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1 Introduction

A large body of research in supervised learning deals with the analysis of single-
label data, where training examples are associated with a single label λ from a set
of disjoint labels L. However, training examples in several application domains are
often associated with a set of labels Y ⊆ L. Such data are called multi-label.

Textual data, such as documents and web pages, are frequently annotated with
more than a single label. For example, a news article concerning the reactions of
the Christian church to the release of the “Da Vinci Code” film can be labeled as
both religion and movies. The categorization of textual data is perhaps the dominant
multi-label application.

Recently, the issue of learning from multi-label data has attracted significant at-
tention from a lot of researchers, motivated from an increasing number of new appli-
cations, such as semantic annotation of images [1, 2, 3] and video [4, 5], functional
genomics [6, 7, 8, 9, 10], music categorization into emotions [11, 12, 13, 14] and
directed marketing [15]. Table 1 presents a variety of applications that are discussed
in the literature.

This chapter reviews past and recent work on the rapidly evolving research area
of multi-label data mining. Section 2 defines the two major tasks in learning from
multi-label data and presents a significant number of learning methods. Section 3
discusses dimensionality reduction methods for multi-label data. Sections 4 and 5
discuss two important research challenges, which, if successfully met, can signif-
icantly expand the real-world applications of multi-label learning methods: a) ex-
ploiting label structure and b) scaling up to domains with large number of labels.
Section 6 introduces benchmark multi-label datasets and their statistics, while Sec-
tion 7 presents the most frequently used evaluation measures for multi-label learn-
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Data type Application Resource Labels Description (Examples) References
text categorization news article Reuters topics (agriculture, fishing) [16]

web page Yahoo! directory (health, science) [17]
patent WIPO (paper-making, fibreboard) [18, 19]
email R&D activities (delegation) [20]

legal document Eurovoc (software, copyright) [21]
medical report MeSH (disorders, therapies) [22]

radiology report ICD-9-CM (diseases, injuries) [23]
research article Heart conditions (myocarditis) [24]
research article ACM classification (algorithms) [25]

bookmark Bibsonomy tags (sports, science) [26]
reference Bibsonomy tags (ai, kdd) [26]
adjectives semantics (object-related) [27]

image semantic annotation pictures concepts (trees, sunset) [1, 2, 3]
video semantic annotation news clip concepts (crowd, desert) [4]
audio noise detection sound clip type (speech, noise) [28]

emotion detection music clip emotions (relaxing-calm) [11, 14]
structured functional genomics gene functions (energy, metabolism) [7, 6, 8]

proteomics protein enzyme classes (ligases) [19]
directed marketing person product categories [15]

Table 1: Applications of multi-label Learning

ing. We conclude this chapter by discussing related tasks to multi-label learning in
Section 8 and multi-label data mining software in Section 9.

2 Learning

There exist two major tasks in supervised learning from multi-label data: multi-
label classification (MLC) and label ranking (LR). MLC is concerned with learning
a model that outputs a bipartition of the set of labels into relevant and irrelevant with
respect to a query instance. LR on the other hand is concerned with learning a model
that outputs an ordering of the class labels according to their relevance to a query
instance. Note that LR models can also be learned from training data containing
single labels, total rankings of labels, as well as pairwise preferences over the set of
labels [29].

Both MLC and LR are important in mining multi-label data. In a news filtering
application for example, the user must be presented with interesting articles only,
but it is also important to see the most interesting ones in the top of the list. Ide-
ally, we would like to develop methods that are able to mine both an ordering and a
bipartition of the set of labels from multi-label data. Such a task has been recently
called multi-label ranking (MLR) [30] and poses a very interesting and useful gen-
eralization of MLC and LR.
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In the following subsections we present MLC, LR and MLR methods grouped
into the two categories proposed in [31]: i) problem transformation, and ii) algo-
rithm adaptation. The first group of methods are algorithm independent. They trans-
form the learning task into one or more single-label classification tasks, for which
a large bibliography of learning algorithms exists. The second group of methods
extend specific learning algorithms in order to handle multi-label data directly.

For the formal description of these methods, we will use L = {λ j : j = 1 . . .q}
to denote the finite set of labels in a multi-label learning task and D = {(xi,Yi), i =
1 . . .m} to denote a set of multi-label training examples, where xi is the feature
vector and Yi ⊆ L the set of labels of the i-th example.

2.1 Problem Transformation

Problem transformation methods will be exemplified through the multi-label data
set of Figure 1. It consists of four examples that are annotated with one or more out
of four labels: λ1, λ2, λ3, λ4. As the transformations only affect the label space, in
the rest of the figures of this section, we will omit the attribute space for simplicity
of presentation.

Fig. 1 Example of a multi-
label data set

Example Attributes Label set
1 x1 {λ1,λ4}
2 x2 {λ3,λ4}
3 x3 {λ1}
4 x4 {λ2,λ3,λ4}

There exist several simple transformations that can be used to convert a multi-
label data set to a single-label data set with the same set of labels [1, 32]. A single-
label classifier that outputs probability distributions over all classes can then be
used to learn a ranking. The class with the highest probability will be ranked first,
the class with the second best probability will be ranked second, and so on. The
copy transformation replaces each multi-label example (xi,Yi) with |Yi| examples
(xi,λ j), for every λ j ∈ Yi. A variation of this transformation, dubbed copy-weight,
associates a weight of 1

|Yi| to each of the produced examples. The select family of
transformations replaces Yi with one of its members. This label could be the most
(select-max) or least (select-min) frequent among all examples. It could also be ran-
domly selected (select-random). Finally, the ignore transformation simply discards
every multi-label example. Figure 2 shows the transformed data set using these sim-
ple transformations.

Label powerset (LP) is a simple but effective problem transformation method that
works as follows: It considers each unique set of labels that exists in a multi-label
training set as one of the classes of a new single-label classification task. Figure 3
shows the result of transforming the data set of Figure 1 using LP.
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Ex. Label
1a λ1
1b λ4
2a λ3
2b λ4
3 λ1
4a λ2
4b λ3
4c λ4

(a)

Ex. Label Weight
1a λ1 0.50
1b λ4 0.50
2a λ3 0.50
2b λ4 0.50
3 λ1 1.00
4a λ2 0.33
4b λ3 0.33
4c λ4 0.33

(b)

Ex. Label
1 λ4
2 λ4
3 λ1
4 λ4

(c)

Ex. Label
1 λ1
2 λ3
3 λ1
4 λ2

(d)

Ex. Label
1 λ1
2 λ4
3 λ1
4 λ3

(e)

Ex. Label
3 λ1

(f)

Fig. 2: Transformation of the data set in Figure 1 using (a) copy, (b) copy-weight,
(c) select-max, (d) select-min, (e) select-random (one of the possible) and (f) ignore

Fig. 3 Transformed data
set using the label powerset
method

Ex. Label
1 λ1,4
2 λ3,4
3 λ1
4 λ2,3,4

Given a new instance, the single-label classifier of LP outputs the most probable
class, which is actually a set of labels. If this classifier can output a probability dis-
tribution over all classes, then LP can also rank the labels following the approach in
[33]. Table 2 shows an example of a probability distribution that could be produced
by LP, trained on the data of Figure 3, given a new instance x with unknown label
set. To obtain a label ranking we calculate for each label the sum of the probabilities
of the classes that contain it. This way LP can solve the complete MLR task.

Table 2: Example of obtaining a ranking from LP

c p(c|x) λ1 λ2 λ3 λ4
λ1,4 0.7 1 0 0 1
λ3,4 0.2 0 0 1 1
λ1 0.1 1 0 0 0

λ2,3,4 0.0 0 1 1 1
∑c p(c|x)λ j 0.8 0.0 0.2 0.9

The computational complexity of LP with respect to q depends on the complexity
of the base classifier with respect to the number of classes, which is equal to the
number of distinct label sets in the training set. This number is upper bounded by
min(m,2q) and despite that it typically is much smaller, it still poses an important
complexity problem, especially for large values of m and q. The large number of
classes, many of which are associated with very few examples, makes the learning
process difficult as well.
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The pruned problem transformation (PPT) method [33] extends LP in an attempt
to deal with the aforementioned problems. It prunes away label sets that occur less
times than a small user-defined threshold (e.g. 2 or 3) and optionally replaces their
information by introducing disjoint subsets of these label sets that do exist more
times than the threshold.

The random k-labelsets (RAkEL) method [34] constructs an ensemble of LP clas-
sifiers. Each LP classifier is trained using a different small random subset of the set
of labels. This way RAkEL manages to take label correlations into account, while
avoiding LP’s problems. A ranking of the labels is produced by averaging the zero-
one predictions of each model per considered label. Thresholding is then used to
produce a bipartition as well.

Binary relevance (BR) is a popular problem transformation method that learns q
binary classifiers, one for each different label in L. It transforms the original data
set into q data sets Dλ j , j = 1 . . .q that contain all examples of the original data set,
labeled positively if the label set of the original example contained λ j and negatively
otherwise. For the classification of a new instance, BR outputs the union of the labels
λ j that are positively predicted by the q classifiers. Figure 4 shows the four data sets
that are constructed by BR when applied to the data set of Figure 1.

Ex. Label
1 λ1
2 ¬λ1
3 λ1
4 ¬λ1

(a)

Ex. Label
1 ¬λ2
2 ¬λ2
3 ¬λ2
4 λ2

(b)

Ex. Label
1 ¬λ3
2 λ3
3 ¬λ3
4 λ3

(c)

Ex. Label
1 λ4
2 λ4
3 ¬λ4
4 λ4

(d)

Fig. 4: Data sets produced by the BR method

Ranking by pairwise comparison (RPC) [35] transforms the multi-label dataset
into q(q−1)

2 binary label datasets, one for each pair of labels (λi,λ j),1 ≤ i < j ≤ q.
Each dataset contains those examples of D that are annotated by at least one of the
two corresponding labels, but not both. A binary classifier that learns to discrimi-
nate between the two labels, is trained from each of these data sets. Given a new
instance, all binary classifiers are invoked, and a ranking is obtained by counting the
votes received by each label. Figure 5 shows the data sets that are constructed by
RPC when applied to the data set of Figure 1. The multi-label pairwise perceptron
(MLPP) algorithm [36] is an instantiation of RPC using perceptrons for the binary
classification tasks.

Calibrated label ranking (CLR) [37] extends RPC by introducing an additional
virtual label, which acts as a natural breaking point of the ranking into relevant
and irrelevant sets of labels. This way, CLR manages to solve the complete MLR
task. The binary models that learn to discriminate between the virtual label and
each of the other labels, correspond to the models of BR. This occurs, because each
example that is annotated with a given label is considered as positive for this label
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Ex. Label
1 λ1,¬2
3 λ1,¬2
4 λ¬1,2

(a)

Ex. Label
1 λ1,¬3
2 λ¬1,3
3 λ1,¬3
4 λ¬1,3

(b)

Ex. Label
2 λ¬1,4
3 λ1,¬4
4 λ¬1,4

(c)

Ex. Label
2 λ¬2,3

(d)

Ex. Label
1 λ¬2,4
2 λ¬2,4

(e)

Ex. Label
1 λ¬3,4

(f)

Fig. 5: Data sets produced by the RPC method

and negative for the virtual label, while each example that is not annotated with a
label is considered negative for it and positive for the virtual label. When applied
to the data set of Figure 1, CLR would construct both the datasets of Figure 5 and
those of Figure 4.

The INSDIF algorithm [38] computes a prototype vector for each label, by av-
eraging all instances of the training set that belong to this label. After that, every
instance is transformed to a bag of q instances, each equal to the difference between
the initial instance and one of the prototype vectors. A two level classification strat-
egy is then employed to learn form the transformed data set.

2.2 Algorithm Adaptation

The C4.5 algorithm was adapted in [6] for the handling of multi-label data. In spe-
cific, multiple labels were allowed at the leaves of the tree and the formula of entropy
calculation was modified as follows:

Entropy(D) =−
q

∑
j=1

(p(λ j)logp(λ j)+q(λ j)logq(λ j)) (1)

where p(λ j) = relative frequency of class λ j and q(λ j) = 1− p(λ j).
AdaBoost.MH and AdaBoost.MR [16] are two extensions of AdaBoost for

multi-label data. While AdaBoost.MH is designed to minimize Hamming loss, Ad-
aBoost.MR is designed to find a hypothesis which places the correct labels at the
top of the ranking.

A combination of AdaBoost.MH with an algorithm for producing alternating
decision trees was presented in [39]. The main motivation was the production of
multi-label models that can be understood by humans.

A probabilistic generative model is proposed in [40], according to which, each
label generates different words. Based on this model a multi-label document is pro-
duced by a mixture of the word distributions of its labels. A similar word-based
mixture model for multi-label text classification is presented in [17]. A deconvolu-
tion approach is proposed in [28], in order to estimate the individual contribution of
each label to a given item.
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The use of conditional random fields is explored in [24], where two graphical
models that parameterize label co-occurrences are proposed. The first one, collective
multi-label, captures co-occurrence patterns among labels, whereas the second one,
collective multi-label with features, tries to capture the impact that an individual
feature has on the co-occurrence probability of a pair of labels.

BP-MLL [41] is an adaptation of the popular back-propagation algorithm for
multi-label learning. The main modification to the algorithm is the introduction of a
new error function that takes multiple labels into account.

The multi-class multi-label perceptron (MMP) [42] is a family of online algo-
rithms for label ranking from multi-label data based on the perceptron algorithm.
MMP maintains one perceptron for each label, but weight updates for each percep-
tron are performed so as to achieve a perfect ranking of all labels.

An SVM algorithm that minimizes the ranking loss (see Section 7.2) is proposed
in [7]. Three improvements to instantiating the BR method with SVM classifiers
are given in [18]. The first two could easily be abstracted in order to be used with
any classification algorithm and could thus be considered an extension to BR itself,
while the third is specific to SVMs.

The main idea in the first improvement is to extend the original data set with
q additional features containing the predictions of each binary classifier. Then a
second round of training q new binary classifiers takes place, this time using the
extended data sets. For the classification of a new example, the binary classifiers
of the first round are initially used and their output is appended to the features of
the example to form a meta-example. This meta-example is then classified by the
binary classifiers of the second round. Through this extension, the approach takes
into consideration the potential dependencies among the different labels. Note here
that this improvement is actually a specialized case of applying Stacking [43], a
method for the combination of multiple classifiers, on top of BR.

The second improvement, ConfMat, consists in removing negative training in-
stances of a complete label if it is very similar to the positive label, based on a
confusion matrix that is estimated using any fast and moderately accurate classifier
on a held out validation set. The third improvement BandSVM, consists in removing
very similar negative training instances that are within a threshold distance from the
learned hyperplane.

A number of methods [44, 13, 45, 2, 46] are based on the popular k Nearest
Neighbors (kNN) lazy learning algorithm. The first step in all these approaches is
the same as in kNN, i.e. retrieving the k nearest examples. What differentiates them
is the aggregation of the label sets of these examples.

For example, ML-kNN [2], uses the maximum a posteriori principle in order to
determine the label set of the test instance, based on prior and posterior probabilities
for the frequency of each label within the k nearest neighbors.

MMAC [47] is an algorithm that follows the paradigm of associative classifi-
cation, which deals with the construction of classification rule sets using associa-
tion rule mining. MMAC learns an initial set of classification rules through associa-
tion rule mining, removes the examples associated with this rule set and recursively
learns a new rule set from the remaining examples until no further frequent items are
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left. These multiple rule sets might contain rules with similar preconditions but dif-
ferent labels on the right hand side. Such rules are merged into a single multi-label
rule. The labels are ranked according to the support of the corresponding individual
rules.

Finally, an approach that combines lazy and associative learning is proposed in
[25], where the inductive process is delayed until an instance is given for classifica-
tion.

3 Dimensionality Reduction

Several application domains of multi-label learning (e.g. text, bioinformatics) in-
volve data with large number of features. Dimensionality reduction has been ex-
tensively studied in the case of single-label data. Some of the existing approaches
are directly applicable to multi-label data, while others have been extended for han-
dling them appropriately. We present past and very recent approaches to multi-label
dimensionality reduction, organized into two categories: i) feature selection and ii)
feature extraction.

3.1 Feature Selection

The wrapper approach to feature selection [48] is directly applicable to multi-label
data. Given a multi-label learning algorithm, we can search for the subset of features
that optimizes a multi-label loss function (see Section 7) on an evaluation data set.

A different line of attacking the multi-label feature selection problem is to trans-
form the multi-label data set into one or more single-label data sets and use existing
feature selection methods, particularly those that follow the filter paradigm. One of
the most popular approaches, especially in text categorization, uses the BR transfor-
mation in order to evaluate the discriminative power of each feature with respect to
each of the labels independently of the rest of the labels. Subsequently the obtained
scores are aggregated in order to obtain an overall ranking. Common aggregation
strategies include taking the maximum or a weighted average of the obtained scores
[49]. The LP transformation was used in [14], while the copy, copy-weight, select-
max, select-min and ignore transformations are used in [32].

3.2 Feature Extraction

Feature extraction methods construct new features out of the original ones either
using class information (supervised) or not (unsupervised).
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Unsupervised methods, such as principal component analysis and latent semantic
indexing (LSI) are obviously directly applicable to multi-label data. For example, in
[50], the authors directly apply LSI based on singular value decomposition in order
to reduce the dimensionality of the text categorization problem.

Supervised feature extraction methods for single-label data, such as linear dis-
criminant analysis (LDA), require modification prior to their application to multi-
label data. LDA has been modified to handle multi-label data in [51]. A version of
the LSI method that takes into consideration label information (MLSI) was proposed
in [52], while a supervised multi-label feature extraction algorithm based on the
Hilbert-Schmidt independence criterion was proposed in [53]. In [54] a framework
for extracting a subspace of features is proposed. Finally, a hypergraph is employed
in [55] for modeling higher-order relations among instances sharing the same label.
A spectral learning method is then used for computing a low-dimensional embed-
ding that preserves these relations.

4 Exploiting Label Structure

In certain multi-label domains, such as text mining and bioinformatics, labels are or-
ganized into a tree-shaped general-to-specific hierarchical structure. An example of
such a structure, called functional catalogue (FunCat) [56], is an annotation scheme
for the functional description of proteins from several living organisms. The 1362
functional categories in version 2.1 of FunCat are organized in a tree like structure
with up to six levels of increasing specificity. Many more hierarchical structures
exist for textual data, such as the MeSH1 for medical articles and the ACM comput-
ing classification system2 for computer science articles. Taking into account such
structures when learning from multi-label data is important, because it can lead to
improved predictive performance and time complexity.

A general-to-specific tree structure of labels implies that an example cannot be
associated with a label λ if it isn’t associated with its parent label par(λ ). In other
words, the set of labels associated with an example must be a union of the labels
found along zero or more paths starting at the root of the hierarchy. Some applica-
tions may require such paths to end at a leaf, but in the general case they can be
partial.

Given a label hierarchy, a straightforward approach to learning a multi-label clas-
sifier is to train a binary classifier for each non-root label λ of this hierarchy, using
as training data those examples of the full training set that are annotated with par(λ ).
During testing, these classifiers are called in a top-down manner, calling a classifier
for λ only if the classifier for par(λ ) has given a positive output. We call this the
hierarchical binary relevance (HBR) method.

1 www.nlm.nih.gov/mesh/
2 www.acm.org/class/
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An online learning algorithm that follows the HBR approach, using a regularized
least squares estimator at each node, is presented in [57]. Better results were found
compared to an instantiation of HBR using perceptrons. Other important contribu-
tions of [57] are the definition of a hierarchical loss function (see Section 7.1.1)
and a thorough theoretical analysis of the proposed algorithm. An approach that fol-
lows the training process of HBR but uses a bottom-up procedure during testing is
presented in [9].

The HBR approach can be reformulated in a more generalized fashion as the
training of a multi-label (instead of binary) classifier in all non-leaf (instead of non-
root) nodes [58, 59]. TreeBoost.MH [58] uses Adaboost.MH (see Section 2.2) at
each non-leaf node. Experimental results indicate that not only is TreeBoost.MH
more efficient in training and testing than Adaboost.MH, but that it also improves
predictive accuracy.

Two different approaches for exploiting tree-shaped hierarchies are [8, 19]. Pre-
dictive clustering trees are used in [8], while a large margin method for structured
output prediction is used in [19].

The directed acyclic graph (DAG) is a more general type of structure, where
a node can have multiple parents. This is the case for the Gene Ontology (GO)
[60], which covers several domains of molecular and cellular biology. A Bayesian
framework for combining a hierarchy of support vector machines based on the GO is
proposed in [10]. An extension of the work in [8] for handling DAG label structures
is presented in [61].

5 Scaling Up

Problems with large number of labels can be found in several domains. For example,
the Eurovoc3 taxonomy contains approximately 4000 descriptors European for doc-
uments, while in collaborative tagging systems such as delicious4, the user assigned
tags can be hundreds of thousands.

The high dimensionality of the label space may challenge a multi-label learning
algorithm in many ways. Firstly, the number of training examples annotated with
each particular label will be significantly less than the total number of examples.
This is similar to the class imbalance problem in single-label data [62]. Secondly,
the computational cost of training a multi-label model may be strongly affected by
the number of labels. There are simple algorithms, such as BR with linear complex-
ity with respect to q, but there are others, such as LP, whose complexity is worse.
Thirdly, although the complexity of using a multi-label model for prediction is lin-
ear with respect to q in the best case, this may still be inefficient for applications
requiring fast response times. Finally, methods that need to maintain a large number
of models in memory, may fail to scale up to such domains.

3 europa.eu/eurovoc/
4 delicious.com
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HOMER [59] constructs a Hierarchy Of Multilabel classifiERs each one deal-
ing with a much smaller set of labels compared to q and a more balanced example
distribution. This leads to improved predictive performance along with linear train-
ing and logarithmic testing complexities withs respect to q. At a first step, HOMER
automatically organizes labels into a tree-shaped hierarchy. This is accomplished
by recursively partitioning the set of labels into a number of nodes using a balance
clustering algorithm. It then builds one multi-label classifier at each node apart from
the leafs, following the HBR approach described in the previous Section. The multi-
label classifiers predict one or more meta-labels µ , each one corresponding to the
disjunction of a child node’s labels. Figure 6 presents a sample tree of multi-label
classifiers constructed by HOMER for a domain with 8 labels.

Fig. 6: Sample hierarchy for a multi-label domain with 8 labels.

To deal with the memory problem of RPC, an extension of MLPP with reduced
space complexity in the presence of large number of labels is described in [63].

6 Statistics and Datasets

In some applications the number of labels of each example is small compared to
q, while in others it is large. This could be a parameter that influences the perfor-
mance of the different multi-label methods. We here introduce the concepts of label
cardinality and label density of a data set.

Label cardinality of a dataset D is the average number of labels of the examples
in D:

Label-Cardinality =
1
m

m

∑
i=1
|Yi|

Label density of D is the average number of labels of the examples in D divided
by q:
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Label-Density =
1
m

m

∑
i=1

|Yi|
q

(2)

Label cardinality is independent of the number of labels q in the classification
problem, and is used to quantify the number of alternative labels that characterize
the examples of a multi-label training data set. Label density takes into consideration
the number of labels in the domain. Two data sets with the same label cardinality
but with a great difference in the number of labels (different label density) might not
exhibit the same properties and cause different behavior to the multi-label learning
methods. The number of distinct label sets is also important for many algorithm
transformation methods that operate on subsets of labels.

Table 3 presents some benchmark datasets5 from various domains among with
their corresponding statistics and source reference. The statistics of the Reuters
(rcv1v2) dataset are averages over the 5 subsets.

Table 3: Multilabel datasets and their statistics

name domain instances nominal numeric labels cardinality density distinct source
delicious text (web) 16105 500 0 983 19.020 0.019 15806 [31]
emotions music 593 0 72 6 1.869 0.311 27 [14]
genbase biology 662 1186 0 27 1.252 0.046 32 [64]
mediamill multimedia 43907 0 120 101 4.376 0.043 6555 [5]
rcv1v2 (avg) text 6000 0 47234 101 2.6508 0.026 937 [65]
scene multimedia 2407 0 294 6 1.074 0.179 15 [1]
yeast biology 2417 0 103 14 4.237 0.303 198 [7]
tmc2007 text 28596 49060 0 22 2.158 0.098 1341 [66]

7 Evaluation Measures

The evaluation of methods that learn from multi-label data requires different mea-
sures than those used in the case of single-label data. This section presents the vari-
ous measures that have been proposed in the past for the evaluation of i) bipartitions
and ii) rankings with respect to the ground truth of multi-label data. It concludes
with a subsection on measures that take into account an existing label hierarchy.

For the definitions of these measures we will consider an evaluation data set of
multi-label examples (xi,Yi), i = 1 . . .m, where Yi ⊆ L is the set of true labels and
L = {λ j : j = 1 . . .q} is the set of all labels. Given instance xi, the set of labels that
are predicted by an MLC method is denoted as Zi, while the rank predicted by an
LR method for a label λ is denoted as ri(λ ). The most relevant label, receives the
highest rank (1), while the least relevant one, receives the lowest rank (q).

5 All datasets are available for download at http://mlkd.csd.auth.gr/multilabel.html
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7.1 Bipartitions

Some of the measures that evaluate bipartitions are calculated based on the average
differences of the actual and the predicted sets of labels over all examples of the
evaluation data set. Others decompose the evaluation process into separate evalua-
tions for each label, which they subsequently average over all labels. We call the
former example-based and the latter label-based evaluation measures.

7.1.1 Example-based

The Hamming loss [16] is defined as follows:

Hamming-Loss =
1
m

m

∑
i=1

|Yi4Zi|
M

where 4 stands for the symmetric difference of two sets, which is the set-theoretic
equivalent of the exclusive disjunction (XOR operation) in Boolean logic.

Classification accuracy [20] or subset accuracy [24] is defined as follows:

ClassificationAccuracy =
1
m

m

∑
i=1

I(Zi = Yi)

where I(true) = 1 and I(false) = 0. This is a very strict evaluation measure as it
requires the predicted set of labels to be an exact match of the true set of labels.

The following measures are used in [18]:

Precision =
1
m

m

∑
i=1

|Yi∩Zi|
|Zi| Recall =

1
m

m

∑
i=1

|Yi∩Zi|
|Yi|

F1 =
1
m

m

∑
i=1

2|Yi∩Zi|
|Zi|+ |Yi| Accuracy =

1
m

m

∑
i=1

|Yi∩Zi|
|Yi∪Zi|

7.1.2 Label-based

Any known measure for binary evaluation can be used here, such as accuracy, area
under the ROC curve, precision and recall. The calculation of these measures for all
labels can be achieved using two averaging operations, called macro-averaging and
micro-averaging [67]. These operations are usually considered for averaging preci-
sion, recall and their harmonic mean (F-measure) in Information Retrieval tasks.

Consider a binary evaluation measure B(t p, tn, f p, f n) that is calculated based
on the number of true positives (t p), true negatives (tn), false positives ( f p) and
false negatives ( f n). Let t pλ , f pλ , tnλ and f nλ be the number of true positives,
false positives, true negatives and false negatives after binary evaluation for a label
λ . The macro-averaged and micro-averaged versions of B, are calculated as follows:
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Bmacro =
1
q

q

∑
λ=1

B(t pλ , f pλ , tnλ , f nλ )

Bmicro = B

(
q

∑
λ=1

t pλ ,
q

∑
λ=1

f pλ ,
q

∑
λ=1

tnλ ,
q

∑
λ=1

f nλ

)

Note that micro-averaging has the same result as macro-averaging for some mea-
sures, such as accuracy, while it differs for other measures, such as precision, recall
and area under the ROC curve. Note also that the average (macro/micro) accuracy
and Hamming loss sum up to 1, as Hamming loss is actually the average binary
classification error.

7.2 Ranking

One-error evaluates how many times the top-ranked label is not in the set of relevant
labels of the instance:

1-Error =
1
m

m

∑
i=1

δ (argmin
λ∈L

ri(λ ))

where

δ (λ ) =
{

1 if λ /∈ Yi
0 otherwise

Coverage evaluates how far we need, on average, to go down the ranked list of
labels in order to cover all the relevant labels of the example.

Cov =
1
m

m

∑
i=1

max
λ∈Yi

ri(λ )−1

Ranking loss expresses the number of times that irrelevant labels are ranked
higher than relevant labels:

R-Loss =
1
m

m

∑
i=1

1
|Yi||Yi|

|{(λa,λb) : ri(λa) > ri(λb),(λa,λb) ∈ Yi×Yi}|

where Yi is the complementary set of Yi with respect to L.
Average precision evaluates the average fraction of labels ranked above a partic-

ular label λ ∈ Yi which actually are in Yi.

AvgPrec =
1
m

m

∑
i=1

1
|Yi| ∑

λ∈Yi

|{λ ′ ∈ Yi : ri(λ ′)≤ ri(λ )}|
ri(λ )
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7.3 Hierarchical

The hierarchical loss [57] is a modified version of the Hamming loss that takes into
account an existing hierarchical structure of the labels. It examines the predicted
labels in a top-down manner according to the hierarchy and whenever the prediction
for a label is wrong, the subtree rooted at that node is not considered further in the
calculation of the loss. Let anc(λ ) be the set of all the ancestor nodes of λ . The
hierarchical loss is defined as follows:

H-Loss =
1
m

m

∑
i=1
|{λ : λ ∈ Yi4Zi,anc(λ )∩ (Yi4Zi) = /0}|

Several other measures for hierarchical (multi-label) classification are examined
in [22, 68].

8 Related Tasks

One of the most popular supervised learning tasks is multi-class classification,
which involves a set of labels L, where |L|> 2. The critical difference with respect
to multi-label classification is that each instance is associated with only one element
of L, instead of a subset of L.

Jin and Ghahramani [69] call multiple-label problems, the semi-supervised clas-
sification problems where each example is associated with more than one classes,
but only one of those classes is the true class of the example. This task is not that
common in real-world applications as the one we are studying.

Multiple-instance or multi-instance learning is a variation of supervised learn-
ing, where labels are assigned to bags of instances [70]. In certain applications, the
training data can be considered as both multi-instance and multi-label [71]. In im-
age classification for example, the different regions of an image can be considered
as multiple-instances, each of which can be labeled with a different concept, such
as sunset and sea. Several methods have been recently proposed for addressing such
data [72, 73].

In Multitask learning [74] we try to solve many similar tasks in parallel usually
using a shared representation. Taking advantage of the common characteristics of
these tasks a better generalization can be achieved. A typical example is to learn to
identify hand written text for different writers in parallel. Training data from one
writer can aid the construction of better predictive models for other authors.
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9 Multi-Label Data Mining Software

There exists a number of implementations of specific algorithms for mining multi-
label data, most of which have been discussed in Section 2.2. The BoosTexter sys-
tem6, implements the boosting-based approaches proposed in [16]. There also exist
Matlab implementations for MLkNN7 and BPMLL8.

There are also more general-purpose software that handle multi-label data as part
of their functionality. LibSVM [75] is a library for support vector machines that can
learn from multi-label data using the binary relevance transformation. Clus9 is a
predictive clustering system that is based on decision tree learning. Its capabilities
include (hierarchical) multi-label classification.

Finally, Mulan10 is an open-source software devoted to multi-label data mining.
It includes implementations of a large number of learning algorithms, basic capabil-
ities for dimensionality reduction and hierarchical multi-label classification and an
extensive evaluation framework.

References

1. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern
Recognition 37 (2004) 1757–1771

2. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern
Recognition 40 (2007) 2038–2048

3. Yang, S., Kim, S.K., Ro, Y.M.: Semantic home photo categorization. Circuits and Systems
for Video Technology, IEEE Transactions on 17 (2007) 324–335

4. Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Mei, T., Zhang, H.J.: Correlative multi-label video
annotation. In: MULTIMEDIA ’07: Proceedings of the 15th international conference on Mul-
timedia, New York, NY, USA, ACM (2007) 17–26

5. Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.M.: The
challenge problem for automated detection of 101 semantic concepts in multimedia. In: MUL-
TIMEDIA ’06: Proceedings of the 14th annual ACM international conference on Multimedia,
New York, NY, USA, ACM (2006) 421–430

6. Clare, A., King, R.: Knowledge discovery in multi-label phenotype data. In: Proceedings of
the 5th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD
2001), Freiburg, Germany (2001) 42–53

7. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in
Neural Information Processing Systems 14. (2002)

8. Blockeel, H., Schietgat, L., Struyf, J., Dz?eroski, S., Clare, A.: Decision trees for hierarchical
multilabel classification: A case study in functional genomics. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 4213 LNAI (2006) 18–29

6 http://www.cs.princeton.edu/ schapire/boostexter.html
7 http://lamda.nju.edu.cn/datacode/MLkNN.htm
8 http://lamda.nju.edu.cn/datacode/BPMLL.htm
9 http://www.cs.kuleuven.be/ dtai/clus/
10 http://sourceforge.net/projects/mulan/



Mining Multi-label Data 17

9. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Hierarchical classification: combining bayes with
svm. In: ICML ’06: Proceedings of the 23rd international conference on Machine learning.
(2006) 177–184

10. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label prediction of
gene function. Bioinformatics 22 (2006) 830–836

11. Li, T., Ogihara, M.: Detecting emotion in music. In: Proceedings of the International Sympo-
sium on Music Information Retrieval, Washington D.C., USA (2003) 239–240

12. Li, T., Ogihara, M.: Toward intelligent music information retrieval. IEEE Transactions on
Multimedia 8 (2006) 564–574

13. Wieczorkowska, A., Synak, P., Ras, Z.: Multi-label classification of emotions in music. In:
Proceedings of the 2006 International Conference on Intelligent Information Processing and
Web Mining (IIPWM’06). (2006) 307–315

14. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into
emotions. In: Proc. 9th International Conference on Music Information Retrieval (ISMIR
2008), Philadelphia, PA, USA, 2008. (2008)

15. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. Journal
of Machine Learning Research 7 (2006) 1315–1338

16. Schapire, R.E. Singer, Y.: Boostexter: a boosting-based system for text categorization. Ma-
chine Learning 39 (2000) 135–168

17. Ueda, N., Saito, K.: Parametric mixture models for multi-labeled text. Advances in Neural
Information Processing Systems 15 (2003) 721–728

18. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In:
Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD 2004). (2004) 22–30

19. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hierarchical
multilabel classification methods. Journal of Machine Learning Research 7 (2006) 1601–1626

20. Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum entropy
method. In: Proceedings of the 28th annual international ACM SIGIR conference on Research
and development in Information Retrieval. (2005) 274–281

21. Mencia, E.L., Fürnkranz, J.: Efficient pairwise multilabel classification for large scale prob-
lems in the legal domain. In: 12th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases, PKDD 2008, Antwerp, Belgium (2008)

22. Moskovitch, R., Cohenkashi, S., Dror, U., Levy, I., Maimon, A., Shahar, Y.: Multiple hier-
archical classification of free-text clinical guidelines. Artificial Intelligence in Medicine 37
(2006) 177–190

23. Pestian, J.P., Brew, C., Matykiewicz, P., Hovermale, D.J., Johnson, N., Cohen, K.B., Duch,
W.: A shared task involving multi-label classification of clinical free text. In: BioNLP ’07:
Proceedings of the Workshop on BioNLP 2007, Morristown, NJ, USA, Association for Com-
putational Linguistics (2007) 97–104

24. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the
2005 ACM Conference on Information and Knowledge Management (CIKM ’05), Bremen,
Germany (2005) 195–200

25. Veloso, A., Wagner, M.J., Goncalves, M., Zaki, M.: Multi-label lazy associative classification.
In: Proceedings of the 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD 2007). Volume LNAI 4702., Warsaw, Poland, Springer (2007)
605–612

26. Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for automated tag sug-
gestion. In: Proceedings of the ECML/PKDD 2008 Discovery Challenge, Antwerp, Belgium
(2008)

27. Boleda, G., im Walde, S.S., Badia, T.: Modelling polysemy in adjective classes by multi-label
classification. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, Prague (2007) 171–180

28. Streich, A.P., Buhmann, J.M.: Classification of multi-labeled data: A generative approach. In:
12th European Conference on Principles and Practice of Knowledge Discovery in Databases,
PKDD 2008, Antwerp, Belgium (2008)



18 Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas
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