
Introduction Mining specifications Detecting malware Results References

Mining malware specifications through static
reachability analysis

Hugo Daniel Macedo1 Tayssir Touili2

1INRIA Rocqencourt

2LIAFA Univ. Paris 7

November 4, 2013

Introduction Mining specifications Detecting malware Results References

Motivation

Our goal: Malware detection!

Why? Social impact!

• Malware in the news!

• We are all collateral damage!

Huge technological challenge!

• 286 million new malware variants in 2010 ([Fossi et al.])

Introduction Mining specifications Detecting malware Results References

Motivation

Our goal: Malware detection!

Why? Social impact!

• Malware in the news!

• We are all collateral damage!

Huge technological challenge!

• 286 million new malware variants in 2010 ([Fossi et al.])

We need automation!

Introduction Mining specifications Detecting malware Results References

Existing anti-malware technology

Emulation based

• Time limited

• Behavior hiding

Signature matching based

• Easy to avoid detection by syntactic manipulation!

Introduction Mining specifications Detecting malware Results References

Malware detection
More robust techniques

Solution
One needs to analyse the behavior not the syntax of the program
without executing it!

Introduction Mining specifications Detecting malware Results References

Malware detection
More robust techniques

Solution
One needs to analyse the behavior not the syntax of the program
without executing it!

Model checking is a good candidate!

Introduction Mining specifications Detecting malware Results References

Model checking for malware detection

|=Program Malicious behavior

Introduction Mining specifications Detecting malware Results References

Model checking for malware detection

|=Program Malicious behavior

Model?

Introduction Mining specifications Detecting malware Results References

Model checking for malware detection

|=Program Malicious behavior

Model?
Specification formalism
to describe behaviors?

Introduction Mining specifications Detecting malware Results References

Previous approaches on model checking for malware
detection

Use finite state models

• (E.g. Kinder et al. [2010],Bonfante et al. [2008])

• But the model fails to capture stack behavior!

Why is the stack important?

Malware writers use the stack to obfuscate their behaviour.

Introduction Mining specifications Detecting malware Results References

Example of obfuscation

E.g. call obfuscation:

l1 : push m

l2 : push 0

l3 : call GetModuleFileName

lr : . . .

l1 : push m

l2 : push 0

l3 : push lr
l4 : jmp lg
lr : . . .

Import address table

lg GetModuleFileName

Introduction Mining specifications Detecting malware Results References

Example of obfuscation

E.g. call obfuscation:

l1 : push m

l2 : push 0

l3 : call GetModuleFileName

lr : . . .

l1 : push m

l2 : push 0

l3 : push lr
l4 : jmp lg
lr : . . .

Import address table

lg GetModuleFileName

Our solution is:
To use pushdown systems that is a finite state system + a stack

Introduction Mining specifications Detecting malware Results References

We use PDS (FSS + stack!)

Pushdown systems (PDS)

A PDS is a triple P = (P , Γ,∆) where:

• P is a finite set of control points,

• Γ is a finite alphabet of stack symbols, and

• ∆ ⊆ (P × Γ)× (P × Γ∗) is a finite set of transition rules.

Configurations

• A configuration 〈p, ω〉 of P is an element of P × Γ∗

Introduction Mining specifications Detecting malware Results References

PDS for malware detection

Since 2012 PDS have been used to perform malware
detection!

• FM [Song and Touili, 2012b]

• TACAS [Song and Touili, 2012a]

POMMADE tool (FSEN [Song and Touili, 2013])

• Logic to specify malicious behaviors.

• Few malicious behaviors (discovered manually!)

Introduction Mining specifications Detecting malware Results References

PDS for malware detection

Since 2012 PDS have been used to perform malware
detection!

• FM [Song and Touili, 2012b]

• TACAS [Song and Touili, 2012a]

POMMADE tool (FSEN [Song and Touili, 2013])

• Logic to specify malicious behaviors.

• Few malicious behaviors (discovered manually!)

Our contribution in this work is to
Show how to automatically extract the malicious behaviors from a
set of malware!

Introduction Mining specifications Detecting malware Results References

Model checking for malware detection

|=Program Malicious behavior

PDS Specification??

Introduction Mining specifications Detecting malware Results References

Example of an email worm behavior

Assembly fragment from Bagle malware

l1 : push m

l2 : push 0

l3 : call GetModuleFileName
...

l4 : push m

l5 : call CopyFile

Self-replication!

Introduction Mining specifications Detecting malware Results References

System call dependency trees (SCDT)

l1 : push m

l2 : push 0

l3 : call GetModuleFileName
...

l4 : push m

l5 : call CopyFile

GetModuleFileName

CopyFile0

1 2 1

Self-replication!

Introduction Mining specifications Detecting malware Results References

Model checking for malware detection

To summarize

|=Program Malicious behavior

PDS SCDT

Introduction Mining specifications Detecting malware Results References

Roadmap

Introduction

Mining specifications

Detecting malware

Results

Introduction Mining specifications Detecting malware Results References

How to automatically discover malicious SCDTs from
programs?

Approach

Learning!

Given a:

• set of already known malicious programs

• set of already known benign programs

The goal is

To extract SCDTs and use statistical machinery to distinguish the
malicious ones!

Introduction Mining specifications Detecting malware Results References

How to extract SCDTs from a program?

1. Model binaries as pushdown systems (mimic program
behaviors)

Introduction Mining specifications Detecting malware Results References

How to extract SCDTs from a program?

1. Model binaries as pushdown systems (mimic program
behaviors)

2. Static reachability analysis (discover system calls)

Introduction Mining specifications Detecting malware Results References

How to extract SCDTs from a program?

1. Model binaries as pushdown systems (mimic program
behaviors)

2. Static reachability analysis (discover system calls)

3. Extract behaviors (discover data flows encoded as trees)

Introduction Mining specifications Detecting malware Results References

Learning malicious trees

MalSCDT malicious behavior trees
A malicious behavior tree is a tree that occurs frequently in
malware extracted SCDTs!

To compute frequent “subtrees” we use gSpan!

We specialize the frequent subgraph algorithm presented in [Yan
and Han, 2002] to the case of trees.

Introduction Mining specifications Detecting malware Results References

Roadmap

Introduction

Mining specifications

Detecting malware

Results

Introduction Mining specifications Detecting malware Results References

Model checking for malware detection

In summary we want to verify that:

|=Program Malicious behavior

PDS MalSCDT

Introduction Mining specifications Detecting malware Results References

Recognizing MalSCDT

A problem!

MalSCDT
SCDT extracted from
program under test

GetModuleFileName

CopyFile0

1 2 1

...

GetModuleFileName

...CopyFile

...

0

1
2 1

...

Use automata with regexps!

GetModuleFileName(q∗1(0)q∗2 1(CopyFile) q∗) → qfin

Introduction Mining specifications Detecting malware Results References

Teaching computers to detect malware

Build malicious behaviors database

1. Build an hedge automaton A (recognizing MalSCDT)

Introduction Mining specifications Detecting malware Results References

Teaching computers to detect malware

Build malicious behaviors database

1. Build an hedge automaton A (recognizing MalSCDT)

Malware detection

1. Model binary as PDS (mimic program behavior)

Introduction Mining specifications Detecting malware Results References

Teaching computers to detect malware

Build malicious behaviors database

1. Build an hedge automaton A (recognizing MalSCDT)

Malware detection

1. Model binary as PDS (mimic program behavior)

2. Static reachability analysis (discover system calls)

Introduction Mining specifications Detecting malware Results References

Teaching computers to detect malware

Build malicious behaviors database

1. Build an hedge automaton A (recognizing MalSCDT)

Malware detection

1. Model binary as PDS (mimic program behavior)

2. Static reachability analysis (discover system calls)

3. Extract SCDT (discover data flows encoded as a tree)

Introduction Mining specifications Detecting malware Results References

Teaching computers to detect malware

Build malicious behaviors database

1. Build an hedge automaton A (recognizing MalSCDT)

Malware detection

1. Model binary as PDS (mimic program behavior)

2. Static reachability analysis (discover system calls)

3. Extract SCDT (discover data flows encoded as a tree)

4. Check wether SCDT belongs to A

Introduction Mining specifications Detecting malware Results References

Roadmap

Introduction

Mining specifications

Detecting malware

Results

Introduction Mining specifications Detecting malware Results References

Results

• Implemented the approach in a tool called PYRAMID

• Learned MalSCDT from a set of malware

• Tested them on another set of malware

• Compared the results with traditional antivirus

Introduction Mining specifications Detecting malware Results References

Implementation

PYRAMID in learning mode

MSDN ×
PE

pyramidLearn

pommade

(PDS × API) pyramidExtract SCDT
gspan MalSCDT

inferAut

×MSDN

HELTA

Introduction Mining specifications Detecting malware Results References

PYRAMID in detection mode

MSDN × PE pyramidCheck

pommade

(PDS × API) pyramidExtract SCDT

pyramidMatch

×MSDN

yes/no?×HELTA

×HELTA

Introduction Mining specifications Detecting malware Results References

Experimental results

Learning experimental phase

From 193 malware files we obtained 1026 MalSCDT

Detection experimental phase

• Detected 983 malware instances from 330 families (5× bigger)

• Detection in 2.15s in average

• Correctly classified as non-malware 250 benign programs files

Introduction Mining specifications Detecting malware Results References

Results comparison

Procedure

• Submitted the “malware” files to 48 antivirus tools

• Categorized the antivirus performance in 4 classes

Introduction Mining specifications Detecting malware Results References

Results comparison

Procedure

• Submitted the “malware” files to 48 antivirus tools

• Categorized the antivirus performance in 4 classes

Outcome

• 99% of the malware files were detected by the top 10% tools!

• Our tool detects real malware!

• In average the tools only detected 80% of the files!

Introduction Mining specifications Detecting malware Results References

Results comparison

Performance #Antivirus Detection range

very good 5 99.1% to 99.5%
good 19 95.0% to 99.1%
bad 19 40.0% to 95.0%
very bad 5 8.0% to 40.0%

Table: Performance categories

Introduction Mining specifications Detecting malware Results References

Results comparison

py
ra
m
id

ve
ry
go
od

go
od

av
er
ag
e

ba
d

ve
ry
ba
d

40

60

80

100

p
er
ce
n
ta
ge

malicious benign no answer

Introduction Mining specifications Detecting malware Results References

Thank you for your attention!

Introduction Mining specifications Detecting malware Results References

Bibliography
Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion.

Morphological detection of malware. In International Conference

on Malicious and Unwanted Software, 2008. doi:
10.1109/MALWARE.2008.4690851.

M. Fossi, G. Egan, K. Haley, E. Johnson, T. Mack, T. Adams,
J. Blackbird, M.K. Low, D. Mazurek, D. McKinney, et al.
Symantec internet security threat report trends for 2010.

Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, and
Helmut Veith. Proactive Detection of Computer Worms Using
Model Checking. IEEE Trans. on Dependable and Secure

Computing, 2010.
Fu Song and Tayssir Touili. Pushdown model checking for malware

detection. In TACAS, 2012a.
Fu Song and Tayssir Touili. Efficient malware detection using

model-checking. In FM, 2012b.
Fu Song and Tayssir Touili. PoMMaDe: Pushdown model-checking

for malware detection, 2013.
Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure

Introduction Mining specifications Detecting malware Results References

Experiments

Learning

From 193 malware files we obtained 1026 MalSCDT

Detection

• Detected 983 malware instances from 330 families (5× larger)

• Detection in 2.15s in average

• Correctly classified as non-malware 250 benign programs files

	Introduction
	Mining specifications
	Detecting malware
	Results

