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Salinity stress is one of the major abiotic stresses limiting crop production in arid

and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth

promoting rhizobacteria) to ameliorate stresses such as salinity stress in crop production.

The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote

saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria

with plant growth-promoting capabilities. Here, we review recent studies on the use of

halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic

crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere

of halophytic species can be effective bio-inoculants for promoting the production of

non-halophytic species in saline soils. These studies support the viability of bioinoculation

with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic

crop growth. The potential of this strategy is discussed within the context of ensuring

sustainable food production for a world with an increasing population and continuing

climate change. We also explore future research needs for using halotolerant PGPRs

under salinity stress.

Keywords: salinity, salinity-sensitive crop, halophytes, salt-tolerant, halophilic PGPRs, saline soil-based

agriculture

INTRODUCTION

Food security is a fundamental need of all societies. The global population is projected to increase to
around 10 billion people within the next 50 years (Godfray et al., 2010). Tomeet the additional food
demand, an estimated 50% increase in yields of themajor food crops will be required (Godfray et al.,
2010). Whereas, the world’s population is increasing, agricultural soils are decreasing about 1–2%
every year in global arid and semi-arid zones due to soil salinity (Kafi and Khan, 2008). The low
rainfall and high temperature characteristic of these zones promote high salinity (Shrivastava and
Kumar, 2015), and this salinity has become an important factor limiting the growth of salt-sensitive
plants and even some halophytes (Hasegawa et al., 2000; Sobhanian et al., 2011). Salinity stress has
resulted in up to a 70% decrease in yield of important crops like wheat, maize, rice, and barley
(Acquaah, 2007). Moreover, salinity stress is predicted to increase further in many regions due to
global climate change. The costs associated with this stress are potentially enormous, estimated at
US$12 billion per annum globally, and rising (Qadir et al., 2008; Dodd and Pérez-Alfocea, 2012).

A decrease in the availability of fertile land and the consequent extensive reuse of irrigated
lands have driven the rapid development of saline soil-based agriculture in recent years
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(Zhu et al., 2011). Whereas, plants that are salt-resistant can
produce significant yields in saline soils, many agricultural crops,
and trees exhibit a low tolerance to salt (Glenn et al., 1991).
Future agricultural production in these salt-affected agricultural
environments thus requires the development of salt-tolerant food
and fiber crops (Rozema and Flowers, 2008; Joshi et al., 2015).
Traditional breeding and genetic engineering approaches have
had only limited successes in developing salinity-resistant plants,
despite significant efforts (Munns and Tester, 2008; Schubert
et al., 2009; Dodd and Pérez-Alfocea, 2012; Joshi et al., 2015;
Krishna et al., 2015). These efforts are complicated by the fact
that salinity affects several facets of plant physiology (Dodd and
Pérez-Alfocea, 2012; Kumari et al., 2015).

An alternative strategy to crop improvement to enhance
salt tolerance may be to introduce salt-tolerant microbes that
augment crop growth (Dodd and Pérez-Alfocea, 2012). Soil
salinity-tolerant microorganisms have been found to increase
the growth of many crops grown in salt-affected soils, which
suggests that this approach may succeed where developing
salt-tolerant germplasm has not (Dodd and Pérez-Alfocea,
2012). Identifying and using salinity-tolerant microorganisms
could not only enhance the salt tolerance of crops but also
reduce pressure on arable lands. Among the microorganisms
associated with plants, plant growth-promoting rhizobacteria
(PGPRs) have been effective at improving plant stress tolerance
(Etesami and Beattie, 2017; Etesami, 2018). Yang et al. (2009)
coined the term “Induced Systemic Tolerance” to describe the
tolerance to abiotic stresses that is elicited by PGPRs in plants.
Previous reports have reviewed the effects of PGPRs in relieving
abiotic stress in various crop plants (Dutta and Khurana,
2015; Etesami and Beattie, 2017). The ability of PGPRs to
transform nutrients and increase plant tolerance to abiotic stress
is influenced by environmental conditions, including the climate,
weather, and soil characteristics (e.g., high salinity), and by
interactions with other microbial flora in the soil (Giongo et al.,
2008). For example, the performance of phosphorus-solubilizing
microorganisms (PSMs) is strongly affected by environmental
factors, especially stress factors (Yoon et al., 2001; Sánchez-Porro
et al., 2009). Upadhyay et al. (2009) found that PGPRs lose
plant growth-promoting (PGP) traits with increasing salinity
in vitro. Thus, the use of halotolerant PGPRs that are selected
based on both high salt tolerance and efficiency in expressing
PGP traits could significantly advance our ability to grow crops
in environments with natural or induced salinity (Zhu et al.,
2011). Rhizobacteria isolated from saline habitats have been
shown to be more efficient at enhancing plant tolerance to salt
than PGPRs isolated from non-saline habitats (Paul and Nair,
2008; Egamberdieva and Kucharova, 2009; Khan et al., 2016).
There is now clear evidence that PGPRs associated with plants
growing in harsh environmental conditions help those plants
tolerate abiotic stresses (Lucero et al., 2008, 2011; Rodriguez et al.,
2008; Lau and Lennon, 2012; Marasco et al., 2012; Kaplan et al.,
2013). Moreover, recent advances in plant–bacterial interactions
indicate that plants can shape the microbiome in the rhizosphere
and endosphere (i.e., the zone within the roots; Berendsen et al.,
2012). Under stress conditions, plants can require the presence
of associated bacteria to tolerate stress and therefore grow and

become established in an ecosystem (Hardoim et al., 2008).
Symbiotic bacteria exist in all plants, and this relationship may
be a key factor involved in plant stress tolerance. In fact, local
adaptation of plants to their environment is driven by the genetic
differentiation among closely associated PGPRs (Rodriguez and
Redman, 2008). Transplanting various plant species in the
absence of bacteria is notoriously difficult (Leifert et al., 1989),
and this difficulty supports the importance of bacteria to plant
growth, including under stressful conditions.

Halophytes are extremely salt tolerant plants—they usually
grow and survive in environments with salinity concentrations
as high as 5 g l−1 (Joshi et al., 2015). Halophytes play an
important role in protecting ecosystems due to their remediation
abilities. Halophytic plants have evolved various strategies to live
in saline environments. These strategies include the production
of compatible solutes to increase the osmotic pressure in the
cytoplasm, the accumulation of Na+ in the vacuole, and the
exclusion of Na+ from cells (Flowers and Colmer, 2008). They
also have evolved an ability to exploit the benefits provided by
endophytes and rhizosphere microorganisms (Sgroy et al., 2009;
Ruppel et al., 2013).

The rhizosphere of halophytic plants serves as a reservoir for
various groups of salt-tolerant rhizobacteria that could enhance
the growth of crops under salinity stress (Jha et al., 2012,
2015; Shukla et al., 2012; Bharti et al., 2013; Ramadoss et al.,
2013; Goswami et al., 2014; Sharma et al., 2016; Yuan et al.,
2016). Like halophytic plants, salt-tolerant rhizobacteria have
evolved various strategies to live in high saline environments.
An important strategy is the ability to accumulate compatible
osmolytes to maintain intracellular osmotic balance (Nabti et al.,
2015; Sharma et al., 2016). These bacteria exhibit multiple
stress-related traits that may contribute to their plant protective
capabilities under growth inhibiting levels of salt (Rohban et al.,
2009; Siddikee et al., 2010; Bharti et al., 2013; Sharma et al.,
2016). In this review, we present the attempts thus far to isolate
halotolerant PGPRs that bestow salt tolerance to agricultural
crops. We offer a view of the ability of PGPRs to increase
plant tolerance to salt and facilitate plant growth, as well as
their potential to be isolated from the rhizosphere of halophytes.
Lastly, we highlight the future application of these PGPRs as bio-
inoculants in saline soil-based agriculture. A key concept in this
review is that the range of PGPRs with multiple PGP traits that
exist in the rhizosphere of halophytic plants is a valuable resource
for improving crop tolerance to salinity and promoting saline
soil-based agriculture in the future.

HALOPHYTES

Plants can grow at high levels of soil salinity although
the extent of growth inhibition varies among plant species.
Plants are classified into glycophytes (salt-sensitive plants)
and halophytes (salt-loving plants) based on their tolerance
to salinity. Halophytes are plants which naturally survive
in salt-contaminated environments and can tolerate salinity
concentrations as high as 1M NaCl (Flowers and Colmer, 2008;
Kumari et al., 2015). About 1% of the total flora of the world
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(both dicots and monocots) are halophytic plants. These are
distributed primarily in arid, semi-arid inlands, and high salinity
wetlands along the tropical and sub-tropical coasts (Kumari
et al., 2015). Halophytes have salt-responsive genes and proteins
to counteract the adverse effects of salinity, while glycophytes
cannot tolerate high salinity (Askari et al., 2006; Yu et al., 2011).
Depending on their resistance and demand for sodium salts
(NaCl), halophyte plants can be known as obligate or facultative
halophytes (Kumari et al., 2015). Facultative halophytes can
grow under freshwater conditions, whereas obligate halophytes
need some salt to survive and grow (Kumari et al., 2015).
Hydro-halophytes and xero-halophytes are another division for
halophytes. Hydro-halophytes can grow in aquatic conditions or
on wet soil, and xero-halphytes can grow in habitats where the
soil is always saline and dry (Kumari et al., 2015). Most herbal
varieties in desert areas are xero-halophytes and many of them
are succulent (Kumari et al., 2015). Because halophytes flourish in
high salinity conditions, they are considered to be extremophiles
(Kosová et al., 2013).

Halophytes employ several mechanisms to adjust to soil
salinity (Shabala, 2013; Zhang and Shi, 2013; Flowers and
Colmer, 2015; Joshi et al., 2015; Kumari et al., 2015).
These mechanisms include complex molecular, biochemical,
physiological, and morphological changes (Wang et al., 2001)
such as (i) modulating plant hormones (Parida and Das,
2005; Gupta and Huang, 2014) like IAA, jasmonic acid (JA),
gibberellin (GA), ethylene (ET), and abscisic acid (ABA), and
inducing enzymes related to their biosynthesis; (ii) synthesizing
compatible solutes and osmoprotectants (Sanchez et al., 2008;
Flowers and Colmer, 2015; Slama et al., 2015); (iii) controlling
ion absorption, especially potassium (K) ions, by roots and ion
transfer to leaves. Owing to their role in maintaining an osmotic
balance, K+ ions play an important role in closing and opening
stomata and as co-factors for many enzymes; (iv) selective
accumulation or removal of ions (Mahajan and Tuteja, 2005);
(v) producing nitric oxide (NO) (Del Río, 2015); (vi) activating
antioxidant enzymes and producing antioxidant compounds
(Ozgur et al., 2013;Wang et al., 2013); (vii) producing polyamines
(Takahashi and Kakehi, 2009); (viii) altering photosynthetic
pathways (Stepien and Johnson, 2009; Uzilday et al., 2014); (ix)
compartmentalizing ions at the cellular and whole-plant levels
(Pang et al., 2010; Shabala and Mackay, 2011); and (x) regulating
the expression of genes involved in plant salinity tolerance. In
terms of gene regulation, halophytic plants respond to salt stress
by up-regulating a large number of genes and transcription
factors (Kawasaki et al., 2001; Lim et al., 2010; Gupta and Huang,
2014; Kumari et al., 2015), and these can be grouped into the
following functional categories: (i) senescence-associated genes
(e.g., SAG); (ii) ion transport or homeostasis genes (e.g., SOS
genes, AtNHX1, and H+-ATPase); (iii) molecular chaperones
(e.g., HSP genes); and (iv) dehydration-related transcription
factors (e.g., DREB) (Gupta and Huang, 2014).

Interest in salinity tolerant and halophytic plants is because
of a trend toward increasing salinity in agricultural soils in
the arid and semi-arid regions of the world. The potential
use of halophytes and other salt-tolerant species would allow
the production of crops in these areas. Halophytes have many

potential uses (Figure 1; Gago et al., 2011; Manousaki and
Kalogerakis, 2011; Ksouri et al., 2012; Rozema and Schat, 2013;
Hasanuzzaman et al., 2014; Song and Wang, 2014; Cheeseman,
2015; Jesus et al., 2015; Akinshina et al., 2016; Himabindu et al.,
2016), including their use as a reservoir for isolating halotolerant
PGPRs.

HALOTOLERANT PGPRs

Eukaryotic and prokaryotic micro-organisms, including fungi,
bacteria, and archaea, are able to adapt to a range of changes in
external osmolarity (Ruppel et al., 2013). Halotolerant bacteria
are able to grow in environments with a wide range of salinities,
from 1 to 33% NaCl, as well as in the absence of NaCl (Larsen,
1986; Khan et al., 2016). They are therefore well-suited to grow
in the rhizosphere of halophytes where there are often low
water potentials due to salt stress in dry climates (Upadhyay
et al., 2009; Ruppel et al., 2013). Interestingly, PGPRs isolated
from environmental extremes maintain their PGP traits even
in the presence of high salt concentrations. For example, Zhu
et al. (2011) isolated a high phosphorus-solubilizing halotolerant
PGPR, Kushneria sp. YCWA18, from the sediment of Daqiao
saltern on the eastern coast of China that was able to grow
on a solid medium containing 20% (w/v) of sodium chloride.
Tiwari et al. (2011) also isolated PGPRs that were halotolerant
based on their ability to tolerate 2–25% NaCl; these included
Bacillus pumilus, Pseudomonas mendocina, Arthrobacter sp.,
Halomonas sp., and Nitrinicola lacisaponensis with plant growth-
promoting traits like phosphorus (P) solubilization and the
ability to produce IAA, siderophores, and 1-aminocyclopropane-
1-carboxylate (ACC) deaminase. These are considered PGP
traits due to their ability to provide P to the plant under P-
limiting conditions, promote plant growth by functioning as
a phytohormone (IAA), provide Fe to the plant via chelation
and uptake (siderophores), and deplete a precursor to the plant
stress hormone ethylene (ACC deaminase). Distinct genera of
halotolerant bacteria have been isolated from distinct halophytic
plants such as Rosa rugosa (Bibi et al., 2011), Salicornia bigelovii
(Rueda-Puente et al., 2010), Salicornia brachiate (Jha et al., 2012),
Halocnemum strobilaceum (Al-Mailem et al., 2010), Acacia spp.
(Boukhatem et al., 2012), Sesuvium portulacastrum (Bian et al.,
2011; Anburaj et al., 2012), and Avicennia marina (El-Tarabily
and Youssef, 2010), and from a wide range of habitats such as
extreme alkali-saline soils, desert soils, and saline soils (Antón
et al., 2002; Ventosa et al., 2008; Abou-Elela et al., 2010; Shi
et al., 2012; Zhou et al., 2012; Ruppel et al., 2013). Many of these
halotolerant bacteria exhibited an ability to promote plant growth
(Table 1).

Halotolerant bacteria employ a range of strategies to grow
and survive in saline habitats (Etesami and Beattie, 2017). These
strategies include (i) minimizing the uptake of salt due to
compositional properties of the cell membrane or cell wall; (ii)
regulating intracellular ion concentrations by pumping ions out
of the cell through electrogenic Na+/H+ antiporters and K+/Na+

ion transporters for osmotic adjustment; (iii) accumulating
compatible solutes such as sucrose, trehalose, glycosyl glycerol,
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FIGURE 1 | Some potential use of halophytes.

and glycine betaine by endogenous biosynthesis; (iv) producing
proteins and enzymes that are adapted to high concentrations
of solute ions; (v) increasing the energetic capacity; and (vi)
producing exopolysaccharides (EPS) that help the development
of hydrating biofilms (Sandhya et al., 2010; Ruppel et al.,
2013; Qin et al., 2016). In addition to these strategies,
fundamental cellular properties of halophytes may enhance their
halotolerance, including their high GC content and a high
proportion of proteins that exhibit a low hydrophobicity, a low
tendency to form helices, and a high tendency to form stabilizing
coil structures (Jacob, 2012; Szymańska, et al., 2016).

Several reports have shown that halotolerant PGPRs
effectively improve growth of various agricultural crops under
salinity stress conditions (Figure 2; Mayak et al., 2004a; Nabti
et al., 2010; Shukla et al., 2012; Goswami et al., 2014; Ji et al., 2014;
Kim et al., 2014; Kaushal and Wani, 2016; Orhan, 2016; Qin
et al., 2016; Singh and Jha, 2016; Etesami, 2018). Mechanisms
by which they improve growth have been predicted or shown
to include (i) activating plant antioxidant defense machinery
by upregulating the activity of key enzymes such as superoxide
dismutase (SOD), peroxidase, and catalase (CAT) that scavenge
excess reactive oxygen species (ROS), and protect the plants from
salt toxicity (Jha and Subramanian, 2014; Islam et al., 2016; Qin
et al., 2016); (ii) improving plant nutrition by fixing atmospheric
nitrogen (N2), solubilizing P or K, producing siderophores for
Fe uptake (Dodd and Pérez-Alfocea, 2012; Etesami and Beattie,
2017; Etesami, 2018); (iii) increasing the efficiency of inoculated
plants to take up select ions for maintaining a high K+/Na+

ratio; this can directly reduce the accumulation of toxic ions
such as Na+ and Cl− and improve the nutritional status of both
macronutrients and micronutrients by regulating ion transporter
expression and/or activity (Giri et al., 2007; Zuccarini and
Okurowska, 2008; Shukla et al., 2012; Islam et al., 2016; Etesami,

2018); (iv) decreasing plant Na+ accumulation by excreting
EPS to bind cations (especially Na+) in roots and prevent their
translocation to leaves; this helps promote a physical barrier
called a rhizosheath around the roots (Ashraf et al., 2004; Dodd
and Pérez-Alfocea, 2012; Qin et al., 2016; Etesami and Beattie,
2017). EPS-producing-halotolerant PGPRs enhance the soil
structure by promoting soil aggregation, which results in water
retention and increased provision of nutrients to plants. EPS can
also alleviate plant salt stress by binding Na+; this binding is due
to the hydroxyl, sulfhydryl, carboxyl and phosphoryl functional
groups characteristic of bacterial EPS (Watanabe et al., 2003;
Nunkaew et al., 2015). Aeromonas hydrophila/caviae, Bacillus
sp., Planococcus rifietoensis, Halomonas variabilis, Burkholderia,
Enterobacter, Microbacterium, and Paenibacillus are some of
the halotolerant PGPRs that produce EPS and facilitate biofilm
formation (Upadhyay et al., 2011; Qurashi and Sabri, 2012;
Ruppel et al., 2013; Khan et al., 2016); (v) synthesizing the
enzyme ACC deaminase, which converts the plant ethylene
precursor ACC to ammonia and α-ketobutyrate (Etesami and
Beattie, 2017), thus reducing the accumulation of ethylene in
the plant and avoiding ethylene-mediated growth inhibition in
response to abiotic stresses such as salinity (Etesami et al., 2014;
Glick, 2014; Singh et al., 2015); (vi) changing root architecture
and morphology, hydraulic conductance, and hormone status
(Arora et al., 2006, 2012). These root changes, which may
result from increased IAA, can facilitate the uptake of more
nutrients and provide access to a more extensive network of
soil water (Vacheron et al., 2013; Goswami et al., 2014); (vii)
emitting stress-related volatile compounds that enhance plant
biomass and survival under severe drought stress (Timmusk
et al., 2014); (viii) accumulating osmolytes such as amino acids
and their derivatives (e.g., glutamate, proline, peptides, and
N-acetylated amino acids), quaternary amines (e.g., glycine
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FIGURE 2 | (A) Schematic overview of the mechanisms developed by halotolerant plant growth promoting rhizobacteria (PGPRs) to live and survive in highly salinity

conditions. For more details, see this reference (Ruppel et al., 2013). (B), Beneficial attributes of halotolerant PGPRs toward salinity stress tolerance in non-halophyte

crops grown in saline soils. Red arrows indicate rhizobacterial components negating salinity stress effects. Halotolerant PGPRs increase the K+/Na+ ratio by

selectively enhancing K+ uptake and avoiding translocation of toxic Na+ under saline conditions. These bacteria are capable of increasing the antioxidative systems in

plants for reactive oxygen species (ROS) scavenging such as enzymatic components of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX),

peroxidase (POD), and glutathione reductase (GR) and non-enzymatic components of cysteine, glutathione and ascorbicacid. 1-aminocyclopropane-1-carboxylate

(ACC)-deaminase producing PGPRs decrease the excessive ethylene production in plants caused by salinity stress and thereby eliminate the negative effect of

ethylene on roots. Production of phytohormones increases the overall growth and also alters root characteristics (i.e., alteration of root proliferation, metabolism and

respiration rate) to facilitate uptake of water and nutrients. Phytohormone indole-3-acetic acid (IAA) also increases the size of aerial parts of the plants. Production of

osmoprotectants (i.e., proline, polyamines, glutamate, total free amino acids, etc.) by PGPR also contributes to salinity stress tolerance in PGPRs-inoculated plants.

Exopolysaccharides (EPS) bind the toxic Na+ and restrict Na+ influx into roots. Soil aggregation due to production of EPS or alteration of root exudates (RE) hydrates

the rhizosphere and helps in enhancing uptake of water and nutrients. EPS also increase root adhering-soil (RAS). Volatile organic compounds (VOCs) can trigger

induction of high affinity K+ transporter (HKT1) in shoots and reduction of HKT1 in roots, limiting Na+ entry into roots and facilitating shoot-to-root Na+ recirculation.

For more details, see these references (Dutta and Khurana, 2015; Kaushal and Wani, 2016; Qin et al., 2016; Sáenz-Mata et al., 2016).

betaine and carnitine), and sugars (e.g., sucrose and trehalose)
(Creus et al., 2004); (ix) preserving higher stomatal conductance
and photosynthetic activities (del Amor and Cuadra-Crespo,
2012), which can reduce the accumulation of toxic ions (Na+ and
Cl−) and improve the ratio of K+: Na+ in the leaf (Pérez-Alfocea
et al., 2010); (x) inducing the expression of stress-responsive
genes. In particular, halotolerant PGPRs cause up-regulation of
stress tolerance genes (Kaushal and Wani, 2016; Etesami and
Beattie, 2017) such as RAB18 (LEA), the RD29A and RD29B
regulons of ABA-responsive elements (ABRE), and dehydration
responsive elements (DRE), as well as the transcription factor
DREB2b DRE binding protein. They also can induce genes that
encode proteins related to energy metabolism and cell division,
particularly amino acid metabolism and the tricarboxylic acid
cycle (Banaei-Asl et al., 2015; Qin et al., 2016). The halotolerant
PGPRs Azospirillum brasilense, Pantoea agglomerans, and
Bacillus megaterium can help plants decrease their cellular water
potential by increasing the expression of genes PIP2, ZmPIP1-1,
and HvPIP2-1, which are involved in producing aquaporins.
Aquaporins are water channel proteins in the plasmamembranes
of plant cells that contribute to the transfer of water into the plant

(Marulanda et al., 2010; Zawoznik et al., 2011; Gond et al., 2015;
Moshelion et al., 2015). PGPRs induction of aquaporins may
encourage plants to continue to take up water from salt-affected
soils (Qin et al., 2016). Furthermore, the PGPR B. subtilis can
also decrease the absorption of excessive amounts of Na+ by
the roots of plants by down-regulating expression of the high-
affinity K+ transporter (HKT1) in the roots of salinity-affected
plants (Zhang et al., 2008; Qin et al., 2016). In addition, these
halotolerant PGPRs facilitate shoot-to-root Na+ recirculation
by triggering the induction of HKT1 in shoots (Zhang et al.,
2008); and (xi) protecting plants from phytopathogens, such
as by producing extracellular enzymes to hydrolyze fungal
cell walls, synthesizing antimicrobial compounds, producing
Fe-chelating siderophores to starve phytopathogens for Fe,
excluding pathogens via competition for nutrients and sites on
root, and inducing systemic resistance (Glick and Bashan, 1997;
Bhattacharyya and Jha, 2012; Etesami, 2018).

Inoculating crops with halotolerant PGPRs isolated from
halophytes has been successful at improving crop growth and
tolerance under salt stress conditions (Shukla et al., 2012; Khan
et al., 2016). Halotolerant PGPRs can provide many benefits to
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plants, including helping halophytes and glycophytes overcome
salt stress (Table 1). For example, salt- tolerant PGPRs isolated
from rhizospheric soil of the halophytes Haloxylon salicornicum,
Lespedeza bicolor, Atriplex leucoclada, Suaeda fruticosa, and
Salicornica virginica also enhanced the growth of salinity-
stressed maize (Ullah and Bano, 2015). These plants exhibited
an accumulation of osmolytes (e.g., sugar and proline) and
increase in antioxidant enzyme activity (e.g., SOD, peroxidase,
CAT, and ascorbate peroxidase) as compared to un-inoculated
plants. Similarly, a study by Siddikee et al. (2010) showed that,
following the inoculation of canola seedlings with halotolerant
bacterial isolates isolated from halophytic plants under salt
stress in gnotobiotic conditions, the plants exhibited significantly
increased growth, as shown by a 35–43% increase in dry weight
and 29–47% increase in root length. The studies shown inTable 1
illustrate that PGPRs isolated from the rhizosphere of halophytic
species can be used as effective bio-inoculants for non-halophytic
crops grown under salt stress.

Halophytes and ACC
Deaminase-Producing PGPRs
Ethylene is a plant growth regulator and stress hormone (Mayak
et al., 2004b; Pierik et al., 2007) that is produced by almost all
plant species. This gaseous growth hormone has a key role in
causing physiological changes in plants at the molecular level.
The production of ethylene is significantly enhanced in response
to environmental stresses such as drought and salinity. Excessive
ethylene inhibits root growth and, as a consequence, limits
further growth of the plant. High ethylene levels in nodules is also
associated with decreased N2 fixation (Ma et al., 2002). Although
ethylene production near roots is constantly modulated during
plant growth and development (Mayak et al., 2004a; Mahajan and
Tuteja, 2005; Gamalero andGlick, 2015), reducing stress-induced
ethylene levels alleviates some effects of stress on plants (Glick,
2004; Etesami and Beattie, 2017).

As described earlier, PGPRs that secrete the enzyme ACC
deaminase can reduce ethylene levels by metabolizing ACC, a
precursor of plant-produced ethylene, into α-ketobutyrate and
ammonia (Etesami and Beattie, 2017). Plants inoculated with
ACC deaminase-producing PGPRs often exhibit extended root
growth, attributed to reductions in ethylene, and enhanced
resistance to salinity stress (Mayak et al., 2004a,b; Cheng et al.,
2007; Glick et al., 2007; Zahir et al., 2009; Nadeem et al., 2010;
Barnawal et al., 2012; Jha et al., 2012; Etesami and Beattie, 2017).
These PGPRs can also influence plant ethylene homeostasis by
altering the expression of genes encoding the ethylene synthesis
enzymes ACC synthase and ACC oxidase (Tsukanova et al.,
2017).

Although salinity has been associated with the loss in ACC
deaminase production by some PGPRs (Upadhyay et al., 2009), at
least some salt-tolerant PGPRs isolated from saline environments
appear to maintain ACC deaminase production based on
documentation of their beneficial properties in helping plants
overcome salinity stress by reducing ethylene levels (Mayak et al.,
2004a). For example, 25 out of 140 halotolerant bacterial isolates
from coastal soils of the South Korean Yellow Sea showed ACC

deaminase activity (Siddikee et al., 2010); these bacterial isolates
belonged to the genera of Arthrobacter, Bacillus, Brevibacterium,
Corynebacterium, Exiguobacterium, Halomonas, Micrococcus,
Oceanimonas, Planococcus, and Zhihengliuella. ACC deaminase-
producing PGPRs isolated from saline environments alleviated
salinity stress in a variety of plants. For example, the ACC
deaminase-producing PGPR strains P. fluorescens N3 and P.
putida Q7 promoted the growth of maize roots by 3.3-fold,
and maize shoots by 2.3-fold, respectively, under salinity stress
as compared to un-inoculated controls (Kausar and Shahzad,
2006; Khan et al., 2016). Similarly, inoculation of legume plants
with ACC deaminase-producing rhizobia isolated from saline
soils promoted nodule formation (Shaharoona et al., 2006), and
inoculation of wheat plants with the PGPR strain A. brasilense
FP2 from saline soils resulted in a decrease in the expression of
the plant ACC oxidase (Camilios-Neto et al., 2014).

In addition to halotolerant bacteria isolated from saline
environments, halotolerant bacteria isolated from various
halophytic species exhibit ACC deaminase production (Table 1;
Siddikee et al., 2010; Jha et al., 2012; Zhou et al., 2017). ACC
deaminase-producing PGPRs isolated from halophytes have
been found to alleviate salinity stress and increase plant
growth for both halophytes and salinity-sensitive crop plants
(Table 1). For example, novel diazotrophic halotolerant bacteria
isolated from the roots of Salicornia brachiata featured ACC
deaminase activity and these isolates included Brachybacterium
saurashtrense, Brevibacteriumcasei, Cronobacter sakazakii,
Haererehalobacter, Halomonas, Mesorhizobium, Pseudomonas,
Rhizobium radiobacter, Vibrio, and Zhihengliuella (Jha et al.,
2012). Moreover, growth parameters of S. brachiate increased
significantly under salt stress after re-inoculation with B.
saurashtrense and Pseudomonas (Jha et al., 2012). In another
study (El-Tarabily and Youssef, 2010), one out of 62 bacterial
isolates from the A. marina rhizosphere exhibited a high level
of ACC deaminase activity. Following inoculation of this
isolate, identified as P. maricaloris, plant seedlings exhibited
a decrease in the endogenous levels of ACC and improved
growth undersalinity stress. Following the inoculation of red
pepper plants with the ACC deaminase-producing halotolerant
PGPRs Brevibacterium iodinum, Zhihengliuela alba, and Bacillus
licheniformis isolated from halophytes, ethylene levels in the
plants decreased by 44, 53, and 57%, respectively. Furthermore,
their salt tolerance, as assessed using a salt tolerance index,
increased significantly compared to non-inoculated plants
(Siddikee et al., 2011). These studies illustrate that habitat-
adapted ACC deaminase-producing PGPRs associated with
halophytes can mitigate the effects of salinity stress on crops and
reduce ethylene to below growth-inhibitory levels (Jha et al.,
2012).

Considerable attention has been given to the isolation of
ACC deaminase-producing salt-tolerant PGPRs for their use
in promoting plant growth in saline environments (Hardoim
et al., 2008; Nadeem et al., 2010; Ali et al., 2014). Methods of
isolating such PGPRs are well-established (Penrose and Glick,
2003). A rapid and efficient approach to their isolation is
using polymerase chain reaction (PCR)-based screening for the
ACC deaminase-encoding gene acdS coupled to a colorimetric
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ninhydrin assay to measure ACC (Nikolic et al., 2011; Jasim
et al., 2015; Li et al., 2015b; Qin et al., 2016). Interestingly,
recent results suggest that endophytic bacteria are more able
to produce the enzyme ACC deaminase than PGPRs isolated
from other habitats, including the surfaces of leaves and roots
and from non-rhizosphere soil (Bruto et al., 2014; Qin et al.,
2016). Future research that compares the bio-activity of ACC
deaminase-producing bacteria isolated from various habitats,
including distinct tissues of halophytic plants, would be useful.

Halophytes and Phytohormone-Producing
PGPRs
Phytohormones regulate the protective response of plants to
biotic and abiotic stresses (Raghavan et al., 2006), and also the
development and tolerance to diverse environmental stresses
including salinity stress (Ryu and Cho, 2015). Plant responses
to salt stress include an array of changes at the molecular,
biochemical, and physiological levels (Manchanda and Garg,
2008; Ahmad et al., 2013; Kumari et al., 2015), and depend upon
environmental conditions, soil properties, and plant growth
stage (Zhu et al., 1992). Previous studies (Dodd and Pérez-
Alfocea, 2012; Khan et al., 2016) indicate that salinity can either
diminish (300mM NaCl) (Dunlap and Binzel, 1996) or increase
(100mM NaCl) (Albacete et al., 2008) endogenous IAA levels
in roots. Plants can also respond to exogenous phytohormones,
and these can relieve the adverse effects of salinity (Singh and
Jain, 1982; Zahir et al., 2010). Thus, exogenous application
of phytohormones and their precursors provides an attractive
approach to counter salt stress conditions by changing the
balance of endogenous levels of hormones (Ilangumaran and
Smith, 2017). This was illustrated in a study showing that
treating wheat seeds with IAA reduced the detrimental effects of
salinity stress on wheat growth (Datta et al., 1997). In addition
to stimulating root proliferation, which can enhance growth
and salt tolerance (Dodd and Pérez-Alfocea, 2012), IAA can
help maintain leaf growth, which helps prevent salinity-induced
limitations in plant productivity (Munns, 2002; Albacete et al.,
2008). IAA has also been reported to enhance the protection
of bacterial cells against abiotic stresses such as high salt
concentrations (Bianco et al., 2006).

PGPRs may enhance plant growth, in part, by modulating
the plant hormonal balance (Ilangumaran and Smith, 2017;
Tsukanova et al., 2017). IAA production is a relatively common
trait of most salt-tolerant PGPRs (Dodd et al., 2010), and IAA-
producing PGPRs can increase the fitness of plants grown in
salt-affected soils (Tiwari et al., 2011). PGPRs may improve crop
salt tolerance by altering hormonal root–shoot signaling (Yang
et al., 2009). The ability to modify plant stress levels by providing
IAA, which influences the development of lateral roots, has
previously been reported for halotolerant-bacteria isolated from
coastal soils (Siddikee et al., 2010), halophyte roots in Argentina
(Sgroy et al., 2009), highly saline habitats (Tiwari et al., 2011),
the halophyte Prosopis strombulifera (Piccoli et al., 2011), the
rhizosphere of halophytic weeds from the Pakistani Khewra salt
range (Naz et al., 2009), halotolerant plants from a Chinese
coastal sandbank (Bian et al., 2011), and the rhizosphere of

C. annum growing in desert areas (Marasco et al., 2012). Some
IAA-producing salt-tolerant PGPRs isolated from halophytes are
shown in Table 1, as is their potential as a tool for promoting
the salt tolerance of halophytes and glycophytes. For example,
Tiwari et al. (2011) demonstrated that inoculation of wheat
with IAA-producing salt-tolerant Halomonas sp. resulted in a
higher IAA content in the rhizosphere of treated plants than
control plants and increased plant growth. In another study, the
IAA-overproducing strain Sinorhizobium meliloti ameliorated
the reduced growth of Medicago truncatula in saline soils
(Bianco and Defez, 2009). This work was further supported by
Egamberdieva (2009). These studies clearly show that managing
IAA production in halophytic and non-halophytic plants by
endophytic and rhizosphere bacteria may be an important tool
in conferring salt tolerance.

Cytokinins (CKs) are also involved in the development
of plant resistance to biotic and abiotic stresses (Großkinsky
et al., 2011; O’Brien and Benková, 2013). CK production is a
relatively common trait of PGPRs (Dodd et al., 2010). PGPRs
can influence plant CK concentration by synthesizing CK or
altering CK homeostasis in the plant (Arshad and Frankenberger,
1991; de Garcia Salamone et al., 2005; Glick, 2012; Pallai et al.,
2012; Kapoor and Kaur, 2016). The Platycladus orientalis plants
inoculated with a CK-producing PGPR strain B. subtilis had
increased CK levels in the shoots and were more resistant to
drought (Liu et al., 2013). Increased growth of drought-stressed
lettuce plants inoculated with a CK-producing B. subtilis strain
suggested modulation of root-to-shoot CK signaling (Arkhipova
et al., 2007). The ability of PGPRs to synthesize CK or alter plant
CK homeostasis highlights the importance of understanding how
PGPRs stimulate growth and increase plant resistance to salinity.

Gibberellic acid (GA) positively regulates cell division and
elongation, hypocotyl and stem growth, and leaf and root
meristem size (Guo et al., 2015; Wang et al., 2015; Martínez
et al., 2016). GA signaling is a key factor in the inhibition of
plant growth under stress (Magome and Kamiya, 2016; Martínez
et al., 2016). PGPRs can influence the endogenous GA levels
in plants (Bottini et al., 2004; Kang et al., 2014a; Shahzad
et al., 2016). Some PGPR strains, such as B. amyloliquefaciens
RWL-1, Promicromonospora sp. SE188, Leifsonia soli SE134, and
Enterococcus faecium LKE12, can synthesize GA (Bottini et al.,
2004; Kang et al., 2012, 2014a; Lee et al., 2015; Shahzad et al.,
2016). After inoculation of plants with the GA-producing PGPR
strains, B. cereus MJ-1 (Joo et al., 2005) and Promicromonospora
sp. SE188, the amount of endogenous GA in the shoots increased
(Kang et al., 2014a). Some bacterial isolates from the halophyte
P. strombulifera (Piccoli et al., 2011) and the rhizosphere of
halophytic weeds from the Pakistani Khewra salt range showed
the ability to produce GA (Naz et al., 2009), as did the PGPR
strains B. licheniformis, Lysinibacillus fusiformis, Achromobacter
xylosoxidans, and Brevibacterium halotolerans isolated from the
halophyte P. strombulifera (Sgroy et al., 2009).

Abscisic acid (ABA) is an important plant stress hormone
that is synthesized in response to abiotic stresses and activates
the genes responsible for stress resistance (Sah et al., 2016). This
hormone plays an important role in alleviating salinity stress
by mediating stomatal, and thereby photosynthetic, responses
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to high salinity (Dodd and Pérez-Alfocea, 2012). It also plays
a crucial role in plant-PGPR interactions (Dodd, 2003). Many
PGPRs produce ABA in vitro (Dodd et al., 2010); these include A.
brasilense, B. licheniformis, Novosphingobium sp., P. fluorescens,
Rhodococcus sp. P1Y, and Variovorax paradoxus (Sgroy et al.,
2009; Jiang et al., 2012; Belimov et al., 2014; Salomon et al.,
2014; Cohen et al., 2015). PGPRs can also produce ABA under
salinity stress conditions and increase growth of salinized plants
(Naz et al., 2009). For example, in a study, following inoculation
of plants with ABA-producing strains such as B. licheniformis
Rt4M10, P. fluorescens Rt6M10, A. brasilense Sp 245, the internal
ABA content increased and inoculated plants become more
resistant to drought compared to un-inoculated plants (Salomon
et al., 2014; Cohen et al., 2015). In addition, inoculation with
ABA-producing PGPRs often decreased the accumulation and
concentration of ABA in roots and significantly altered the long-
distance signaling of shoot-to-root ABA transport in the phloem
and the root-to-shoot ABA transport in the xylem (Dodd and
Pérez-Alfocea, 2012; Jiang et al., 2012; Belimov et al., 2014;
Qin et al., 2016); the resulting changes in ABA levels may
mitigate the plant’s sensitivity to water scarcity. Recently, the two
rhizospheric bacteria Rhodococcus sp. and Novosphingobium sp.
were found to metabolize ABA in vitro (Belimov et al., 2014; Qin
et al., 2016), suggesting a mechanism for decreasing plant ABA
concentrations. Interestingly, disrupting plant ABA homeostasis
can influence the activity of halotolerant PGPRs, as shown by
wild-type tomato plants that exhibited enhanced growth, and
ABA-deficient mutant plants that exhibited reduced growth,
in response to B. megaterium inoculation (Porcel et al., 2014;
Qin et al., 2016). Collectively, these results suggest that ABA-
producing halotolerant PGPRs, ABA-metabolizing halotolerant
PGPRs, and general halotolerant PGPRs will act differently in
adjusting plant ABA status and thus may result in variable
plant responses to salinity stress. ABA production has also been
reported in bacterial isolates from halophytes, including from the
rhizosphere of halophytic weeds from the salt range of Pakistani
Khewra (Naz et al., 2009) and the halophyte P. strombulifera
(Piccoli et al., 2011). L. fusiformis, B. subtilis, B. halotolerans,
B. licheniformis, B. pumilus, A. xylosoxidans, and Pseudomonas
putida are some ABA-producing bacteria isolated from the
halophyte P. strombulifera (Sgroy et al., 2009). Relatively little
is known of the role of ABA in plant-bacterial interactions.
The ability of PGPRs to alter ABA levels in plants suggest
opportunities to use these bacteria to influence plant growth
and abiotic stress resistance, and highlights a need for more
research to understand how PGPRs influence plant ABA signal
transduction components.

Jasmonic acid (JA) is also involved in abiotic stress resistance
(Ahmad et al., 2016). Several endophytic PGPRs synthesize JA
and salicylic acid (SA) (Forchetti et al., 2007; Chen et al., 2014).
Inoculating plants with the PGPR strains P. fluorescens Pf4, P.
aeruginosa Pag (Singh et al., 2003), and B. amyloliquefaciens LJ02
(Li et al., 2015a) resulted in a rise in the endogenous levels of
SA in various plant tissues. Inoculation of Vitis vinifera with
the PGPR strain Burkholderia phytofirmans PsJN also led to
SA accumulation (Bordiec et al., 2010), as did inoculation with
the GA-producing PGPR strains Promicromonospora sp. SE188

(Kang et al., 2012) and B. amyloliquefaciens RWL-1 (Shahzad
et al., 2016).

Although there is some evidence that PGPRs improved plant
salt tolerance by altering the endogenous hormone status (Kang
et al., 2014b; Sahoo et al., 2014; Qin et al., 2016; Ilangumaran
and Smith, 2017), little is known about how PGPRs influence
this process. We have a similar knowledge deficit regarding
the potential for halotolerant PGPRs to synthesize many of
these phytohormones and to produce them in vitro or in
planta. Bacterial isolates from halophytes have thus far been
screened primarily for IAA synthesis, among the hormones
discussed. However, the roles of GA, ABA, CK, SA, and JA
in the physiology of plant halotolerance indicates that future
research on how bacterial isolates from halophytes influence
phytohormone homeostasis in plants may be fruitful.

Halophytes and Phosphate-Solubilizing
PGPRs
Phosphorus is one of the major essential macronutrients for
plants. Although organic and inorganic P are abundant in soils,
P availability is limited due to its presence in insoluble forms.
Whereas, P comprises about 0.05% (w/w) of soils, often only 0.1%
of the total P is available to plants because of poor solubility and
its fixation in soil (Goldstein, 1986). In both saline soil-based
and fertile soil-based agriculture, intensive cultivation strongly
depletes soil nutrients. The use of inorganic NPK fertilizers
increases soil salinity, particularly when coupled with saline
irrigation. Phosphate-solubilizing halotolerant PGPRs provide
an opportunity to enhance P availability to plants without
exacerbating soil salinity levels. Phosphate-solubilizing PGPRs
can solubilize insoluble phosphates via various mechanisms
like chelation, ion exchange, and acidification by secreting
low molecular weight organic acids (Sharma et al., 2013;
Etesami, 2018). In salt-affected soils, inoculation with phosphate-
solubilizing halotolerant PGPRs improved plant growth and
suppressed the adverse effects of salt (Giri et al., 2004).
Following the inoculation of Solanum lycopersicum plants with
Achromobacter piechaudii, plant P content and water use
efficiency increased under salinity stress (Mayak et al., 2004a).
Similarly, inoculation of wheat with B. aquimaris increased
plant P content under salinity stress in the field (Upadhyay and
Singh, 2015). Both studies suggest that phosphate-solubilizing
PGPRs solubilize insoluble P in saline soils. Halotolerant bacteria
isolated from halophytes also exhibit P solubilization activity
(Table 1). A screen of the mangrove A. marina rhizosphere
identified 129 bacterial strains with the ability to solubilize rock
phosphate, with Oceanobacillus picturae able to mobilize 97% of
this mineral (El-Tarabily and Youssef, 2010). Bacteria isolated
from halophytes, including Arthrobacter, Bacillus, Azospirillum,
Vibrio, Phyllobacterium, andO. picturae, were shown to solubilize
Ca3(PO4)2, AlPO4, and FePO4 (Bashan et al., 2000; Banerjee
et al., 2010; El-Tarabily and Youssef, 2010; Yasmin and Bano,
2011) and increase the P content in both halophytes and
glycophytes under salinity stress (Table 1). When the halophytes
S. bigelovii and S. bigelovii were inoculated with various
halotolerant PGPRs, including Azospirillum, Vibrio, Bacillus, and
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Phyllobacterium, the P content of the foliage increased (Bashan
et al., 2000). This increased P content in plant tissues may help
ameliorate the growth-restraining effects of salinity.

Halophytes and Siderophore-Producing
PGPRs
Iron is a micronutrient that is a component of many enzymes
involved in biochemical processes, including respiration,
photosynthesis, and N2 fixation (Kobayashi and Nishizawa, 2012;
Abbas et al., 2015). Iron availability is very low in calcareous
and saline sodic soils throughout the world (Rabhi et al., 2007;
Abbas et al., 2015). These soils suppress the availability of most
micronutrients, including iron, and suppress plant growth by
concurrent salinity and iron deficiency stresses (Yousfi et al.,
2007; Abbas et al., 2015). PGPRs often secrete siderophores,
which are small, high-affinity Fe(III)-chelating compounds that
scavenge iron, and the iron–siderophore complexes can be
easily accessed by plants (Kloepper et al., 1980). Siderophore
production by halotolerant PGPRs isolated from halophytes has
been reported (Table 1); however, the ability of these strains to
increase the availability of iron and other micro-elements, such
as Zn, Mn, and Cu, to plants is not yet known.

Halophytes and N2-Fixing PGPRs
Most agricultural systems depend on the application of
exogenous nitrogen, as it is often the nutrient that most limits
productivity (Vitousek and Howarth, 1991). The productivity
of halophytic crop species can also be limited by a lack of
available N in saline soils. For legumes, nitrogen fixation is
more sensitive than plant growth to soil salinity (Djekoun and
Planchon, 1991), and all stages in nodule formation and nodule
function are negatively affected by salinity (de la Peña and
Pueyo, 2012; Bruning and Rozema, 2013). Salinity can interfere
with plant N nutrition and thus decrease the N content of
plant tissues (Naidoo, 1987), as illustrated by salinity-mediated
repression of ammonium and nitrate uptake and assimilation
(Ullrich, 2002). Typically, farmers use chemical fertilizers to
compensate for a lack of soil N; however, the excessive use of
inorganic fertilizers may increase salinity, severely degrade the
soil structure, and change the composition of the soil microflora
(Akhavan-Kharazian et al., 1991; Rueda-Puente et al., 2003).
Salinity also results in low soil microbial activity due to osmotic
stress and ion toxicity. Increases in soil salinity in many parts
of the world are therefore limiting plant productivity and the
benefits accrued from biological N2 fixation (Jha et al., 2012).
Salt-tolerant N2-fixing PGPRs can tolerate osmotic stress by
producing osmolytes that allow them tomaintain their cell turgor
and metabolism (Yan et al., 2015). N2 fixation by salt-tolerant
bacteria associated with the roots of halophytes is an important
source of available N in saline soils. Furthermore, these roots are
a source of halotolerant N2-fixing bacteria with plant growth-
promoting potential (Table 1; Rueda-Puente et al., 2003; Jha et al.,
2012; Sharma et al., 2016), some of which have been found to
increase the growth of halophytes as well as non-halophytic crops
in saline soils (Table 1). The potential benefits of biological N2-
fixers to halophytes and salt-sensitive crops (Rueda-Puente et al.,
2003; Jha et al., 2012) highlight the interest in exploring N2-fixing

halotolerant PGPRs as potential bio-fertilizer resources for saline
soil-based agriculture.

Halophytes and PGPRs That Control
Phytopathogens
In addition to disrupting plant physiology and morphology,
soil salinity increases plant susceptibility to pathogens (Besri,
1993). Plant diseases are a major constraint to crop yields
but can potentially be controlled biologically by using PGPRs.
Biological control using PGPRs offers a more eco-friendly
approach to disease management than agricultural chemicals
(Compant et al., 2010; Etesami and Alikhani, 2018). Some
mechanisms that PGPRs use to counter the deleterious effects
of phytopathogens include (Olanrewaju et al., 2017): (i) the
synthesis of one or more antimicrobial metabolites (Couillerot
et al., 2009), many of which have been reported in PGPRs
of the genera Bacillus and Pseudomonas. These metabolites
may serve as cytotoxic, antifungal, antibacterial, phytotoxic,
antihelminthic, antiviral, antioxidant, and/or antitumor agents
(Olanrewaju et al., 2017); (ii) the production of fungal cell
wall-degrading enzymes (Chernin et al., 1995) such as lipase,
which can degrade some fungal cell wall-associated lipids, β-1,3-
glucanase, which can degrade cell wall carbohydrates, chitinase,
which can degrade the integral fungal cell wall component chitin
(Husson et al., 2017), and protease, which can degrade cell wall
proteins (Vaddepalli et al., 2017); (iii) competition either for
nutrients or for binding sites on plant roots (Barahona et al.,
2011); such competition can limit phytopathogen growth or
binding to the plant thereby making it difficult for the pathogen
to proliferate (Olanrewaju et al., 2017); (iv) the synthesis of
hydrogen cyanide, which when produced by bio-control PGPRs
such as Rhizobium, Pseudomonas, Alcaligenes, Bacillus, and
Aeromonas, inhibits cytochrome C oxidase as well as other
important metalloenzymes (Nandi et al., 2017); (v) activation of
induced systemic resistance, which is a resistance mechanism in
plants (Van Loon et al., 1998; Halfeld-Vieira et al., 2006) in which
exposure of plants to specific microbes, such as some biocontrol
PGPRs, primes the plant to react faster and more strongly to a
subsequent pathogen attack (Olanrewaju et al., 2017). Induction
of systemic resistance provides strong protection coordinated by
phytohormone signaling pathways (Pieterse et al., 2012, 2014;
Walters et al., 2013); (vi) quorum quenching, which is the
disruption of signaling among pathogens. This may occur via
the production of signal-degrading enzymes such as lactonase,
and the subsequent loss of disruption of signaling may minimize
pathogen virulence (Olanrewaju et al., 2017); and (vii) synthesis
of siderophores (Olanrewaju et al., 2017), which can prevent or
reduce pathogen proliferation by reducing the iron available to
pathogens (Shen et al., 2013). The siderophores from PGPRs have
been found, at least in some cases, to have a higher affinity for
Fe3+ than the siderophores from fungal pathogens (Kloepper
et al., 1980), thus giving the PGPRs a competitive advantage for
iron.

Halophilic PGPRs may also provide biological control of
phytopathogens. Many can produce antibiotics and antifungal
metabolites, as shown in the halophilic bacteria B. subtilis,
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B. cereus, B. pumilus, B. licheniformis, Halomonas elongate, and
Halobacillus halophilus, which antagonize phytopathogenic fungi
such as Fusarium sambucinum, F. roseum var. sambucinum,
F. oxysporum, F. moniliforme, F. graminearum, Penicillium
citrinum, Aspergillus flavus, and Botrytis cinerea; these organisms
have been shown to produce antibiotics, proteases, chitinases,
and β−1,3-glucanases (Niehaus et al., 1999; Sadfi et al., 2001,
2002; Sadfi-Zouaoui et al., 2008; Essghaier et al., 2009; Siddikee
et al., 2010; Berrada et al., 2012; Ruppel et al., 2013; Goswami
et al., 2014; Singh and Jha, 2016). For example, the strains B.
halotolerans Ps9 and B. pumilus Ps19, which were isolated from
the halophyte P. strombulifera, exhibited protease activity and
inhibited the growth of the phytopathogenic fungus Alternaria
sp. by more than 50%, at least on plates (Sgroy et al., 2009).
Similarly, a halotolerant PGPR Pseudomonas sp. strain isolated
from the halophyte Suaeda salsa suppressed the growth of the
phytopathogenic fungi Fusarium oxysporum f. sp. cucumerinum
and F. oxysporum f. sp. conglutinans (Teng et al., 2010).
The biological control potential of halophilic bacteria may
be correlated with their production of membrane-bound or
extracellular hydrolytic enzymes (Sadfi-Zouaoui et al., 2008).
Although antagonistic halotolerant PGPRs may provide an
ecologically friendly alternative to synthetic fungicides, research
is needed to evaluate that antagonistic potential of halotolerant
PGPRs against phytopathogens, and the severity of the disease
pressure by these pathogens, in saline environments (Sadfi-
Zouaoui et al., 2008).

CONCLUSIONS AND FUTURE
PROSPECTS

This review has highlighted the potential for halophytes to be
used as an isolation source for halotolerant PGPRs, including
PGPRs that exhibit PGP traits such as IAA production,
phosphate solubilization, siderophore production, N2 fixation,
ACC deaminase activity, and control of phytopathogens.
Halotolerant PGPRs isolated from the endosphere or rhizosphere
of halophytes can be used to enhance the growth, and possibly the
yield, of halophytic and non-halophytic crops (Sáenz-Mata et al.,
2016). Crop inoculation with halotolerant PGPRs is therefore a
viable strategy for sustainable crop production in salinity-based
agriculture, which includes crop production in arid and semiarid
environments (Khan et al., 2016). Several avenues of research
would move us closer to adopting this strategy for salinity-based
agriculture:

(i) Although some beneficial effects of halotolerant PGPRs on
salinity-affected plants are known, many of the underlying
physiological and molecular mechanisms contributing
to enhanced plant growth and halotolerance are not.
Knowledge of these mechanisms, and the portfolio of
traits optimal for inoculum performance, would contribute
to designing agronomic applications of these bacteria for
saline-based agriculture (Dodd and Pérez-Alfocea, 2012).

(ii) Knowledge of how the endogenous bacterial and fungal
microbiomes of halophytes contribute to halophyte

resistance to extreme salinity would provide insights into
optimal applications of introduced halotolerant PGPRs.

(iii) Increasing global food production requires improved crop
production not only in saline soils, but also in areas where
the irrigation water is contaminated with salt (Ruppel et al.,
2013). This is an increasing problem in coastal zones and
thus will be increasingly important in many parts of the
world. Halophytes should be explored as a reservoir for
halotolerant PGPRs for uses under these conditions as well
as in saline soils.

(iv) Since the diversity of halotolerant PGPRs in salt-affected
soils and in the microbiome of halophytic plants depends
on soil parameters and plant species (Qin et al., 2016;
Szymańska, et al., 2016), further studies on the diversity
of the microbial communities in the rhizosphere and
endosphere of various halophytic plant species are needed
to clarify and describe these ecological associations in saline
soil-based agriculture.

(v) Knowledge of the signaling mechanisms and factors
influencing the interactions between halotolerant PGPRs
and halophytes and glycophytes in the field will provide
a better understanding of the ecology of these bacteria
and how they have promoted halophyte adaptation to high
salinity environments (Egamberdiyeva and Islam, 2008;
Khan et al., 2016).

(vi) Knowledge of the biochemical and physiological
characteristics of PGPRs associated with halophytes could
facilitate strategies for plant protection and remediation
of saline soils (Ruppel et al., 2013; Egamberdieva and
Lugtenberg, 2014; Khan et al., 2016).

(vii) Agricultural inoculants, including those for bio-stimulation,
often vary in efficacy due, in part, to their strong dependence
on environmental context for activity. Although the
isolation of halotolerant PGPRs from halophytes in saline
soils should increase the probability that the strains are
active in saline soils (Khan et al., 2009), knowledge of the
key environmental traits that influence their activity could
help reduce variation in efficacy. Moreover, isolating PGPRs
from roots under conditions of high alkalinity, acidity or
salinity, drought, high and low temperatures, and flooded
conditions could provide strains or traits that are efficacious
in plant protection or growth promotion under diverse
agricultural conditions (Khan et al., 2016).

(viii) Knowledge of the molecular mechanisms by which salt-
tolerant PGPRs increase plant resistance to salinity may
suggest genetic approaches to engineer bacteria with
enhanced abilities to stimulate plant growth and salinity
tolerance, as well as plants that are improved in their ability
to interact with halotolerant PGPRs (Khan et al., 2016).

(ix) Knowledge of the endophytic and rhizospheric fungi
associated with halophytes and their impacts on halophyte
growth and survival may contribute to additional strategies
for protecting halophyte and non-halophyte plants in saline
soils (Sharma et al., 2016).

(x) To increase our fundamental knowledge of microbial
interactions with halophytes, investigations are needed
that address the specificity of halophyte-microbe
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interactions, the effect of root exudates on these
interactions, and the effect of root exudates on gene
expression related to plant growth promotion and biological
control.

(xi) Lastly, the development of halotolerant PGPRs that can
sustainably improve plant growth under diverse high
salinity crop production conditions requires that the
performance of these strains be examined over long
periods (at least 2 years) on a scale that is relevant to
crop production and under field conditions that provide
a diversity of soil conditions and environmental stresses.
Sustainable improvements in crop productivity may
benefit from strategies that combine PGPRs with stress-
tolerant beneficial fungi, and that involve co-inoculating
multiple PGPRs that alleviate distinct stresses. The latter
is particularly appealing given the co-occurrence of

many stresses, such as drought, salinity, and heavy metal
contamination, in field soils. Importantly, halotolerant
PGPRs that are used effectively in agriculture may
also contribute to applications for phytoremediation,
phytodesalinization, bio-fertilization, and biological
control.
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