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Abstract

We present an algorithm to find fragments in a set
of molecules that help to discriminate between different
classes of, for instance, activity in a drug discovery context.
Instead of carrying out a brute-force search, our method
generates fragments by embedding them in all appropriate
molecules in parallel and prunes the search tree based on
a local order of the atoms and bonds, which results in sub-
stantially faster search by eliminating the need for frequent,
computationally expensive reembeddings and by suppress-
ing redundant search. We prove the usefulness of our al-
gorithm by demonstrating the discovery of activity-related
groups of chemical compounds in the well-known National
Cancer Institute’s HIV-screening dataset.

1. Introduction

Many data mining tasks in bioinformatics consist in ana-
lyzing large collections of molecules with the goal to find
some regularity among molecules of a specific class. Possi-
ble applications are manifold. One example is drug discov-
ery, where the biologist wants to find new drug candidates
based on experimental evidence of activity against a cer-
tain disease gathered by screening hundreds of thousands
of molecules. A second, more recent emphasis comes from
chemical synthesis success prediction, where the goal is to
find molecular features that inhibit the desired reaction.

Current approaches to find regularities among molecules
are often based on so-called descriptors, which usually con-
sist of thousands of binary features, representing (some-
times in a hashed manner) certain substructures of interests,
such as aromatic rings or some other predefined small group
of atoms [4]. Other descriptors model pairwise atom dis-
tances or 3D molecule arrangements. Prediction algorithms
then simply use a distance function on these descriptors to
define similarity between molecules. More sophisticated
algorithms attempt to find boolean combinations of some
of these features that are related to different classes [10].
Approaches that try to regard molecules as graphs and de-

rive similarity measures based on transformations of these
graphs were also proposed [9]. However, such notions of
similarity, based on a particular descriptor with a corre-
sponding metric, only model limited aspects of molecular
similarity well. Therefore attempts to directly extract rel-
evant substructures from a collection of molecules are of
persistent interest.

Recently an approach was presented that finds linear frag-
ments [7], i.e. chains of atoms, using an algorithm similar to
the well-known Apriori association rule mining method [1].
However, the restriction to linear fragments is limiting in
many real-world applications, since substructures of inter-
est often contain rings or branching points. Nevertheless,
the idea to use an association rule mining algorithm by re-
garding the molecules as a set of nodes (instead of the usual
bit sets) has sparked considerable interest. A more recent
approach [5] finds arbitrary connected substructures by de-
riving canonical labels for each graph. The search is again
based on the Apriori algorithm and hence still relies on
frequent reembeddings of fragments in order to determine
valid intermediate candidates throughout the search.

In this paper we present an algorithm that also finds ar-
bitrary connected substructures but avoids frequent reem-
beddings by using a different search strategy. The algo-
rithm maintains parallel embeddings of a fragment into all
molecules throughout the growth process and exploits a lo-
cal order of the atoms and bonds of a fragment to prune the
search tree, which results in faster search and allows for a
restricted depth first search algorithm, similar to the Eclat
association rule mining algorithm [12].

We first present the main algorithm, followed by a discus-
sion of results obtained on the HIV-screening dataset from
the National Cancer Institute [11] and conclude with a brief
discussion of possible extensions of our method.

2. The Induction Algorithm

In this section we describe our algorithm by developing it
from algorithms for the well-known task of association rule
induction. We start by reviewing the search schemes for fre-

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1183885
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65705
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6570/


a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

�����
a AAb

PPPPc
XXXXX

d

�
��b BBc ZZd c JJd d

��c eed d d

d

Figure 1: A search tree for five items a,b,c,d,e.

quent itemsets in Section 2.1 and then transfer their ideas to
the more complicated case of finding molecular substruc-
tures in Section 2.2. In Section 2.3 we describe how our
algorithm prunes the search tree based on a local order of
the atoms and bonds of a fragment. In section 2.4 we dis-
cuss a simple example and in Section 2.5 we study why it
is impossible to avoidall redundant search. Finally, in Sec-
tions 2.6 and 2.7, we describe how to embed core structures
to start the search from and how to find contrast structures
that distinguish between groups of molecules.

2.1. Association Rules and Frequent Itemsets

The induction of association rules is a powerful method for
market basket analysis, which aims at finding regularities in
the shopping behavior of customers of supermarkets, mail-
order companies, on-line shops and the like. With it one
tries to find sets of products that are frequently bought to-
gether, so that from the presence of certain products in a
shopping cart one can infer (with a high probability) that
certain other products are present. The main difference to
our task of finding frequent substructures of molecules is
that in market basket analysis we have only simplesets of
itemsto deal with, while in molecular substructure analy-
sis we have to take the chemical connectivity, i.e. the bonds
connecting individual atoms, into account as well.

The best-known association rule algorithms areApriori
[1] and Eclat [12]. Both work in two steps: First thefre-
quent itemsets(often misleadingly calledlarge itemsets) are
determined. These are sets of items that have at least a given
minimum support, i.e., occur in at least a given percentage
of all transactions. In the second step association rules are
generated from these frequent itemsets. Here we focus on
the first step, because we are not concerned with generating
rules. However, research in association rule induction usu-
ally does the same, because finding the frequent itemsets
accounts for the greater part of the processing time.

In order to find frequent itemsets, one has to count the
transactions different itemsets are contained in. This task
consists in traversing a tree like the one shown in Figure 1
and determining the values of the counters in its nodes.
Each box represents a counter. The edge labels on a path
from the root to a node indicate the common part of the
itemsets for which there are counters in that node. The
tree is unbalanced, because we are dealing with sets, not
sequences:abc, for instance, is the same asbca and thus

only one of these counters is needed. Mathematically, the
search tree is a substructure of the subset lattice, having ex-
actly one path to any itemset. In addition, both Apriori and
Eclat exploit the simple observation that no superset of an
infrequent itemset can be frequent. This observation can be
used to further prune the tree, because all counters for item-
sets having an infrequent subset can be discarded.

The main differences between Apriori and Eclat are how
they traverse this tree and how they determine the counter
values. Apriori does a breadth first search and determines
the support of an itemset by explicit subset tests on the trans-
actions. An efficient implementation can use a data struc-
ture like the tree shown in Figure 1 to store the counters
[2, 3]. However, the need to build a data structure like this
can also be a severe disadvantage, as it can consume a lot of
memory. Furthermore, the subset tests can be costly.

On the other hand, Eclat does a depth first search and de-
termines the support of an itemset by intersecting the trans-
action lists for two subsets, the union of which is the item-
set. The advantage is that not all counters have to be kept
in memory, especially if one allows for some unnecessary
tests, which could be avoided only by checkingall subsets.
A disadvantage is that several transaction lists have to be
kept in memory at the same time—lists that can be very
long, especially for small itemsets. More sophisticated ap-
proaches try to combine the advantages, using Apriori for
the first levels of the tree (usually only 2 or 3) and Eclat as
soon as the transaction lists are short enough [12, 6].

2.2. Frequent Substructures of Molecules

In order to capture the bond structure of molecules, we
model them as attributed graphs, in which each vertex rep-
resents an atom and each edge a bond between atoms. Each
vertex carries attributes that indicate the atom type (i.e., the
chemical element), a possible charge, and whether it is part
of an aromatic ring. Each edge carries an attribute that indi-
cates the bond type (single, double, triple, or aromatic).

Our goal is to find substructures that have a certain min-
imum support in a given set of molecules, i.e., are part of
at least a certain percentage of the molecules. However,
in order to restrict the search space, we consider onlycon-
nected substructures, i.e., graphs having only one connected
component. For most applications, this restriction is harm-
less, because connected substructures are most often exactly
what is desired. We donot constrain the connectivity of the
graph in any other way: The graphs may be chains or trees
or may contain an arbitrary number of cycles. With this we
go beyond [7], who considered onlylinear substructures,
i.e., simple chains of atoms without branches. Such simple
chains are rarely sufficient in real-world applications.

Most naturally, the search is carried out by traversing a
tree of fragments of molecules, similar to the tree of item-
sets shown in figure 1. The root of the tree is the core struc-
ture to start from, which for now we assume to be a sin-
gle atom (more complex cores are discussed below). Going



down one level in the search tree means to extend a sub-
structure by a bond (and maybe an atom, if the bond does
not close a ring), just like going down in the tree shown in
Figure 1 means adding an item to an itemset. That is, with
a single atom at the root of the tree, the root level contains
the substructures with no bonds, the second level those with
one bond, the third level those with two bonds and so on.

As indicated above, there are basically two ways in which
the search tree can be traversed: We can use either a breadth
first search and explicit subset tests (Apriori) or a depth
first search and intersections of transaction lists (Eclat). For
our task the Eclat approach is clearly preferable, because
the disadvantages of the Apriori approach become consid-
erably more severe: Even subset tests can be costly, but sub-
structure tests, which consist mathematically in checking
whether a given attributed graph is a subgraph of another at-
tributed graph, are extremely costly. Furthermore, the num-
ber of small substructures (1 to 4 atoms) can be enormous,
so that even storing only the topmost levels of the tree can
require a prohibitively large amount of memory.

Of course, the Eclat approach also suffers, because the
transaction lists are now lists of embeddings of a substruc-
ture into the given molecules. Since there can be several em-
beddings of the same substructure into one molecule, these
lists tend to get longer. This drawback can make it necessary
to start from a reasonably sized core structure (see below).

To be more specific, our algorithm searches as follows:
The given core structure is embedded into all molecules,
resulting in a list of embeddings. Each embedding consists
of references into a molecule that point out the atoms and
bonds that form the substructure. Remember that a list of
embeddings may contain several embeddings for the same
molecule if the molecule contains the substructure in more
than one place or if the substructure is symmetric.

In a second step each embedding is extended in every
possible way. This is done by adding all bonds in the cor-
responding molecule that start from an atom already in the
embedding (to ensure connectedness and, of course, to re-
duce the number of bonds that have to be considered). This
may or may not involve adding the atom the bond leads to,
because this atom may or may not be part of the embed-
ding already. More technically, by following the references
of an embedding the atoms and bonds of the corresponding
molecule are marked and only unmarked bonds emanating
from marked atoms are considered as possible extensions.

The resulting extended embeddings are then sorted into
equivalence classes, each of which represents a new sub-
structure. This sorting is very simple, because only the
added bond and maybe the added atom have to be com-
pared. In our implementation we use a hash table and an
array of lists of embeddings to sort the extensions. The hash
table associates an embedding with an array index, using a
hash code that is computed from the type of the bond that
was added in the preceding step, the position (in the sub-
structure) of the atom it starts from, and the position and

the type of the atom it leads to. After all extended embed-
dings have been processed, each array element contains the
list of embeddings of a new substructure. Each of these new
substructures corresponds to a child node in the search tree,
each of which is then processed in turn by searching recur-
sively on the list of embeddings corresponding to it.

2.3. Search Tree Pruning

Of course, subtrees of the search tree can be pruned if they
refer to substructures not having enough support, i.e., if too
few molecules are referred to in the associated list of em-
beddings. We call thissupport based pruning. We may
also prune the search tree if a user-defined threshold for the
number of atoms in a fragment has been reached. We call
this size based pruning. However, when we reviewed the
search for frequent itemsets, we also considered a third type
of pruning, which we refer to asstructural pruning. It is re-
sponsible for the unbalancedness of the search tree shown in
Figure 1: As pointed out above, we do not need a counter for
bca, because it is the same itemset asabc. Structural pruning
ensures that every itemset is considered in one branch only,
even though adding items in different orders can yield the
same itemset. In the following we consider how such struc-
tural pruning can be done in the search for frequent sub-
structures of molecules, because, obviously, adding bonds
in different orders can result in the same substructure.

In order to find a structural pruning scheme, let us ana-
lyze the structural pruning of the itemset tree in more detail.
Figure 1 shows the basic idea very clearly. The items are
ordered, which is indicated by the symbolsa, b, etc. This
order is, of course, arbitrary. But once it is fixed, the item-
sets processed in a node can be constructed as follows: Ex-
tend the set of items used as edge labels on the path to the
node with an item following the last edge label. Consider,
for example, the second node on the third level (count from
top to bottom and from left to right): The path to this node
has labelsa andc. Therefore the set{a, c} has to be ex-
tended by items followingc, i.e. byd ande. Consequently
there are counters for the sets{a, c, d} and{a, c, e} in this
node. The same holds for any other node. Obviously, this
scheme fixes an order in which items can be added and thus
each itemset can be reached only in one possible way.

We organize the nodes of the search tree for molecular
substructures in a very similar way. The main difference
is that we cannot define aglobal order of the atoms of the
molecules, which would correspond directly to the order of
the items. Rather, we number the atomsin a substructure
and record how a substructure was constructed in order to
constrain its extensions. The number we assign to an atom
reflects the step in which it was added. That is, the core
atom is numbered 0, the atom added with the first bond is
numbered 1 and so on. Note that this number does not tell
anything about the type of the atom, as two completely dif-
ferent atoms may receive the same number, simply because
they were added in the same step.
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Figure 2: A set of six example molecules.

Whenever an embedding is extended, we record in the
resulting extension the number of the atom from which the
added bond started. When the extended embedding is to
be extended itself, we consider only bonds that start from
atoms having numbers no less than this recorded number.
That is, only the atom extended in the preceding step and
atoms added later than this atom can be the starting point of
a new bond. This rule is directly analogous to the rule that
only items following the item added last may be added to an
itemset. With this simple scheme we immediately avoid that
two bonds, call themA andB, which start from different
atoms, are added in the orderA,B in one branch of the
search tree and in the orderB,A in another. Since either
the atomA starts from or the atomB starts from must have
a smaller number, one of the orders is ruled out.

However, two or more bonds can start from the same
atom. Therefore we also have to define an order on bonds,
so that we do not add two different bondsA and B that
start from the same atom in the orderA,B in one branch
of the search tree and in the orderB,A in another. This
order on bonds is, of course, arbitrary. In our implementa-
tion, single bonds precede aromatic bonds, which precede
double bonds, which precede triple bonds. Finally, within
extensions by bonds of the same type starting from the same
atom, the order is determined by (1) whether the atom the
bond leads to is already in the substructure or not and (2)
the type of this atom. To take care of the bond type etc., we
record in each embedding which bond was added last.

The above rules provide us with a structural pruning
scheme, but unfortunately this scheme is not perfect and
making it perfect would be very expensive computationally.
The problem is that we do not have any precedence rule
for two bonds of the same type starting from an atom with
the same number and leading to atoms of the same type,
and that it is not possible to give any precedence rule for
this case that is based exclusively on locally available in-
formation. We consider the problems that result from this
imperfection and our solution below, but think it advisable
to precede this consideration by an illustrative example of
the search process as we defined it up to now.

2.4. An Illustrative Example

As an illustration we consider how our algorithm finds the
frequent substructures of the six example molecules shown
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numbers of embeddings per molecule.

in Figure 21, starting from a sulfur atom. We use a minimum
support of 50%, i.e., a substructure must occur in at least
three of the six molecules to qualify as frequent.

First the sulfur atom is embedded into the six molecules.
This results in six embeddings, one for each molecule,
which form the root of the search tree (see Figure 3; the ta-
ble in the root node records that there is one embedding for
each molecule). Then the embeddings are extended in all
possible ways, which leads to the four different substruc-
tures shown on the second level (i.e.,S C, S N, S O,
S N). These substructures are ordered, from left to right, as
they are considered by our algorithm, i.e., extensions by sin-
gle bonds precede extensions by double bonds, and within
extensions by bonds of the same type the element type of
the atom a bond leads to determines the order. Note that
there are two embeddings ofS C into both the moleculesb
andc and two embeddings ofS O into the moleculea.

In the third step the extensions of the substructureS C
are constructed. This leads to the first five substructures on
the third level (i.e.,C S C, C S N, C S O, C S N
andC C S). Again the order of these substructures, from
left to right, reflects the order in which they are consid-
ered. Since we search depth first, the next substructure to be
extended isC S C.2 However, this substructure does not
have enough support and therefore the subtree is pruned.

The substructureC S N is considered next etc. How-
ever, we confine ourselves to pointing out situations in
which specific aspects of our method become obvious. Ef-
fects of the structural pruning can be seen, for instance, at
the fragmentC S N, which does not have a child in which
a second carbon atom is attached to the sulfur atom. The
reason is that the extension by the bond to the nitrogen atom
rules out all single bonds leading to atoms of a type preced-
ing nitrogen (like carbon). Similarly,C S N does not have
children with another atom attached to the sulfur atom by a
single bond, not even an oxygen atom, which follows ni-
trogen in the periodic table of elements. The reason is that

1Please note that these structures were made up to demonstrate certain
aspects of the search scheme. None of them has any real meaning.

2It may seem strange that there are two embeddings of this substructure
into both the moleculesb andc. The reason for this is explained below.
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Figure 4: The six frequent substructures that are found in the ex-
ample in the order in which they are generated.

a double bond succeeds a single bond and thus the exten-
sion by the double bond to the nitrogen atom rules out all
single bonds emanating from the sulfur atom. Finally, the
structureC C S has no children at all, even though it has
enough support. The reason is that in this substructure a
bond was added to the carbon atom adjacent to the sulfur
atom. This carbon atom is numbered 1 and thus no bonds
can be added to the sulfur atom, which has number 0. Only
the carbon atoms can be starting points of a new bond, but
there are no such bonds in the moleculesa, b, andd.

During the recursive search all frequent substructures en-
countered are recorded. The resulting set of six frequent
substructures, together with their absolute and relative sup-
port is shown in Figure 4. Note thatC C S is not re-
ported, because it has the same support as its superstruc-
tureC C S N. Likewise,O S N, S N, andS are not re-
ported. This example makes it clear that our algorithm can
find arbitrary substructures, even though it does not show
how cyclic structures are treated. Unfortunately, search
trees for cyclic structures are too big to be depicted here.

2.5. Incomplete Structural Pruning

We indicated above that our structural pruning is not per-
fect. In order to understand the problems that can arise, con-
sider two moleculesA andB with the common substruc-
tureN C S C O. We try to find this substructure starting
from the sulfur atom. Since the two bonds emanating from
the sulfur atom are equivalent, we have no precedence rule
and thus the order in which they are added to an embedding
depends on the order in which they occur in the correspond-
ing molecule. Suppose that in moleculeA the bond going
to the left precedes the bond going to the right, while in
moleculeB it is the other way round. As a consequence, in
embeddings into moleculeA the left carbon atom will pre-
cede the right one, while in embeddings into moleculeB
it will be the other way round. Now consider the substruc-
tureC S C and its extensions. In moleculeA the carbon
numbered 1 (the left one) will be extended by adding the
nitrogen atom and thus the oxygen atom can be added in the
next step (to the carbon on the right, which is numbered 2),
resulting in the full substructure. However, in moleculeB
the nitrogen atom has to be added by extending the carbon
atom numbered 2 (again the left one; in embeddings into
moleculeB the right carbon is numbered 1). Hence it is not

possible to add the oxygen atom in the next step, because
this would mean adding a bond starting at an atom with a
lower number than the atom extended in the preceding step.
Therefore the common substructure is not found. This ex-
ample also shows that it does not help to look “one step
ahead” to the next atom, because there could be arbitrarily
long equivalent chains, which differ only at the ends.

If, however, we accept to reach identical substructures
in different branches of the search tree in cases like this,
we can correct the imperfection of our structural pruning.
Whenever we have extended an embedding by following a
bond, we allow adding an equivalent bond in the next step,
regardless of whether it precedes or succeeds, in the corre-
sponding molecule, the bond added in the preceding step.
This relaxation explains why there are two embeddings of
the substructureC-S-C into both the moleculesb andc of
our example. In one embedding the left carbon atom is num-
bered 1 and the one at the bottom is numbered 2, while in
the other it is the other way round (cf. Figure 2).

Note that considering the same substructure several times
cannot lead to wrong results, only to multiple reporting of
the same substructure. Multiple reporting, however, can
be suppressed by maintaining a list of frequent substruc-
tures and suppressing new ones that are identical to already
known ones. It is more important that the missing rule for
equivalent bonds can lead to considerable redundant search
in certain structures, especially molecules containing one or
more aromatic rings. We are currently trying to tackle this
problem by collapsing rings into special vertices.

However, it should be noted that even if we could amend
the weakness of our structural pruning, we would still be
unable to guarantee that each substructure is considered in
only one branch. If, for instance, some substructureX can
be embedded twice into some molecules and if there are fre-
quent substructures that contain both embeddings (and thus
X twice), then these substructures can be grown from either
embedding. If the connection between the two embeddings
of X is not symmetric, the same substructure is reached in
two different branches of the search tree in this case. Obvi-
ously, there is no simple way to avoid such situations.

2.6. Embedding a Core Structure

Up to now we assumed that we start the search from a sin-
gle atom. This usually works fairly well as long as this atom
is rare in the molecules to work on. For example, sulfur or
phosphorus are often good starting points in biochemical
applications, while starting with carbon is a bad idea: Ev-
ery organic molecule contains several carbon atoms, often
twenty or more, and thus we end up with an already very
high number of embeddings of the initial atom. As a conse-
quence, the algorithm is likely to run out of memory before
reaching substructures of reasonable size.

However, if we cannot start from a rare element, it is
sometimes possible to specify a core—for instance, an aro-
matic ring with one or two side chains—from which the



search can be started. Provided the core structure is specific
enough, there are only few, at best only one embedding per
molecule, so that the list of embeddings is short.

While it is trivial to embed a single atom into a molecule,
embedding a core structure can be much more difficult. In
our implementation we rely on the following simple obser-
vation: Embedding a core structure is the same as finding a
common substructure of the molecule and the core that is as
big as the core itself. This leads to the idea to grow a sub-
structure into both the core and the molecule until it com-
pletely covers the core. That is, we do a substructure search
for the core and the molecule starting from an arbitrary atom
of the core and requiring a support of 100% (i.e., both the
core and the molecule must contain the substructure). In
addition, we can restrict the search to one embedding of a
substructure into the core at all times, since we know that it
must be completely covered in the end. (For the molecule,
however, we must consider all possible embeddings.)

Note that the same mechanism of growing a substructure
into two molecules can also be used for substructure tests as
they are needed to suppress multiple reporting of the same
fragment (see above) as well as reporting redundant frag-
ments (fragments that are substructures of some other frag-
ment and have the same support as this fragment).

2.7. Finding Contrast Structures

Our approach to find frequent substructures can easily be
extended to findcontrast structures, that is, substructures
that are frequent in a predefined subset of the molecules and
infrequent in the complement of this subset. Finding con-
trast structures requires two parameters: a minimum sup-
port for the focus subset and a maximum support for the
complement. The search is carried out in exactly the same
way as described above. The only difference is that two
support numbers are determined: one for the focus subset
and one for the complement. Only the support in the focus
subset is used to prune the search tree. The support in the
complement determines whether a frequent substructure is
recorded or not, thus filtering out those substructures that do
not satisfy the requirements for a contrast structure.

3. Experimental Results

We applied the presented approach to a number of confi-
dential data sets with substantial success. In order to be
able to report results in more detail, we used a well-known,
publicly available dataset from the National Cancer Insti-
tute, the DTP AIDS Antiviral Screen dataset. This screen
utilized a soluble formazan assay to measure protection of
human CEM cells from HIV-1 infection. Full details were
published in [11]. Compounds able to provide at least 50%
protection to the CEM cells were retested. Compounds
that provided at least 50% protection on retest were listed
as moderately active (CM ). Compounds that reproducibly

Atom CA CM andCI
C Carbon 325 (100.0%) 36828 (99.95%)
O Oxygen 311 ( 95.7%) 33029 (89.64%)
N Nitrogen 276 ( 84.9%) 29234 (79.34%)
S Sulfur 143 ( 44.0%) 10926 (29.65%)
... ...
Se Selenium 6 ( 1.9%) 132 ( 0.36%)

Table 1: Some single-atom fragments occurring in molecules of
the HIV database, together with their occurrence frequencies.

provided 100% protection were listed as confirmed active
(CA). Compounds not meeting these criteria were listed as
confirmed inactive (CI ). Available online [8] are screening
results and chemical structural data on compounds that are
not covered by a confidentiality agreement. Available are
41,316 compounds of which we used 37,171. Out of these,
a total of 325 belongs to classCA, 877 are of classCM and
the remaining 35,969 are of classCI .

NCI lists 75 known active compounds, which are grouped
into seven classes: (1) Azido Pyrimidines, (2) Natural Prod-
ucts or Antibiotics, (3) Benzodiazepines, Thiazolobenzim-
idazoles and related Compounds, (4) Pyrimidine Nucleo-
sides, (5) Dyes and Polyanions, (6) Heavy Metal Com-
pounds, and (7) Purine Nucleosides.

As described above, our molecular fragment mining al-
gorithm requires a seed fragment, which may be empty.
For the HIV dataset an empty core results in numerous em-
beddings of trivial fragments, such as single carbon atoms
or small combinations of carbon atoms only. However,
fragments of interest contain at least one non-carbon atom,
which enabled us to seed the algorithm using the remaining
atoms. The list of atoms can be obtained through various
methods. We simply started from an empty core, restricted
the fragment size to one atom, and ran our molecular frag-
ment miner. Parts of the resulting list of atoms together with
their occurrence frequencies are listed in Table 1.

Obviously, due to space constraints, we cannot report in
detail about seeding the algorithm with each of these atoms.
In the following we therefore concentrate on a few exper-
iments to demonstrate how the proposed method picks out
relevant fragments in some of these groups.

3.1. Nitrogen based Fragments

First we focus on compounds containing a nitrogen atom.
We used a minimum support of 15.0% for compounds of
classCA and a maximum support of 0.1% for the comple-
ment3 (classesCM andCI ). 171 fragments were generated

3Thresholds were selected “top-down”, i.e., starting with large settings
(that quickly resulted in no reported fragments) the thresholds were subse-
quentially lowered until a small number of fragments was reported.
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Figure 6: One particular compound (#254064) along with a repre-
sentative of the normal structure (#602670).

within approximately 20 minutes.4 The three largest frag-
ments found are shown in Figure 5.

Note how the first two fragments have essentially the
same coverage. The only difference is one additional com-
pound of classCI that contains fragment 2. In this com-
pound the three nitrogen atoms are connected to the 4-
carbon-oxygen ring through an intermediate carbon. This
results in a fragment where the carbon connected to the
three nitrogen atoms is part of a ring in all cases but one,
which prevents the search algorithm from closing the ring.
The ring was closed in the first fragment, however, result-
ing in one less inactive compound being covered. Figure 6
shows this specific compound along with another compound
of classCA that exhibits the more typical structure.

The third fragments coverage is substantially different,
even though its structure is almost identical. The only differ-
ence is the double bond between two carbons that closes the
second ring in the first fragment, which is missing in Frag-
ment 3. However, some active compounds have a single
bond instead of a double bond between these carbons and
hence not closing this ring results in a slightly smaller frag-
ment with a much higher coverage. This fragment success-
fully picks out compounds of class Azido Pyrimidines, a
well-known inhibitor of HIV-1. Below we will discuss how
“softening” the matching criteria allows us to tolerate such
small differences between otherwise identical fragments,
which makes this approach also more useful for chemists,
who tend to regard such structures as similar.

3.2. Sulfur based Fragments

Next we seeded the algorithm with a sulfur atom. We chose
the thresholds support=10% and complement=0.5%, which

4We used a Java implementation of our algorithm on a 1Ghz Xeon
Dual-Processor machine with 1GB of main memory using jre1.3.1.
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Figure 7: The two largest fragments with a sulfur atom. These
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Figure 8: Fragments (left) and corresponding compounds (right)
containing a Selenium atom. The two compounds of classCA are
members of the group of Heavy Metal Compounds.

generated a list of 122 fragments in under one minute. The
first two (which also happen to be the largest ones with
18 atoms and 19 bonds, resp.) are shown in Figure 7.

Note how these two fragments differ only in the loca-
tion of theSO3 group. Both fragments exhibit a lift of well
above 25 and pick out 11 of the 13 molecules listed as Dyes
and Polyanions. We miss only two of the remaining Dyes
and Polyanions (#9617 and #65849), which contain uncom-
mon structures for this family of compounds.

3.3. Selenium based Fragments

An interesting effect of the current method to find fragments
can be seen when seeding the algorithm with a Selenium
atom (Se). Figure 8 (left) shows the two fragments that
are found for a minimum support of 30% and a maximum
complement support of 5%.

Clearly the first fragment is sufficient to pick out all
7 compounds from the database (shown on the right of Fig-
ure 8). However, the second fragment covers one compound
less (#639766) and tries to complete the aromatic ring in
both directions in parallel. This results in a conflict with the
nitrogen atom in compound #639766 and a fragment which
is neither a subset of the other fragment nor has exactly the
same coverage. For our algorithm these two fragments are
therefore unique and are not pruned.
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Figure 9: Two fragments extracted from a set of steroids. On
the left, single and aromatic bonds were treated as different bond
types, on the right, they were treated as the same bond type.

3.4. Treatment of Aromatic Bonds

An important aspect of molecular fragment mining is the
treatment of aromatic rings. Since aromaticity is not clearly
defined and can be modeled differently (i.e. explicit aro-
matic bonds vs. alternating single and double bonds) it is
desirable to be able to take it into account throughout the
mining process itself. We achieve this by modeling aro-
matic bonds as either single or double bonds with a flag that
indicates aromaticity. This allows us to choose to ignore this
flag during mining and hence to find fragments that contain
either aromatic or single resp. double bonds. The following
example illustrates why this is desirable.

Using a small set of steroid compounds we derived frag-
ments that occur in all of them (support=100%) using the
standard algorithm. Figure 9 (left) shows the correspond-
ing fragment. Note how only two rings with an incomplete
third ring are discovered of the four ring structure that is
typical for steroids. However, if we model aromatic bonds
as single+flag and allow the algorithm to ignore this flag,
the resulting fragment contains all four rings (see Figure 9
(right)). For some steroids this fourth ring consists of sin-
gle bonds, while others have an aromatic ring at this posi-
tion. However, most chemists still regard this as the same 4-
ring structure. Such selective “tolerance” against some mis-
matches can therefore make the presented algorithm more
useful for real applications.

4. Conclusions

We presented an algorithm to find relevant molecular frag-
ments in large chemical structure databases. The algorithm
allows us to focus on fragments that help to discriminate be-
tween different classes of molecules. The underlying search
method, which is based on a depth first search with struc-
tural pruning, makes it possible to find such fragments effi-
ciently, without the need for frequent reembeddings of frag-
ment candidates, which is a known problem of previously
reported approaches. We have shown how the proposed
method finds relevant fragments using data from a well-
known HIV-screening compound database. The extracted
fragments successfully model several of the activity classes
known for this dataset.

Future work will focus on making the presented approach
more meaningful for the underlying application. In partic-

ular, finding fragments that match exactly is not of prime
interest to chemists. As demonstrate above, some types
of ring structures are considered functionally equivalent,
which should be taken into account by the search algorithm
as well. We are currently exploring ways to include such
“fuzziness” into the underlying search algorithm directly.
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