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Background

One of the fundamental challenges that has emerged throughout biomedicine is the 

need to establish relationships between disease, physiological processes and the role 

of small molecule therapies. To address this problem, a genomic signature is required 

that should have sufficiently high complexity to provide a rich description for all bio-

logical states, including those that are physiological, related to disease, or induced with 
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a chemical, and that should be generated in a low-cost and high-throughput way. Gene 

expression profiling has been widely applied in medicine and biology to elucidate the 

response mechanism of cells to diseases, genetic interference and drug therapy [1, 2]; 

using this technique, the Connectivity Map (CMap) project has been proposed a system-

atic approach to discover functional connections among diseases, genetic perturbation, 

and drug action. Meanwhile, this study also suggested the value of a large-scale commu-

nity CMap project [3].

Higher requirements have been put forward for the scale of the CMap project, and 

a diversity of chemical perturbations, genetic perturbations, and cell types await to be 

characterized. Unfortunately, although the price of commercial gene expression micro-

arrays has been decreasing steadily, the high cost of profiling thousands of samples 

makes this prospect difficult. �erefore, how to reduce the cost of acquiring gene expres-

sion profiles is the first problem to be solved.

Previous studies have shown that although there are a large number of genes in the 

genome, most of their expression patterns are highly correlated [4, 5]. Cluster analysis of 

single-cell RNA-Seq indicated that genes from the same cluster showed similar expres-

sion patterns under different conditions [6]. Given such high similarity, researchers from 

the Library of Integrated Network-Based Cellular Signatures (LINCS) program hypothe-

sized that it is possible to capture any cellular state at a low cost by measuring a reduced 

representation of the transcriptome [7]. Using Affymetrix HG-U133A microarray data 

from the Gene Expression Omnibus (GEO) [8], these researchers applied an iterative 

peel-off procedure based cluster analysis to identify the subset of universally informative 

transcripts termed ‘landmark genes’. According to the LINCS analysis, a set of ~ 1000 

genes was finally identified as landmark genes, which was sufficient to recover 82% of 

the information in the full transcriptome. �en, the expression profile of the target genes 

was inferred by a linear regression algorithm, which was subsequently improved several 

times to improve the reliability of prediction [9, 10]. Finally, based on the ~ 1000 land-

mark genes, a new, low-cost, high-throughput reduced representation expression profil-

ing method called L1000 was proposed, with which one million profiles were reported 

for the first time [7].

Cluster analysis mostly measures the similarity between variables by linear distance, 

such as Euclidean distance. As nonlinear regulatory relationships between genes are very 

common in biology [11], it is difficult for the ~ 1000 landmark genes inferred by cluster 

analysis to fully represent genomic information. �erefore, a new computational method 

with the capacity to capture the non-linear relationships of genes is needed to re-mine 

the influential genes that cover more information about the genome.

Deep learning, a non-linear network structure using multi-layer non-linear functions, 

has recently emerged based on big data, and academic interest has increased rapidly 

since the early 2000s [12]. Furthermore, the recent success of deep learning in diverse 

fields such as image and speech recognition [13, 14], natural language processing [15, 

16], and bioinformatics [17, 18] suggests its ability to learn hierarchical nonlinear pat-

terns on large data sets. Deep learning can be divided into supervised learning and 

unsupervised learning. �e former mainly includes deep neural network (DNN), convo-

lutional neural network (CNN) and recurrent neural network (RNN) and is mainly used 

for classification tasks such as transcription factor binding site prediction [19], promoter 



Page 3 of 12Kong et al. BMC Bioinformatics           (2021) 22:27  

prediction [20] and predicting the effects of noncoding variants [21]. �e most repre-

sentative of the latter is AutoEncoder, which is commonly used for dimension reduction 

[22] to analyse high-dimensional gene expression data [23, 24] and to integrate heteroge-

neous data [25–27]. As a non-linear feature extraction method, AutoEncoder is capable 

of learning more useful features than linear feature extraction methods, such as princi-

pal component analysis (PCA).

Despite deep neural networks become increasingly popular, there is still a "black box" 

nature that hinders their application when interpretability is paramount. Understand-

ing how an input feature affects a particular input can lead to new scientific discover-

ies. �erefore, multiple studies have been conducted to explain this “black box” [28–30]. 

Similarly, DeepLIFT is an efficient and effective method for computing importance 

scores in a neural network by comparing the activation of each neuron to a reference 

activation [31]. �is method has been successfully applied to visualize splice site-related 

motifs from a trained CNN model [32].

Here, we present a deep learning framework to mine a gene set that can cover more 

genomic information. Specifically, we first constructed an AutoEncoder framework 

using ~ 130,000 gene expression profiles from the GEO Affymetrix microarray plat-

form for training to learn the complex regulatory relationships across genes. Using this 

model, ~ 22,000 dimensional expression data were reduced to only 100. Clustering analy-

sis of lung cancer showed that these 100 dimensional features well represent the bio-

logical information of gene expression data. �en, DeepLIFT was applied to measure 

the impact of each input layer neuron on the bottleneck layer neurons by providing an 

importance score. Using this data-driven approach, we obtained a list of genes that were 

sorted based on the importance score. By extracting genes from top to bottom, a new 

landmark gene set with the same number of genes as the original set from L1000 was 

finally identified. To compare the two landmark gene sets, we next used D-GEX [33] as 

a prediction model to infer the expression profiles of the target genes (besides the land-

mark genes) based on the landmark genes. �e result shows that our landmark gene set 

can predict target genes more accurately and reliably than that of L1000 by comparing 

two performance metrics, MAE and PCC. �erefore, the landmark genes inferred by 

our method truly contain more information about the genome and are more suitable for 

expanding the scale of the CMap project.

Results and discussion

A brief summary of the computational framework

Our computational framework mainly consists of two parts, AutoEncoder-based and 

DeepLIFT-based (Fig. 1, see “Methods” for details). In the AutoEncoder-based part, 

we use ~ 130,000 gene expression profiles to train an AutoEncoder that is composed 

of two steps, encoder and decoder. However, AutoEncoder is a feature extraction 

method that transforms data from the original, high-dimensional space to a rela-

tively low-dimensional space. In other words, new features are generally different 

from original features. Here, the encoder compresses the 22,268 dimensional sam-

ples to 100 dimensions. In the DeepLIFT-based part, we use DeepLIFT to compute 

the importance scores of each input layer neuron on the bottleneck layer neurons. 
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Then, we rank the genes based on the average importance scores, and the new land-

mark genes (see Additional file  1) can be identified by selecting the top 943 genes 

(the same number as the L1000).

Performance evaluation of the AutoEncoder model

After training the AutoEncoder model with GEO-based training samples (99,909), 

we use reserved test samples (11,100) to evaluate its predictive power in both gene 

and sample dimensions. In terms of genes, we use MAE and PCC to measure the 

prediction error and similarity of each gene. As shown in Fig. 2a, the average MAE 

and PCC of all genes are 0.2222 and 0.7627, respectively, and the permutation test 

shows that there is a significant high similarity between the predicted value and the 

real value of almost all genes (21,696/22,268). In terms of samples, we collect 237 

lung cancer samples from the GEO database as new test samples, including 49 nor-

mal samples, 58 lung adenocarcinoma (ADC) samples and 130 lung squamous cell 

carcinoma (SCC) samples. Then, we take the expression profiles of these samples as 

the input of the trained AutoEncoder and use the output of the bottleneck layer to 

cluster the samples. Figure 2b shows that the low dimensional space mapped by the 

trained AutoEncoder well retains the biological information of the samples. All of 

these results show that our trained AutoEncoder can learn the non-linear relation-

ships between genes well.
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Fig. 1 The workflow for mining influential genes based deep learning. a The architecture and parameter 

settings of AutoEncoder. b Application of DeepLIFT to compute the importance scores in the Encoder 

network and use of D-GEX as a baseline method to predict target genes for performance evaluation
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Comparison of the landmark genes

First, we analyse the degree of overlap between our landmark genes (called D1000) 

and the landmark genes from L1000 (called L1000) and find that only 129 genes are 

shared. In addition, to evaluate the performance of the landmark genes inferred by 

our method, we use them as input to infer the expression profile of the target genes 

using a deep learn-based method, D-GEX. �en, we also use the MAE and PCC of 

each common target gene (9163) to compare D1000 with L1000. We define MAE 

and PCC of the target genes inferred from L1000 and D1000 as MAEL1000, MAED1000, 

PCCL1000, and PCCD1000, respectively. As shown in Fig. 3a, b, compared with MAEL1000 

with a value of 0.1129–1.0524, the MAED1000value range is 0.0994–0.6681, and the 

paired t-test shows that MAEL1000 is significantly lower thanMAEL1000 (p < 0.01). Simi-

larly, as shown in Fig. 3c, d, compared with PCCL1000 with a value of 0.0006–0.9875, 

thePCCD1000value range is 0.4764–0.9905, and the paired t-test shows that PCCD1000is 

significantly higher thanPCCL1000 (p < 0.01). Furthermore, allPCCD1000pass the permu-

tation test, but 44 target genes fail inPCCL1000. �ese results show that the new land-

mark genes inferred from our method can predict target genes more accurately and 

robustly than the old landmark genes.

Cross-platform generalization analysis of the landmark genes

RNA-Seq is another high-throughput sequencing platform that has gradually become 

the standard for gene expression profiling. Next, to explore the ability to use land-

mark genes inferred from the microarray-based GEO dataset to infer target genes 

from the RNA-Seq-based expression profiling, we download a RNA-Seq-based gene 

expression profiling containing 2921 samples from GTEx database, and the predicted 

target genes are analysed. �e results indicate that the average MAE and PCC of all 

target genes are 0.4590 and 0.7790 (Fig. 4), respectively, and that 92.51% of the target 

genes pass the permutation test, which shows that the landmark genes have excellent 

cross-platform generalization.

ADC

Normal

SCC

ADC

Normal

SCC

Fig. 2 Performance evaluation of the AutoEncoder model in both gene (a) and sample dimensions (b). a 

The density plots of the predictive error (MAE) and the similarity (PCC) of all genes. b The circular diagram 

of clustering for three types of samples, including normal (Normal), lung adenocarcinoma (ADC) and lung 

squamous cell carcinoma (SCC)
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Fig. 3 The density plot (a, c) and scatter plot (b, d) are used for comparison of the landmark genes inferred 

from our method (labelled as “D1000”) and that of L1000 (labelled as “L1000”) in terms of MAE (a, b) and PCC 

(c, d). In B and D, each dot represents a predicted target gene, and the red dot indicates that D1000 is better 

than L1000

Fig. 4 Cross-platform generalization analysis of the landmark genes inferred from our method
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Functional analysis of the landmark genes

Finally, to analyse whether the landmark genes suggested by our data-driven approach 

based on the analysis of 129,158 samples are enriched in particular known biological 

categories, we study their molecular functions from the perspective of Gene Ontology 

(GO). Given that the landmark genes cover most information about the genome, we 

infer that the landmark genes, when considered as a set, are dominated by either very 

few functions or many functions.

To test this inference, we use the R Bioconductor package clusterProfiler (v3.10.1) 

to apply hypergeometric statistics between the 943 landmark genes and a database of 

1,645 gene sets that come from molecular function terms compiled in Gene Ontology. 

As shown in Fig. 5, we observe only 34 functional categories, most of which tend to be 

basic and generic, such as “DNA binding transcription factor binding”, "GDP binding", 

"enzyme inhibitor activity" and "protease binding", and contain only a small fraction 

of the landmark genes (e.g., "cell adhesion molecule binding" contains 61 of 943 land-

marks). �e results show that no particular functional category dominates the landmark 

genes.

Conclusion

�e central dogma of molecular biology states that the flow of genetic information is 

"DNA to RNA to protein". Current biological studies, such as genomic studies including 

variable splicing and single nucleotide polymorphisms, and epigenomic studies includ-

ing methylation and histone modification, are all ultimately concerned with the regu-

lation of gene expression. �erefore, gene expression patterns can reflect almost every 

aspect of life activities and can be used as genomic signatures to discover the functional 

connections among diseases, genetic perturbation, and drug action.

In this study, we proposed a deep learning-based method to detect influential genes in 

the genome to obtain large-scale expression profiles at lower costs. In a nutshell, this is a 
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question of feature selection. �e computing framework we designed combines AutoEn-

coder and DeepLIFT to assess the impact of each gene in the genome. �e novelty of our 

method comes from (1) the use of a data-driven approach in an unbiased manner rather 

than selecting transcripts based on prior biological knowledge; (2) features are filtered 

out through a computational framework that includes a nonlinear feature extraction 

method AutoEncoder and a feature scoring algorithm DeepLIFT. �e results show that 

using our landmark gene set can predict target genes more accurately and robustly than 

the gene set inferred from cluster analysis and reflects the advantages of deep learning in 

nonlinear computation.

In general, we believe that the method proposed in this paper has two main contribu-

tions. Firstly, the calculation framework of Autoencoder combined with DeepLIFT can 

sort the dimensions by capturing the nonlinear relationship between the dimensions of 

input samples, which provides an idea for solving the problem of feature selection. �en, 

the benchmark genes obtained by our method can be used to establish large-scale com-

pendia of the cellular effects of genetic perturbation in a low-cost and more accurate 

way, which lays the foundation for the subsequent discovery of the mechanism of action 

of small molecules, functionally annotate genetic variants of disease genes, and inform 

clinical trials.

Methods

In this study, our goal is to extract ~ 1000 influential genes from ~ 22,000 genes, which 

is a feature selection problem. Although many feature selection methods such as subset 

selection [34] and random forest35, which are usually used in classification tasks, can 

effectively filter out redundant features, they cannot effectively capture the nonlinear 

relationship between features. In view of the above problems, we designed a computa-

tional framework as follows.

Data sources

In Table  1, three publicly available datasets are used for our analysis: the microarray-

based GEO dataset, the RNA-Seq-based GTEx dataset and the lung cancer subtype 

dataset. �e first two were downloaded from https ://cbcl.ics.uci.edu/publi c_data/D-

GEX/; the latter, from the GEO database.

First, the microarray-based GEO dataset is used to train AutoEncoder. �is dataset 

contains 129,158 gene expression profiles, each of which contains 22,268 probes corre-

sponding to 978 landmark genes and 21,290 target genes. �e original expression data 

are quantile normalized to a range of values between 4 and 15 to remove technical vari-

ation[36]. Considering that a dataset containing a large number of redundant samples 

with high similarity corresponds to low statistical representativeness[37], the k-means 

Table 1 Three expression datasets from the GEO and GTEx databases

Dataset Sample size Platform Database

1 111,009 Microarray GEO

2 2,921 RNA-Seq GTEx

3 237 Microarray GEO

https://cbcl.ics.uci.edu/public_data/D-GEX/
https://cbcl.ics.uci.edu/public_data/D-GEX/
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clustering program is used to remove duplicated profiles. Finally, the remaining 111,009 

samples are randomly divided into ~ 90% (99,909) for training and ~ 10% (11,100) for 

testing.

Next, cross-platform performance can be evaluated based on the RNA-Seq dataset 

from GTEx, which contains 2,921 gene expression profiles of various tissue samples pro-

duced on RNA-Seq platform in the format of reads per kilobase per million (RPKM). 

We refer to the pre-processing protocol used in D-GEX for cross-platform data match-

ing and joint quantile normalization. �e 22,268 probes are finally matched to 10,463 

genes based on Gencode V12 annotations, including 943 landmark genes and 9520 tar-

get genes.

Finally, the lung cancer subtype dataset is used to verify whether AutoEncoder can 

effectively learn biological information. �is dataset contains 237 gene expression pro-

files from the GSE4573 and GSE10072 microarray datasets, including 49 normal sam-

ples, 58 lung adenocarcinoma (ADC) samples and 130 lung squamous cell carcinoma 

(SCC) samples.

AutoEncoder

AutoEncoder is a multi-task unsupervised feed-forward neural network with multi-

ple stacked hidden layers, which is composed of two parts, an encoder and a decoder 

(Fig. 1a). Considering a datasetXwith m samples and n features, the encoderE|X→Yaims 

to map the original data X to the reduced representation Y through the bottleneck layer, 

and the purpose of the decoder D|Y→X is tuned to reconstruct the original data X from 

the low-dimensional representation Y by minimizing the difference betweenX and X̂.

Specifically, we use the Python Keras library to implement an AutoEncoder with three 

hidden layers of 500, 100, and 500 nodes. For a given layer l, we use sigmoid as the acti-

vation function.

 where x is an input vector of size d, wl is the weight matrix of size p × d, and bl is an 

intercept vector of size p. Given a set of gene expression profilescontaining m samples, 

wheredenotes each gene expression profile containing n genes, the input vector is recon-

structed toŜm through a series of matrix transformations of multiple network layers. 

Training an AutoEncoder involves finding parameters θ = (w, b) minimizing a specific 

loss function. Here, we use Mean Absolute Error (MAE) as the loss function.

To control overfitting, we add an L2 regularization penalty α =1e−6 on the weight 

vector. �us, the loss function above becomes:

Finally, AutoEncoder is trained using the Adam [38] optimization algorithm with 100 

epochs and 10% dropout.

o = f1(x) = sigmoid(w1x + bl)
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1
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∣

∣

loss(g , ĝ) =
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DeepLIFT

DeepLIFT is a feature scoring algorithm, which calculating contribution scores by 

comparing the activation of each neuron to its ‘reference activation’ [30]. In contrast 

to most gradient-based methods, using a difference-from-reference allows DeepLIFT 

to propagate an importance signal even in situations where the gradient is zero and 

avoids artifacts caused by discontinuities in the gradient.

In our computing framework, for every gene of input samples, a contribution score 

is firstly calculated by making use of the Rescale Rule of the DeepLIFT algorithm. 

�e obtained contribution scores express the importance of the corresponding genes 

for the compression features of the bottleneck layer. �en, we rank the genes based 

on the importance scores, and the new landmark genes (see Additional file 1) can be 

identified by selecting the top 943 genes (the same number as the L1000). For more 

details on the usage of DeepLIFT, we would like to refer the interested reader to refer-

ence [30].

D-GEX

D-GEX model is a deep learning method to infer the expression of target genes from 

the expression of landmark genes [9]. To test the reliability of the landmark genes 

derived from the AutoEncoder combined with DeepLIFT method, we use D-GEX 

model to compare the ability of the landmark genes to infer target gene expression 

with the L1000 method. In our study, we used the default parameters of D-GEX.

Evaluation metrics

Given a test set = (s1…,Sm)containing samples, we use two different metrics for the 

evaluation of predicted expression. For each gene gj, the definition of MAE is:

�e following equation shows the definition of PCC:

 where indicates the Pearson correlation coefficient for the j-th predicted gene and µj , µ̂j 

are the mean of gj , ĝjrespectively.

�e Pearson correlation coefficient, an absolute measure of similarity between 

genes, does not in itself reflect how uncommon that similarity is. Hence, we apply a 

permutation test to aid in the interpretation of similarity. Briefly, in addition to com-

puting thebetween gj and ĝj , we also compute thebetween the ĝjand any gene other 

thanas a reference distribution of similarity values. After that, we compareto, and if 

the fraction of that is higher than is lower than 0.01, gj and ĝjare considered to be sig-

nificantly correlated.

MAEj =
1

m

m
∑
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(
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