
ORIGINAL ARTICLE

Mining metabolites: extracting the yeast metabolome
from the literature

Chikashi Nobata • Paul D. Dobson •

Syed A. Iqbal • Pedro Mendes • Jun’ichi Tsujii •

Douglas B. Kell • Sophia Ananiadou

Received: 18 June 2010 / Accepted: 12 October 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Text mining methods have added considerably

to our capacity to extract biological knowledge from the

literature. Recently the field of systems biology has begun to

model and simulate metabolic networks, requiring knowl-

edge of the set of molecules involved. While genomics and

proteomics technologies are able to supply the macromo-

lecular parts list, the metabolites are less easily assembled.

Most metabolites are known and reported through the sci-

entific literature, rather than through large-scale experi-

mental surveys. Thus it is important to recover them from

the literature. Here we present a novel tool to automatically

identify metabolite names in the literature, and associate

structures where possible, to define the reported yeast me-

tabolome. With ten-fold cross validation on a manually

annotated corpus, our recognition tool generates an f-score

of 78.49 (precision of 83.02) and demonstrates greater

suitability in identifying metabolite names than other

existing recognition tools for general chemical molecules.

The metabolite recognition tool has been applied to the lit-

erature covering an important model organism, the yeast

Saccharomyces cerevisiae, to define its reported metabolo-

me. By coupling to ChemSpider, a major chemical database,

we have identified structures for much of the reported me-

tabolome and, where structure identification fails, been able

to suggest extensions to ChemSpider. Our manually anno-

tated gold-standard data on 296 abstracts are available as

supplementary materials. Metabolite names and, where

appropriate, structures are also available as supplementary

materials.

Keywords Text mining � Named entity recognition �
Yeast metabolome

1 Introduction

Modern molecular biology is a science dominated by very

large quantities of data, yet most useful knowledge remains

locked in the scientific literature. Though large this

Electronic supplementary material The online version of this
article (doi:10.1007/s11306-010-0251-6) contains supplementary
material, which is available to authorized users.

C. Nobata � P. Mendes � J. Tsujii � S. Ananiadou

School of Computer Science, The University of Manchester,

Oxford Road, Manchester, UK

C. Nobata � S. A. Iqbal � J. Tsujii � S. Ananiadou

National Centre for Text Mining (NaCTeM), Manchester

Interdisciplinary Biocentre (MIB), Manchester, UK

P. D. Dobson � D. B. Kell

School of Chemistry, The University of Manchester,

Oxford Road, Manchester, UK

S. A. Iqbal

Plastic and Reconstructive Surgery Research (PRSR),

Manchester Interdisciplinary Biocentre (MIB),

Manchester, UK

P. Mendes

Virginia Bioinformatics Institute, Virginia Tech,

Blacksburg, VA, USA

J. Tsujii

Department of Computer Science, University of Tokyo,

Tokyo, Japan

C. Nobata (&)

1.001 Manchester Interdisciplinary Biocentre,

131 Princess Street, Manchester M1 7DN, UK

e-mail: chikashi.nobata@manchester.ac.uk

123

Metabolomics

DOI 10.1007/s11306-010-0251-6

http://dx.doi.org/10.1007/s11306-010-0251-6


literature can be efficiently explored through text mining,

the application of computational methods to identify and

extract entities and their relationships from text (Ananiadou

and McNaught 2006). Already there are many text mining

services for biology that enrich papers with semantic

annotations for richer querying and also to extract relations

between annotated entities. To illustrate some of these to

the uninitiated, in current biological text mining it is pos-

sible to identify proteins within text (Rebholz-Schuhmann

et al. 2007; Nobata et al. 2008), pull out their physical

interactions (Miyao et al. 2009) and associations with

disease states, phenotypes and other terms (Hoffmann and

Valencia 2005; Tsuruoka et al. 2008). One can also resolve

biological abbreviations (Okazaki et al. 2010), resolve

species ambiguity (Wang et al. 2010), or make semanti-

cally rich queries over the literature (‘‘what activates p53?’’

being a more meaningful search than simply ‘‘p53 activa-

tion’’) (Miyao et al. 2006). For most applications leading

methods compare favourably to expert annotators, but of

course can be applied on a much larger scale, which is

simple using workflow systems (Kano et al. 2009, 2010).

Indeed, owing to the increasing rate of scientific publica-

tion it is clear that increased automation through text

mining is the only way to reach a useful understanding of

the biological literature (Ananiadou et al. 2006, 2010).

In the post-genomic era we are beginning to be able to

properly consider molecular biology as the integrated

system it evidently is through the burgeoning discipline of

systems biology (Kell 2009). Underpinning systems biol-

ogy are ideas connecting data-rich experimental approa-

ches and computational simulations (Mendes et al. 2009) of

the underlying biochemistry to move toward ever more

accurate depictions of how life operates at the molecular

level. It is therefore necessary to understand the network of

interactions and reactions that occur in the cell, most use-

fully in a standardized format such as SBML (Hucka et al.

2003, 2004). Such reconstructions have benefitted greatly

from genome-driven identification of the metabolic

enzymes and transporters that constitute the macromolec-

ular ‘parts list’ of metabolism. The remaining molecular

species required are the small endogenous molecules of

the metabolome. While increasingly identified by high-

throughput experiments, most knowledge of metabolites

and their reactions is primarily reported in the scientific

literature. Considerable manual efforts have extracted

metabolite information from papers into metabolite data-

bases such as HMDB (Wishart et al. 2009) and reaction

databases such as KEGG (Kanehisa and Goto 2000;

Kanehisa et al. 2006, 2010) and BioCyc (Karp et al. 2005)

and major community efforts have led to robust and well-

annotated reaction networks defined in SBML. It remains

the case, however, that the very large literature around our

organism of interest, the yeast Saccharomyces cerevisiae,

still harbors many uncaptured metabolites. Through the

application of methods of text mining and cheminformatics

we have addressed this issue to detect and structurally

identify novel metabolites to move toward defining the

reported yeast metabolome for consideration in future

metabolic network reconstructions.

Few small molecule resources are limited solely to

metabolites (much less only to yeast metabolites) owing to a

lack of consensus among biologists upon the definition

of metabolism. Without a strict definition it is inevitable that

drug, nutrient and other molecules at the boundary of metab-

olism are arbitrarily included or excluded from different

metabolite resources according to idiosyncrasies of database

requirements or annotator interpretation. Our challenge here is

not to remedy this by the imposition of a particular definition

of metabolism but to replicate the standard of manually-

curated databases without too much focus upon the ill-defined

region. In utilizing text mining approaches to emulate the

somewhat subjective and rather ill-defined biologist’s concept

of metabolism the challenge is different to related work on

chemical text mining (Banville 2006; Corbett and Copestake

2008; Jiao and Wild 2009; Pirkola 2008; Townsend et al.

2004; Wilbur et al. 1999; Wren 2006), the scope of which, by

contrast, is rather easier to define and mark up in documents.

The broader scope of these tools leads to the identification of

many chemicals that are not metabolites. While they are of

relevance it is the narrower focus of the metabolite mining task

that precludes the direct application of existing chemical name

recognition tools.

The identification of metabolite names within the scien-

tific literature by text mining is only one part of the problem.

Once a metabolite name is found it is most useful to identify

its molecular structure. Various mechanisms for converting

chemical names into structures exist. Some rely upon sys-

tematic naming conventions (for example, IUPAC nomen-

clature) that can be interpreted (Corbett and Murray-Rust

2006; Eller 2006; Klinger et al. 2008), yet metabolites do not

tend to follow rigorously such approaches, while others are

primarily underpinned by large chemical dictionaries (Het-

tne et al. 2009; Klinger et al. 2008; Brecher 1999; Goebels

et al. 1991; Wisniewski 1990). Given the tendency for non-

standard naming of metabolites, plus the size and machine

accessibility through web services of ChemSpider (2007) it

forms the basis of our name to structure conversions.

Detecting metabolites in text is here posed as a Named

Entity Recognition (NER) task. NER is a technique that finds

the boundary and the semantic category of specific terms in

text. NER was originally defined for information extraction

from news-wire articles (MUC6 1995), in which NE cate-

gories are proper nouns (such as person names and location

names) and numeral expressions (such as date and the

amount of money). The same technique has also been applied

in the biomedical domain to annotate protein, gene or
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organism names (Takeuchi and Collier 2002; Kim and Tsujii

2002; Kazama et al. 2002; Kim et al. 2003, 2004; Tsuruoka

and Tsujii 2004; Cohen 2005; Finkel et al. 2005; Hirschman

et al. 2005; Krallinger et al. 2005). In this paper, we report the

manually annotated corpus we created for metabolite NER

and the evaluation results of the NER system trained on the

corpus. We also apply the NER system to a large set of un-

annotated abstracts from the yeast literature to extract novel

metabolites. These entities are then mapped by name to

ChemSpider to resolve their structures and move toward

definition of the reported yeast metabolome.

2 Materials and methods

2.1 Construction of manually annotated data

Two domain experts (Annotator A and B) annotated

metabolite expressions in the MEDLINE (2007) abstracts.

The target documents are 296 MEDLINE abstracts inclu-

ded in the version 1 of the yeast metabolic network

reconstruction (Herrgård et al. 2008). Each domain expert

annotated metabolite and also enzyme names in the

abstracts. The annotations were restricted to only those

names that appear in the context of metabolic pathways.

For example, in the sentence ‘‘glucose is an economically

important chemical in the food industry’’ the role of glu-

cose is not as a metabolite. When a metabolite name

appears as a part of an enzyme name, the metabolite part is

not annotated (e.g. ‘‘diadenosine hexaphosphate hydro-

lases’’ is annotated as enzyme, and the part of ‘‘diadenosine

hexaphosphate’’ is not annotated as metabolite).

In this work we have focused on the annotation of

metabolite names and therefore the enzyme annotations

were used only to exclude a metabolite name when part of

an enzyme name. The gold-standard (consensus) data are

created by integrating these two manual annotations.1 The

evaluation results of two manual annotations compared to

the gold-standard data are shown in Table 1. The f-score2

of the data is 88.49 (Annotator A), 78.35 (Annotator B).

The difference in annotations between Annotators was

mainly due to Annotator B annotating more compared to

Annotator A. This also demonstrates the ambiguity that can

arise in annotating metabolites, as defining ‘‘a metabolite’’

is itself inherently difficult.

2.2 Methods of named entity recognition

Our method of recognizing NEs is similar to the system

described in (Sasaki et al. 2008), which consists of two

components. The first part, dictionary-based tagging, finds

candidates for entities using a dictionary, and the second

part is a supervised method trained with the results of

dictionary-based NER and manually annotated data.

The first part uses dictionary information of metabolites

from the yeast consensus metabolic reconstruction, and

annotates metabolite names included in the abstracts. It

also uses enzyme term lists (Bairoch 2000) so that the

system can ignore metabolite names as a part of enzyme

names (Table 2).3

The second part, statistical sequential labeling is a

supervised method with manually annotated data. The

module uses results of dictionary-based NER as well as

word, orthographic and Part-of-Speech information as

features to predict the NE labels. We also added the results

of the dictionary lookup with ChEBI (Degtyarenko et al.

2008) and HMDB (Wishart et al. 2009) data as one of

features. Table 3 shows the statistics of entries obtained

from the databases used in annotating metabolites.

We use an open-source morphological analyzer Mecab

(2008) as a POS tagger. Word features are the surface form

of the word and the postfixes (the last two and four letters

of the word). Orthographic features are the first letter and

the last four letters of the word form, in which capital

letters in a word are normalized to ‘‘A’’, lower case letters

Table 1 Evaluation of manually annotated data

Data # Metabolites Recall Precision f-score

Annotation A 1743 85.86 91.28 88.49

Annotation B 1986 81.17 75.73 78.35

Gold-standard 1853 – – –

Table 2 Numbers of entries used in dictionary-based NER

DB Types Terms

Yeast consensus v.1 664 2,748

ENZYME 4,905 20,566

1 Both annotators A and B discussed and checked the gold-standard

data. The annotator A is senior to annotator B in terms of experience

of annotation and years in biochemistry and therefore made the final

decision.
2 The metrics are derived as follows from the so-called confusion

matrix described in (Broadhurst and Kell 2006):

Recall Rð Þ ¼ TP= TPþ FNð Þ
Precision Pð Þ ¼ TP/ TPþ FPð Þ
F-Score ¼ 2 � P � R= Pþ Rð Þ Harmonic mean of P and Rð Þ

where TP (true positive) is the number of correct entities that are also

annotated in the results, FP (false positive) the number of wrongly

annotated entities, and FN (false negative) is the number of correct

entities that are not annotated.

3 To filter out some ambiguous terms that frequently appear we used

a word list (all. 10–20 list) included in Spell Checking Oriented Word

Lists (SCOWL) (Atkinson 2004), which is used in a spell checker

program (GNU Aspell 2004).
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are normalized to ‘‘a’’, and digits are replaced by ‘‘0’’, e.g.,

the word form of IL-2 is AA-0.

The NE labels adopts IOB2 format (Sang and Veenstra

1999), i.e. the first token of the target sequence is labeled

with ‘‘B’’ of ‘‘Beginning’’ (e.g. B-metabolite), the inter-

mediate and the last tokens in the target sequence are

labeled with ‘‘I’’ of ‘‘Intermediate’’ (e.g. I-metabolite) and

other tokens are labeled just as ‘‘O’’ of ‘‘Others’’. For

instance, the sequence ‘‘7-keto-8-aminopelargonic acid’’ is

annotated as ‘‘B-metabolite I-metabolite I-metabolite’’.

Models of Conditional Random Fields (CRFs) (Lafferty

et al. 2001) are used to predict the IOB2 labels with the

above features.4

2.3 Cheminformatics workflows

All cheminformatics workflows were implemented in

Pipeline Pilot (Accelrys, San Diego, CA). ChemSpider

searches and retrieval utilized the ChemSpider search web

service.5 Clustering of non-unique hits was performed

using the ‘Cluster Molecules’ component in a connectivity

fingerprint space (FCFP4) at a maximum Tanimoto dis-

tance of 0.15 (Dobson et al. 2009). Lists of molecules were

collapsed using the ‘Merge molecules’ component that acts

upon canonical SMILES representations of molecular

structure.

3 Results and discussion

3.1 Evaluation of the NER system on a test corpus

We conducted an experiment to evaluate our NER system

with a manually annotated corpus. As stated before, the

corpus contains 296 abstracts included in the yeast con-

sensus metabolic reconstruction with annotations of

metabolites and enzymes. Enzyme annotations are only

used to select proper metabolite names; the system does not

annotate enzyme names. Table 4 shows the evaluation

results of the annotation. The dictionary-based NER system

(Dict-NER) identifies metabolites purely by reference to

dictionaries, whereas the supervised NER system (CRF-

NER) extends this through learning from linguistic cues

using the annotated corpus. The CRF-NER system is

evaluated with6 ten-fold cross validation. By applying CRF

to the result of dictionary-based NER, the system was able

to improve the f-score from 63.66 to 78.49.

We also compared evaluation results to those available

through Whatizit pipelines (Rebholz-Schuhmann et al.

2007). Whatizit is a text processing system that identifies

molecular biology terms in text. Whatizit pipelines relevant

to metabolite annotations are three pipelines that annotate

chemical entities (whatizitOscar3, whatizitChebiDict, and

whatizitChemicals). The whatizitOscar3 pipeline provides

annotations of chemical entities by Oscar3 (Corbett and

Murray-Rust 2006; Batchelor and Corbett 2007), and

whatizitChebiDict provides annotations of ChEBI entities

based on a dictionary approach. The whatizitChemicals

pipeline contains annotations of both whatizitOscar3 and

whatizitChebiDict pipelines as well as Drugs and Protein

names. The evaluation results are shown in Table 5.

For the results from Oscar3, we compared entities

annotated as CM (Chemical Molecules) and as ONT

(ontology terms) with the test corpus, and ignored other

categories (i.e. CPR, RN, ASE) because they don’t include

metabolite annotations. For the results from chemicals, we

showed two results. The best precision and f-score are

achieved when only the CM and Drug names are used in

evaluation (CM, DRUG). The best recall is achieved when

all annotated categories except for Oscar 3’s ignored cat-

egories are used in evaluation (CM, ONT, DRUG,

PROTEIN).

We see that though their recalls are higher than our

system, but their precisions and f-scores are lower than our

system because of annotations of non-metabolites. Because

these pipelines intend to annotate general chemical entities,

the annotation results include more false positives than our

system for metabolite annotations.

For example, underlined expressions in the following

sentence are annotated with the whatizitChemicals pipe-

line, but these are not suitable as annotation for metabolite

names: The YJR019C product is highly similar to tesB, a

bacterial acyl-CoA thioesterase, and carries a tripeptide

Table 4 Evaluation of experimental results with the test corpus

System Recall Precision f-score

Dict-NER 59.42 68.56 63.66

CRF-NER 74.42 83.02 78.49

Table 3 Numbers of entries extracted from databases

DB Types Terms

HMDB 7,983 76,191

ChEBI 454,455 529,189

4 We use the CRF?? (2003) toolkit to acquire the CRF model for

NER.
5 http://www.chemspider.com/Search.asmx?WSDL.

6 Ten-fold cross validation is a method to evaluate the system. First

the data are split randomly into ten parts. nine parts are then used as

training data, and the remaining part used as testing data. This

procedure is repeated ten times so that each part is used as testing

data. In this experiment, all results are gathered and compared with

gold-standard data to evaluate as if all abstracts are one large

document.
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sequence, alanine-lysine-phenylalanineCOOH, that closely

resembles the consensus sequence for type-1 peroxisomal

targeting signals.

3.2 Name to structure via ChemSpider

The metabolite recognition tool was applied to the corpus

covering S. cerevisiae (Gene Literature 2010) taken from

Saccharomyces Genome Database (SGD) (2010), which

contains about 53,000 MEDLINE abstracts. The probability

generated from the CRF model is attached to each entity to

indicate its most plausible annotation. If the same entity is

annotated more than once in the set of documents its highest

probability is assigned. Results are summarized in Table 6.

The tool identifies 4,326 unique metabolite names. 2,441

(56%) of these are known from the dictionaries used in

training. 1,885 (44%) are potentially novel metabolites not

found in the dictionaries. All names were searched against

the chemical database ChemSpider to identify appropriate

structures. Of the 1,885 potentially novel metabolites

ChemSpider searches return one or more hits for 1,245

names, the service fails on 7 names, and does not match any

record for 633 names (33% of novel names). These 633

names therefore represent molecules that are not named in

ChemSpider (as of 29 March 2010) and can be found in

supplementary table S1. From the training dictionaries

2,441 names are detected. ChemSpider searches return one

or more hits for 2,338 of these names; the service fails once,

and does not match any record for 102 names. These 102

names can be found in supplementary table S2.

As is to be expected, the majority of names from the

dictionaries (96%) match some record in ChemSpider,

unlike one-third of novel names that do not. Of the 1,245

novel and 2,338 dictionary matches against ChemSpider,

1,228 and 2,305 structural records were retrieved (with web

service failures accounting for the remainder). 620 (50% of

1228) novel and 1,267 (55% of 2305) names match one and

only one structure. Collapsing these down to remove

structural redundancy (where identical structures are

merged into one record on the basis of their canonical

SMILES representation) the 620 novel names become 528

unique structures, and the 1,267 dictionary names become

1,003 unique structures. Removing redundancy from the

union of both sets yields 1,435 unique chemical structures.

These can be found in supplementary table S3.

Searches can hit multiple structures owing to duplicated

synonyms on multiple ChemSpider records (for example,

‘glucose’ matches structures that only differ in the detail to

which stereochemistry is specified), or because upon fail-

ing to match exactly the search service breaks the query

string into parts for approximate matching and retrieves

multiple inappropriate structures that only correspond to

parts of the name. In the former case minor structural

variants (charge, stereochemistry, and so on) are likely and

not overly difficult to reconcile manually, whereas the

latter case is not useful in the context of name to structure

conversion. To discriminate between these scenarios the

results are clustered by molecular structure (maximum

cluster Tanimoto distance of 0.15 in FCFP4 space). 608

novel and 1,038 dictionary non-unique matches form one

and only one tight cluster 139 and 389 times respectively.

The remaining 469 and 649 names with hits that form more

than one tight cluster are likely ChemSpider mismatches

that may further extend the database in the same way as

names that do not match at all. These incorrect structural

matches are reported in tables S5 (dictionary names) and

S6 (novel names). All 528 queries that generate only one

cluster are reported with structures and ChemSpider iden-

tifiers in supplementary table S4.

3.3 Discussion

Metabolic network reconstructions for systems biology

require knowledge of the list of ‘molecular parts’ involved.

Table 5 Evaluation of Whatizit results with the test corpus

Whatizit pipeline Recall Precision F-score

Oscar3 (CM) 85.97 37.65 52.37

Oscar3 (CM, ONT) 87.48 26.91 41.16

ChebiDict 76.96 31.53 44.73

Chemicals (CM, DRUG) 82.89 42.92 56.55

Chemicals (CM, ONT,

DRUG, PROTEIN)

88.88 19.84 32.43

Table 6 Summary of name to structure efforts. ‘All names’ is the

number of names detected by NER, including duplicates

All names 80650

Unique names 4326

Known names 2441

Potentially novel names 1885

No matches 735

Mismatches 1118

Unique matches 1887

Near matches 528

Service failures 7

Unique structures 1435

‘Unique names’ is this set with duplicates removed. ‘No matches’ is

the set of names that do not match any ChemSpider record, ‘mis-

matches’ are those matches that appear to be incorrect (as judged by

structurally clustering hits). Structural information is associated

through unique (only one match) and near matches (matching a set of

related molecules) with 2,415 names (55% of all unique names).

Removing structural redundancy from the 1,887 unique matches

yields 1,435 structures. (Rows 5–7 do not sum to 4,326 as some

names match the same ChemSpider record)
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Macromolecular components can largely be elucidated

from the genome, yet the endogenous small molecules

remain mostly understood through the scientific literature.

Extraction of metabolites from the literature is an arduous

task for a well-studied organism such as S. cerevisiae on

which well over 100,000 papers have been published. Text

mining approaches are absolutely required.

The task of metabolite recognition is inherently difficult

as there is no real consensus among biologists on the

definition of metabolites and metabolism. Despite this

metabolic databases, even though potentially polluted with

non-metabolites or liable to omit real metabolites, are of

tremendous value in metabolomics and in guiding meta-

bolic network reconstructions. Here we have constructed

our metabolite recognition tool to emulate how these

valuable databases are constructed by allowing the slack

definition to remain.

The gold-standard corpus of 296 MEDLINE abstracts,

created by two independent annotators working to agreed

guidelines, contains 1,853 annotations. The corpus is pro-

vided as stand-off annotations in supplementary material

S7. Agreement between annotators is slightly lower than for

similar NER tasks, largely due to ambiguity in the definition

of metabolites. Expert comparable performance on this

corpus generates an f-score of 78.35 (the lower annotator’s

f-score). The metabolite NER reported here achieves

slightly better with an f-score of 78.49.

It is not possible to draw very close comparisons to

competing methods as the NER method is the first of its

kind to focus specifically upon recognition of endogenous

metabolites. There are, however, chemical recognition tools

to detect any type of small molecule in text. Being more

general means such tools tend to out-perform our method by

recall but are considerably bettered in terms of precision.

For example, as a metabolite recognition tool (which it is

not) the Whatizit Chemicals pipeline ‘erroneously’ identi-

fies 1,695 chemicals that are not metabolites in our corpus.

Here the benefit of a metabolite-focused NER becomes

apparent as a far more focused and manageable 220 false

positives are generated, many of which, on closer analysis,

appear to be attributable to misannotations (particularly

where the definition of metabolism is problematic). In

the sentence ‘‘\metabolite[Thioredoxin\/metabolite[has

been implicated in the reduction of PAPS in Saccharomyces

cerevisiae.’’, for example, ‘thioredoxin’ has not been

annotated as a metabojlite, presumably as it is a protein

encoded in the genome, but in many ways it is functionally

more akin to metabolites and, by some definitions, might

be considered as such. Curation of metabolite NER false

positives will be a more efficient way to extend metabolite

dictionaries than general chemical recognition tools.

The metabolite recognition tool was applied to the

abstracts of yeast papers collated by SGD to identify the

reported yeast metabolome. Owing to its size and high

level of curation the ChemSpider database formed the basis

of efforts to annotate names with structural information.

735 identified names do not match any record and 1,118

names match improperly. These 1,853 names represent

possible extensions to ChemSpider. 1,887 names match

one and only ChemSpider record. 528 names match sets of

very closely related structures, most likely due to similar

structures improperly sharing synonyms, and require fur-

ther curation to identify the correct form. In total some

level of structural annotation has been attached to 2,415

names. The 1,887 uniquely-matched names collapse to

1,435 structures. Although 55% of unique names could be

associated with some structural information, it is clear from

NER performance on the manually annotated corpus and

examination of names not matched by ChemSpider that

many unmatched names are real yeast metabolites. To

augment the outstanding 45% of names with structural

information, improved name to structure methods are

required. Given the non-standard nature of many metabo-

lite names the most successful approach is likely to be

based on extending ChemSpider (and similar databases)

rather than algorithm-driven. Extensions will need to cover

more metabolites and improve synonym listings. The

ability to automatically mine metabolites from the litera-

ture in a robust and discriminating fashion is essential

to this problem of efficiently extending metabolite dat-

abases and continuing to improve metabolic network

reconstructions.

4 Concluding remarks

The author have created an NER system for metabolites

using term lists from the yeast consensus metabolite

reconstruction and trained with annotation data that we

manually created from 296 MEDLINE abstracts. Our NER

system generates an f-score of 78.49 with ten-fold cross

validation, which is comparable to the lower annotator’s

f-score 78.35. We have also applied our NER to about

53,000 MEDLINE abstract corpus covering S. cerevisiae,

and the recognized names are searched against Chem-

Spider, a major chemical database, to identify appropriate

structures. We have identified structures for 55% of unique

names (2,415/4,326), and also found many real yeast

metabolites among unmatched names, which are good

candidates to extend metabolite databases. Defining the

reported yeast metabolome has created a useful resource

for the yeast and metabolomics communities. It is antici-

pated that the metabolite NER will also be of value for

other organisms, although should be used with caution. An

important future direction is to automatically recognize

reactions and metabolic pathways described in documents,
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eventually moving toward a fully-automated network

reconstruction platform for systems biology. NER for

metabolites is a vital step toward this.
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