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Abstract Extensive studies have shown that mining microarray data sets is im-
portant in bioinformatics research and biomedical applications. In this paper, we
explore a novel type of gene—sample—time microarray data sets that records the
expression levels of various genes under a set of samples during a series of time
points. In particular, we propose the mining of coherent gene clusters from such
data sets. Each cluster contains a subset of genes and a subset of samples such that
the genes are coherent on the samples along the time series. The coherent gene
clusters may identify the samples corresponding to some phenotypes (e.g., dis-
eases), and suggest the candidate genes correlated to the phenotypes. We present
two efficient algorithms, namely the Sample-Gene Search and the Gene—Sample
Search, to mine the complete set of coherent gene clusters. We empirically eval-
uate the performance of our approaches on both a real microarray data set and
synthetic data sets. The test results have shown that our approaches are both effi-
cient and effective to find meaningful coherent gene clusters.
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1 Introduction

The microarray technology can measure the expression levels of thousands of

genes simultaneously. It is an important research problem in bioinformatics and

clinical research to explore the patterns in microarray data sets. For example, in

drug development, gene expression patterns may reflect gene-level responses to

different drug treatments and provide deep insights into the nature of the diseases.
Most microarray data sets' can be divided into two categories.

— The gene—time data sets record the expression levels of various genes during
important biological processes over a series of time points.

— The gene—sample data sets account the expression levels of various genes
across related samples.

Both gene-time data sets and gene—sample data sets can be represented by
an n x [ gene expression matrix, where each row is a gene and each column is
either a sample (in a gene—sample data set) or a time instant (in a gene—time data
set). Each cell in the matrix represents the expression level of a certain gene on a
certain sample or at a certain time point.

With the latest advances in the microarray technology, the expression levels of

a set of genes under a set of samples can be monitored synchronically during a
series of time points [39]. Different from the previous gene—time or gene—sample
microarray data sets, these new data sets have three types of variables: genes,
samples, and time. We call such data gene—sample—time microarray data, or GST
data for short. Figure 1a elaborates the structure of a GST microarray data set.
In general, each cell mf‘ i in a GST data set represents the expression level of
gene g; under sample s; at time point . Interestingly, a GST data set can also be
viewed as an n x [ matrix such that each cell m; ; contains the time series with
respect to gene g; under sample s;, as shown in Fig. 1b.

The previous studies on gene—sample microarray data (e.g., [1, 2, 13, 33])
indicate that high correlations may exist between the gene expression patterns and
some diseases. It is natural to extend the similar analysis to GST microarray data.
That is, it is interesting to identify a subset of genes G and a subset of samples
S in a GST microarray data set such that each gene g € G has coherent patterns
across the samples in S during the time series. For example, in Fig. 1, gene g;,
gi2, and g;3 show coherent patterns across samples s;1, 52, and s 3, respectively.
We call such subsets of genes and samples a coherent gene cluster.

The computational model of coherent gene clusters addresses a significant
problem in the clinical use of a variety of drug therapies. For example, IFN- is
the most widely prescribed immunomodulatory therapy for multiple sclerosis (an
autoimmune disease of the brain and spinal cord). The therapy is known to exert
all its biological effects via gene transcription but there are no validated markers
for its long-term efficacy in multiple sclerosis. Although double blind, random-
ized, placebo-controlled clinical trials have established that IFN-8 treatment re-
duces the progression of disability in multiple sclerosis, only 30-40% of patients
respond well to the therapy. To define the mechanism of IFN-8 and investigate the
partial responsiveness of various patients, the expression levels of large numbers

! In this paper, the term “microarray data” is used to refer to gene expression microarray data.
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Fig. 1 The structure of GST microarray data

of genes were monitored for 13 multiple sclerosis patients during a 10-point time
series [39].

There is considerable inter-individual heterogeneity in responsiveness to IFN-
B. In other words, patients can differ both in the magnitude and rate of their gene
expression profiles. However, the underlying mechanisms are not fully character-
ized. The coherent gene cluster model is directly relevant to characterizing this
underlying heterogeneity of treatment responses to IFN-f, since it is capable of
identifying patients whose responses are similar and defining the time courses of
genes that distinguish these patient subsets. Moreover, the genes in the clusters
may suggest the candidate genes correlated to the response.

In general, the coherent gene clusters may provide valuable hypotheses for
biologists. The sample sets in clusters may correspond to some phenotypes (e.g.,
the diseased/healthy patients or patients responding differently to a treatment),
while the corresponding set of genes may suggest the candidate genes correlated
to the phenotypes.

The functions of genes in an organism are highly complicated. There are typ-
ically multiple coherent clusters in a data set. Different clusters may correlate
to different phenotypes such as age and gender. Therefore, to avoid missing any
valuable hypothesis, it is necessary to mine al/ the coherent clusters in a data set.

Many previous studies investigate the mining of interesting patterns from mi-
croarray matrices. For example, various clustering algorithms can identify the co-
expressed genes showing coherent patterns during the time series (e.g., [19, 27,
33, 35]). Moreover, both supervised and unsupervised approaches are proposed to
partition the samples into homogeneous groups (e.g., [5, 10, 24, 34]). Addition-
ally, statistical approaches are proposed to validate the significance of the mining
results (e.g., [22, 37]). However, all those previous studies target at conventional
gene—time or gene—sample microarray data sets. The models of clusters in those
previous studies are different from our coherent gene clusters, which disclose the
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correlation among genes, samples, and time points. Therefore, those algorithms
cannot be extended directly to solve our problem.

Recently, the pattern-based clustering approaches (e.g., [38]) have been de-
veloped to discover subsets of objects following similar patterns on subsets of
attributes. Conceptually, a pattern-based cluster is a coherent gene cluster. If we
treat the GST microarray data sets as an n x [ matrix of time series, as shown
in Fig. 1b, then pattern-based clusters and coherent gene clusters may have some
similarity at the first look. However, in some pattern-based approaches, a cluster
requires that each pair of objects in the cluster must be coherent on each pair of
attributes. Such a requirement is often too strong in practice. Our coherent gene
clustering relaxes the constraints among the objects. Therefore, each traditional
pattern-based cluster is a coherent gene cluster, but the other way is not necessar-
ily true.

In this paper, we tackle the problem of mining coherent patterns from gene—
sample—time microarray data sets and make the following contributions.

First, we propose a model of coherent gene clusters in GST microarray data
sets. We justify that the model is meaningful for biomedical research.

Second, we identify the computational challenges and conduct a systematic
research on mining coherent gene clusters from GST microarray data sets. We
develop two approaches, namely the Gene—Sample Search and the Sample—Gene
Search, to mine the complete set of coherent gene clusters. We illustrate and com-
pare the efficiency and scalability of both approaches.

Last, we conduct an extensive empirical evaluation on both real data sets and
synthetic data sets. Our results show that our proposed methods can find coherent
gene clusters that are of interest to biomedical research from real data sets. The
results on synthetic data sets also show that our algorithms are both efficient and
scalable.

The rest of the paper is organized as follows. Section 2 defines the problem.
Section 3 describes the preprocessing step of computing the maximal coherent
sample sets for each individual gene. Section 4 presents two algorithms to mine
coherent gene clusters. In Sect. 5, our methods are evaluated using both real and
synthetic data sets. The related work is discussed in Sect. 6. We discuss other
possible coherent clusters for GST data sets in Sect. 7. Section 8 concludes the

paper.

2 Problem description

Given a set of n genes G-Set = {g{, ..., gn} and a set of [ samples S-Set =
{s1,..., s}, we can measure the expression levels of the genes on the samples.
The results form a conventional n x [ microarray matrix M = {m; ;}, where m; ;
is the expression level of gene g; (1 <i < n) onsample s; (1 < j < /). If such
microarray experiments are conducted synchronically on all genes and all samples
at time instants ¢, ..., t7, the results form an n x [ x T GST microarray matrix
M = {m! ;b where (1 <t <T).

A GST microarray matrix M = {m§ }.} can also be viewed as an n x [ ma-
' 1
HEIRERE
not strictly distinguish the two notations M = {mﬁy j} and M = {m; ;}. Instead,

trix M = {m; j} where m; ; is a vector of (m ml.Tj). Hereafter, we do
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Table 1 Notations used in the paper

M Gene expression data matrix
G-Set Set of genes in M
S-Set Set of samples in M
G,G’ Subsets of G-Set
A Subsets of S-Set
(G xS8) Submatrix of M
mi j Measure of gene i at sample j. It is a real number for conventional
expression data matrix, while a real vector for GST data matrix
n Number of genes in M
l Number of samples in M
T Number of time points in M
) User-specified coherence threshold
ming User-specified minimum number of genes
ming User-specified minimum number of samples
whenever m; ; is written, the corresponding vector (ml-1 e mlT j) is referred to.

Table 1 list the notations used in this paper.

In this paper, we are interested in finding those genes that are coherent on
a subset of samples during the whole time series. There are various methods to
measure the correlation between two time series. However, for gene expression
data, users are often interested in the overall trends of the expression levels in-
stead of the absolute magnitudes. Therefore, we choose the Pearson’s correlation
coefficient as the coherence measure, since it is robust to shifting and scaling pat-
terns [41]. Specifically, given two vectors m;_j, and m; j, of gene g;, the coherence
is defined as

T t e t I
D=y Uy =i ) (my 5, — )
T t )2 T t —2
\/Zt:l(mi,jl = mij) \/Zt:l(mi,jz —Mij)
where m; ; = ZZT: | (m§ /) /T is the mean of the expression levels of gene g; on

sample s;. The correlation coefficient ranges between —1 and 1. The larger the
value, the more coherent are the two vectors.

QY

p(mj j, mi j,) =

Definition 2.1 (Coherent gene submatrix) Given a GST data matrix M, a gene
gi € G-Set is coherent across a subset of samples S € S-Set, if for any given
pair of samples s;,, s/, € S, p(m; j, m; j,) > &, where § is a minimum coherence
threshold specified by the user. A subset of genes G C G-Set is coherent across a
subset of samples S C S-Set, if every gene g; € G is coherent across samples in
S. We call a submatrix (G x §) a coherent gene submatrix if G is coherent across S.
A coherent gene submatrix having u genes and v samples is said a (u#, v)-coherent
gene submatirx.

Proposition 2.1 (Trivial coherent gene submatrices) For any gene g; and any
sample sj, ({gi} x {s;}) is a (1, 1)-coherent gene submatrix and (G-Set x {s;})
and ({gi} x S§-Set) are (|G-Set|, 1)- and (1, |S-Set|)-coherent gene submatrices,
respectively.

Proof The proposition follows the definition of coherent gene submatrix
immediately. O
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To avoid the triviality indicated in Proposition 2.1, we require that a coherent
gene submatrix should consist of at least two genes and two samples.

Proposition 2.2 (Anti-monotonicity) Let (G x S) be a coherent gene submatrix.
Then, for any subsets G' C G and S" C S, (G' x S') is also a coherent gene
submatrix.

Proof For any gene pair in G’ and any sample pair in §’, they must satisfy the
coherence requirement since they are in the cluster (G x S). O

The anti-monotonicity of coherent submatrices brings a lot of redundancy. To
avoid such redundancy, a user may only want the maximal submatrices. A co-
herent gene submatrix (G x §) is maximal if there exists no any other coherent
gene submatrix (G’ x S’) such that G € G’, S C S’. Moreover, a user may
not be interested in very small clusters, which are often formed by chance. Thus,
a user can specify the minimum numbers of genes and samples in a submatrix.
Generally, given min, and miny as user defined minimum gene size and minimum
sample size thresholds, a submatrix (G x §) is called significant if |G| > min,
and |S| > ming.

Definition 2.2 (Coherent gene cluster) Given a GST microarray matrix M, a
minimum coherence threshold §, a minimum gene size threshold min, and a min-
imum sample size threshold ming, a submatrix (G x §) of M is a coherent gene
clusters if it satisfies the following constraints: (1) (G x S) is a coherent gene
submatrix; (2) (G x ) is maximal; and (3) |G| > min, and |S| > minj.

The problem of mining coherent gene clusters is to find the complete set of
coherent gene clusters in the given data set with respect to the user-specified pa-
rameters.

3 Maximal coherent sample sets

We propose two algorithms to compute maximal coherent gene clusters. In both
algorithms, to compute coherent gene clusters, we need to check whether a subset
of genes are coherent on a subset of samples. To facilitate the tests, for each gene
gk, we compute the sets of samples S such that (1) |S| > minyg; (2) gx is coherent
on S; and (3) there exists no proper superset S’ O S such that g; is also coherent
on §’. S is called a maximal coherent sample set of gi. Please note that, in general,
a gene may have more than one maximal coherent sample set.

For a gene gy, all of its maximal coherent sample sets can be computed effi-
ciently using the following 2-step process.

In the first step, we test whether gene g; is coherent on each pair of samples
(si, s;). A binary triangle matrix {c; ;} is populated, where 1 <i < j < |S-Set|.
We set ¢; ; = 1if gene gy is coherent on samples s; and s}, i.e., p(my ;, mg j) > 6,
otherwise, ¢; j = 0.

Once the matrix {c; ;} is populated, the problem of finding g;’s maximal co-
herent sample sets can be reduced to the problem of finding all maximal cliques
of size at least miny in graph Gy = (S-Set, E), where (s;, s;) is an edge in the
graph if and only if ¢; ; = 1. Here, we follow the terminology that a clique is a
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set of vertices such that the induced subgraph is a complete graph. A clique S is
called maximal if there exists no any other clique S’ such that § C §’. Please note
that there may exist more than one maximal clique in a graph.

Unlike the conventional clique problem where the clique of the maximal size
is found, here, we need to find the complete set of maximal cliques in the graph.

Theorem 1 (Complexity of preprocessing) The problem of computing the com-
plete set of maximal cliques that have at least ming vertices is NP-hard.

Proof 1t is well known that the conventional clique problem is NP-complete.
Therefore, the counting problem of finding the complete set of cliques of size at
least miny is in #P. Since a #P problem corresponding to any NP-complete problem
must be NP-hard, the problem of computing the complete set of maximal cliques
in a graph is NP-hard. O

Fortunately, the real GST microarray data sets are often sparse and the number
of samples is typically below 100. For each gene, the number of maximal cliques
is quite small and the samples can often be partitioned into exclusive small subsets.
Our experimental results show that, with efficient search and pruning techniques
that will be introduced soon, it is still practical to find the complete set of maxi-
mal cliques. In the following, we will show how to find the maximal cliques of a
sample set by a depth-first search in a sample set enumeration tree.

Given a set of samples S = {sq, ..., s;}, the set 28 (i.e., all combinations of
samples) can be enumerated systematically. For example, consider a set of samples
S = {a, b, ¢, d}. The complete set of nonempty combinations of samples can be
divided into 4 exclusive subsets: (1) the ones having sample a; (2) the ones having
sample b but no a; (3) the ones having sample ¢ but no a or b; and (4) {d}. They
are shown as the immediate children of the root in Fig. 2.

These subsets can be further partitioned. For example, the first subset can be
further divided into three exclusive sub-subsets: (1) the ones having samples a and
b; (2) the ones having samples a and ¢ but no b; and (3) {a, d}.

The tree shown in Fig. 2 is called a set enumeration tree [28] with respect to
{a, b, c, d}. It provides a conceptual tool to enumerate the complete set of combi-
nations systematically.

We can conduct a recursive, depth-first search of the sample set enumeration
tree to detect the maximal cliques of the samples. Given a set of samples S, the
set enumeration tree has 2!5! nodes. However, we never need to materialize such a

g
a}/m}
(ab) o) fad) {b&,d} fed)
{a,b{ {a,b,d} {a,c,d} {b,([,d}
{a,b,c,d}

Fig. 2 Enumeration of combinations of samples
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tree. Instead, we only need to keep a path from the root of the tree to the node that
we are working on as a working set. Such a path contains at most (|.S| + 1) nodes.

Clearly, in the set enumeration tree, each node contains a unique subset of
samples. Thus, we can use the subset of samples to refer to the node. At node
{siy,...,8, 1 (I <iyp <--- <ip <), wealso keep a list Tail, which contains the
samples that can be used to extend the node to some larger subsets of samples in
the subtree. We have the following result.

Lemma 3.1 At node v = {s;,, ..., si,} of the sample set enumeration tree, where
(I<iy<---<ix=D,asamples; & Tailif (1) j < iy, or (2) there exists some
1 <r <k such that ¢;. j = 0. Moreover, for v's parent node vV = {siy, - ou S b

v’s Tail is a subset of that of v'.

Proof The first claim of the lemma follows the definition of set enumeration tree.
If j < i, s; cannot appear in any node of the subtree of v. Furthermore, if ¢;, ; =
0, then the gene is not coherent on ¢; and ¢, ;.

To show the second claim, we only need to note that v contains a superset of
samples in v’. If the gene is coherent on every sample in v and a sample s that is not
in the tail of v, it must also be coherent on every sample in v’ and s. O

Clearly, we can prune any subtree that cannot lead to a coherent sample set of
at least min; samples.

Pruning-rule 3.1 (Pruning small sample sets) At a node v = {s;, ..., s}, the
subtree of v can be pruned if (k + |T ail|) < miny.

For example, for a set of / samples, even the complete set of sample combi-
nations can be divided into / exclusive subsets as shown before, we only need to
search the first (/ — ming + 1) subsets, since each of the last (ming — 1) subsets
contains less than ming samples.

Moreover, if the samples at the current node and its Tail are subsumed by
some maximal coherent sample set found so far, then the recursive search can
also be pruned, since it cannot lead to any new maximal coherent sample set.

Pruning-rule 3.2 (Pruning subsumed sets) At a node v = {s;,...,s;}, if
{siy, ..., 8} UTail is a subset of some maximal coherent sample set, then the
subtree of the node can be pruned.

Based on the previous lemma and pruning rules, the preprocessing algorithm
is presented in Fig. 3. For the readers familiar with the techniques of depth-first
mining of maximal/closed frequent patterns, the ideas of pruning here share the
similar spirit with the pruning in frequent closed item set mining (e.g., [25]). How-
ever, one key difference is that the frequent pattern mining conducts counting on
databases, and we do not need to scan the database for any counting once the
triangle matrix {c; ;} is materialized.

4 The mining algorithms

A naive method to find the maximal coherent gene clusters is to test every possible
combination of genes and samples thoroughly. After all the coherent gene clusters
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Input: the GST data set, the coherence threshold ¢, and the minimum sample size
threshold min,;
Output: the maximal coherent sample sets for each gene;
Method:
for each gene g;, do
generate matrix ¢; ; for gi;
fori=1to (I —mins + 1) call search-clique({s;},{si+1,...,s}); end-for

end-for

Procedure: search-clique(head, tail) I/ head records the samples in the current node
suppose s; is the last sample in head, remove samples s; from tail such that ¢; ; = 0;
// Lemma 3.1
if (|head U tail| < ming) // Pruning 3.1
or (head U tail C S) s.t. S is a maximal clique // Pruning 3.2
then return;
if tail = ) then output a maximal clique;
elsedo
let j = min{k|s), € tail}, tail = tail — {s;}; call search-cliqgue(head U {s;}, tail);
until tail = 0;

return;

Fig. 3 Preprocessing: computing maximal coherent sample sets

are found, we can identify and report the maximal ones. The naive method is very
costly and thus infeasible for real data sets. For example, suppose we have 1000
genes and 20 samples. The naive method may have to search up to (2'°%0 — 1) x
(220 — 1 —20) &~ 1.12 x 10397 combinations!

How can we search the huge space efficiently and prune unpromising sub-
spaces sharply? When computing the maximal coherent sample sets (Fig. 3),
we systematically enumerate combinations of samples in a recursive depth-first
search and develop techniques to prune unpromising subspaces aggressively.
Stimulated by the similar spirit, here we can also systematically enumerate the
combinations of genes and samples and prune the unfruitful combinations.

Basically, we have two options. On the one hand, we can enumerate all com-
binations of samples systematically. Then, for each subset of samples, we can find
the maximal subsets of genes that form coherent gene clusters on the samples and
check whether the clusters are maximal. This method is called the Sample—Gene
Search. On the other hand, we can let the gene enumeration go first. For each
subset of genes, we find the maximal subsets of samples that form coherent gene
clusters with the genes and check whether the clusters are maximal. The method
is called the Gene—Sample Search.

The frameworks of the Sample—Gene Search and the Gene—Sample Search
are shown in Fig. 4. Proper pruning techniques should be developed to prune the
unpromising combinations and search branches as early as possible.
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The Sample-Gene Search

depth-first enumerate subsets of samples

for each subset of samples S do
find the maximal subsets of genes G s.t. G x S is a coherent gene cluster;
test whether (G x S) is a maximal coherent gene cluster;

end-for

The Gene-Sample Search

depth-first enumerate subsets of genes

for each subset of genes G do
find the maximal subsets of samples S s.t. G x S is a coherent gene cluster;
test whether (G x S) is a maximal coherent gene cluster;

end-for

Fig. 4 The frameworks of the Sample—Gene Search and the Gene—Sample Search

A first look at Fig. 4 may suggest that the two methods are symmetric. How-
ever, since genes and samples are not symmetric in the problem, the technical
details are in fact substantially different. We are mining coherent gene clusters
on samples. As long as the genes coherently respond on the same subset of sam-
ples, they belong to the same cluster. However, the expression patterns of different
genes in the same cluster on one sample can be very different.

4.1 Sample—-Gene Search

In the Sample—Gene Search, we need to address the following issues.

— As we enumerate the combinations of samples systematically, for each subset
of samples, how can we find the maximal sets of genes such that the genes are
coherent on the samples?

— During the sample set enumeration, which sample sets can be pruned?

— Similar to the situation in Pruning rule 3.2 can we identify and prune the
searches that cannot lead to any potential maximal coherent clusters?

— How can we determine whether a coherent gene cluster is subsumed by the
others?

We answer the aforementioned questions in this section.

4.1.1 Maximal coherent gene sets for sample sets

For each combination of samples S, we need to compute the maximal coherent
gene set G g such that the genes in G g are coherent on S and no proper superset
G’ D G also has this property.

Clearly, for a gene g, if there exists a maximal coherent sample set S, such
that § € S,, then g € Gy. In other words, G s can be derived by one scan of the
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‘ Gene ‘ Maximal coherent sample sets ‘

g1 {51, 82, 83, 84, 55}
92 {s1, 82,84}, {51, 55}
93 {51, 52,83, 54,55}
94 {51,582, 83}, {55, 56}
95 {51, 55,56}

(a)

‘ Sample ‘ The inverted list ‘
51 {9101, 92.b1, g2.b2, g3.b1, ga.b1, g5.b1 }
82 {9101, 92.b1,93.b1, ga-b1 }
s3 {911, 93.b1, 94.b1 }

54 {9101, 92.b1, g3.b1 }
S5 {gl~b17g2~b2793~b1794~b2795-b1}
56 {94.b2,95.b1}

(b)

Fig.5 The maximal coherent sample sets and the inverted lists: a The maximal coherent sample
sets for genes. b The inverted lists for samples.

maximal coherent sample sets of all genes. If a maximal coherent sample set is a
superset of S, then the corresponding gene g is inserted into Gg.

It is expensive to scan the complete list of maximal coherent sample sets of
all genes once for every combination of samples. An efficient solution is to use an
inverted list.

Let us illustrate the idea using an example. Suppose we have 5 genes and 6
samples. The maximal coherent sample sets for each gene are listed in Fig. Sa.

We label each maximal coherent sample set by the gene g, and the set-id,
bj, in the gene. For example, gene g> has two maximal coherent sample sets,
82.b1 = {s1, 52, 54} and g2.b2 = {51, s5}.

For each sample s, we make up the inverted list L as the list of all maximal
coherent sample sets containing s, as shown in Fig. 5b.

Now, when we want to compute the maximal coherent gene sets for a subset
of samples, say {s1, 52, s3}, we do not need to search the complete list in Fig. 5a.
Instead, we only need to get the intersection of the inverted lists of the samples
s1, $2, and s3, which is {g.b1, g3.b1, g4.b1}. By this intersection, we know that
{g1, g3, g4} 1s the maximal coherent gene set.

4.1.2 Pruning irrelevant samples

For a combination of samples S = {s;,,...,s;,}, where iy < --- < iy, let S
be the set of samples that can be used to extend S to a larger set S C S U Su;
such that there are at least min, genes coherent on S ’. Clearly, a sample s i & Stail
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if j < ir. Moreover, if the maximal coherent gene set of S U {s;} contains less
than min, genes, then s; & Sgil, either. This is in the similar spirit of Lemma 3.1.
For example, in our running example (Fig. 5), sample s¢ cannot be used to extend
sample set S = {s3}, since there is no gene coherent on both s, and s¢.

Moreover, similar to Pruning rule 3.1, if |S| + |Swil] < ming, then S cannot
lead to any coherent gene cluster having ming or more samples, and thus can be
pruned.

4.1.3 Pruning unpromising coherent gene clusters

Similar to the situation in Pruning rule 3.2, we can prune the unpromising com-
binations that cannot lead to any new maximal coherent gene cluster. Here, two
pruning techniques can be applied.

In our running example (Fig. 5), suppose we find the maximal coherent gene
cluster ({g1, g3} x {s1, $2, 53, 55}) before we search sample set S = {s1, s3}. For
S = {51,583}, Swit = {s5} and Ggsus,; = {g1,g3}. That is, both S U S and
G sUs,y; are subsumed by the maximal coherent gene cluster. The recursive search
of S cannot lead to any maximal coherent gene cluster and thus can be pruned.

In general, suppose we are searching a sample combination S’. If there exists a
maximal coherent gene cluster (G x ) found before such that S U S’ € S and
Gy st S G, then any recursive search from S’ results in a coherent gene cluster

subsumed by (G x §), and thus can be pruned.

Moreover, if there exists a maximal coherent gene cluster (G x §) found
before such that S C S and every maximal coherent sample set containing S’
also contains S, then the recursive search of S’ cannot lead to any maximal co-
herent gene cluster either, and thus can be pruned. For example, suppose we
search the sample set S’ = {s,} after we find the maximal coherent gene clus-
ter ({g1, g2, g3, g4} X {s1, s2}) in our running example (Fig. 5). From Fig. 5a, we
can see that every maximal coherent sample set containing s, also contains s1. In
other words, there exists no maximal coherent gene cluster containing s, but no
s1. Thus, the search of S’ can be pruned.

4.1.4 Determining maximal coherent gene clusters

When we search a combination of samples S, we need to check whether Gg x S
is a maximal coherent gene cluster. We examine those maximal coherent gene
clusters (G’ x §’) such that §” O S. Clearly, since we conduct depth-first search in
the set enumeration tree, such maximal coherent gene clusters should be reported
either before S is searched, or in the subtree rooted at S.

4.1.5 The Sample—Gene Search algorithm

Based on the previous discussion, we have the Sample—Gene Search algorithm in
Fig. 6.
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Input: the maximal coherent samples sets for genes // from the algorithm in Figure 3
Output: the complete set of coherent gene clusters
Method:
generate the inverted list for samples as described in Section 4.1.1;
fori =1 to (|S-Set| — min,) do
let S = {s;} and Syair = {Si41,- - S|s-5et| }; call recursive-search(S, Siail);

end-for

Procedure: recursive-search(S, Siair)
remove irrelevant samples from Sy,;; as described in Section 4.1.2;
1if (|S| + |Stair] < ming) then return;
derive the intersection of inverted lists for samples in S as described in Section 4.1.1;
if S can be pruned by the criteria in Section 4.1.3 then return;
while Sy # 0 do
let i = min{j|s; € Sy }; let tail = tail — {s;}; call recursive-search(S U {s;}, Sait);
end-while
derive the maximal coherent gene set Gg;
output (Gg x S) as a maximal coherent gene cluster if it is not subsumed by any maximal
coherent gene cluster found before
End

Fig. 6 The Sample—Gene Search algorithm

4.2 Gene—Sample Search

Although the computational details of Sample—Gene Search and Gene—Sample
Search are substantially different, the overall structures of these two algorithms
are symmetric one to the other. In Gene—Sample Search, we enumerate the com-
binations of genes systematically. For each combination of genes, we compute the
maximal sets of samples that the genes are coherent on. Many pruning techniques
in Sample—Gene Search have the symmetric versions in Gene—Sample Search.
Limited by space, we omit the details here. Instead, we only focus on the differ-
ences between the two approaches.

4.2.1 Determining coherent gene clusters

The concept of coherent sample sets for a gene can be generalized for a set of
genes. Given a set of genes G, a maximal coherent sample set with respect to G
is a set of samples S such that (1) genes in G are coherent on Sg; and (2) there
exists no S’ O S¢ that samples in G are also coherent on S’. Please note that there
can be more than one maximal coherent sample set for a given set of genes.

How can we compute the maximal coherent sample sets efficiently? Interest-
ingly, Sg can be computed by some simple intersection operations. For example,

suppose Sig;1 = {(51, 52, 53)} and Sig,1 = {(s2, 53, 54), (55, 57)}. Then, {s2, 53} is
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Function find-max-coherent-sample-sets
Input: gene sets G, and Go, sets of maximal coherent sample sets S¢, and S¢,;
Output: the maximal coherent sample sets w.r.t. G; U Go
Method:
let Sg,ue, = 0;
for each maximal coherent sample set S; € S, do
for each maximal coherent sample set S; € S, do
let Sy =S5;NS;;
1f |Sk| > min, then insert Si into Sg,uc,;
end-for
end-for
for each Sy € Sg,ua, do
if Sy is a proper subset of S” € S¢,ua,
then S¢,ua, = Sayua, — {Sk}
end-for

output S¢,uaG,;

Fig. 7 Computing maximal coherent sample set for a set of genes

the only maximal sample set that both g1 and g; are coherent on. Thatis, Si,, ¢} =
{(s2, 53)}. In other words, we can derive Syg, o,) from {s1, 52, 53} N {52, 53, 54} and
{s1, 52, 53} N {s5, 57}

In general, if gene set G = G| U G2, then S can be derived from S, and
S, by the function find-max-coherent-sample-sets in Fig. 7.

4.2.2 Pruning irrelevant genes and unpromising coherent gene clusters

Similar to the idea in Sect. 4.1.2, we can prune genes that cannot be used to extend
the current combination of genes. For a given set of genes G = {g;,, ..., &},
where 1 < i; < --- < i, a gene g; cannot be used to extend G to a larger set
of genes if j < iy or none of the maximal coherent sample set with respect to
G U {g;} has at least min; samples. Moreover, let G, be the set of genes that can
be used to extend G. If |G| + |G il < ming, then G should be pruned.

Based on the same idea in Sect. 4.1.3, we can use the maximal coherent gene
clusters to prune the unpromising coherent gene clusters. Suppose we are search-
ing a gene combination G. Let S1 be one maximal coherent sample set with
respect to G, i.e.,, S € Sg,. If there exists a maximal coherent gene cluster
(G x §) such that S; € S and G; € G, then S| should be removed from the
list of the maximal coherent sample sets Sg,, since it cannot lead to any maximal
coherent gene cluster. Moreover, if S, becomes empty after the pruning, then G
should be pruned, since any recursive search from G cannot lead to any maximal
coherent gene cluster.



Mining gene—sample—time microarray data

4.2.3 Merging coherent genes in the tail list

In our running example, the maximal coherent sample sets with respect to gene g
and g3 are identical. Then, for any coherent gene cluster (G x S) such that g; € G,
(G U {g3} x S) must also be a coherent gene cluster. Thus, we can search {g1, g.}
in a shoot.

In general, we have the following result.

Lemma 4.1 When search a combination of genes G, if there exist genes
{gj1»--+ &} € Gurail such that they are coherent on every maximal coherent
sample set of G, then there exists no maximal coherent gene cluster containing G

butno {gj,...,gj}

Proof Suppose we have such a maximal coherent gene cluster C containing G
butno {g;, ..., g ). Let the set of samples in C be S. It is easy to see that G U
{gj---,&j.} are also coherent on sample set S. Thatis, (G U{g;;, ..., g} xS)
is a coherent gene cluster. Since G C (G U {gj,,..., g;} x §), C cannot be a
maximal coherent gene cluster. A contradiction. O

Based on Lemma 4.1, we can immediately merge genes {g;,, ..., g} to G at
the current node, and thus shrink the number of recursions. The computation time
is saved as well, since we only need to check the coherent gene clusters, prune the
irrelevant genes or unpromising gene clusters for all these genes in one shoot.

In our experiments on real data sets, we observe many genes can be merged
by Lemma 4.1. The real-world GST microarray data sets are typically sparse and
genes are coherent on a quite small number of sample sets. As a consequence,
the performance of Gene—Sample Search can be improved substantially by this
optimization.

One may ask, “Do we have a symmetric pruning for Sample—Gene Search?”
We can apply the similar optimization technique for sample—gene. That is, a sam-
ple s; is merged into current combination of samples § as long as the inverted list
of § is a subset of that of 5;. However, it is rare in practice that the maximal co-
herent gene sets with respect to two different samples sets S; and S are identical.
Therefore, there are few cases when this rule can be applied in real applications.

4.2.4 The Gene—Sample Search Algorithm

Based on the previous discussion, we have the Gene-Sample Search algorithm as
shown in Fig. 8.

5 Experimental results

We implemented and tested our approaches on both a real GST microarray data
set and synthetic data sets. The system is implemented in Java. The tests are con-
ducted on a Sun Ultra 10 work station with a 440 MHz CPU and 256 MB main
memory.
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Input and output: same as the Sample-Gene Search algorithm (Figure 6)
Method:
for i =1to (|G-Set| — min,) do
let G = {¢;} and Goi = {gi=1, - .- ) 9|G-Set IS
call recursive-search(G, Giq);

end-for

Procedure: recursive-search(G, Gya;1)
remove irrelevant genes from Gy, as described in Section 4.2.2;
1if (|G| + |Giea| < ming) then return;
merge coherent genes in G, as described in Section 4.2.3;
for each maximal coherent sample set S; € S do
if S; can be pruned by the second criteria in Section 4.2.2 then remove .S; from Sg;
end-for
if (Sg = () then return;
while Gy # 0 do
let i = min{j|g; € Grau};
let Groit = Graa — {9:}s
call recursive-search(G U {g;}, Gian);
end-while
for each sample set S; in S; do
output (G x S;) as a maximal coherent gene cluster if it is not subsumed by any
maximal coherent gene cluster found before
end-for

End

Fig. 8 The Gene—Sample Search algorithm

5.1 The data sets
5.1.1 The real data set

We use the real gene—sample—time microarray data set reported in [39]. It consists
of the microarray measurements of 4324 genes in 13 multiple sclerosis (MS) pa-
tients before and at 1, 2,4, 8 h, 1, 2, 5, 7 days, and 3 months after IFN- g treatments.
MS patients show heterogeneous responses to IFN-S treatments. For example, the
patients with relapsing MS respond better to IFN-8 treatments than the patients
with progressive disease do. However, relapsing MS patients also exhibit consid-
erable inter-individual heterogeneity in their clinical responses to IFN- g therapies.
So far, the effects of IFN-g treatment at the genomic level in humans are poorly
understood. Researchers are interested in distinguishing the heterogeneous clini-
cal response to IFN-g therapy among the patients. Moreover, characterized gene
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expression dynamics correlated to the heterogeneous responses potentially help in
exploring the causing mechanisms at the molecular level.

5.1.2 Synthetic data

We observe that the preprocessing, i.e., mining the maximal coherent sample sets
for each individual gene, is relatively fast. The major bottleneck in mining coher-
ent gene clusters is in the latter part. Therefore, instead of generating synthetic
GST data sets, we simulate the table of maximal coherent sample sets for genes
such as in Fig. 5a. Initially, an empty table is created. Then, a certain number of
coherent gene clusters (G x S) are randomly generated. For each g € G, S is
inserted into the table as one maximal coherent sample set with respect to g. In
addition to the size of the synthetic data set, i.e., the total number of genes in
G-Set and the number of samples in S-Set, the synthetic data generator takes the
following parameters: (1) k, the number of coherent gene clusters in the data set;
(2) maxgene and mingepe, the maximal and minimal numbers of genes in a coher-
ent gene cluster, respectively; and (3) maxsample and mingample, the maximal and
minimal numbers of samples in a cluster, respectively.

We generate the data sets by setting mingepe = 10 and mingmple = 5.
MmaXgmple 18 set to the same value of |S-Ser|, and maxgepe is set to 1000. In prac-
tice, only a small number of genes are correlated with a phenotype [13]. When
the size of the data set grows, we expect to see more coherent gene clusters. To
simulate the situation, we set k to (|G-Set| - |S-Set|)/(3000).

5.2 Results on the MS microarray data

The original MS microarray data contain outliers, missing values, and experi-
mental bias. We first choose a global normalization strategy to filter out the out-
liers [39], estimate the missing values using KNN impute [36], and standardize
the data set such that the gene expression levels of each patient at each time point
have a mean of zero and a standard deviation of one. We then apply the principle
component analysis (PCA) [18] to remove the systematic variation caused by ex-
perimental bias. Moreover, we filter the genes which exhibit “flat patterns” across
the whole set of samples. That is, a gene will be removed from the data set if
its expression level do not change significantly (e.g., 10%) during the whole time
series on any sample. The rationale is that these genes are probably irrelevant to
IFN-p response under investigation.

After the data pre-processing steps mentioned earlier, we apply our algo-
rithm to the data with mingy = 3, ming = 50, and § = 0.8. From the min-
ing results, we systematically select top 25 high-quality coherent gene clusters
using the method in [20]. Please note that for each cluster C = (G x S), the
genes showing “flat patterns” across S are removed. The clusters are reported at
http://www.cse.buffalo.edu/DBGROUP/bioinformatics/GST.

In the following, we will first test the statistical significance of the reported
clusters. To better understand the biological functions of the genes in clusters, we
then investigate the enrichment of clusters in terms of Gene Ontology [6]. Finally,
we discuss the correlation between the identified clusters and the known aspects
of IFN-S pharmacology.
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Fig. 9 The percentage of clusters with respect to the number of samples in clusters

5.2.1 Statistical significance of clusters

To estimate the statistical significance of clusters, we generate 100 permutated
data sets from the original data. Since clusters containing only one gene or one
sample are trivial (Proposition 2.1), we set min; = 2, ming = 2, and 6 = 0.8, and
apply our algorithm to each permutated data set. Suppose C records all the clusters
generated from the 100 permutated data sets. We calculate the histograms of the
number of samples and genes in clusters from C. Figure 9 illustrates the distribu-
tion of the percentage of clusters in C with respect to the number of samples in
clusters. For example, 18.54% of the clusters in C contains two samples. Please
note no clusters have more than five samples.

Figure10 shows the distribution of the number of clusters in C with respect to
the number of genes in clusters given a specific number of samples. For example,
in Fig. 10a, we can see all the clusters containing only two samples have 160—
260 genes, and the distribution is approximately Gaussian. However, when the
number of samples in clusters increases, the number of genes in clusters decreases
dramatically. For example, the number of genes in clusters ranges between 2 and
24 when |S| = 3 (Fig. 10b) and the range drops to 2—6 for |S| = 4 (Fig. 10c)
and 2-3 for |S| = 5 (Fig. 10d). This means that by chance, fewer genes will form
coherent patterns across a larger subset of samples.

Let ¢ denote the random variable of cluster, and g and s be the number of genes
and samples in clusters, respectively. The probability of ¢ is a joint distribution
P(c) = P(g,s) = P(s) - P(gl|s). We define the p-Value of a given cluster C =
(G x 8§) as

p-Value(C) = P(s = |S|) - P(g = |G| | s = |SD. 2

Clearly, the meaning of p-Value(C) is how likely the cluster C with at least
|G| genes and |S| samples is formed by chance. The smaller the p-Value, the
higher the statistical significance. In our case, we set ming = 3 and min, = 50,
according to Fig. 10b, the p-V alue of a cluster with at least three samples and 50
genes is approximately zero. Therefore, the clusters reported by our algorithm are
statistically significant.
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5.2.2 Gene annotation of clusters

We use the Gene Ontology (GO) [6] to annotate the genes in clusters. GO is orga-
nized as a hierarchical direct acyclic graph (DAG). There are three major parts of
GO, which form three independent ontologies describing the attributes of molec-
ular function, biological process, and cellular component for a gene product. GO
is a rapid growing collection with more than 11,000 terms so far. A significant
portion of genes (3501 out of 4324) in our MS data set has been annotated by GO
terms.

Suppose the total number of genes in the data set associated with a GO term T
is M. If we randomly draw p genes from the complete gene set G-Set, the prob-
ability that ¢ of the selected p genes are associated with T can be approximated
by the hypergeometric distribution [35]

(IG

[)(‘7 | |(;_t;6t|9 1‘1} 17) =

and the p-Value of a cluster C = (G x §) with g genes in term T is

Min(M.|G|) (M) (IG-SetlfM)
p-Value(C,T) = Z %
i=q ( G| )

3)
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Fig. 11 The temporal expression patterns of genes on individual samples in Cluster 2

Among the 25 clusters reported by our algorithm, we find 15 clusters are
significantly enriched in one of the second-level GO terms regarding biologi-
cal process: 6 clusters are strongly correlated with “response to external stim-
uli”’; 9 clusters are associated with “cell communication.” We also examine the
remaining 10 clusters that are not enriched in any second-level GO terms, we
find that some clusters contain a large percent of novel genes which have not
been annotated. For example, only 19 out of 107 genes in Cluster 2 are anno-
tated. However, the 107 genes in Cluster 2 exhibit coherent patterns across a
wide range of eight samples (Fig. 11). This cluster may provide valuable infor-
mation for function prediction of those unknown genes. Moreover, among the 10
clusters that are not enriched in any second-level Go terms, we also find some
clusters are enriched in the third-level GO terms. For example, Cluster 11 is en-
riched in “transport” (p-Value = 0.0184) and Cluster 24 is enriched in “oxygen
and reactive oxygen species metabolism” (p-Value = 0.00648). The expression
patterns as well as the detailed gene annotation for all the clusters are reported
at http://www.cse.buffalo.edu/DBGROUP/bioinformatics/GST. Since IFN-S has
anti-viral, anti-proliferative and immunomodulatory effects, the clustering results
are biological feasible.
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5.2.3 Interesting observations on clusters

To assess the usefulness of the coherent gene cluster model, we initially focus
on “benchmark” mRNAs that are known to be IFN-f responsive. For example,
80 out of the 659 genes in Cluster 1 are associated with the response to external
stimuli (p-Value 0.0262). We find this cluster contains several genes known to be
induced by IFN-p treatment [8, 32]. A few examples of such gene of particular in-
terest are signal transducer and activator of transcription 1 (STAT-1, Hs. 479043),
which is associated with the IFN-8 receptor and forms part of the transcription
factor complex that binds the interferon-responsive promoter sequence; guanylate
binding protein-1 (Hs. 62661), myxovirus resistance protein-2 (Hs. 926) and dou-
ble stranded RNA-dependent protein kinase (PKR, Hs. 131431), all of which are
involved in the anti-viral response.

As another example, 46 out of 174 genes in cluster 12 are involved in cell
communication (p-Value 0.00749) and 13 are known to associate with cell—cell
signaling (p-Value 0.00487). Those genes, together with the other genes in the
same cluster that are unknown or poorly understood, may serve as switches in the
genetic network and hence play an essential role in the biological processes. Thus,
studying the time series of the genes in the coherent gene clusters may greatly
help people understand the regulatory mechanisms behind the response to IFN-3
treatment.

Interestingly, we find a only few classes of temporal patterns within each co-
herent gene cluster (e.g., only one major pattern in Cluster 2 (Fig. 11)), even
though our computational model allows genes with diverse temporal profiles to
be present in the same cluster as long as their profiles are similar across the sub-
set of patients. This suggests that there are groups of genes with similar temporal
profiles that are activated in patients. The emergence of significant p-Values in
most clusters suggests that the genes groups are functionally coordinated. Criti-
cal analysis of the evidence for functional coordination is currently underway in
our laboratory. Biologically, this finding is potentially very valuable because the
promoter sequences of these gene groups can be analyzed to determine whether
they share common regulatory pathways. Further analysis that include clinical in-
formation could potentially reveal whether the subsets of patients differ in their
clinical phenotypes.

5.3 Effects of the parameters

The maximal coherent gene cluster is defined with respect to three parameters,
i.e., the minimum number of genes min,, the minimum number of samples min,
and the coherence threshold §. We test the effect of the parameters on the real
GST data set. Figure 12a shows the number of coherent gene clusters when min,
varies from 5 to 100, ming = 3 and § = 0.8. Clearly, the number of coherent
gene clusters in the data set decreases when min, increases. The result concurs
the intuition: with a lower min, value, we can catch more clusters with more or
less genes. As a matter of fact, with fixed ming and 8, let 5; be the complete set of
coherent blocks when ming = i. Then, we can show By 2 ---B; 2 --- B,.
Figure 12b shows the number of coherent gene clusters with respect to various
ming; when min, and § are fixed to 10 and 0.8, respectively. This result can be
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Fig. 12 The effects of the parameters on the number of clusters. (a) Number of clusters vs.
min, ming = 3, § = 0.8. (b) Number of clusters vs. ming ming, = 10, § = 0.8. (¢) Number of
clusters vs. § miny = 10, ming = 3

explained in a way similar to the situation of ming. Figure 12c shows the effect
of 6 on the number of coherent gene clusters in the data set, with min, = 10 and
ming = 3. When we lower the coherence threshold, more combinations of samples
are “coherent” by chance with respect to a minimum of min, genes.

Interestingly, the three curves in Fig. 12 share similar trends. That is, when
the value of the parameter (represented by the X-axis) increases, the number of
coherent gene clusters (represented by the Y -axis) goes down. The curve drops
sharply until a “knot” is met, then the curve goes stably to the right. For example,
we can see the “knots” of ming = 20 in Fig. 12a, ming = 5 in Fig. 12b and 6§ =
0.85 in Fig. 12c. We examine the “knot” (ming = 5) in Fig. 12a with the histogram
in Fig. 9, and find that P(s > 5) >~ 0. We also check the “knot” (min, = 20)
with the histogram in Fig. 10b, similarly, we find P(g > 20 | s = 3) >~ 0.
The consistency between the “knots” in Fig. 12 and the distribution of clusters
in Figs. 9 and 10 suggests that the “knots” indicate that there exist stable and
significant coherent gene clusters in the real data set.

In practice, users can choose the threshold ming from the values {s | P(s) #
0} based on the histogram in Fig. 9. Users can then set up a confidence level
and determine the threshold min, according to the histogram in Fig. 10 and the
p-Value defined by Eq. (2). Finally, users can tune the parameter § based on
Fig. 12c. A “knot” in the figure may suggest an appropriate § value. As shown by
our empirical study, such parameter settings often generate highly coherent and
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statistically significant clusters. For example, Fig. 11 shows the temporal patterns
within a cluster with § = 0.8.

5.4 Scalability

We first test the efficiency of the preprocessing (algorithm in Fig. 3) on various
random subsets (by sampling) of the real microarray data set. The size of the sub-
sets varies from 500 to 4324 genes, and all the samples are included. For each size,
we sampled 30 subsets and calculate the average runtime. Figure 13a illustrates
the scalability for the preprocessing step. As we discussed in Sect. 3, the real GST
microarray data sets are often sparse. With the efficient pruning techniques, the
preprocessing algorithm is linearly scalable to the size of the data sets.

We then test the scalability of both Gene—Sample Search and Sample—Gene
Search on synthetic data sets. We set ming = 5, min, = 10, and 6 = 0.8. We first
fix the number of samples to 30, and report the runtime with respect to number
of genes (Fig. 13b). We can see both approaches show an approximately linear
scalability with respect to the number of genes. Figure 13c shows the scalability
for both approaches under different sizes of sample sets (from 30 to 100), when
the number of genes is fixed to 3000. We can see both approaches scale well
with respect to the number of samples. Please note that Sample—Gene Search and
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Fig. 13 Scalability on large data sets. (a) Preprocessing. (b) Scalability w.r.t. number of genes
(number of samples: 30). (¢) Scalability w.r.t. number of samples (number of genes: 3, 000).
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Gene—Sample Search always report the same set of clusters, since both approaches
find the unique complete set of maximal coherent gene clusters in the data set.
However, since the number of genes for a microarray data is typically by far larger
than that of the samples, the enumeration of genes is much more expensive than
the enumeration of samples. This explains why the Sample—Gene Search is faster
than the Gene—Sample Search.

5.5 The effect of Lemma 4.1

Lemma 4.1 can identify the genes g; that can be merged into the current combi-
nation of genes, and thus can reduce the number of recursions in the mining. We
use some samples of the real microarray data set (each subset contains 100—1000
genes and 12 patients) to compare the performance of the Gene—Sample Search
with and without the optimization. The comparison is conducted in three aspects:
(1) the maximal number of recursion levels in the Gene—Sample Search; (2) the
number of gene combinations in the Gene—Sample Search; and (3) the runtime.
Figure 14 shows the results. We can clearly see that (1) the maximal number of
recursion levels can be reduced substantially (Fig. 14a); (2) with the optimization,
the total number of gene combinations needed to be checked goes down sharply
Fig. (14b); and (3) the runtime is much shorter when the optimization is applied
Fig. (14c). The results strongly confirm that the optimization is effective for Gene—
Sample Search.
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We also apply the spirit of Lemma 4.1 on the Sample—Gene Search, and
conduct similar tests. However, we can hardly see any significant improvement
brought by the optimization. As we discussed in Sect. 4.2.3, due to the sparsity of
the microarray data, many genes can be merged because they are coherent on the
same sample set. However, few samples would be merged together since usually
the maximal coherent gene sets with respect to two different sample sets are not
identical.

6 Related work

This research is related to the previous work on clustering conventional gene—time
and gene—sample microarray data, pattern-based clustering, and frequent item set
mining.

As explained in Sect. 1, there have been two categories of conventional mi-
croarray data sets: gene—time data sets and gene—sample data sets. For gene—
time microarray data, various algorithms (e.g., [2, 11, 19, 33, 35]) have focused
on clustering the genes. That is, co-expressed genes are grouped based on their
expression patterns during the time series. However, different approaches (e.g.,
[3, 5,9, 34, 40]) have been proposed to partition the sample sets to find their
macroscopic phenotypes as well as to detect informative genes which manifest
the sample partition. However, all the cluster models in those previous studies are
substantially different from our coherent gene clusters. As a consequence, those
algorithms cannot be extended directly to solve our problem.

Recently, pattern-based clustering has been proposed and applied for mining
microarray data. This study is directly stimulated by this category of research.

The general idea of pattern-based clustering is to identify groups of genes
that follow similar patterns on subsets of samples. Different from the traditional
clusters such as subspace clusters, the direct distance between the genes may not
be short due to the shifting of the patterns. Moreover, the pattern-based clusters
may have overlap: a gene can participate in different biological processes and thus
more than one pattern-based cluster.

Cheng and Church [7] introduced the concept of bicluster to measure the co-
herence between genes and conditions (either time series or samples). For a given
set of genes and a given set of conditions, a bicluster is a subset of genes coher-
ent with a subset of conditions. Yang et al. [41] proposed a move-based algorithm
to find biclusters more efficiently. Both algorithms [7, 41] adopt heuristic search
approaches, and thus cannot guarantee to find the complete set of biclusters in the
data set.

Wang et al. [38] proposed the model of pattern-based cluster. For a given sub-
set of objects O and a subset of attributes A, pair (O, A) forms a pattern-based
cluster if for any pair of objects x, y € O, and any pair of attributes a, b € A,
the difference of change of values on attributes a and b between objects x and y
is smaller than a threshold §. In a recent study [26], Pei et al. addressed the re-
dundancy due to the anti-monotonicity of pattern-based clusters. The concept of
maximal pattern-based clusters was developed and an efficient algorithm, MaPle,
was proposed to mine the complete set of maximal pattern-based clusters.

Liu and Wang [23] proposed another pattern-based clustering model called
order-preserving clustering (OP-cluster for short). A group of genes form an
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OP-cluster on a permutation of a subset of samples if each gene has increasing
expression levels on the subset of samples.

We borrow some important ideas from previous studies on frequent item set
mining. First, the framework of our approaches is similar in spirit to that of
pattern-growth methods for frequent pattern mining. The idea of using set enumer-
ation tree in frequent item set mining was first proposed in [4]. The pattern-growth
framework for mining frequent item sets was presented in [14], and was extended
to mining frequent closed item sets in [25]. Moreover, enumerating samples in
gene microarray data sets was first proposed in [26, 38], and was stimulated by
the fact that the number of samples is often 1-2 orders of magnitudes less than the
number of genes in microarray data sets.

Second, the pruning techniques in our approaches share some interesting sim-
ilarities with the methods of mining frequent closed item sets (e.g., [25, 43]).
However, there are two essential differences between the frequent pattern mining
methods and the approaches developed in this paper. First, the coherent gene clus-
ters are inherently different from frequent item sets. Thus, the similarity between
the two categories of methods is only at the level of spirit (e.g., set enumeration
and pruning). The technical details are dramatically different. Second, several new
techniques such as the inverted lists are adopted to tackle the particular microarray
data.

7 Other interesting coherent clusters in GST data

In this paper, we focus on mining coherent gene clusters in GST data. That is, the
set of genes in a cluster are constrained to exhibit coherent expression patterns
across the set of samples in the cluster. Nevertheless, two other types of clusters,
coherent sample clusters and coherent gene—sample clusters, may also be inter-
esting.

Figure 15a illustrates the structure of a coherent sample cluster
({gi1, gi2, &3} x {sj1,5j2,5j3}). We can see that for each sample in the
cluster, the expression patterns of genes are similar with each other. In other
words, genes are co-expressed across the samples. In practice, co-expressed genes
may belong to the same or similar function categories, and co-expression may
indicate co-regulation as well. Although numerous studies have aimed at finding
co-expressed genes from traditional gene—time data sets (e.g., [2, 11, 12, 15-17,
19, 27,29-31, 33, 35, 42]), due to the high noise ratio of microarray data, a group
of genes which consistently demonstrate co-expression across multiple samples
are usually more reliable.

Figure 15b shows an example of coherent gene—sample cluster ({g;1, gi2} X
{sj1,5;2}). Each cell in the cluster carries the similar trend of expression levels
during the time series. Clearly, a coherent gene—sample cluster is both a coherent
gene cluster and a coherent sample cluster. Therefore, the biological meaning of
the coherent gene—sample cluster is twofold: the samples in the cluster may cor-
respond to some phenotype, while the genes in the cluster may not only correlate
to the phenotype but also share similar functions.

In earlier discussion, the coherence among genes and/or samples is measured
with respect to the whole time series. However, a specific cellular process may
last for only a sub-interval within the whole time series of the microarray exper-
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Fig. 15 Other types of coherent clusters. (a) Coherent sample cluster. (b) Coherent gene sample
cluster

iment. In particular, a gene may participate in one cellular process together with
a set of genes G at time point #; but join another process with a different set
of genes G at the next time point 7. In the future, we will find all the three
types of coherent clusters on a subset of continuous time points. Moreover, we
will develop effective indices on the coherent clusters to describe the dynamics of
genes.

8 Conclusions

In this paper, we investigate a novel type of gene—sample—time microarray data
sets and propose a new problem of mining coherent gene clusters from such
data sets. We conduct a systematic study to develop two mining methods: the
Sample—Gene Search and the Gene—Sample Search. Our extensive performance
study on both a real microarray data set and synthetic data sets shows that there
exist interesting and significant coherent gene clusters in the real data set, and
both algorithms have good performance. Despite that both search methods re-
turn the unique complete set of maximal coherent gene clusters, the Sample—Gene
Search is usually more efficient than the Gene—Sample Search since the number
of genes in the microarray data is typically by far larger than the number of
samples.
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