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Abstract In this paper, firstly we study the representations and fuzzy logic operations
for the fuzzy concepts in real data systems. Secondly, we propose a new fuzzy associ-
ation rule mining algorithm in the framework of AFS (Axiomatic Fuzzy Sets) theory.
Compared with the current algorithms, the advantage of proposed algorithm has two
advantages. One is that the membership functions of the fuzzy sets representing the
extracted rules and the fuzzy logic operations applied to extract fuzzy rules are deter-
mined by the distribution of the data, instead of the fuzzy sets defined by some special
functions, t-norm, t-conorm, negation operator, implication operator and fuzzy simi-
larity relation given in advance. The extracted fuzzy rules are interpretable and similar
to human intuition. Another is that its simplicity in implementation and mathematical
beauty in fuzzy theory, and can be directly applied to extract fuzzy association rules
in real data systems. Finally, a well-known example Iris dataset is used to illustrate
the effectiveness of the new algorithm based on the proposed degrees of implication.
We obtained reclassification accuracy 98 %.
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1 Introduction

Currently, the digitized data are easy to capture and cheap to store. However, raw
digital data is rarely of useful in practice and the capability to extract information
from raw data is extremely important for decision support [1]. Knowledge discovery,
whose objective is to obtain useful knowledge from data stored in large repositories,
is recognized as a basic necessity in many areas. Data mining is the step in the knowl-
edge discovery process that attempts to discover novel and meaningful patterns in
data. On an ordinary crisp set, correlation coefficient is commonly used in conven-
tional statistics [2,3] as a measure of the linear relationship between two attributes.
Since Agrawal et al. introduced the notion of association rules in 1993 [4], associ-
ation rules mining has attracted many research efforts along with a large number of
association rule applications in various fields [5]. In [6], the algorithm proposed by
Srikant and Agrawal proceeded by partitioning attribute domains into several intervals
and transforming quantitative values into binary ones in order to apply the classical
mining algorithm.Fuzzy set technology are applied to knowledge discovery by such
as fuzzy extensions of association rules and approximate dependencies base on fuzzy
sets, fuzzy logic operators, fuzzy implication operators and fuzzy similarity relations
[7–12]. Other fuzzy extensions of association rules include, weighted association rules
[13] and different fuzziness-related interestingness measures [14]. The mining results
based on the abovementioned approaches for a data systems are all strongly dependent
on the options of fuzzy logic operators, fuzzy implication operator, the member-
ship functions defined for the fuzzy sets and the fuzzy similarity relation given in
advance.

In real-world applications, the intelligent systems are usually very large and com-
plex due to large dimensions and different type, size and distribution of databases.
They often involve a large number of concepts such that it is very hard, if not impos-
sible, to properly define all membership functions by human intuition manually. Also
it is hard to choose suitable logic operators which can correctly represent the logic
relations among the involved fuzzy sets on the database in advance. In [15,16], the
authors have proposed and studied AFS theory in which the membership functions
and the fuzzy logic operations can be automatically determined by the distribution of
the original data.

In this paper, firstly bywell-known Iris dataset, we introduce the algorithm for auto-
matically determining membership functions for fuzzy sets according to the original
data or training examples and the logic operations of the fuzzy sets implemented by
the AFS algebra. And also some basic ideas, definitions and results of AFS theory as
preliminary of this paper are illustrated by the examples for Iris dataset. Secondly, by
the analysis of current definitions of the degree of implication, we find the conflict
between the current definition and human intuition. In order to overcome the draw-
back, we propose a new degree of implication based onAFS fuzzy logic and give a new
rule extraction algorithm based on the proposed degree of implication. The proposed
algorithm is similar to human intuition and can be directly applied to real world appli-
cations. Finally we apply the proposed rule extraction algorithm to the well-known Iris
dataset and compare its result with other rule extraction algorithms. The illustrative
examples show that AFS theory offer a far more flexible and powerful framework for
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acquisition and representation human knowledge and studying large-scale intelligent
systems in real world applications.

2 Fuzzy Concepts Expressed by AFS Algebra over Attributes

The Iris data [17] has a 150 × 4 matrix W = (wi j )150×4 evenly distributed
in three classes: iris-setosa, iris-versicolor, and iris-virginica. Vector of sample i ,
(wi1, wi2, wi3, wi4) has four features: sepal length and width, and petal length and
width (all given in centimeters). Let I = {I1, I2, I3, I4, I5} be the set of attributes,
where I1 is sepal length, I2 is sepal width, I3 is petal length, I4 is petal width and
I5 is the labels of class 1, 2, 3 (i.e. 1, 2, 3 for class iris-setosa, iris-versicolor, iris-
virginica respectively) are the attributes of the original quantitative database D =
{t1, t2, . . . , t150} for the 150 samples, ∀i ∈ [1, 50], ti [I5] = 1, i.e. samples in class 1;
∀i ∈ [51, 100], ti [I5] = 2, i.e. samples in class 2; ∀i ∈ [101, 150], ti [I5] = 3, i.e. sam-
ples in class 3; ti [I j ] = wi j

max j (wi j )
, ∀i ∈ [1, 150], j ∈ [1, 4] (i.e. ti [I j ] is normalized in

interval [0, 1]). In this paper, we will apply the proposed fuzzy association rule min-

ing algorithm to find fuzzy association rules for class 1, 2, 3. Let c1 j =
∑

1≤i≤50 ti [I j ]
50 ,

c2 j =
∑

51≤i≤100 ti [I j ]
50 , c3 j =

∑
101≤i≤150 ti [I j ]

50 , j ∈ [1, 4] i.e. the mean of class 1, 2, 3 on
attribute I j . The following two fuzzy rules are the fuzzy descriptions of “iris-setosa”
for a classification model.

Rule R1: If t[I1] is about c11 and t[I2] is about c22 , then t is “iris-setosa”;
Rule R2: If t[I3] is not about c23 and t[I2] is about c32 and t[I4] is not about c14 ,
then t is “iris-setosa”;

Let M = {m j,k |1 ≤ j ≤ 4, 1 ≤ k ≤ 2} be the set of fuzzy terms, where m j,1,m j,2
are fuzzy terms “about”, “not about” associated with the feature of i th sample wi j

respectively, then the above linguist fuzzy rules can be written in the following form:

Rule R1 : If t is m1,1m2,1, then t is “iris-setosa”;
Rule R2 : If t is m3,2m2,1m4,2, then t is “iris-setosa”;
Rule R : If t is “m1,1m2,1 or m3,2m2,1m4,2”, then t is “iris-setosa”.

∑r
u=1(

∏
m∈Au

m), which is a formal sum of the sets
∏

m∈Au
m, Au ⊆ M , is the

disjunction of the conjunctions represented by
∏

m∈Au
m, u = 1, . . . , r . For example,

let A1 = {m1,1,m2,1}, A2 = {m3,2,m2,1,m4,2} ⊆ M , then a new fuzzy set as the
disjunction of

∏
m∈A1

m and
∏

m∈A2
m, i.e., “m1,1m2,1 or m3,2m2,1m4,2”, can be

represented as

2∑

u=1

⎛

⎝
∏

m∈Au

m

⎞

⎠ =
∏

m∈A1

m +
∏

m∈A2

m.

Thus, the fuzzy rule R can be denoted as follows:
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Rule R : If t is
∑2

u=1(
∏

m∈Au
m), then t is “iris-setosa”.

The above expressions in Rule R can be formulated as an algebra systems as
follows: Let M be a non-empty set. The set EM∗ is defined by

EM∗ =
⎧
⎨

⎩

∑

i∈I

⎛

⎝
∏

m∈Ai

m

⎞

⎠ | Ai ⊆ M, i ∈ I, I is any no empty indexing set

⎫
⎬

⎭
(1)

An equivalence relation R in EM∗ is defined as following:
For α = ∑

i∈I (
∏

m∈Ai
m), β = ∑

j∈J (
∏

m∈Bj
m) ∈ EM∗,

αRβ ⇐⇒ (i)∀Ai (i ∈ I ), ∃Bh(h ∈ J )

such thatAi ⊇ Bh ; (ii) ∀Bj ( j ∈ J ), ∃ Ak (k ∈ I ), such that Bj ⊇ Ak .
It’s clear that R is an equivalence relation. The quotient set, EM∗/R is

denoted by EM . The notation
∑

i∈I (
∏

m∈Ai
m) = ∑

j∈J (
∏

m∈Bj
m) means that

∑
i∈I (

∏
m∈Ai

m) and
∑

j∈J (
∏

m∈Bj
m) are equivalent under equivalence relation R.

Thus the semantics they represent are equivalent.
In [16], authors proved that (EM,∨,∧) is completely distributive lattices if the

lattice operators ∨,∧ are defined as following: for any fuzzy sets
∑

i∈I (
∏

m∈Ai
m),∑

j∈J (
∏

m∈Bj
m) ∈ EM ,

∑

i∈I

⎛

⎝
∏

m∈Ai

m

⎞

⎠ ∨
∑

j∈J

⎛

⎝
∏

m∈Bj

m

⎞

⎠ =
∑

k∈IJ

⎛

⎝
∏

m∈Ck

m

⎞

⎠ , (2)

∑

i∈I

⎛

⎝
∏

m∈Ai

m

⎞

⎠ ∧
∑

j∈J

⎛

⎝
∏

m∈Bj

m

⎞

⎠ =
∑

i∈I, j∈J

⎛

⎝
∏

m∈Ai∪Bj

m

⎞

⎠ , (3)

where for any k ∈ I  J (the disjoint union of I and J , i.e., every element in I and
every element in J are always regarded as different elements in I  J ), Ck = Ak if
k ∈ I , and Ck = Bk if k ∈ J .

In [15], the membership function of ξ = ∑
i∈I

∏
m∈Ai

m is defined as : for any
x ∈ X with weight ργ (u), γ ∈ M , Aτ

i (x) is the set of samples whose degree belonging
to Πm∈Am is less than that of x,

μξ (x) = sup
i∈I

∏

γ∈Ai

∑
u∈Aτ

i (x)
ργ (u)

∑
u∈X ργ (u)

(4)

3 Mining Fuzzy Association Rule based on AFS Fuzzy Logic

In this section, we apply the AFS fuzzy logic to extract the fuzzy rules for the fuzzy
reasoning, information process, data analysis and decision systems. In Example 1, we
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Fig. 1 Membership functions of B, Ai , i = 1, 2, . . . , 5

analyze the degree of implication [7,8], by which the association rules are extended to
current fuzzy association rules in the previous approaches to fuzzy association rules.

Example 1 In this example,we study the degree of implication Dimp. In the following

Fig. 1, 1
(1+e−2(x−3))(1+e5(x−8))

is the membership function of fuzzy set B, 0.82e
−(x−4)2

2×0.42

is the membership function of fuzzy set A1, e
−(x−5)2

2×0.42 is the membership function

of fuzzy set A2 , e
−(x−7)2

2×12 is the membership function of fuzzy set A3, 0.3e
−(x−6)2

2×22

is the membership function of fuzzy set A4, e
−(x−1)2

2×0.22 is the membership function
of fuzzy set A5.D = {t0, t1, . . . , t100}, ti [I ] = 0.1i , i ∈ [0, 100]. Let the fuzzy
implication operator F I O(a, b) = 1 − a + ab, a, b ∈ [0, 1], which is one of the
operators listed in [7], then by (2) we get the degree of implication as followings:
Dimp(A1 ⇒ B) = 0.9883, Dimp(A2 ⇒ B) = 0.9976, Dimp(A3 ⇒ B) = 0.9567,
Dimp(A4 ⇒ B) = 0.9664, Dimp(A5 ⇒ B) = 0.9513.

By Fig. 1, we know the rule: If t is A5 then t is B is almost false, while rule: If t
is A3 then t is B is almost true, but the the degrees of implication of Dimp(A3 ⇒
B) = 0.9567, Dimp(A5 ⇒ B) = 0.9513. It strongly conflicts with our intuition. In
the following, we give the new definition of the degree of implication to improve the
above drawback of Dimp in [7,8].

Let (I f , τ, D f ) be the AFS structure for the fuzzy database described in Sect. 2.
For fuzzy sets α, β ∈ EM, ε ≥ 0, γ ≥ 0, the degree of implication for α ⇒ β i.e. “If
t is α, then t is β ” is defined as following

Dimp(α ⇒ β) = 1

(1 + γ δαβdαβ)
S(α, β), (5)

where hα = maxt∈D f {μα(t)}, Dε = {t |t ∈ D f , μα(t) ≥ hα − ε}, δαβ =
1

|Dε |
∑

t∈Dε
|μβ(t) − μα(t)|, dαβ = 1

|Dε |
∑

t∈Dε
|hβ − μβ(t)|, S(α, β) is the ratio
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subsethood [18] defined in the framework of AFS as following:

S(α, β) = c(α ∧ β)

c(α)
=

∑
t∈D f

μα∧β(t)
∑

t∈D f
μα(t)

. (6)

In order to compare the definition of Dimp (5) with Dimp in [7,8], let μα∧β(t) =
min{μα(t), μβ(t)} in (6), but we should notice that in AFS theory μα∧β(t) is deter-
mined by the distribution of the original data, instead of t-norm min. Let ε = 0.5,
γ = 5, by (5), we get Dimp for the fuzzy sets in Example 1 as followings:
Dimp(A1 ⇒ B) = 0.8603, Dimp(A2 ⇒ B) = 0.9835, Dimp(A3 ⇒ B) = 0.8469,
Dimp(A4 ⇒ B) = 0.4750, Dimp(A5 ⇒ B) = 0.0106. By Fig. 1, we can observe
that Dimp′s obtained by (5) are very similar to our intuition.

It is obvious that we can apply (5) to find the degree of implication Dimp(α ⇒ β)

for any pair fuzzy concepts α, β ∈ E(I f ) and Dimp(α ⇒ β) in (5) is determined
by the distribution of the database, instead of t-norm, t-conorm, fuzzy implication
operator. The following Example 2 will show that the proposed degree of implication
in the framework of AFS theory is an objective reflection of the fuzzy logic relations
among the fuzzy concepts in the database and is also similar to our intuition.

In general, I = {I1, I2, . . . , Im} be the set of items where each I j (1 ≤ j ≤ m)

is an attribute of the original quantitative database D = {t1, t2, . . . , tn}, and q j be
the number of fuzzy sets defined on the domain of I j . Then the original quantitative
database D can be transformed into an extended fuzzy database D f = {t1, t2, . . . , tn}
with the set of items I f = {m1,m2, . . . ,mq}, where mi is the fuzzy concept like that
in Example 1. Let X,Y ⊂ I, X ∩Y = ∅, the elements of X are conditional attributes
and the elements of Y are decision attributes. Let MX be the set of the fuzzy concepts
in I f associated with the attributes in X and MY be the set of the fuzzy concepts in
I f associated with the attributes in Y . In the real world applications, we need to find
the fuzzy rules: If t is α, then t is β, α ∈ E(MX ), β ∈ E(MY ). In theory, we can
apply (5) to check Dimp(α ⇒ β) for each pair of α, β , but in practice, since there
are more than

∑|MX |
i=1 (2C

i
n − 1) elements in E(MX ), hence it is impossible for us to

check each one. Fortunately, this problem most likely be solved by applications of the
perfect mathematical property of lattice (E(MX ),∨,∧,′ ) in future. In the following,
we just propose an approximate algorithm of mining fuzzy rules: “If t is α, then t is
β, α ∈ E(MX )” for a given fuzzy concept β in E(MY ):

The fuzzy association rulemining algorithm for a given fuzzy concept on decision
attributes

1 ζ : ζ = {l}, l ∈ MX , Dimp({l} ⇒ β) = maxm∈MX {Dimp({m} ⇒ β)}
2 s: s ∈ D f , v = μζ (s) − μβ(s) = maxt∈D f {μζ (t) − μβ(t)}
3 for {v ≥ δ1} do (δ1 > 0 i.e. maxt∈D f {μα(t) − μβ(t)} < δ1 for the final rule:

“If t is α, then t is β” )
4 Ms = {m|m ∈ MX , μ{m}(s) < μβ(s) + δ1}
5 ζ = ζ ∧ ξ : ξ ∈ Ms, Dimp(ζ ∧ ξ ⇒ β) = maxη∈Ms {Dimp(ζ ∧ η ⇒ β)}
6 s: s ∈ D f , v = μζ (s) − μβ(s) = maxt∈D f {μζ (t) − μβ(t)}
7 endfor
8 k: k ∈ D f , u = μζ (k) − μβ(k) = maxt∈D f {μβ(t) − μζ (t)}
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9 for {u ≥ δ2} do (δ2 > 0 i.e. maxt∈D f {μβ(t) − μα(t)} < δ2 for the final rule:
“If t is α, then t is β” )

10 Mk = {m|m ∈ MX , μ{m}(k) > μβ(k) + δ2}
11 ξ : ξ ∈ Mk, Dimp(ξ ⇒ β) = maxη∈Mk {Dimp(η ⇒ β)}
12 s: s ∈ D f , v = μξ (s) − μβ(s) = maxt∈D f {μξ (t) − μβ(t)}.
13 for {v ≥ δ1} do
14 Ms = {m|m ∈ MX , μ{m}(s) < μβ(s) + δ1}
15 ξ = ξ ∧ς : ς ∈ Mk, Dimp(ζ ∧ς ⇒ β) = maxη∈Ms {Dimp(ζ ∧η ⇒ β)}
16 s: s ∈ D f , v = μξ (s) − μβ(s) = maxt∈D f {μξ (t) − μβ(t)}
17 endfor
18 ζ = ζ ∨ ξ

19 k: k ∈ D f , u = μζ (k) − μβ(k) = maxt∈D f {μβ(t) − μζ (t)}
20 endfor
21 “If t is ζ , then t is β ” is a rule for the given fuzzy sets β ∈ E(MY ) such

that Dimp(ζ ⇒ β) is an estimate of maxη∈E(MX ){Dimp(η ⇒ β)} and ∀t ∈ D f ,
−δ1 < μβ(t) − μζ (t) < δ2.

In the following example we apply the proposed algorithm to the Iris dataset.

Example 2 For the Iris dataset, let (I f , τ, D f ) be the AFS structure, (I f , τ, D f , S)

be the semi-cognitive field. ∀m ∈ I f , ρm :D f → [0,∞). For any concept α ∈ E(I f ),
its membership function is defined in [19]. We apply the above algorithm to find
rules for class iris-setosa, iris-versicolor, iris-virginica i.e. MX = {m1,m2, . . . ,m24},
MY = {m25,m26, . . . ,m30},

if t is α, then t is {m25}, α ∈ E(MX ), {m25} is the crisp concept: class iris-setosa;
if t isα, then t is {m27},α ∈ E(MX ), {m27} is the crisp concept: class iris-versicolor;
if t is α, then t is {m29}, α ∈ E(MX ), {m29} is the crisp concept: iris-virginica.
Let ε = 0.5, γ = 10, in (5) and δ1 = 0.01, δ2 = 0.5 in the algorithm for finding

rule for class iris-setosa, δ1 = 0.2, δ2 = 0.5 in the algorithm for finding rules for
classes iris-versicolor, iris-virginica. We get the following fuzzy rules:

class iris-setosa: If t is ζ1 then t is {m25}, where ζ1 = {m13} + {m19} +
{m4,m9,m22,m6,m11,m24}.

class iris-versicolor: If t is ζ2 then t is {m27}, where ζ2 = {m1, m9, m21} + {m8,

m3, m15, m21, m5} + {m8, m3, m9, m15, m21} + {m3, m9, m15, m21, m11} + {m2,

m15, m21, m5, m11}.
iris-virginica: If t is ζ3 then t is {m29}, where ζ3 = {m4, m12, m23} + {m14, m20,

m3, m9, m11, m17, m23} + {m2, m14, m20, m4 , m9, m11} + {m7, m14, m20, m3, m5,
m17}+{m8,m14,m20,m3,m5,m23}+{m8,m14,m3,m9,m21,m5,m17}+{m14,m20,
m3, m9, m5, m11, m23} + {m2, m14, m20 , m9, m5, m11, m17, m23} + {m22, m17}.

The following Fig. 2 shows the membership functions for fuzzy concepts
ζ1, ζ2, ζ3 ∈ E(MX ) as the antecedents for the fuzzy rules of class 1, 2, 3 (i.e. k = 1
iris-setosa, k = 2 iris-versicolor or k = 3 virginica), respectively.

For any t ∈ D f , t is class k, if μζk (t) = max{μζ1(t), μζ2(t), μζ3(t)}. For the total
150 samples, there are 3 classifying error samples (i.e. reclassification accuracy 98 %)
and they are list in Table 1.

In [11], the authors have used the Iris example for pedagogical reasons to com-
pare the current rule-extraction systems and the reclassification accuracies (in-sample
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Fig. 2 The membership functions of ζ1, ζ2, ζ3

Table 1 The error classifying
samples by the fuzzy rules

no. sample 71 78 86

μζ1 (.) 0.0000 0.0001 0.0001

μζ2 (.) 0.0541 0.1052 0.0705

μζ3 (.) 0.1497 0.1925 0.1464

Table 2 Number of rules(NR), number of conditions (NC), and Number of features used (NF) by rules
extracted for the Iris dataset by different systems

Method NR/NC/NF Type Reclass. accuracy (%)

ReFuNN[20] 9/26/4 F 95.7

ReFuNN[20] 104/36/4 F 95.7

NEFCLASS[21] 7/28/4 F 96.7

NEFCLASS[21] 3/6/2 F 96.7

FuNe-I[22] 7/-/3 F 96.0

AFS 3/16/4 F 98.0

Grobian[23] 118/-/4 R 100.0

GA+NN[24] 6/6/4 W 100.0

C-MLP2LN[25] 2/2/1 C 95.7

C-MLP2LN[25] 2/2/2 C 96.0

C-MLP2LN[25] 2/3/2 C 98.0

SSV[25] 2/2/2 C 98.0

Rules Are Either Crisp (C), Fuzzy (F), Rough (R), or Weighted (W)

accuracies for the whole dataset) of rules derived by several rule-extraction systems
were reported in Table 2. We also add the results in Example 2 named as AFS in
Table 2.

By Table 2, one knows that the proposed fuzzy association rule mining algorithm
obtains the best result of all fuzzy algorithm and the degrees of implication Dimp
defined by (5) in the framework of AFS theory is not only over come the obvious
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drawback of the other definitions of degree of support DSupp, implication Dimp
and confidence for fuzzy mining association rules, which are based on t-norm, fuzzy
implication operator and fuzzy similarity relation given in advance, but also provides
a promising fuzzy mining approach for real world applications.

4 Conclusion

By degrees of implication and the mining algorithm proposed, we know that the AFS
fuzzy logic is more appropriate for human thinking and natural language than other
fuzzy theory and the fuzzy rules automatically and directly extracted from the database
are simple, accuracy and interpretable. Since each extracted fuzzy rule by the proposed
algorithm has definite semantic signification expressed by the simple fuzzy sets on the
attributeswhich are determined by the special distribution of each data systems, instead
of human intuition, hence the rules are objective representations of the knowledge
hidden in the data systems. AFS fuzzy logic is an important mathematical tools for us
to study law of human thinking and to apply computers to domore intelligent works for
human. We hope that more mathematicians, scientists and engineers can pay attention
to AFS theory and the AFS fuzzy logic.

References

1. Luger GF (2005) Artificial intelligence, 5th edn. Addison Wesley, Reading
2. Anderson TW (1984) An introduction to multivariate statistical analysis, 2nd edn. Wiley, New York
3. Arnold SF (1990) Mathematical statistics. Prentice Hall, Englewood Cliffs, NJ
4. Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large

databases, In: Proceeding of the ACM SIGMOD Conference on Management of Data, Washington,
DC, pp 207–216

5. Han J, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufmann Publishers, Ams-
terdam

6. Srikant R, Agrawal R (1996) Mining quantitative association rules in large relational tables.
In:SIGMOD 96 6/96 Montreal

7. Yan P, Chen GQ (2005) Discovering a cover set of ARsi with hierarchy from quantitative databases.
Inf Sci 173:319C336

8. Chen GQ,Wei Q (2002) Fuzzy association rules and the extended mining algorithms. Inf Sci 147:201–
228

9. Delgado M, Marin N, Sachez D, Vila MA (2003) Fuzzy association rules: general model and applica-
tions. IEEE Trans Fuzzy Syst 11(2):214–225

10. Berzal F, Blanco I, Sánchez D, Serrano JM, Vila MA (2005) A definition for fuzzy approximate
dependencies. Fuzzy Sets Syst 149:105–129

11. Duch W, Setiono R, Zurada JM (2004) Computational intelligence methods for rule-based data under-
standing. Proc IEEE 92(5):711–805

12. Au WH, Chan KCC (2003) Mining fuzzy association rules in a bank-account database. IEEE Trans
Fuzzy Syst 11(2):238–248

13. Shu YJ, Tsang E, Yeung DS, Shi D (2000) Mining fuzzy association rules with weighted items.
In: Proceedings of the IEEE international conference on system, man and cybernetics (SMC2000),
Nashville, Tennessee

14. Hullermeier E (2001) Implication-based fuzzy association rules. ECML/PKDD, Freiburg
15. Liu XD, Pedrycz W (2009) AFS theory and its applications. Springer-Verlag, Heidelberg
16. Liu XD (1998) The fuzzy theory based on AFS algebras and AFS structure. J Math Anal Appl USA

217:459–478

123



270 Ann. Data. Sci. (2015) 2(3):261–270

17. Mertz J, Murphy PM (1996) UCI repository of machine learning databases. Available: http://www.ics.
uci.edu/pub/machinelearning-data-bases

18. Kosko B (1997) Fuzzy engineering. Prentice Hall, Upper Saddle River
19. Liu XD, Wang W, Chai TY (2005) The fuzzy clustering analysis based on AFS theory. IEEE Trans

Syst Man Cybern Part B 35(5):1013–1027
20. Kasabov N (1996) Foundations of neural networks, fuzzy systems and knowledge engineering. MIT

Press, Cambridge, MA
21. Nauck D, Nauck U, Kruse R (1996) Generating classification rules with the neuro-fuzzy system

NEFCLASS. In: Proceedings of the Biennial conference of the North American Fuzzy Information
Processing Society NAFIPS. Berkeley, CA. vol. 96, pp 466–470

22. Halgamuge SK, Glesner M (1994) Neural networks in designing fuzzy systems for real world appli-
cations. Fuzzy Sets Syst 65:1–12

23. Browne C, Duntsch I, Gediga G (1998) IRIS revisited: a comparison of discriminant and enhanced
rough set data analysis. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery, vol 2.
Physica-Verlag, Heidelberg, pp 345–368

24. Jagielska I, Matthews C, Whitfort T (1996) The application of neural networks, fuzzy logic, genetic
algorithms and rough sets to automated knowledge acquisition, In: Proceeding of the 4th international
conference soft computing, vol. 2, pp 565–569

25. Duch W, Adamczak R, Grabczewski K (2001) A new methodology of extraction, optimization and
application of crisp and fuzzy logical rules. IEEE Trans Neural Netw 12:277–306

123

http://www.ics.uci.edu/pub/machinelearning-data-bases
http://www.ics.uci.edu/pub/machinelearning-data-bases

	Mining Fuzzy Association Rules in the Framework  of AFS Theory
	Abstract
	1 Introduction
	2 Fuzzy Concepts Expressed by AFS Algebra over Attributes
	3 Mining Fuzzy Association Rule based on AFS Fuzzy Logic
	4 Conclusion
	References


