
Journal of Computer Science 2 (1): 76-81, 2006
ISSN 1549-3636
©) 2006 Science Publications

Corresponding Author: R.S. Thakur, Department of Master in computer Application, Govt. Geetanjali Girls’ College, Bhopal
(M.P.) India

76

Mining Level-Crossing Association Rules from Large Databases

1R.S. Thakur, 2R.C. Jain and 3K.R. Pardasani

1Department of Master in computer Application, Govt. Geetanjali Girls’ College, Bhopal (M.P.) India
2Department of Computer Application, SATI, Vidisha (M.P.) India

3Department of Mathematics, Maulana Azad National Institute of Technology,
Bhopal (M.P.) India

Abstract: Existing algorithms for mining association rule at multiple concept level, restricted mining
strong association among the concept at same level of a hierarchy. However mining level-crossing
association rule at multiple concept level may lead to the discovery of mining strong association
among at different level of hierarchy. In this study, a top-down progressive deepening method is
developed for mining level-crossing association rules in large transaction databases by extension of
some existing multiple-level association rule mining techniques. This method is using concept of
reduced support and refine the transaction table at each level.

Key words: Mining algorithms, mining association rules, level-crossing association rules

INTRODUCTION

 Studies on mining association rules have evolved
from techniques for discovery of functional
dependencies[1], strong rules[2], classification rules[3,4],
causal rules[5], clustering[6], etc. to disk-based,
efficient methods for mining association rules in
large sets of transaction data[7-10]. However, previous
work has been focused on mining association rules at
a single concept level as well as multiple-level. There
are applications, which need to find “level-crossing”
associations at multiple concept levels. For example,
besides finding 80% of customers that purchase milk
may also purchase bread, it could be informative to
also show that 75% of people buy wheat bread if they
buy 2% milk or 70% of people buy milk if they buy
wheat bread. The association relationship in the latter
statement is expressed at a lower level but often
carries more specific and concrete information than
that in the former. This requires progressively
deepening the knowledge mining process for finding
refined knowledge from data. The necessity for
mining multiple level (level-crossing) association
rules or using taxonomy information at mining
association rules has also been observed by other
researchers[8,11].
 To confine the association rules discovered to be
strong ones, that is, the patterns which occur
relatively frequently and the rules which demonstrate
relatively strong implication relationships, the
concepts of minimum support and minimum
confidence have been introduced[7,8]. For mining
level-crossing association rules at multiple
concept level, concept taxonomy should be

provided for generalizing primitive level
concepts to high level ones.
 In many applications, the taxonomy
information is either stored implicitly in the
database, such as “Wonder wheat bread is a
wheat bread which is in turn a bread’, or
computed elsewhere[3]. Thus, data items can be
easily generalized to multiple concept levels.
 In this study, a top-down progressive
deepening method is developed by extension of
some existing algorithms for mining single and
multilevel association rules. The method first
finds large data items at the top-most level and
then progressively deepens the mining process
into their large descendants at lower concept
levels. At each lower level, find level-crossing
association rule among frequent item at same
level and frequent itemsets of all upper levels.
Due to pruning uninteresting data items at each
level generation of candidate sets is getting
minimum at each lower concept levels.

MULTIPLE LEVEL ASSOCIATION
RULES

 We assume that the database contain 1) an item
data set which contain the description of each item in
I in the form of (Ai, descriptioni), where Ai ∈ I and
2) a transaction data set, � , which consists of a set of
transaction (Ti {Ap….., Aq}), where Ti is a transaction
identifier and Ai ∈ I (for i = p……q).
 To find relatively frequent occurring patterns
and reasonably strong rule implications, a user or an
expert may specify two thresholds: minimum support,
�’ and minimum confidence , �’. Notice that for
finding level-crossing association rules, different

J. Computer Sci., 2 (1): 76-81, 2006

 77

minimum support and/or minimum confidence can be
specified at different levels.

Definition 1: A pattern A is large in set S at level l if
the support of A is no less then its corresponding
minimum support threshold �’l . A rule “A � B/S” is
strong if , for a set S, each ancestor (i.e. the
corresponding high-level item) of every item in A and
B, if any , is frequent at its corresponding
level “A ∧ B/S ” is frequent (at the current level) and
the confidence of “A � B/S ” is no less then
minimum confidence threshold at the current level.
 The definition implies a filtering process which
confines the pattern to be examined at lower level to
be only those with large support at their
corresponding high level. Based on this definition,
the idea of mining level-crossing association rules is
illustrated below.

Table 1: A sales transaction table
transaction_id bar_code_set
351428 {17325, 92108, 55349, ….}
982510 {92458, 77451, 60395, . . . }
 { . . . , . ..}

Example 1: Let the query be to find level-crossing
association at concept of multiple-level in the
database in Table 1 for the purchase patterns related
to category, content and brand of the food which can
only be stored for less than three weeks.

Table 2: A sales_item (description) relation
Bar_code category brand content size storage_pd price
17325 milk foremost 2% 1(ga.) 14(day) $3.89
….. ….. …… ….. …… …….
 …..

Table 3: A generalized sales_item description table
GID bar_code_set category content brand
112 {17325, 31414, 91265 } Milk 2% foremost
….. {……………} …… ……. ………

 The relevant part of the sales item description
relation in Table 2 is fetched and generalized into a
generalized sales_item description table, as shown in
Table 3, in which is tuple represent a generalized
item which is the merge of a group of tuples which
share the same values in the interested attributes. For
example, the tuple with the same category, content
and brand in Table 1 are merged into one, with their
bar codes replaced by a bar-code set. Each group is
then treated as an atomic item in the generation of the
lowest level association rules. For example, the
association rule generated regarding to milk will be
only in relevance to (at the low concept levels) brand
(such as Dairyland) and content (such as 2%) but not
to size, producer, etc.
 The taxonomy information is provided
implicitly in Table 3. Let category (such as
"milk") represent the first-level concept, content

(such as "2%") for the second level one and
brand (such as "Foremost") for the third level
one. The table implies a concept tree like Fig. 1.
The process of mining level-crossing association
rules is actually will be starting from level
second, but first discover large patterns at the
top-most concept level similar to Hen and Fu[11].
Let the minimum support at this level be 5% and
the minimum confidence be 50%. One may find
the large 1-itemset: “bread (25%), meat(10%),
milk (20%), vegetable(30%)”.
 At the second level, only the transactions which
contain the large items at the first level are examined.
Let the minimum support at this level be 2% and the
minimum confidence be 40%. One may find the
frequent 1-itemsets: “lettuce (10%), wheat
bread(15%), white bread(10%), 2% milk(10%), ….” ,
then level-crossing large 2-itemsets will be : “ � milk,

wheat bread (6%) � , � bread, 2% milk(4%) � ,…..”
and strong level-crossing association rule: “milk
�wheat bread(60%), bread � 2% milk, ”, etc.
 The process repeats at even lower concept level
until no large patterns can be found.

Fig. 1: A taxonomy for the relevant data items

METHOD FOR MINING LEVEL-
CROSSING ASSOCIATION RULES

 A method for mining “level-crossing”
association rules is introduced in this section, which
uses a hierarchy information encoded transaction
table[11]. This is based on the following
consideration. First, a data mining query is usually in
relevance to only a portion of the transaction
database, such as food instead of all the items. It is
beneficial to first collect the relevant set of data and
then work repeatedly on the task-relevant set.
Second, encoding can be performed during the
collection of task-relevant data and thus there is no
extra “encoding pass” required. Third, an encoding
string, which represents a position in a hierarchy,
required less bits than the corresponding object-
identifier or bar-code.
 To simply our discussion, an abstract example,
which simulates the real life example of Example 1,
is analyzed as follows:

Example 2: As stated above, the taxonomy
information for each (grouped) item in Example 1 is

J. Computer Sci., 2 (1): 76-81, 2006

 78

encoded as a sequence of digits in the transaction
table � [1] (Table 4). For example, the item ‘2%
Foremost milk’ is encoded as ‘112’ in which the
digit, ‘1’, represents ‘milk’ at level-1, the second, ‘1’,
for ‘2%(milk)’ at level-2 and the third, ‘2’, for the
brand ‘Foremost’ at level-3. Similar to Agrawal and
Srikant[8], repeated items (i.e., items with the same
encoding) at any level will be treated as one item in
one transaction.
Table 4: Encoded transaction table: � [1]
TID Items
T1 {111, 121, 211, 221}
T2 {111, 211, 222, 323}
T3 {112, 122, 221, 411}
T4 {111, 121}
T5 {111,122,211,221, 413}
T6 {113, 323, 524}
T7 {131, 231}
T8 {323, 411, 524, 713}

 The derivation of the large itemsets at level 1
proceeds as follows. Let the minimum support be 4
transactions (i.e., minsup[1] = 4). (Notice since the
total number of transactions is fixed, the support is
expressed in an absolute value rather then a relative
percentage for simplicity). The level-1 derivation of
large itemset as done[11] i.e., large 1-itemset table
� [1,1] can be derived by scanning ��[1] and � [1,1] is
then used to filter out (1) any item which is not large
in a transaction and (2) the transactions in � [1]
which contain only small items. This results in a
filtered transaction table ��[2] of Fig. 2. Now large
2-itemset table ��[1,2] can be derived by scanning
��[2].
Level-1 minsup=4
Level-1 large 1-itemsets: �� [1,1]
Itemset Support
{1**} 7
{2**} 5

Filtered transaction table: � [2]
TID Items

T1 {111,121,211,221}
T2 {111,211,222}

T3 {112,122,221}

T4 {111,121}

T5 {111,122,211,221}

T6 {113}

T7 {131,231}

Level-1 Large 2-Itemsets: � [1,2]
Itemset Support
{1**,2**} 4
Fig 2: Large itemsets at level 1 and filtered transaction table :� [2]

According to the definition of ML-association rules,
only the descendants of the large item at level-1
(i.e., in � [1,1]) are considered as candidate in the
level-2 large 1-itemsets. Let minsup[2] = 3.

 The derivation of level-2 large item sets
generates the same large 1-itemsets � [2,1] (can be
derived from the filtered transaction table � [2] by
accumulating the support count and removing those
whose is smaller then the minimum support, which
results in ��[2,1]. ��[2,1] is then used filter out any
item which is not large in a transaction and the
transaction in � [2] which contain only small items.
This results in a filtered transaction table � [3] i.e.
pruning of infrequent items at each level) as shown
in Fig. 3. However, the candidate items are not
confined to pairing only those in ��[2,1] because the
item in � [2,1] can be paired with those in � [1,1] as
well, such as {11*, 1**} (for potential association like
“milk � 2% milk”), or {11*, 2**}(for potential
association like “2% milk � bread”).These candidate
large 2-itemsets will be checked against ��[3] to find
large items (for the level-mixed nodes, the minimum
support at lower level, i.e., minsup[2], can be used as
a default). Such a process generate the large
2-itemsets table � [2,2] as shown in Fig. 3.
Level-2 minsup=3

Level-2 large 1-itemsets: �� [2,1]
Itemset Support

{11*} 6
{12*} 4
{21*} 3
{22*} 4

Filtered transaction table: ��[3]
TID Items
T1 {111,121,211,221}

T2 {111,211,222}

T3 {112,122,221}

T4 {111,121}

T5 {111,122,211,221}

T6 {113}

Level-2 large 2-itemsets: �� [2,2]
Itemset Support
{11*, 12*} 4
{11*, 21*} 3
{11*, 22*} 4
{12*, 22*} 3
{21*, 22*} 3
{11*, 2**} 4
{12*, 2**} 3
{21*, 1**} 3
{22*, 1**} 4

Level-2 large 3-itemsets: �� [2,3]
Itemset Support

{11*, 12,*, 22*} 4
{21*, 22,*, 1**} 3
Fig 3: Large itemsets at level 2 and filtered transaction table :� [3]

J. Computer Sci., 2 (1): 76-81, 2006

 79

 Notice that the table does not include the 2-item
pair formed by an item with its own ancestor such as
� {11*, 1**}, 5 � since its support must be the same
as its corresponding large 1-itemset in � [2,1], i.e.,
� {11*}, 5 � , based on the set containment
relationship: any transaction that contains {11*} must
contain {1**} as well.
 Similarly, the level-2 large 3-itemsets � [2,3] can
be computed, with the results shown in Fig. 3 also,
the entries which pair with there own ancestors are
not listed here since it is contained implicitly in their
corresponding 2-itemsets. For example,
� {11*, 12*},4 � in ��[2,2] implies � {11*,12*,1**},4 �
in ��[2,3].
Level-3 minsup=3

Level-3 large 1-itemsets: �� [3,1]
Itemset Support

{111} 4
{211} 4
{221} 3

Filtered transaction table: � [4]
TID Items

T1 {111,211,221}

T2 {111,211}

T3 {221}

T4 {111}

T5 {111,211,221}

Level-3 large 2-itemsets: �� [3,2]

Itemset Support
{111, 211} 3
{111, 21*} 3
{111, 2**} 3
{11*, 211} 3
{1**, 211} 3
Fig 4: Large itemsets at level 3 and filtered transaction table :� [4]

 Finally, the large 1-itemsets table at level–3,
��[3,1], should be the same as Fig. 3 (can be derived
from the filtered transaction table � [3] and generate
transaction table � [4] by filtering table � [3]). The
large 2-itemset table includes more itemsets since
these items can be paired with higher level large
items, which leads to the large 2-itemsets � [3,2] and
large 3-itemsets � [3,3] as shown in Fig. 4. similarly,
the itemsets {111, 11*} and {111, 1**} have the same
support as {111} in � [3,1] and are thus not include
in � [3,2].
 Since the large k-itemset (k > 1) tables do not
explicitly include the pair of items with their own
ancestors, attention should be paid to include them at
the generation of association rules. However, since
the existence of a special item always indicates the

existence of an item in that class, such as
“2% milk � milk (100%)”, such trivial rules should
be eliminated. Thus, only nontrivial implications,
such as “milk � 2% milk (70%)”, will be considered
in the rule generation.
 The above discussion leads to the following
algorithm for mining strong level-crossing
association rules.

Algorithm 1: Find large item sets for mining
strong level-crossing association rules in a
transaction database.

Input: (1) � [l], a hierarchy-information-encoded
and task-relevant set of transaction database, in the
format of � TID, Itemset � , in which each item in the
Itemset contains encoded concept hierarchy
information and (2) the minimum support threshold
(minsup[l]) for each concept level l.

Output: level-crossing large item sets.

Method: A top-down, progressively deepening pro-
cess which collects large item sets with level-crossing
at different concept levels as follows:

 Starting at level 1, derive for each level l, the
large k-items sets, � [l ,k] , for each k and the large
item set����� [l] (for all k's), as follows:

1. l := 1; Temp:= 0; ��[l , Temp] := 0;
2. for (l := 1; � [l ,1] � 0 and l< max_level;

l++) do
3. { � [l ,1] := large_1_itemsets(� [l], l);
4. � [l , Temp] := � [l , Temp] � � [l ,1];

5. � [l+1] := filtered_t_table(� [l], � [l ,1]);

 6. for (k := 2; � [l , k-1] � 0; k++) do
 7. { if l = 1 then
 8. {Ck := get_candidate_set (� [l ,k-1]);}
 9. else { if k = 2 then
 10. {Ck := get_crosslevel_candidate_set

(� [l ,Temp]);}
11. else{Ck:=get_crosslevel_candidate_set
 (� [l ,k-1]);}
12. }
13. foreach transaction t ∈ � [l +1] do
14. { Ct := get_Subsets(Ck, t);
15. foreach candidate c ∈ Ct do
16. c.support++;
17. }
18. � [l ,k]:= {c∈ Ck |c.support � minsup[l]}
19. }
20. ��� [l] := � K � [l ,k] ;
21 }

J. Computer Sci., 2 (1): 76-81, 2006

 80

Procedure filtered_t_table(�� [l]: transaction
table at level l)

1. {
2. foreach transaction t ∈ � [l] do
3. { for all item set i ∈ t
4. if (i ∈ t) ∧ (i ∉ � [l, 1])
5. Delete i from t ;
6. Add t to � [l +1] ;
7. }
8. }

Procedure get_crosslevel_candidate_set(� [l ,k-1] :

frequent (k-1)-itemsets at level l)
1. { foreach itemset l1 ∈ � [l ,k-1]
2. foreach itemset l2 ∈ � [l ,k-1]
3. if (l1 [1] = l2 [1]) ∧ (l1 [2] = l2 [2]) ∧ …
 ∧ (l1 [k-2] = l2 [k-2])
 ∧ (l1 [k-1] < l2 [k-1]) then
4. c = l1 join l2;
5. if has_ancestor_itemset_pair(c) then
6. delete c ;
7. if has_infrequent_subset(c, � [l ,k-1]) then
8. delete c ;
9. else add c to Ck ;
10. }

Procedure has_ancestor_itemset_pair(c:
 candidate set of cross level)
1. { foreach itemset i ∈ c
2. foreach itemset j ∈ c
3. if i is ancestor of j then
4. return True;
5. return False;
6. }

Explanation of algorithm 1: According to
Algorithm 1, the discovery of large support items at
each level l proceeds as follows. At level-1, the
large itemsets derived as done in [11] i.e., 1-itemsets
� [l,1] is derived from � [1] by “large_1_itemsets
(� [1] , l)”, at any other level l, � [l,1] is derived
from � [l] by “ large_1_itemsets(� [1] , l)”, after
scanning the transaction table, filter out those items
whose support is smaller then minsup[l]. The filtered
transaction table � [2] is derived by “filtered_t_table
(� [1], � [1,1])”, which uses � [1,1] as a filter to
filter out any item which is not large at level-1 and
the transactions which contain no large items.
 For k > 1 itemset table at level-1 is derived as
done in the apriori candidate generation
algorithm [8], i.e., first compute the candidate set
from � [l, k-1] then count support of each item of
candidate set in � [l + 1] and collect only those
itemsets into � [l, k] which has support count no less
then minsup[l].

 At each level l >1 for k = 2 compute the
candidate set from � [l, Tamp] (is a union of large
1-itemset of all previous levels) by procedure
get_crosslevel_candidate_set(� [l, Tamp]) but for
k > 2 , procedure get_crosslevel_candidate_set
(�� [l, k-1]) is used. The procedure
has_ancestor_itemset_pair(c) is used for
removing those candidate set which has a item is
ancestor of other items in c and procedure
has_infrequent_subset(c, ��[l ,k-1]) work done
as in the apriori candidate generation algorithm
[8], i.e. remove those candidate set which has
infrequent subset.
 The large itemsets at level l, ��� [l], is the union
of � [l, k] for all the k’s. After finding the large
itemsets, the set of association rules for each level l
can be derived from the large itemsets ����[l] based
on the minimum confidence at this level, minconf[l].

CONCLUSION

 We have extended the scope of the study of
mining association rules among from concept at the
same level of a hierarchy to concept of different level
of hierarchy in multiple concept level and studied
new method for mining level-crossing association
rules from large transaction databases. A top-down
progressive deepening technique is design for mining
level-crossing association rules, which extends the
existing single and multilevel association rule mining
algorithms and explore techniques for sharing data
structure and intermediate results across level.
Deriving a new filtered transaction tables at each
processing level, this method will do less processing
work and generate minimum candidate sets.

REFERENCES

1. Mannila, H. and K.J. Raiha, 1987.

Dependency inference. In Proc. Intl. Conf.
Very Large Data Bases, Brighton, England, pp:
155-158.

2. Piatetsky-Shapiro, G., 1991. Discovery, analysis
and presentation of strong rules. In G.
Piatetsky-Shapiro and W. J. Frawley, (Eds.),
Knowledge Discovery in Databases, AAAI/MIT
Press, pp: 229-238.

3. Han, J., Y. Cai and N. Cercone, 1993. Data-
driven discovery of quantitative rules in
relational databases. IEEE Trans. Knowledge
and Data Engineering, 5: 29-40.

J. Computer Sci., 2 (1): 76-81, 2006

 81

4. Quinlan, J.R., 1992. C4-5: Programs for Machine
Learning. Morgan Kaufmann.

5. Michalski, R.S. and G. Tecuci, 1994. Machine
Learning, A Multistrategy Approach. Vol. 4.
Morgan Kaufmann.

6. Fisher, D., 1987. Improving inference through
conceptual clustering. In Proc. AAAI Conf.,
Seattle, Washington, pp: 461-465.

7. Agrawal, R., T. Imielinski and A. Swami, 1993.
Mining association rules between sets of items
in large databases. In Proc. ACM-SIGMOD
Intl. Conf. Management of Data, Washington,
D.C., pp: 207-216.

8. Agrawal, R. and R. Srikant, 1994. Fast
algorithms for mining association rules. In Proc.
Intl. Conf. Very Large Data Bases, Santiago,
Chile, pp: 487-499.

9. Agrawal, R. and R. Srikant, 1995. Mining
sequential patterns. In Proc. Intl. Conf. Data
Engineering, Taipei, Taiwan.

10. Park, J.S., M.S. Chen and P.S. Yu, 1995. An
effective hash-based algorithm for mining
association rules. In Proc. ACM-SIGMOD Intl.
Conf. Management of Data, San Jose, CA.

11. Hen, J. and Y. Fu. 1999. Mining multiple-level
association rules in large databases. In IEEE
Trans. Knowledge and Data Engineering, vol.
11: 5.

