪ α with support = ai .support;
(11) construct β’s conditional pattern-base and then β’s conditional FP-tree Treeβ ;
(12) if Treeβ 
= ∅
(13) then call FP-growth(Treeβ, β);
(14) let freq pattern set(Q) be the set of patterns so generated; }
(15) return(freq pattern set(P) ∪ freq pattern set(Q) ∪ (freq pattern set(P)

× freq pattern set(Q)))
}

Analysis. With the properties and lemmas in Sections 2 and 3, we show that the algorithm
correctly finds the complete set of frequent itemsets in transaction database DB.

As shown in Lemma 2.1, FP-tree of DB contains the complete information of DB in
relevance to frequent pattern mining under the support threshold ξ .

If an FP-tree contains a single prefix-path, according to Lemma 3.3, the generation of the
complete set of frequent patterns can be partitioned into three portions: the single prefix-path
portion P , the multipath portion Q, and their combinations. Hence we have lines (1)-(4) and
line (15) of the procedure. According to Lemma 3.2, the generated patterns for the single
prefix path are the enumerations of the subpaths of the prefix path, with the support being the
minimum support of the nodes in the subpath. Thus we have lines (5)-(7) of the procedure.
After that, one can treat the multipath portion or the FP-tree that does not contain the single
prefix-path as portion Q (lines (4) and (8)) and construct conditional pattern-base and mine
its conditional FP-tree for each frequent itemset ai . The correctness and completeness of
the prefix path transformation are shown in Property 3.2. Thus the conditional pattern-bases
store the complete information for frequent pattern mining for Q. According to Lemmas 3.1
and its corollary, the patterns successively grown from the conditional FP-trees are the set
of sound and complete frequent patterns. Especially, according to the fragment growth
property, the support of the combined fragments takes the support of the frequent itemsets
generated in the conditional pattern-base. Therefore, we have lines (9)-(14) of the procedure.
Line (15) sums up the complete result according to Lemma 3.3.

Let’s now examine the efficiency of the algorithm. The FP-growth mining process scans
the FP-tree of DB once and generates a small pattern-base Bai for each frequent item ai ,
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each consisting of the set of transformed prefix paths of ai . Frequent pattern mining is then
recursively performed on the small pattern-base Bai by constructing a conditional FP-tree
for Bai . As reasoned in the analysis of Algorithm 1, an FP-tree is usually much smaller than
the size of DB. Similarly, since the conditional FP-tree, “FP-tree | ai ”, is constructed on the
pattern-base Bai , it should be usually much smaller and never bigger than Bai . Moreover, a
pattern-base Bai is usually much smaller than its original FP-tree, because it consists of the
transformed prefix paths related to only one of the frequent items, ai . Thus, each subsequent
mining process works on a set of usually much smaller pattern-bases and conditional FP-
trees. Moreover, the mining operations consist of mainly prefix count adjustment, counting
local frequent items, and pattern fragment concatenation. This is much less costly than
generation and test of a very large number of candidate patterns. Thus the algorithm is
efficient.

From the algorithm and its reasoning, one can see that the FP-growth mining process is
a divide-and-conquer process, and the scale of shrinking is usually quite dramatic. If the
shrinking factor is around 20-100 for constructing an FP-tree from a database, it is expected
to be another hundreds of times reduction for constructing each conditional FP-tree from
its already quite small conditional frequent pattern-base.

Notice that even in the case that a database may generate an exponential number of
frequent patterns, the size of the FP-tree is usually quite small and will never grow ex-
ponentially. For example, for a frequent pattern of length 100, “a1, . . . , a100”, the FP-tree
construction results in only one path of length 100 for it, possibly “〈a1, → · · · →a100〉” (if
the items are ordered in the list of frequent items as a1, . . . , a100). The FP-growth algorithm
will still generate about 1030 frequent patterns (if time permits!!), such as “a1, a2, . . ., a1a2,
. . ., a1a2a3, . . ., a1 . . . a100.” However, the FP-tree contains only one frequent pattern path of
100 nodes, and according to Lemma 3.2, there is even no need to construct any conditional
FP-tree in order to find all the patterns.

4. Scaling FP-tree-based FP-growth by database projection

FP-growth proposed in the last section is essentially a main memory-based frequent pat-
tern mining method. However, when the database is large, or when the minimum support
threshold is quite low, it is unrealistic to assume that the FP-tree of a database can fit in
main memory. A disk-based method should be worked out to ensure that mining is highly
scalable. In this section, a method is developed to first partition the database into a set of pro-
jected databases, and then for each projected database, construct and mine its corresponding
FP-tree.

Let us revisit the mining problem in Example 1.

Example 4. Suppose the FP-tree in figure 1 cannot be held in main memory. Instead of
constructing a global FP-tree, one can project the transaction database into a set of frequent
item-related projected databases as follows.

Starting at the tail of the frequent item list, p, the set of transactions that contain item
p can be collected into p-projected database. Infrequent items and item p itself can be
removed from them because the infrequent items are not useful in frequent pattern mining,
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Table 3. Projected databases and their FP-trees.

Item Projected database Conditional FP-tree

p {fcam, cb, fcam} {(c:3)}|p

m {fca, fcab, fca} {( f :3, c:3, a:3)}|m
b {fca, f, c} ∅
a {fc, fc, fc} {( f :3, c:3)}|a
c { f, f, f } {( f :3)}|c
f ∅ ∅

and item p is by default associated with each projected transaction. Thus, the p-projected
database becomes {fcam, cb, fcam}. This is very similar to the the p-conditional pattern-
base shown in Table 2 except fcam and fcam are expressed as (fcam:2) in Table 2. After
that, the p-conditional FP-tree can be built on the p-projected database based on the FP-tree
construction algorithm.

Similarly, the set of transactions containing item m can be projected into m-projected
database. Notice that besides infrequent items and item m, item p is also excluded from the
set of projected items because item p and its association with m have been considered in the
p-projected database. For the same reason, the b-projected database is formed by collecting
transactions containing item b, but infrequent items and items f , m and b are excluded. This
process continues for deriving a-projected database, c-projected database, and so on. The
complete set of item-projected databases derived from the transaction database are listed in
Table 3, together with their corresponding conditional FP-trees. One can easily see that the
two processes, construction of the global FP-tree and projection of the database into a set
of projected databases, derive identical conditional FP-trees.

As shown in Section 2, a conditional FP-tree is usually orders of magnitude smaller than
the global FP-tree. Thus, construction of a conditional FP-tree from each projected database
and then mining on it will dramatically reduce the size of FP-trees to be handled. What
about that a conditional FP-tree of a projected database still cannot fit in main memory?
One can further project the projected database, and the process can go on recursively until
the conditional FP-tree fits in main memory.

Let us define the concept of projected database formally.

Definition 2 (Projected database).

– Let ai be a frequent item in a transaction database, DB. The ai -projected database for ai

is derived from DB by collecting all the transactions containing ai and removing from
them (1) infrequent items, (2) all frequent items after ai in the list of frequent items, and
(3) ai itself.

– Let a j be a frequent item in α-projected database. Then the a jα-projected database is
derived from theα-projected database by collecting all entries containing a j and removing
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from them (1) infrequent items, (2) all frequent items after a j in the list of frequent items,
and (3) a j itself.

According to the rules of construction of FP-tree and that of construction of projected
database, the ai -projected database is derived by projecting the same set of items in the
transactions containing ai into the projected database as those collected in the construction
of the ai -subtree in the FP-tree. Thus, the two methods derive the same sets of conditional
FP-trees.

There are two methods for database projection: parallel projection and partition projec-
tion.

Parallel projection is implemented as follows: Scan the database to be projected once,
where the database could be either a transaction database or an α-projected database. For
each transaction T in the database, for each frequent item ai in T , project T to the ai -
projected database based on the transaction projection rule, specified in the definition of
projected database. Since a transaction is projected in parallel to all the projected databases
in one scan, it is called parallel projection. The set of projected databases shown in Table 3
of Example 4 demonstrates the result of parallel projection. This process is illustrated in
figure 5(a).

Parallel projection facilitates parallel processing because all the projected databases are
available for mining at the end of the scan, and these projected databases can be mined
in parallel. However, since each transaction in the database is projected to multiple pro-
jected databases, if a database contains many long transactions with multiple frequent
items, the total size of the projected databases could be multiple times of the original one.
Let each transaction contains on average l frequent items. A transaction is then projected
to l − 1 projected database. The total size of the projected data from this transaction is
1 + 2 + · · · + (l − 1) = l(l−1)

2 . This implies that the total size of the single item-projected
databases is about l−1

2 times of that of the original database.
To avoid such an overhead, we propose a partition projection method. Partition projection

is implemented as follows. When scanning the database (original or α-projected) to be
projected, a transaction T is projected to the ai -projected database only if ai is a frequent
item in T and there is no any other item after ai in the list of frequent items appearing

Figure 5. Parallel projection vs. partition projection.
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in the transaction. Since a transaction is projected to only one projected database at the
database scan, after the scan, the database is partitioned by projection into a set of projected
databases, and hence it is called partition projection.

The projected databases are mined in the reversed order of the list of frequent items. That
is, the projected database of the least frequent item is mined first, and so on. Each time when
a projected database is being processed, to ensure the remaining projected databases obtain
the complete information, each transaction in it is projected to the a j -projected database,
where a j is the item in the transaction such that there is no any other item after a j in the
list of frequent items appearing in the transaction. The partition projection process for the
database in Example 4 is illustrated in figure 5(b).

The advantage of partition projection is that the total size of the projected databases at
each level is smaller than the original database, and it usually takes less memory and I/Os to
complete the partition projection. However, the processing order of the projected databases
becomes important, and one has to process these projected databases in a sequential manner.
Also, during the processing of each projected database, one needs to project the processed
transactions to their corresponding projected databases, which may take some I/O as well.
Nevertheless, due to its low memory requirement, partition projection is still a promising
method in frequent pattern mining.

Example 5. Let us examine how the database in Example 4 can be projected by partition
projection.

First, by one scan of the transaction database, each transaction is projected to only one
projected database. The first transaction, facdgimp, is projected to the p-projected database
since p is the last frequent item in the list of frequent items. Thus, fcam (i.e., with infrequent
items removed) is inserted into the p-projected database. Similarly, transaction abcflmo is
projected to the m-projected database as fcab, bfhjo to the b-projected database as f ,
bcksp to the p-projected database as cb, and finally, afcelpmn to the p-projected database
as fcam. After this phrase, the entries in every projected databases are shown in Table 4.

With this projection, the original database can be replaced by the set of single-item
projected databases, and the total size of them is smaller than that of the original database.

Second, the p-projected database is first processed (i.e., construction of p-conditional
FP-tree), where p is the last item in the list of frequent items. During the processing of the
p-projected database, each transaction is projected to the corresponding projected database

Table 4. Single-item projected databases by partition projection.

Item Projected databases

p {fcam, cb, fcam}
m {fcab}
b { f }
a ∅
c ∅
f ∅
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according to the same partition projection rule. For example, fcam is projected to the m-
projected database as fca, cb is projected to the b-projected database as c, and so on. The
process continues until every single-item projected database is completely processed.

5. Experimental evaluation and performance study

In this section, we present a performance comparison of FP-growth with the classical
frequent pattern mining algorithm Apriori, and an alternative database projection-based al-
gorithm, TreeProjection. We first give a concise introduction and analysis to TreeProjection,
and then report our experimental results.

5.1. A comparative analysis of FP-growth and TreeProjection methods

The TreeProjection algorithm proposed by Agarwal et al. (2001) constructs a lexicographical
tree and projects a large database into a set of reduced, item-based sub-databases based
on the frequent patterns mined so far. Since it applies a tree construction method and
performs mining recursively on progressively smaller databases, it shares some similarities
with FP-growth. However, the two methods have some fundamental differences in tree
construction and mining methodologies, and will lead to notable differences on efficiency
and scalability. We will explain such similarities and differences by working through the
following example.

Example 6. For the same transaction database presented in Example 1, we construct the
lexicographic tree according to the method described in Agarwal et al. (2001). The result
tree is shown in figure 6, and the construction process is presented as follows.

By scanning the transaction database once, all frequent 1-itemsets are identified. As
recommended in Agarwal et al. (2001), the frequency ascending order is chosen as the

Figure 6. A lexicographical tree built for the same transactional database DB.
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ordering of the items. So, the order is p-m-b-a-c-f , which is exactly the reverse order of
what is used in the FP-tree construction. The top level of the lexicographic tree is constructed,
i.e. the root and the nodes labeled by length-1 patterns. At this stage, the root node labeled
“null” and all the nodes which store frequent 1-itemsets are generated. All the transactions
in the database are projected to the root node, i.e., all the infrequent items are removed.

Each node in the lexicographical tree contains two pieces of information: (i) the pattern
that node represents, and (ii) the set of items that may generate longer patterns by adding
them to the pattern. The latter piece information is recorded as active extensions and active
items.

Then, a matrix at the root node is created, as shown below. The matrix computes the
frequencies of length-2 patterns, thus all pairs of frequent items are included in the matrix.
The items in pairs are arranged in the ordering. The matrix is built by adding counts from
every transaction, i.e., computing frequent 2-itemsets based on transactions stored in the
root node.

p m b a c f

p

m 2

b 1 1

a 2 3 1

c 3 3 2 3

f 2 3 2 3 3

At the same time of building the matrix, transactions in the root are projected to level-1
nodes as follows. Let t = a1a2 . . . an be a transaction with all items listed in ordering. t is
projected to node ai (1 ≤ i < n − 1) as t ′

ai
= ai+1ai+2 . . . an .

From the matrix, all the frequent 2-itemsets are found as: {pc, ma, mc, mf , ac, af , cf }.
The nodes in lexicographic tree for them are generated. At this stage, the only nodes
for 1-itemsets which are active are those for m and a, because only they contain enough
descendants to potentially generate longer frequent itemsets. All nodes up to and including
level-1 except for these two nodes are pruned.

In the same way, the lexicographic tree is grown level by level. From the matrix at node
m, nodes labeled mac, ma f, and mcf are added, and only ma is active in all the nodes for
frequent 2-itemsets. It is easy to see that the lexicographic tree in total contains 19 nodes.

The number of nodes in a lexicographic tree is exactly that of the frequent itemsets.
TreeProjection proposes an efficient way to enumerate frequent patterns. The efficiency of
TreeProjection can be explained by two main factors: (1) the transaction projection limits
the support counting in a relatively small space, and only related portions of transactions
are considered; and (2) the lexicographical tree facilitates the management and counting of
candidates and provides the flexibility of picking efficient strategy during the tree genera-
tion phase as well as transaction projection phase. Agarwal et al. (2001) reports that their
algorithm is up to one order of magnitude faster than other recent techniques in literature.
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However, in comparison with the FP-growth method, TreeProjection suffers from some
problems related to efficiency, and scalability. We analyze them as follows.

First, TreeProjection may encounter difficulties at computing matrices when the database
is huge, when there are a lot of transactions containing many frequent items, and/or when the
support threshold is very low. This is because in such cases there often exist a large number
of frequent items. The size of the matrices at high level nodes in the lexicographical tree can
be huge, as shown in our introduction section. The study in TreeProjection (Agarwal et al.,
2001) has developed some smart memory caching methods to overcome this problem.
However, it could be wise not to generate such huge matrices at all instead of finding
some smart caching techniques to reduce the cost. Moreover, even if the matrix can be
cached efficiently, its computation still involves some nontrivial overhead. To compute a
matrix at node P with n projected transactions, the cost is O(

∑n
i=1

|Ti |2
2 ), where |Ti | is

the length of the transaction. If the number of transaction is large and the length of each
transaction is long, the computation is costly. The FP-growth method will never need to
build up matrices and compute 2-itemset frequency since it avoids the generation of any
candidate k-itemsets for any k by applying a pattern growth method. Pattern growth can be
viewed as successive computation of frequent 1-itemset (of the database and conditional
pattern bases) and assembling them into longer patterns. Since computing frequent 1-
itemsets is much less expensive than computing frequent 2-itemsets, the cost is substantially
reduced.

Second, since one transaction may contain many frequent itemsets, one transaction in
TreeProjection may be projected many times to many different nodes in the lexicographical
tree. When there are many long transactions containing numerous frequent items, transaction
projection becomes a nontrivial cost of TreeProjection. The FP-growth method constructs
FP-tree which is a highly compact form of transaction database. Thus both the size and the
cost of computation of conditional pattern bases, which corresponds roughly to the compact
form of projected transaction databases, are substantially reduced.

Third, TreeProjection creates one node in its lexicographical tree for each frequent item-
set. At the first glance, this seems to be highly compact since FP-tree does not ensure that
each frequent node will be mapped to only one node in the tree. However, each branch of the
FP-tree may store many “hidden” frequent patterns due to the potential generation of many
combinations using its prefix paths. Notice that the total number of frequent k-itemsets can
be very large in a large database or when the database has quite long frequent itemsets.
For example, for a frequent itemset (a1, a2, . . . , a100), the number of frequent itemsets at
the 50th-level of the lexicographic tree will be ( 100

50 ) = 100!
50!×50! ≈ 1.0 × 1029. For the same

frequent itemset, FP-tree and FP-growth will only need one path of 100 nodes.
In summary, FP-growth mines frequent itemsets by (1) constructing highly compact

FP-trees which share numerous “projected” transactions and hide (or carry) numerous
frequent patterns, and (2) applying progressive pattern growth of frequent 1-itemsets which
avoids the generation of any potential combinations of candidate itemsets implicitly or
explicitly, whereas TreeProjection must generate candidate 2-itemsets for each projected
database. Therefore, FP-growth is more efficient and more scalable than TreeProjection,
especially when the number of frequent itemsets becomes really large. These observations
and analyses are well supported by our experiments reported in this section.
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5.2. Environments of experiments

All the experiments are performed on a 266-MHz Pentium PC machine with 128 megabytes
main memory, running on Microsoft Windows/NT. All the programs are written in Mi-
crosoft/Visual C++6.0. Notice that we do not directly compare our absolute number of
runtime with those in some published reports running on the RISC workstations because
different machine architectures may differ greatly on the absolute runtime for the same
algorithms. Instead, we implement their algorithms to the best of our knowledge based on
the published reports on the same machine and compare in the same running environment.
Please also note that run time used here means the total execution time, that is, the pe-
riod between input and output, instead of CPU time measured in the experiments in some
literature. We feel that run time is a more comprehensive measure since it takes the total
running time consumed as the measure of cost, whereas CPU time considers only the cost
of the CPU resource. Also, all reports on the runtime of FP-growth include the time of
constructing FP-trees from the original databases.

The experiments are pursued on both synthetic and real data sets. The synthetic data
sets which we used for our experiments were generated using the procedure described in
Agrawal and Srikant (1994). We refer readers to it for more details on the generation of
data sets.

We report experimental results on two synthetic data sets. The first one is T10.I4.D100K
with 1K items. In this data set, the average transaction size and average maximal potentially
frequent itemset size are set to 10 and 4, respectively, while the number of transactions in
the dataset is set to 100 K. It is a sparse dataset. The frequent itemsets are short and not
numerous.

The second synthetic data set we used is T25.I20.D100K with 10 K items. The average
transaction size and average maximal potentially frequent itemset size are set to 25 and 20,
respectively. There exist exponentially numerous frequent itemsets in this data set when
the support threshold goes down. There are also pretty long frequent itemsets as well as
a large number of short frequent itemsets in it. It contains abundant mixtures of short and
long frequent itemsets.

To test the capability of FP-growth on dense datasets with long patterns, we use the
real data set Connect-4, compiled from the Connect-4 game state information. The data set
is from the UC-Irvine Machine Learning Database Repository (http://www.ics.uci.edu/∼
mlearn/MLRepository.html). It contains 67, 557 transactions, while each transaction is with
43 items. It is a dense dataset with a lot of long frequent itemsets.

5.3. Compactness of FP-tree

To test the compactness of FP-trees, we compare the sizes of the following structures.

– Alphabetical FP-tree. It includes the space of all the links. However, in such an FP-tree,
the alphabetical order of items are used instead of frequency descending order.

– Ordered FP-tree. Again, the size covers that of all links. In such an FP-tree, the items are
sorted according to frequency descending order.
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Figure 7. Compactness of FP-tree over data set Connect-4.

– Transaction database. Each item in a transaction is stored as an integer. It is simply the
sum of occurrences of items in transactions.

– Frequent transaction database. That is the sub-database extracted from the original one
by removing all infrequent items.

In real dataset Connect-4, FP-tree achieves good compactness. As seen from the result
shown in figure 7, the size of ordered FP-tree is always smaller than the size of the transaction
database and the frequent transaction database. In a dense database, the size of the database
and that of its frequent database are close. The size of the alphabetical FP-tree is smaller than
that of the two databases in most cases but is slightly larger (about 1.5 to 2.5 times larger)
than the size of the ordered FP-tree. It indicates that the frequency-descending ordering of
the items benefits data compression in this case.

In dataset T25.I20.D100k, which contains abundant mixture of long and short frequent
patterns, FP-tree is compact most of the time. The result is shown in figure 8. Only when

Figure 8. Compactness of FP-tree over data set T25.I20.D100k.
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Figure 9. Compactness of FP-tree over data set T10.I4.D100k.

the support threshold lower than 2.5%, is the size of FP-tree larger than that of frequent
database. Moreover, as long as the support threshold is over 1.5%, the FP-tree is smaller
than the transaction database. The difference of sizes of ordered FP-tree and alphabetical
FP-tree is quite small in this dataset. It is about 2%.

In sparse dataset T10.I4.D100k, FP-tree achieves good compactness when the support
threshold is over 3.5%. Again, the difference of ordered FP-tree and alphabetical FP-tree is
trivial. The result is shown in figure 9.

The above experiments lead to the following conclusions.

– FP-tree achieves good compactness most of the time. Especially in dense datasets, it
can compress the database many times. Clearly, there is some overhead for pointers and
counters. However, the gain of sharing among frequent projections of transactions is
substantially more than the overhead and thus makes FP-tree space more efficient in
many cases.

– When support is very low, FP-tree becomes bushy. In such cases, the degree of sharing
in branches of FP-tree becomes low. The overhead of links makes the size of FP-tree
large. Therefore, instead of building FP-tree, we should construct projected databases.
That is the reason why we build FP-tree for transaction database/projected database only
when it passes certain density threshold. From the experiments, one can see that such a
threshold is pretty low, and easy to touch. Therefore, even for very large and/or sparse
database, after one or a few rounds of database projection, FP-tree can be used for all the
remaining mining tasks.

In the following experiments, we employed an implementation of FP-growth that inte-
grates both database projection and FP-tree mining. The density threshold is set to 3%, and
items are listed in frequency descending order.

5.4. Scalability study

The runtime of Apriori, TreeProjection, and FP-growth on synthetic data set T10.I4.D100K
as the support threshold decreases from 0.15% to 0.01% is shown in figure 10.
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Figure 10. Scalability with threshold over sparse data set.

FP-growth is faster than both Apriori and TreeProjection. TreeProjection is faster and
more scalable than Apriori. Since the dataset is sparse, as the support threshold is high,
the frequent itemsets are short and the set of such itemsets is not large, the advantages of
FP-growth and TreeProjection over Apriori are not so impressive. However, as the support
threshold goes down, the gap becomes wider. FP-growth can finish the computation for
support threshold 0.01% within the time for Apriori over 0.05%. TreeProjection is also
scalable, but is slower than FP-growth.

The advantages of FP-growth over Apriori becomes obvious when the dataset contains
an abundant number of mixtures of short and long frequent patterns. Figure 11 shows the
experimental results of scalability with threshold over dataset T25.I20.D100k. FP-growth
can mine with support threshold as low as 0.05%, with which Apriori cannot work out
within reasonable time. TreeProjection is also scalable and faster than Apriori, but is slower
than FP-growth.

Figure 11. Scalability with threshold over dataset with abundant mixtures of short and long frequent patterns.
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Figure 12. Scalability with threshold over Connect-4.

The advantage of FP-growth is dramatic in datasets with long patterns, which is challeng-
ing to the algorithms that mine the complete set of frequent patterns. The result on mining
the real dataset Connect-4 is shown in figure 12. To the best of our knowledge, this is the
first algorithm that handles such dense real dataset in performance study. From the figure,
one can see that FP-growth is scalable even when there are many long patterns. Without
candidate generation, FP-growth enumerates long patterns efficiently. In such datasets, nei-
ther Apriori nor TreeProjection are comparable to the performance of FP-growth. To deal
with long patterns, Apriori has to generate a tremendous number of candidates, that is very
costly. The main costs in TreeProjection are matrix computation and transaction projection.
In a database with a large number of frequent items, the matrices become quite large, and
the computation cost jumps up substantially. In contrast, the height of FP-tree is limited by
the maximal length of the transactions, and many transactions share the prefix paths of an
FP-tree. This explains why FP-growth has distinct advantages when the support threshold
is low and when the number of transactions is large.

To test the scalability of FP-growth against the number of transactions, a set of synthetic
datasets are generated using the same parameters of T10.I4 and T25.I20, and the number
of transactions ranges from 100 k to 1 M. FP-growth is tested over them using the same
support threshold in percentage. The result is in figure 13, which shows the linear increase
of runtime with the number of transactions. Please note that unlike the way reported in some
literature, we do not replicate transactions in real data sets to test the scalability. This is
because no matter how many times the transactions are replicated, FP-growth builds up an
FP-tree with the size identical to that of the original (nonreplicated) one, and the scaling-up
of such databases becomes trivial.

6. Discussions

The frequent-pattern growth method introduced here represents an interesting approach for
scalable frequent-pattern mining. In this section, we discuss some additional issues related
to its implementation, usage, and extension.
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Figure 13. Scalability of FP-growth with number of transactions.

6.1. Materialization and maintenance of FP-trees

Although we have studied the dynamic generation of FP-trees, it is possible to materialize
and incrementally update an FP-tree. We examine the related issues here.

6.1.1. Construction of disk-resident FP-trees. When the database grows very large, it
is unrealistic to construct a main memory-based FP-tree. Database projection has been
introduced in Section 3.4 as an effective approach. An interesting alternative is to construct
a disk-resident FP-tree.

The B+-tree structure, popularly used in relational database systems, can be used to index
FP-tree as well. Since there are many operations localized to single paths or individual
item prefix sub-trees, such as pattern matching for node insertion, creation of transformed
prefix paths for each node ai , etc., it is important to cluster FP-tree nodes according to the
tree/subtree structure. That is, one should (1) store each item prefix sub-tree on the same
page, if possible, or at least on a sequence of continuous pages on disk; (2) store each
subtree on the same page, and put the shared prefix path as the header information of the
page; and (3) cluster the node-links belonging to the same paged nodes together, etc. This
also facilitates a breadth-first search fashion for mining all the patterns starting from all the
nodes in the header in parallel.

To reduce the I/O costs by following node-links, mining should be performed in a group
accessing mode, that is, when accessing nodes following node-links, one should exhaust
the node traversal tasks in main memory before fetching the nodes on disks.

Notice that one may also construct node-link-free FP-trees. In this case, when traversing
a tree path, one should project the prefix subpaths of all the nodes into the corresponding
conditional pattern bases. This is feasible if both FP-tree and one page of each of its one-
level conditional pattern bases can fit in memory. Otherwise, additional I/Os will be needed
to swap in and out the conditional pattern bases.

6.1.2. Materialization of an FP-tree for frequent-pattern mining. Although an FP-tree
is rather compact, its construction needs two scans of a transaction database, which may
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represent a nontrivial overhead. It could be beneficial to materialize an FP-tree for regular
frequent pattern mining.

One difficulty for FP-tree materialization is how to select a good minimum support thresh-
old ξ in materialization since ξ is usually query-dependent. To overcome this difficulty, one
may use a low ξ that may usually satisfy most of the mining queries in the FP-tree con-
struction. For example, if we notice that 98% queries have ξ ≥ 20, we may choose ξ = 20
as the FP-tree materialization threshold: that is, only 2% of queries may need to construct a
new FP-tree. Since an FP-tree is organized in the way that less frequently occurring items
are located at the deeper paths of the tree, it is easy to select only the upper portions of the
FP-tree (or drop the low portions which do not satisfy the support threshold) when mining
the queries with higher thresholds. Actually, one can directly work on the materialized
FP-tree by starting at an appropriate header entry since one just need to get the prefix paths
no matter how low support the original FP-tree is.

6.1.3. Incremental update of an FP-tree. Another issue related to FP-tree materialization
is how to incrementally update an FP-tree, such as when adding daily new transactions into
a database containing records accumulated for months.

If the materialized FP-tree takes 1 as its minimum support (i.e., it is just a compact version
of the original database), the update will not cause any problem since adding new records is
equivalent to scanning additional transactions in the FP-tree construction. However, a full
FP-tree may be an undesirably large. Thus setting 1 as its minimum support may not be a
good solution.

In the general case, we can register the occurrence frequency of every items in F1 and
track them in updates. This is not too costly but it benefits the incremental updates of an
FP-tree as follows. Suppose an FP-tree was constructed based on a validity support threshold
(called “watermark”) ψ = 0.1% in a DB with 108 transactions. Suppose an additional 106

transactions are added in. The frequency of each item is updated. If the highest relative
frequency among the originally infrequent items (i.e., not in the FP-tree) goes up to, say
12%, the watermark will need to go up accordingly to ψ > 0.12% to exclude such item(s).
However, with more transactions added in, the watermark may even drop since an item’s
relative support frequency may drop with more transactions added in. Only when the FP-tree
watermark is raised to some undesirable level, the reconstruction of the FP-tree for the new
DB becomes necessary.

6.2. Extensions of frequent-pattern growth method in data mining

The philosophy of database compression and partition-based frequent-pattern mining can
be extended to constraint-based mining and mining other kinds of frequent patterns, such
as max-patterns, sequential patterns.

6.2.1. FP-tree mining with constraints. Constraint-based frequent-pattern mining repre-
sents an important direction towards user-controlled data mining. Constraint-based asso-
ciation mining using the Apriori-like mining methodology has been studied extensively
(Srikant et al., 1997; Ng et al., 1998). With the introduction of FP-growth method, one
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may wonder whether constraint-based mining may benefit with FP-tree-like structures. A
thorough study of this issue, such as classification of various kinds of constraints and devel-
opment of methods of FP-tree-based mining with sophisticated constraints, such as those
in Ng et al. (1998), should be the task of another research paper.2 Here we only show
how to apply FP-tree structure to mining frequent patterns by incorporation of constraints
associated with a set of items.

Suppose one may just like to derive frequent patterns only associated with a particular
set of items, S, such as mining the set of frequent patterns containing c or m in Example 1.
Instead of mining frequent patterns for all the frequent items, one may explore the FP-tree-
based mining as follows. With the same FP-tree, the FP-growth mining method may just
need to be modified minorly. The only additional care is when computing a transformed
prefix path for an item m, one also needs to look down the path to include the items, such
as p, which are not in S. Our previous computation for the whole database will not need
to consider m’s pairing with p since it would have been checked when examining node p.
However, since p is not in S now, such a pair would have been missed if m’s computation
did not look down the path to include p.

6.2.2. FP-tree mining of other frequent patterns. FP-tree-based mining method can be
extended to mining many other kinds of interesting frequent patterns. We examine a few
such examples.

The first example is on mining frequent closed itemsets. Since frequent pattern mining
often generates a very large number of frequent itemsets, it hinders the effectiveness of
mining since users have to sift through a large number of mined rules to find useful ones.
An interesting alternative method proposed recently by Pasquier et al. (1999) is to mine
frequent closed itemsets, where an itemset α is a closed itemset if there exists no proper
superset of α that has the same support as α in the database. Mining frequent closed itemsets
has the same power as mining the complete set of frequent itemsets, but it may substantially
reduce redundant rules to be generated and increase the effectiveness of mining. A study at
mining closed items using an Apriori-like philosophy but adopting a vertical data format,
i.e., viewing database as “(item id: a set of transactions)” instead of “(transaction id: a set
of items),” has been studied in Zaki and Hsiao (2002). The FP-tree-based frequent-pattern
growth method can be extended and further optimized for mining such closed itemsets,
which has been reported in our subsequent study, as a new closed pattern mining algorithm,
called CLOSET (Pei et al., 2000).

The second example is on mining sequential patterns. A sequential patterns is a frequent
pattern in an event sequence database where a sequence is a set of events happening at
different times. Most of the previously developed sequential pattern mining methods, such
as Agrawal and Srikant (1995), Srikant and Agrawal (1996) and Mannila et al. (1997), follow
the methodology of Apriori since the Apriori-based method may substantially reduce the
number of combinations to be examined. However, Apriori still encounters problems when a
sequence database is large and/or when sequential patterns to be mined are numerous and/or
long. Our frequent-pattern growth method can be extended to mining sequential patterns
using the ideas of projection of sequence database and growth of subsequence fragments
to confine search space. An efficient sequential pattern method, called PrefixSpan (Pei
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et al., 2001), has been developed in this direction and our performance study has shown a
substantial performance improvement over the Apriori-based GSP algorithm (Srikant and
Agrawal, 1996).

7. Conclusions

We have proposed a novel data structure, frequent pattern tree (FP-tree), for storing com-
pressed, crucial information about frequent patterns, and developed a pattern growth method,
FP-growth, for efficient mining of frequent patterns in large databases.

There are several advantages of FP-growth over other approaches: (1) It constructs a
highly compact FP-tree, which is usually substantially smaller than the original database
and thus saves the costly database scans in the subsequent mining processes. (2) It applies
a pattern growth method which avoids costly candidate generation and test by successively
concatenating frequent 1-itemset found in the (conditional) FP-trees. This ensures that it
never generates any combinations of new candidate sets which are not in the database
because the itemset in any transaction is always encoded in the corresponding path of
the FP-trees. In this context, mining is not Apriori-like (restricted) generation-and-test but
frequent pattern (fragment) growth only. The major operations of mining are count accumu-
lation and prefix path count adjustment, which are usually much less costly than candidate
generation and pattern matching operations performed in most Apriori-like algorithms.
(3) It applies a partitioning-based divide-and-conquer method which dramatically reduces
the size of the subsequent conditional pattern bases and conditional FP-tree. Several other
optimization techniques, including direct pattern generation for single tree-path and em-
ploying the least frequent events as suffix, also contribute to the efficiency of the method.

We have implemented the FP-growth method, studied its performance in comparison with
several influential frequent pattern mining algorithms in large databases. Our performance
study shows that the method mines both short and long patterns efficiently in large databases,
outperforming the current candidate pattern generation-based algorithms. The FP-growth
method has also been implemented in the DBMiner system and been tested in large industrial
databases, such as a retail chain database, with satisfactory performance.

Since our first publication of FP-growth method for mining frequent patterns without
candidate generation (Han et al., 2000), there have been many subsequent studies on im-
provements of performance of frequent patterns based on the pattern-growth philosophy, as
well as extension of the scope of the method to cover other kinds of pattern mining tasks.
The pattern-growth framework has been extended towards (1) mining closed itemsets as
proposed in the CLOSET algorithm (Pei et al., 2000), (2) mining sequential patterns as pro-
posed in the PrefixSpan algorithm (Pei et al., 2001), and (3) pushing tough constraints deep
into frequent pattern mining processes (Pei et al., 2001). Moreover, a notable effort is the
proposal of the H-mine algorithm (Pei et al., 2001) for mining frequent patterns efficiently
in sparse data sets. FP-growth, though efficient at mining dense data sets, may incur un-
necessary overhead due to its recursive construction of FP-trees. Following the philosophy
of frequent pattern growth, but not constructing FP-trees, the H-mine algorithm constructs
another data structure, called H-struct, and mines directly on the H-struct without recursive
generation of numerous conditional FP-trees. The experiments reported in Pei et al. (2001)
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shows that H-mine outperforms FP-growth when database is sparse. A suggested approach
is to integrate the two algorithms and dynamically select the FP-tree-based and H-struct-
based algorithms based on the characteristics of current data distribution. Recently, some
studies also show that various FP-tree mining strategies (such as bottom-up vs. top-down
methods) may lead to different efficiency over data sets of different data distributions.

There are still many interesting research issues related to the extensions of pattern-growth
approach, such as mining structured patterns by further development of the frequent pattern-
growth approach, mining approximate or fault-tolerant patterns in noisy environments,
frequent-pattern-based clustering and classification, and so on.
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Notes

1. Notice that support is defined here as absolute occurrence frequency, not the relative one as in some literature.
2. One such study has been performed by us in Pei et al. (2001).
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