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Abstract 

We introduce the problem of mining general- 

ized association rules. Given a large database 

of transactions, where each transaction con- 
sists of a set of items, and a taxonomy (is-a 
hierarchy) on the items, we find associations 

between items at any level of the taxonomy. 
For example, given a taxonomy that says that 

jackets is-a outerwear is-e clothes, we may 

infer a rule that “people who buy outerwear 
tend to buy shoes”. This rule may hold even 
if rules that “people who buy jackets tend to 
buy shoes”, and “people who buy clothes tend 

to buy shoes” do not hold. An obvious solu- 

tion to the problem is to add all ancestors of 

each item in a transaction to the transaction, 
and then run any of the algorithms for min- 

ing association rules on these “extended trans- 

actions” . However, this “Basic” algorithm 
is not very fast; we present two algorithms, 

Cumulate and EstMerge, which run 2 to 5 
times faster than Basic (and more than 100 

times faster on one real-life dataset). We also 
present a new interest-measure for rules which 

uses the information in the taxonomy. Given a 

user-specified “minimum-interest-level”, this 

measure prunes a large number of redundant 

rules; 40% to 60% of all the rules were pruned 

on two real-life datasets. 
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1 Introduction 

Data mining, also known as knowledge discovery in 
databases, has been recognized as a new area for 
database research. The area can be defined as effi- 
ciently discovering interesting rules from large collec- 
tions of data. 

The problem of mining association rules was intro- 

duced in [l]. Given a set of transactions, where each 
transaction is a set of items, an association rule is 
an expression X + Y, where X and Y are sets of 
items. The intuitive meaning of such a rule is that 

transactions in the database which contain the items 
in X tend to also contain the items in Y. An example 
of such a rule might be that 98% of customers who 
purchase tires and auto accessories also buy some au- 
tomotive services; here 98% is called the confidence 

of the rule. The suppoti of the rule X j Y is the 

percentage of transactions that contain both X and 

Y. The problem of mining association rules is to 

find all rules that satisfy a user-specified minimum 

support and minimum confidence. Applications in- 
clude cross-marketing, attached mailing, catalog de- 

sign, loss-leader analysis, store layout, and customer 
segmentation based on buying patterns. 

In most cases, taxonomies (is-a hierarchies) over 
the items are available. An example of a taxonomy 
is shown in Figure 1: this taxonomy says that Jacket 

is-a Outerwear, Ski Pants is-a Outerwear, Outerwear 

is-a Clothes, etc. Users are interested in generating 

rules that span different levels of the taxonomy. For 

example, we may infer a rule that people who buy Out- 
erwear tend to buy Hiking Boots from the fact that 

people bought Jackets with Hiking Boots and and Ski 

Pants with Hiking Boots. However, the support for 
the rule “Outerwear =+- Hiking Boots” may not be the 

sum of the supports for the rules “Jackets j Hiking 

Boots” and “Ski Pants + Hiking Boots” since some 
people may have bought Jackets, Ski Pants and Hik- 
ing Boots in the same transaction. Also, “Outerwear 
+ Hiking Boots” may be a valid rule, while “Jackets 

+- Hiking Boots” and “Clothes j Hiking Boots” may 
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Clothes Footwear 

A\, /\ 
Outerwear Shirts Shoes Hiking Boots 

J\ 
Jackets ski Pants 

Figure 1: Example of a Taxonomy 

not. The former may not have minimum support, and 
the latter may not have minimum confidence. 

Earlier work on association rules [l] [2] [5] [6] [7] did 
not consider the presence of taxonomies and restricted 

the items in association rules to the leaf-level items in 
the taxonomy. However, finding rules across different 
levels of the taxonomy is valuable since: 

l Rules at lower levels may not have minimum sup- 
port. Few people may buy Jackets with Hiking 

Boots, but many people may buy Outerwear with 

Hiking Boots. Thus many significant associations 

may not be discovered if we restrict rules to items 
at the leaves of the taxonomy. Since department 
stores or supermarkets typically have hundreds of 
thousands of items, the support for rules involv- 

ing only leaf items (typically UPC or SKU codes) 
tends to be extremely small. 

l Taxonomies can be used to prune uninteresting 
or redundant rules. We will discuss this further 

in Section 2.1. 

Multiple taxonomies may be present. For exam- 
ple, there could be a taxonomy for the price of items 

(cheap, expensive, etc.), and another for the category. 
Multiple taxonomies may be modeled as a single tax- 

onomy which is a DAG (directed acyclic graph). A 

common application that uses multiple taxonomies is 
loss-leader analysis. In addition to the usual taxonomy 

which classifies items into brands, categories, product 

groups, etc., there is a second taxonomy where items 

which are on sale are considered to be children of a 
“items-on-sale” category, and users look for rules con- 

taining the “items-on-sale” item. 

In this paper, we introduce the problem of mining 
generalized association rules. Informally, given a set of 

transactions and a taxonomy, we want to find associ- 

ation rules where the items may be from any level of 
the taxonomy. We give a formal problem description 
in Section 2. One drawback users experience in apply- 

ing association rules to real problems is that they tend 
to get a lot of uninteresting or redundant rules along 

with the interesting rules. We introduce an interest- 

measure that uses the taxonomy to prune redundant 
rules. 

An obvious solution to the problem is to replace 
each transaction T with an “extended transaction” T’, 

where T’ contains all the items in T as well as all the 
ancestors of each items in T. For example, if the trans- 
action contained Jackets, we would add Outerwear and 
Clothes to get’the extended-transaction. We can then 
run any of the algorithms for mining association rules 

PI PI [51 PI [71 on the extended transactions to get 
generalized association rules. However, this “Basic” 
algorithm is not very fast; two more sophisticated al- 
gorithms that we propose run 2 to 5 times faster than 
Basic (and more than 100 times faster on one real-life 
dataset). 

We describe the Basic algorithm and our two algo- 
rithms in Section 3, and evaluate their performance on 
both synthetic and real-life data in Section 4. Finally, 
we summarize our work and conclude in Section 5. For 

an expanded version of this paper, see [9]. 

2 Problem Statement 

LetZ={ii,iz,. . . , im} be a set of literals, called items. 
Let I be a directed acyclic graph on the literals. An 
edge in I represents an is-a relationship, and ? rep- 
resents a set of taxanomies. If there is an edge in ‘T 
from p to c, we call p a parent of c and c a child of 
p. (p represents a generalization of c.) We model the 

taxonomy as .a DAG rather than a forest to allow for 
multiple taxonomies. 

We use lower case letters to denote items and upper 

case letters for sets of items (itemsets). We call 3 an 

ancestor of 2 (and x a descendant of 5) if there is an 

edge from P to x in the transitive-closure of ?. Note 

that a node is not an ancestor of itself, since the graph 
is acyclic. 

Let ‘0 be .a set of transactions, where each trans- 

action T is a set of items such that T 5 Z. (While 
we expect the items in T to be leaves in I, we do not 

require this.) We say that a transaction T supports an 
item z E Z if t is in T or z is an ancestor of some item 

in T. We say that a transaction T supports X C Z if 

T supports every item in X. 

A generalized association rule is an implication of 

the form X j Y, where X c Z, Y C Z, X rl Y = 8, 

and no item in Y is an ancestor of any item in X. 

The rule X +- Y holds in the transaction set 2, with 

confidence c if c% of transactions in 2) that support 
X also support Y. The rule X + Y has support s 

in the transaction set 2, if s% of transactions in ‘D 
support X U Y. The reason for the condition that no 
item in Y should be an ancestor of any item in X is 
that a rule of the form “x j ancestor(x)” .is trivially 

true with 100% confidence, and hence redundant. We 
call these rules generalized association rules because 
both X and Y can contain items from any level of 
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the taxonomy T, a possibility not entertained by the 
formalism introduced in [l]. 

Problem Statement (Tentative) Given a set of 
transactions 2) and a set of taxonomies 7, the problem 
of mining generalized association rules is to discover 
all rules that have support and confidence greater 
than the user-specified minimum support (called min- 
sup) and minimum confidence (called minconf) re- 
spectively. 

This definition has the problem that many “redun- 

dant” rules may be found. We will formalize the no- 
tion of redundancy and modify the problem statement 
accordingly in Section 2.1. (We introduce the tenta- 
tive problem statement here in order to explain redun- 
dancy.) 

Example Let Z = {Footwear, Shoes, Hiking Boots, 
Clothes, Outerwear, Jackets, Ski Pants, Shirts} and 
7 the taxonomy shown in Figure 1. Consider the 
database shown in Figure 2. Let minsup be 30% (that 
is, 2 transactions) and minconf 60%. Then the sets 
of items with minimum support (frequent itemsets), 

and the rules corresponding to the these itemsets are 
shown in Figure 2. Note that the rules “Ski Pants + 

Hiking Boots” and “Jackets j Hiking Boots” do not 

have minimum support, but the rule “Outerwear * 

Hiking Boots” does. 

Observation Let Pr(X) denote the probability that 
all the items in X are contained in a transaction. Then 

support(X j Y) = Pr(XUY) and confidence(X + Y) 

= Pr(Y 1 X). (Note that Pr(X U Y) is the probability 
that all the items in X U Y are present in the transac- 

tion.) 

If a set {z,y} has minimum support, so do {z,s}, 

(2,~) and {Z,?}. ( Z eno e an ancestor of z). However d t 
if the rule x j y has minimumsupport and confidence, 

only the rule 2 =+ 2 is guaranteed to have both mini- 
mum support and confidence. While the rules 3 + y 

and Z =+ c will have minimum support, they may not 
have minimum confidence. 

The support for an item in the taxonomy is not 

equal to the sum of the supports of its children, since 
several of the children could be present in a single 

transaction. Hence we cannot directly infer rules 

about items at higher levels of the taxonomy from rules 
about the leaves. 

2.1 Interesting Rules 

Previous work on quantifying the “usefulness” or “in- 

terest” of a rule focussed on how much the support 
of a rule was more than the expected support based 
on the support of the antecedent and consequent. In 

Database ‘D 
Transaction Items Bought 

100 Shirt 

200 Jacket, Hiking Boots 

300 Ski Pants, Hiking Boots 
400 Shoes 
500 Shoes 
600 Jacket 

Frequent Itemsets 

I 

{ Jacket } 

Support 

2 
Itemset 

{ Outerwear } 
{ Clothes } 

{ Shoes } 
{ Hiking Boots } 

{ Footwear } 

{ Outerwear, Hiking Boots j 
{ Clothes, Hiking Boots } 
{ Outerwear, Footwear 1 

{ Clothes, Footwear } ’ 

3 
4 
2 
2 

4 

2 
2 
2 

>2 

Rules 

Rule 1 Support 1 Conf. 

Outerwear j Hiking Boots ( 33% ] 66.6% 
1 Outerwear j Footwear I 33% 1 66.6% 1 
I Hiking Boots =+ Outerwear I 33% I 100% 1 

Hiking Boots j Clothes ) 33% 1 100% 1 

Figure 2: Example 

[8], Piatetsky-Shapiro argues that a rule X =+- Y is 

not interesting if support(X * Y) W support(X) X 

support(Y). We implemented this idea, and used 

the chi-square value to check if the rule was statisti- 

cally significant. However, this measure did not prune 
many rules; on two real-life datasets (described in Set; 
tion 4.5), less than 1% of the rules were found to be 

redundant (not statistically significant). In this sec- 

tion, we use the information in taxonomies to derive a 

new interest measure that prunes out 40% to 60% of 
the rules as “redundant” rules. 

To motivate our approach, consider the rule 

Milk j Cereal (8% support, 70% confidence) 

If “Milk” is a parent of “Skim Milk”, and about a 

quarter of sales of “Milk” are “Skim Milk”, we would 

expect the rule 

Skim Milk =+ Cereal 

to have 2% support and 70% confidence. If the ac- 
tual support and confidence for “Skim Milk + Cereal” 

are around 2% and 70% respectively, the rule can be 
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considered redundant since it does not convey any ad- 

ditional information and is less general than the first 
rule. We capture this notion of “interest” by saying 

that we only want to find rules whose support is more 
than R times the expected value or whose confidence 

is more than R times the expected value, for some 

user-specified constant R.’ We formalize the above 
intuition below. 

We call z^ an ancestor of 2 (where 2, ,? are sets of 

items such that 2, z^ C Z) if we can get z^ from Z by 
replacing ace or more items in Z with their ancestors 

and Z and Z have the same number of items. (The rea- 
son for the latter condition is that it is not me_aningful 
to compute the expected support of Z from Z unless 
they have the same number of items. For instance, the 
support for {Clothes} does give any clue about the ex- 

pected support for {Outerwear, Shirts}.) We call the 

rules j? + Y, X j p or X =$ p ancestors of the rule 

X + Y. Given a set of rules, we call .? + ? a close 

ancestor of X 3 Y if there is no rule Xl * Y’ such 
that X’ 3 Y’ is an ancestor of X j Y and X j ? is 

an ancestor of X’ 3 Y’. (Similar definitions apply for 

X j ? and X + Y .) 
Consider a rule X j Y, and let Z = X U Y. The 

support of Z will be the same as the support of the rule 
X j Y. Let E,-[Pr(Z)] denote the “expected” value of 

Pr(Z) given Pr(z^), where z^ is an ancestor of Z. Let 

z = {%I ,..., z,} and z^ = {?I ,..., $,zj+r ,..., zn}, 

1 5 j s n, where z is an ancestor of zi. Then we 

define 

Pr(zj > Ez[Pr(Z)] = # x . . . x - 
Pr(%) 

x Pr(@. 

to be the expected value of Pr(Z) given the itemset 

it2 

‘We can easily enhance this definition to say that we want 
to Ford rules with minimum support whose support (or confi- 

dence) is either more or less than the expected value. However, 
many rules whose support is less than expected will not have 

minimum support. In fact, the more the deviation from the 
expected value, the less the support for the rule. So the most 
interesting rules may not have minimum support. (The same 

applies for confidence.) Suppose we wanted to Ford all rules 
whose support is less than expected, irrespective of minimum 

support. Consider a “typical” database with 50,000 items, an 
average of 5 items per transaction and ten million transactions. 

The average probability that an item is present in a transaction 
is l/10,000; that any two items are present in the same transac- 
tion 1/100,000,000. Hence, on average, the expected number of 

transactions where two specific items are bought together is just 
0.1. There may be millions of rules which say that two items 
are never bought together, and these rules would not even be 
significant. 

2Alternate definitions are possible. For example, we could 
define: 

X P,(Z). 

Similarly, let Ez,p [Pr(Y 1 X)] denote the “ex- 
pectec confi>ence of the rule X j Y given_ the 
rule X + Y. Let Y = {yr,...,y,} and Y = 
{y^l, . . . 1 9Yj)Yj+l,*.., y,}, 1 5 j 2 n, where c is an 
ancestor of yi. Then we define 

E- Pr(Yj 1 
X-.+y^[Pr(Y I X)] = a x . . . x - 

PrG 1 
xPr(p]Ji) 

Note that Exqy [Pr(Y I X)] = Pr(Y I ji)]. 

We $1 a_rule X j Y R-interesting w.r,t an an- 
cestor X + Y if the support of the ru@ X 2 Y is R 

times the expected support based on X + Y , or the 
confi_dencE is R times the expected confidence baaed 

on X *Y. 

Definition of Interesting Rules Given a set of 
rules S and a minimum interest R, a rule X + Y 

is interesting (in S) if it has no ancestors or it is R- 

interesting with respect to its close ancestors among 

its interesting ancestors. We say that an rule X + Y 
is partially interesting (in S) if it has no ancestors or is 
R-interesting with respect to at least one close ancestor 
among its interesting ancestors. 

We motivate the reason for only considering close 

ancestors among all interesting ancestors with an ex- 
ample. Consider the rules shown in Figure 3. The 
support for the items in the antecedent are shown 

alongside. Assume we have the same taxonomy as in 

the previous example. Rule 1 has no ancestors and is 
hence interesting. The support for rule 2 is twice the 

expected support based on rule 1, and is thus inter- 

esting. The support for rule 3 is exactly the expected 

support based on rule 2, but twice the support based. 

on rule 1. We do not want consider rule 3 to be in- 
teresting since its support can be predicted based on 
rule 2, even though its support is more than expected 

if we ignore rule 2 and look at rule 1. 

2.2 Problem Statement 

Given a set of transactions V and a user-specified 

minimum interest (called min-interest), the problem 

of mining association rules with taxonomies is to 
find all interesting association rules that have support 

and confidence greater than the user-specified min- 

imum support (called minsup) and minimum confi- 

dence (called minconf) respectively. 
For some applications, we may want to find partially 

interesting rules rather than just interesting rules. 

Note that if min-interest = 0, all rules are found, re- 
gardless of interest. 

3 Algorithms 

The problem of discovering generalized association 
rules can be decomposed into three parts: 
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1. 

2. 

3. 

Rule # Rule support 
1 “Clothes + Footwear” 

2 “Outerwear =$ Footwear” 
3 “Jackets + Footwear” 

; j!jzgpy 

Figure 3: Example - Interest 

Find all sets of items (ifemsets) whose support 
is greater than the user-specified minimum sup- 
port. Itemsets with minimum support are called 

frequent itemsets. 

Use the frequent itemsets to generate the desired 
rules. The general idea is that if, say, ABCD 

and AB are frequent itemsets, then we can deter- 
mine if the rule AB +- CD holds by computing 
the ratio conf = support(ABCD)/support(AB). 
If conf >_ minconf, then the rule holds. (The rule 

will have minimumsupport because ABCD is fre- 
quent .) 

Prune all uninteresting rules from this set. 

In the rest of this section, we look at algorithms for 
finding all frequent itemsets where the items can be 

from any level of the taxonomy. Given the frequent 
itemsets, the algorithm in [l] [2] can be used to gener- 

ate rules. We first describe the obvious approach for 
finding frequent itemsets, and then present our two 
algorithms. 

3.1 Algorithm Basic 

Consider the problem of deciding whether a transac- 

tion T supports an itemset X. If we take the raw 

transaction, this involves checking for each item z E X 

whether z or some descendant of z is present in the 
transaction. The task become much simpler if we first 
add all the ancestors of each item in T to T; let us call 

this extended transaction T’. Now T supports X if and 

only if T’ is a superset of X. Hence a straight-forward 

way to find generalized association rules would be to 

run any of the algorithms for finding association rules 

from PI PI 151 [61 [71 on the extended transactions. 

We discuss below the generalization of the Apriori al- 

gorithm given in [2]. Figure 5 gives an overview of the 

algorithm, using the notation in Figure 4. 

The first pass of the algorithm simply counts 

item occurrences to determine the frequent 1-itemsets. 

Note that items in the itemsets can come from the 

leaves of the taxonomy or from interior nodes. A sub- 
sequent pass, say pass h, consists of two phases. First, 

31n earlier papers [l] [2], itemsets with minimum support 
were called large itemsets. However, some readers associated 

“large” with the number of items in the itemset, rather than 
its support. So we are switching the terminology to frequent 

itemsets. 

An itemset having k items. 

Figure 4: Notation 

151 := {frequent 1-itemsets}; 

k := 2; // k represents the pass number 

while ( Lk-I # 8 ) do 
begin 

ck := New candidates of size k generated from Lk-1. 

forall transactions t E P do 

begin 

Add all ancestors of each item in t to t, removing 

any duplicates. 
Increment the count of all candidates in ck that 

are contained in t. 
end 

Lk := All candidates in ck with minimum support. 

k := k + 1; 

end 
Answer := U, Lk; 

Figure 5: Algorithm Basic 

the frequent itemsets Lk-1 found in the (k-1)th pass 

are used to generate the candidate itemsets Ck, using 

the apriori candidate generation function described in 
the next paragraph. Next, the database is scanned and 
the support of candidates in ck is counted. For fast 

counting, we need to efficiently determine the candi- 
dates in Ck that are contained in a given transaction 

t. We reuse the hash-tree data structure described in 

[2] for this purpose. 

Candidate Generation Given Lk-1, the set of all 

frequent (k-1)-itemsets, we want to generate a super- 
set of the set of all frequent Ic-itemsets. Candidates 
may include leaf-level items as well as interior nodes 
in the taxonomy. The intuition behind this procedure 

is that if an itemset X has minimum support, so do all 
subsets of X. For simplicity, assume the items in each 

itemset are kept sorted in lexicographic order. First, 
in the join step, we join Lk-i with Lk-1: 

insert into ck 

select p.itemr, p.itemz, . . . . pitemk-1, q.itemk-1 
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from Lk-1 P7 Lk-1 9 

where p.iteml = q.iteml, . . ., p.itemk-Z = 

qhmk-2, p.itemk-1 < q.itemk-1; 

Next, in the prune step, we delete all itemsets c E Ck 
such that some (]c- 1)-subset of c is not in Lk-l. 

3.2 Algorithm Cumulate 

We add several optimizations to the Basic algorithm 
to develop the algorithm “Cumulate”. The name in- 
dicates that all itemsets of a certain size are counted 
in one pass, unlike the “Stratify” algorithm in Sec- 
tion 3.3. 

1. Filtering the ancestors added to transac- 

tions. We do not have to add all ancestors of 
the items in a transaction t to t. Instead, we just 
need to add ancestors that are in one (or more) of 

the candidate itemsets being counted in the cur- 
rent pass. In fact, if the original item is not in 

any of the itemsets, it can be dropped from the 

transaction. 

For example, assume the parent of “Jacket” is 
“Outerwear”, and the parent of “Outerwear” is 
“Clothes”. Let (Clothes, Shoes} be the only 
itemset being counted. Then, in any transaction 
containing Jacket, we simply replace Jacket by 

Clothes. We do not need to keep Jacket in the 

transaction, nor do we need to add Outerwear to 
the transaction. 

2. Pre-computing ancestors. Rather than find- 
ing ancestors for each item by traversing the tax- 

onomy graph, we can pre-compute the ancestors 
for each item. We can drop ancestors that are not 
present in any of the candidates at the same time. 

3. Pruning itemsets containing an item and its 
ancestor. We first present two lemmas to justify 
this optimization. 

Lemma 1 The supporZ for an itemset X that 

contains both an item x and its ancestor 3 will 

be the same as the suppoti for the itemset X-2. 

Lemma 2 If L k, the sel of frequent k-itemsets, 

does nol include any itemset that contains both an 

item and it.9 ancestor, ihe se2 of candidates ck+l 

generated by the candidate generation procedure 

in Sedion 3.1 will not include any itemset that 

contains bolh an item and ias ancestor. 

Proofs of these lemmas are given in [9]. Lemma 1 

shows that we need not count any itemset which 
contains both an item and its ancestor. We add 

Compute T*, the set of ancestors of each item, 
from 7. // Optimization 2 

LI := {frequent 1-itemsets}; 

k := 2; // k represents the pass number 
while ( L+1 # 0 ) do 

begin 

Ck := New candidates of size k generated from Lk-1. 
if (k = 2) then 

Delete any candidate in Cz that consists of an 

item and its ancestor. // Optimization 3 
Delete any ancestors in 7’ that are not present in 

any of the candidates in Ck. // Optimization 1 

forall transactions t E D do 
begin 

foreach item z E t do 

Add all ancestors of x in I’ to t. 
Remove any duplicates from t. 
Increment the count of all candidates in Ck 

that are contained in t. 
end 

Lk := All candidates in ck with minimum support. 
k := k+l; 

end 

Answer := U, Lk; 

Figure 6: Algorithm Cumulate 

this optimization by pruning the candidate item- 
sets of size two which consist of an item and its 

ancestor. Lemma 2 shows that pruning these can- 
didates is sufficient to ensure that we never gener- 
ate candidates in subsequent passes which contain 

both an item and its ancestor. 

Figure 6 gives an overview of the Cumulate alge 
rithm. 

3.3 Stratification 

We motivate this algorithm with an example. Let 

{Clothes, Shoes}, {Outerwear, Shoes) and {Jacket, 

Shoes} be candidate itemsets to be counted, with 
“Jacket” being the child of “Outerwear”, and “Outer- 
wear” the child of “Clothes”. If {Clothes, Shoes} does 

not have minimum support, we do not have to count 

either {Outerwear, Shoes} or {Jacket, Shoes}. Thus, 

rather than counting all candidates of a given size in 

the same pass as in Cumulate, it may be faster to 

first count the support of {Clothes, Shoes}, then count 

{Outerwear, Shoes} if {Clothes, Shoes} turns out to 

have minimum support, and finally count {Jacket, 
Shoes} if (Outerwear, Shoes) also has minimum sup- 
port. Of course, the extra cost in making multiple 
passes over the database may be more than the ben- 
efit of counting fewer itemsets. We will discuss this 

tradeoff in more detail shortly. 

We develop this algorithm by first presenting the 

straight-forward version, “Stratify”, and then describ- 
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ing the use of sampling to increase its effectiveness (the 
“Estimate” and “EstMerge” versions). The optimiza- 
tions we introduced for the Cumulate algorithm apply 
to this algorithm as well. 

3.3.1 Stratify 

Consider the partial ordering induced by the taxon- 

omy DAG on a set of itemsets. Itemsets with no 
parents are considered to be at depth 0. For other 

itemsets, the d_epth_of an itemset X is defined to be 

(m=({depWW I X is a parent of X}) + 1). 
We first count all itemsets Cc at depth 0. After 

deleting candidates that are descendants of those item- 

sets in Cc that did not have minimum support, we 

count the remaining itemsets at depth 1 (Cl). After 
deleting candidates that are descendants of the item- 
sets in Cr without minimum support, we count the 

itemsets at depth 2, etc. If there are only a few candi- 
dates at depth n, we can count candidates at different 

depths (n, n+l, . ..) together to reduce the overhead 
of making multiple passes. 

There is a tradeoff between the number of itemsets 

counted (CPU time) and the number of passes over 

the database (IO+CPU time). One extreme would be 
to make a pass over the database for the candidates 

at each depth. This would result in a minimal number 
of itemsets being counted, but we may waste a lot of 

time in scanning the database multiple times. The 

other extreme would be to make just one pass for all 
the candidates, which is what Cumulate does. This 
would result in counting many itemsets that do not 

have minimum support and whose parents do not have 

minimum support. In our implementation, we used 

the heuristic (empirically determined) that we should 

count at least 20% of the candidates in each pass. 

3.3.2 Estimate 

Rather than hoping that candidates which include 

items at higher levels of the taxonomy will not have 
minimum support, resulting in our not having to count 
candidates which include items at lower levels, we can 

use sampling to estimate the support of candidates. 
We then count candidates that are expected to have 

minimum support as well as candidates that are not 
expected to have minimum support but all of whose 

parents have minimum support. (We call this set CL, 

for candidates of size k.) We expect that the latter 

candidates will not have minimum support, and hence 
we will not have to count any of the descendants of 

those candidates. If some of those candidates turn out 
to have minimum support support, we make an extra 

pass to count their descendants. (We call this set of 
candidates CL.) If we only count candidates that are 
expected to have minimum support, we will have to 

make another pass to count their children, since we 
can only be sure that their children do not have mini- 
mum support if we actually count them. 

In our implementation, we included candidates 
whose support in the sample was 0.9 times the mini- 
mum support, and candidates all of whose parents had 
0.9 times the minimum support, in CL in order to re- 
duce the effect of sampling error. We will discuss the 
effect of changing this sampling error margin shortly, 
when we also discuss how the sample size can the cho- 
sen. 

Example For example, consider the three candi- 

dates shown in Figure 7. Let “Jacket” be a child of 
“Outerwear” and “Outerwear” a child of “Clothes”. 
Let minimum support be 5%) and let the support 
for the candidates in a sample of the database be as 
shown in Figure 7. Hence, based on the sample, we ex- 

pect only {Clothes, Shoes} to have minimum support 

over the database. We now find the support of both 
{Clothes, Shoes} and {Outerwear, Shoes} over the 
entire database. We count {Outerwear, Shoes} even 
though we do not expect it to have minimum support 
since we will not know for sure whether it has mini- 

mum support unless {Clothes, Shoes} does not have 
minimum support, and we expect {Clothes, Shoes} to 

have minimum support. Now, in scenario A, we do 
not have to find the support for {Jacket, Shoes} since 
{Outerwear, Shoes} does not have minimum support 

(over the entire database). However, in scenario B, we 

have to make an extra pass to count {Jacket, Shoes}. 

3.3.3 EstMerge 

Since the estimate (based on the sample) of which can- 
didates have minimum support has some error, Esti- 

mate usually makes a second pass where it counts the 

support for the candidates in Ct (the descendants of 

candidates in ck that were wrongly expected to not 

have minimum support.) The number of candidates 
counted in this pass is usually small. Rather than 

making a separate pass to count these candidates, we 
can count them when we count candidates in ck+r. 

However, since we do not know if the candidates in 

CF will have minimum support or not, we assume all 
these candidates to be frequent when generating Ck+r . 
That is, we will consider Lk to be those candidates in 

CL with minimum support, as well as all candidates 

in C[, when generating Ck+r . This can generate more 

candidates in ck+r than, would be generated by Es- 
timate, but does not affect correctness. The tradeoff 

is between the extra candidates counted by EstMerge 
against the extra pass made by Estimate. An overview 
of the algorithm is given in Figure 8. (All the opti- 

mizations introduced for the Cumulate algorithm ap- 
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Candidate Support in Support in Database 
Itemsets Sample Scenario A Scenario B 

{Clothes, Shoes} 8% 7% I 9% 
{Outerwear, Shoes} 

I 
4% 

I 
4% 

{Jacket. Shoes) 2% I 
6% 

I 

Figure 7: Example for Estimate 

L1 := {frequent I-itemsets}; 
Generate Ds, a sample of the database, in the first pass; 
k := 2; // k represents the pass number 
C;’ := 0; // C[ represents candidates of size k to 

// be counted with candidates of size k + 1 
while ( Lk-1 # 0 or C[-I # 0) do 
begin 

Ck := New candidates of size k generated 
from Lk-1 u cz-,. 

Estimate the support of the candidates in ck by 
making a pass over I)s. 

G := Candidates in Ck that are expected to have 
minimum support and candidates all of whose 
parents are expected to have minimum support. 

Find the support of the candidates in CL U C[-, 
by making a pass over D. 

Delete all candidates in Ck whose ancestors (in Ci) 
do not have minimum support. 

Cz := Remaining candidates in Ck that are not in CA. 

Lk := All candidates in CL with minimum support. 
Add all candidates in Ct-, with minimum support 

to Lk-1. 

k:= k+l; 

end 
Answer := Uk Lk; 

Figure 8: Algorithm EstMerge 

ply here, though we have omitted them in the figure.) 

3.3.4 Size of Sample 

We now discuss how to select the sample size for esti- 

mating the support of candidates. Let p be the sup- 
port (as a fraction) of a given itemset X. Consider a 

random sample with replacement of size n from the 

database. Then the number of transactions in the 

sample that contain X is a random variable s with 

binomial distribution of n trials, each having success 
probability p. We use the abbreviation s > k (“s is at 
least as extreme as k”) defined by 

skka 
z>k ifkzpn 

z<k ifk<pn 

Using Chernoff bounds [4] [3], the probability that the 
fractional support in the sample is at least as extreme 

as a is bounded by 

Pr[s>- 4 5 [(Z)’ (#-jn (1) 

Table 1 presents probabilities that the support of 
an itemset in the sample is less than a when its real 
support is p, for various sample sizes n. For example, 

given a sample size of 10,000 transactions, the prob- 
ability that the estimate of a candidate’s support is 
less than 0.8% when its real support is 1% is less than 
0.11. 

Equation 1 suggests that the sample size should in- 
crease as the minimum support decreases. Also, the 
probability that the estimate is off by more than a cer- 

tain fraction of the real support depends only on the 
sample size, not on the database size. Experiments 

showing the effect of sample size on the running time 

are given in Section 4.2. 

4 Performance Evaluation 

In this section, we evaluate the performance of 
the three algorithms on both synthetic and real-life 
datasets. First, we describe the synthetic data gerier- 
ation program in Section 4.1. We present some pre- 

liminary results comparing the three variants of the 

stratification algorithm and the effect of changing the 
sample size in Section 4.2. We then give the perfor- 

mance evaluation of the three algorithms on syhthetic 
data in Section 4.3. We do a reality check of our results 

on synthetic data by running the algorithms against 
two real-life data sets in Section 4.4. Finally, we look 

at the effectiveness of the interest measure in pruning 

redundant rules in Section 4.5. 

We performed our experiments on an IBM RS/SOOO 
250 workstation with 128 MB of main memory running 

AIX 3.2.5. The data resided in the AIX file system and 
was stored on a local 2GB SCSI 3.5” drive, with mea- 

sured sequential throughput of about 2 MB/second. 

4.1 Synthetic Data Generation 

Our synthetic data generation program is a general- 

ization of the algorithm in [2]; the addition being the 

incorporation of taxonomies. The various parameters 
and their default vales are shown in Table 2. We now 
describe the extensions to the data generation algo- 

rithm in more detail. 

The essential idea behind the synthetic data gen- 

eration program in [2] was to first generate a table 

of potentially frequent itemsets 1, and then generate 
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Table 1: Pr[support in sample < a], given values for the sample size n, the real support p and Q 

Parameter 1 Default Value 

IDI Number of transactions I 1,000,000 
1 

ITI Average size of the Transactions 10 

111 Average size of the maximal potentially frequent Itemsets 4 

lZ1 Number of maximal potentially Frequent itemsets 10,000 
N Number of items 100,000 

R Number of Roots 250 

L Number of Levels 4-5 

F Fanout 5 
D Depthmratio ~ probability that item in a rule comes from level i 

probabiiity that item comes from level i+ 1 
1 

Table 2: Parameters for Synthetic Data Generation with default values 

transactions by picking itemsets from Z and inserting 

them in the transaction. Details can be found in [2]. 

To extend this algorithm, we first build a taxonomy 
over the items.4 For simplicity, we modeled the taxon- 

omy as a forest rather than a DAG. For any internal 
node, the number of children is picked from a Pois- 

son distribution with mean p equal to fanout F. We 
first assign children to the roots, then to the nodes at 
depth 2, and so on, till we run out of items. With this 
algorithm, it is possible for the leaves of the taxonomy 
to be at two different levels; this allows us to change 

parameters like the fanout or the number of roots in 

small increments. 

Each item in the taxonomy tree (including non-leaf 

items) has a weight associated with it, which corre- 

sponds to the probability that the item will be picked 

for a frequent itemset. The weights are distributed 

such that the weight of an interior node x equals the 

sum of the weights of all its children divided by the 

depth-ratio. Thus with a high depth-ratio, items will 
be picked from the leaves or lower levels of the tree, 
while with a low depth-ratio, items will be picked from 
higher up the tree. 

Each itemset in Z has a weight associated with it, 

which corresponds to the probability that this itemset 

will be picked. This weight is picked from an exponen- 

tial distribution with unit mean, and then multiplied 
by the geometric mean of the probabilities of all the 

items in the itemset. The weights are later normalized 
so that the sum of the weights for all the itemsets in 

Z is 1. The next itemset to be put in the transaction 

*Out of the four parameters R, L, F and N, only three need 
to be specified, since any three of these determine the fourth 
parameter. 

is chosen from Z by tossing an Ill-sided weighted coin, 

where the weight for a side is the probability of picking 
the associated itemset. 

When an itemset X in Z is picked for adding to a 

transaction, it is first “specialized”. For each item 2 in 
X which is not a leaf in the taxonomy, we descend the 
subtree rooted’at 3 till we reach a leaf t, and replace 
Z with x. At each node, we decide what branch to 

follow by tossing a k-sided weighted coin, where k is 
the number of children, and the weights correspond to 

the weights of the children. 

See [9] for further details of the candidate genera- 

tion program. 

4.2 Preliminary Experiments 

Stratification : Variants The results of comparing 

the three variants of the stratification algorithm on the 

default synthetic data are shown in Figure 9. At high 
minimum support, when there are only a few rules and 
most of the time is spent scanning the database, the 
performance of the three variants is nearly identical. 
At low minimum support, when there are more rules, 

EstMerge does slightly better than Estimate and sig- 

nificantly better than Stratify. The reason is that even 
though EstMerge counts a few more candidates than 

Estimate and Stratify, it makes fewer passes over the 

database, resulting in better performance. 

Although we do not show the performance of Strat- 
ify and Estimate in the graphs in Section 4.3, the re- 
sults were very similar to those in Figure 9. Both Es- 

timate and Stratify always did somewhat worse than 
EstMerge, with Estimate beating Stratify. 
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Figure 9: Variants of Stratify 
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Figure 10: Changing Sample Size 

Size of Sample We changed the size of the sample 

from 0.25% to 8%. The running time was higher at 
both low sample sizes and high sample sizes. In the 
former case, the decrease in performance was due to 

the greater error in estimating which itemsets would 

have minimum support. In the latter case, it was due 

to the sampling overhead. Notice that the curve is 
quite flat around the minimum time at 2%; there is 

no significant difference in performance if we sample a 

little less or a little more than 2%. 

4.3 Comparison of Basic, Cumulate and Est- 

Merge 

We performed 6 experiments on synthetic datasets, 

‘changing a different parameter in each experiment. 
The results are shown in Figure 11. All the parameters 
except the one being varied were set to their default 

values. The minimum support was 0.5% (except for 
the first experiment, which varies minimum support). 

We obtained similar results at other levels of support, 
though the gap between the algorithms typically in- 

creased as we lowered the support. 

Minimum Support: We changed minimum sup- 
port from 2% to 0.3%. Cumulate and EstMerge were 
around 3 to 4 times faster than Basic, with the per- 
formance gap increasing as the minimum support de- 
creased. At high support, Cumulate and EstMerge 
took about the same time since there were only a few 
rules and most of the time was spent scanning the 
database. At low support, EstMerge was about 20% 
faster than Cumulate. 

Number of Transactions: We varied the number 
of transactions from 100,000 to 10 million. Rather 
than showing the elapsed time, the graph shows the 
elapsed time divided by the number of transactions, 

normalized such that the time taken by Cumulate for 
1 million transactions is 1 unit. Again, EstMerge and 
Cumulate perform much better than Basic. The ra- 

tio of the time taken by EstMerge to the time taken 
by Cumulate decreases as the number of transactions 

increases, because when the sample size is a constant 
percentage, the accuracy of the estimates of the sup- 

port of the candidates increases as the number of trans- 
actions increases. 

Fanout : We changed the fanout from 5 to 25. 
This corresponded to decreasing the number of levels. 

While EstMerge did about 25% better than Cumu- 
late at fanout 5, the performance advantage deceased’ 
as the fanout increased, and the two algorithms did 

about the same at high fanout. The reason is that at a 
fanout of 25, the leaves of the taxonomy were either at 

level 2 or level 3. Hence the percentage of candidates 

that could be pruned by sampling became very small 
and EstMerge was not able to count significantly fewer 

candidates than Cumulate. The performance gap be- 
tween Basic and the other algorithms decreases some- 
what at high fanout since there were fewer rules ,and 

a greater fraction of the time was spent just scanning 

the database. 

Number of Roots: We increased the number of 
roots from 250 to 1000. As shown by the figure, in- 

creasing the number of roots has an effect similar to 

decreasing the minimum support. The reason is that 

as the number of roots increases, the probability that 

a specific root would be present in a transaction de- 

creases. 

Number of Items/Levels: We varied the number 

of items from 10,000 to 100,000. The main effect is to 
change the number of levels in the taxonomy tree, from 
most of the leaves being at level 3 (with a few at level 
4) at 10,000 items to most of the leaves being at level 5 
(with a few at level 4) at 100,000 items. Changing the 

number of items did not significantly affect the per- 
formance of Cumulate and EstMerge, but increased 
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Figure 12: Comparison of algorithms on real data 

the time taken by Basic. Since few of the items in 

frequent itemsets come from the leaves of the taxon- 
omy, the number of frequent itemsets did not change 
a lot for any of the algorithms. However, Basic had to 
do more work to find the candidates contained in the 

transaction since the transaction size (after adding an- 

cestors) increased proportionately with the number of 
levels. Hence the time taken by Basic increased with 
the number of items, while the time taken by the other 

two algorithms remained roughly constant. 

Depth-Ratio: We changed the depth-ratio from 0.5 
to 2. With high depth-ratios, items in frequent item- 

sets will tend to be picked from the leaves or lower 

levels of the tree, while with low depth-ratios, items 

will be picked from higher up the tree. As shown in 

the figure, the performance gap between EstMerge and 

the other two algorithms increased as the depth-ratio 

increased. At a depth-ratio of 2, EstMerge did about 

30% better than Cumulate, and about 5 times better 
than Basic. The reason is that EstMerge was able to 

prune a higher percentage of candidates at high depth- 

ratios. 

Summary of Results with Synthetic Data. Cu- 
mulate and EstMerge were 2 to 5 times faster than 
Basic on all the synthetic datasets. EstMerge was 25% 

to 30% faster than Cumulate on many of the datasets. 
The advantage decreased at high fanout, since most of 

the items in the rules came from the top levels of the 
* taxonomy and EstMerge was not able to prune many 

candidates. There was an increase in the performance 
gap between Cumulate and EstMerge as the number 

of transactions increased, since for a constant percent- 
age sample size, the accuracy of the estimates of the 

support of the candidates increases as the number of 
transactions increases. Both EstMerge and Cumulate 

exhibits linear scale-up with the number of transac- 

tions. 

4.4 Reality Check 

To see if our results on synthetic data held in “real 

world”, we ran the algorithms on two real-life datasets. 

Supermarket Data This is data about grocery pur- 
chases of customers. There are a total of 548,000 items. 
The taxonomy has 4 levels, with 118 roots. There are 

around 1.5 million transactions, with an average of 9.6 
items per transaction. Figure 12 shows the time taken 
by the three algorithms as the minimum support is de- 
creased from 3% to 0.75%. These results are similar 

to those obtained on synthetic data, with EstMerge 

being a little faster than Cumulate, and both being 

about 3 times as fast as Basic. 

Department Store Data This is data from a de- 
partment store. There are a total of 228,000 items. 
The taxonomy has 7 levels, with 89 roots. There are 
around 570,000 transactions, with an average of 4.4 

items per transaction. Figure 12 shows the time taken 

by the three algorithms as the minimum support is de- 
creased from 2% to 0.25%. The y-axis uses a log scale. 
Surprisingly, the Basic algorithm was more than 100 

times slower than the other two algorithms. Since the 

taxonomy was very deep, the ratio of the number fre- 

quent itemsets that contained both an item and its 

ancestor to the number of frequent itemsets that did 
not was very high. In fact, Basic counted around 300 

times as many frequent itemsets as the other two al- 

gorithms, resulting in very poor performance. 

4.5 Effectiveness of Interest Measure 

We looked at the effectiveness of the interest measure 

in pruning rules for the two real-life datasets, at con- 

fidence levels of 25% and 50%. For the supermarket 
data, about 40% of the rules were pruned at a interest 
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level of 1.1, while about 50% to 55% were pruned for 
the department store data at the same interest level. 

In contrast, the interest measure based on statistical 
significance did not prune any rules at 50% confidence 
and pruned less than 1% of the rules at 25% confi- 
dence (for both datasets). More details about these 

experiments can be found in [9]. 

For example, the rule “[Carbonated beverages] and 
[Crackers] ti [Dairy-milk-refrigerated]” was pruned 
because because its support and confidence were less 
than 1.1 times the expected support and confidence 
(respectively) of ancestor “[Carbonated beverages] and 

[Crackers] + [Milk]“, where [Milk] was an ancestor of 
[Dairy-milk-refrigerated]. 

5 Summary 

We introduced the problem of mining generalized as- 
sociation rules. Given a large database of customer 

transactions, where each transaction consists of a set 
of items, and a taxonomy (is-a hierarchy) on the items, 

we find associations between items at any level of the 

taxonomy. Earlier work on association rules did not 

consider the presence of taxonomies, and restricted the 
items in the association rules to the leaf-level items in 
the taxonomy. 

An obvious solution to the problem is to replace 
each transaction with an “extended transaction” that 
contains all the items in the original transaction as well 

as all the ancestors of each item in the original transac- 

tion. We could then run any of the earlier algorithms 

for mining association rules on these extended trans- 
actions to get generalized association rules. However, 
this “Basic” approach is not very fast. 

We presented two new algorithms, Cumulate and 

EstMerge. Empirical evaluation showed that these two 
algorithms run 2 to 5 times faster than Basic; for one 
real-life dataset, the performance gap was more than 

100 times. Between the two algorithms, EstMerge per- 
forms somewhat better than Cumulate, with the per- 

formance gap increasing as the size of the database 
increases. Both E&Merge and Cumulate exhibit lin- 

ear scale-up with the number of transactions. 

A problem users experience in applying association 

rules to real problems is that many uninteresting or re- 

dundant rules are generated along with the interesting 

rules. We developed a new interest measure that uses 
the taxonomy information to prune redundant rules. 

The intuition behind this measure is that if the sup- 
port and confidence of a rule are close to their expected 
values based on an ancestor of the rule, the rule can be 
considered redundant. This measure was able to prune 

40% to 60% of the rules on two real-life datasets. In 
contrast, an interest measure based on statistical sig- 

nificance that did not use taxonomies was not able to 

prune even 1% of the rules. 
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