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Motivation

Our goal: Malware detection!

Why? Social impact!

• Malware in the news!

• We are all collateral damage!

Huge technological challenge!

• 286 million new malware variants in 2010 ([Fossi et al.])
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Motivation

Our goal: Malware detection!

Why? Social impact!

• Malware in the news!

• We are all collateral damage!

Huge technological challenge!

• 286 million new malware variants in 2010 ([Fossi et al.])

We need automation!
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Existing anti-malware technology

Emulation based

• Time limited

• Behavior hiding

Signature matching based

• Easy to avoid detection by syntactic manipulation!
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Malware detection
More robust techniques

Solution
One needs to analyse the behavior not the syntax of the program
without executing it!
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Malware detection
More robust techniques

Solution
One needs to analyse the behavior not the syntax of the program
without executing it!

Model checking is a good candidate!
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Model checking for malware detection

|=Program Malicious behavior
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Model checking for malware detection

|=Program Malicious behavior

Model?
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Model checking for malware detection

|=Program Malicious behavior

Model?
Specification formalism
to describe behaviors?
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Previous approaches on model checking for malware
detection

Use finite state models

• (E.g. Kinder et al. [2010],Bonfante et al. [2008])

• But the model fails to capture stack behavior!

Why is the stack important?

Malware writers use the stack to obfuscate their behaviour.
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Example of obfuscation

E.g. call obfuscation:

l1 : push m

l2 : push 0

l3 : call GetModuleFileName

lr : . . .

l1 : push m

l2 : push 0

l3 : push lr
l4 : jmp lg
lr : . . .

Import address table

lg GetModuleFileName
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Example of obfuscation

E.g. call obfuscation:

l1 : push m

l2 : push 0

l3 : call GetModuleFileName

lr : . . .

l1 : push m

l2 : push 0

l3 : push lr
l4 : jmp lg
lr : . . .

Import address table

lg GetModuleFileName

Our solution is:
To use pushdown systems that is a finite state system + a stack
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We use PDS (FSS + stack!)

Pushdown systems (PDS)

A PDS is a triple P = (P , Γ,∆) where:

• P is a finite set of control points,

• Γ is a finite alphabet of stack symbols, and

• ∆ ⊆ (P × Γ)× (P × Γ∗) is a finite set of transition rules.

Configurations

• A configuration 〈p, ω〉 of P is an element of P × Γ∗
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PDS for malware detection

Since 2012 PDS have been used to perform malware
detection!

• FM [Song and Touili, 2012b]

• TACAS [Song and Touili, 2012a]

POMMADE tool (FSEN [Song and Touili, 2013])

• Logic to specify malicious behaviors.

• Few malicious behaviors (discovered manually!)
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PDS for malware detection

Since 2012 PDS have been used to perform malware
detection!

• FM [Song and Touili, 2012b]

• TACAS [Song and Touili, 2012a]

POMMADE tool (FSEN [Song and Touili, 2013])

• Logic to specify malicious behaviors.

• Few malicious behaviors (discovered manually!)

Our contribution in this work is to
Show how to automatically extract the malicious behaviors from a
set of malware!
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Model checking for malware detection

|=Program Malicious behavior

PDS Specification??
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Example of an email worm behavior

Assembly fragment from Bagle malware

l1 : push m

l2 : push 0

l3 : call GetModuleFileName
...

l4 : push m

l5 : call CopyFile

Self-replication!
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System call dependency trees (SCDT)

l1 : push m

l2 : push 0

l3 : call GetModuleFileName
...

l4 : push m

l5 : call CopyFile

GetModuleFileName

CopyFile0

1 2  1

Self-replication!
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Model checking for malware detection

To summarize

|=Program Malicious behavior

PDS SCDT
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Roadmap

Introduction

Mining specifications

Detecting malware

Results
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How to automatically discover malicious SCDTs from
programs?

Approach

Learning!

Given a:

• set of already known malicious programs

• set of already known benign programs

The goal is

To extract SCDTs and use statistical machinery to distinguish the
malicious ones!
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How to extract SCDTs from a program?

1. Model binaries as pushdown systems (mimic program
behaviors)
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2. Static reachability analysis (discover system calls)
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How to extract SCDTs from a program?

1. Model binaries as pushdown systems (mimic program
behaviors)

2. Static reachability analysis (discover system calls)

3. Extract behaviors (discover data flows encoded as trees)
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Learning malicious trees

MalSCDT malicious behavior trees
A malicious behavior tree is a tree that occurs frequently in
malware extracted SCDTs!

To compute frequent “subtrees” we use gSpan!

We specialize the frequent subgraph algorithm presented in [Yan
and Han, 2002] to the case of trees.



Introduction Mining specifications Detecting malware Results References

Roadmap

Introduction

Mining specifications

Detecting malware

Results
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Model checking for malware detection

In summary we want to verify that:

|=Program Malicious behavior

PDS MalSCDT
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Recognizing MalSCDT

A problem!

MalSCDT
SCDT extracted from
program under test

GetModuleFileName

CopyFile0

1 2  1

...

GetModuleFileName

...CopyFile

...

0

1
2  1

...

Use automata with regexps!

GetModuleFileName(q∗1(0)q∗2  1(CopyFile) q∗) → qfin
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Teaching computers to detect malware

Build malicious behaviors database

1. Build an hedge automaton A (recognizing MalSCDT)
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Teaching computers to detect malware

Build malicious behaviors database

1. Build an hedge automaton A (recognizing MalSCDT)

Malware detection

1. Model binary as PDS (mimic program behavior)
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Introduction Mining specifications Detecting malware Results References

Teaching computers to detect malware

Build malicious behaviors database

1. Build an hedge automaton A (recognizing MalSCDT)

Malware detection

1. Model binary as PDS (mimic program behavior)

2. Static reachability analysis (discover system calls)

3. Extract SCDT (discover data flows encoded as a tree)

4. Check wether SCDT belongs to A
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Roadmap

Introduction

Mining specifications

Detecting malware

Results
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Results

• Implemented the approach in a tool called PYRAMID

• Learned MalSCDT from a set of malware

• Tested them on another set of malware

• Compared the results with traditional antivirus



Introduction Mining specifications Detecting malware Results References

Implementation

PYRAMID in learning mode

MSDN ×
PE

pyramidLearn

pommade

(PDS × API) pyramidExtract SCDT
gspan MalSCDT

inferAut

×MSDN

HELTA
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PYRAMID in detection mode

MSDN × PE pyramidCheck

pommade

(PDS × API) pyramidExtract SCDT

pyramidMatch

×MSDN

yes/no?×HELTA

×HELTA
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Experimental results

Learning experimental phase

From 193 malware files we obtained 1026 MalSCDT

Detection experimental phase

• Detected 983 malware instances from 330 families (5× bigger)

• Detection in 2.15s in average

• Correctly classified as non-malware 250 benign programs files
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Results comparison

Procedure

• Submitted the “malware” files to 48 antivirus tools

• Categorized the antivirus performance in 4 classes
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Results comparison

Procedure

• Submitted the “malware” files to 48 antivirus tools

• Categorized the antivirus performance in 4 classes

Outcome

• 99% of the malware files were detected by the top 10% tools!

• Our tool detects real malware!

• In average the tools only detected 80% of the files!
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Results comparison

Performance #Antivirus Detection range

very good 5 99.1% to 99.5%
good 19 95.0% to 99.1%
bad 19 40.0% to 95.0%
very bad 5 8.0% to 40.0%

Table: Performance categories
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Results comparison
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Thank you for your attention!
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Experiments

Learning

From 193 malware files we obtained 1026 MalSCDT

Detection

• Detected 983 malware instances from 330 families (5× larger)

• Detection in 2.15s in average

• Correctly classified as non-malware 250 benign programs files
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