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Abstract. The traditional association rule mining framework produces many redundant rules. The extent of
redundancy is a lot larger than previously suspected. We present a new framework for associations based on
the concept of closed frequent itemsets. The number of non-redundant rules produced by the new approach is
exponentially (in the length of the longest frequent itemset) smaller than the rule set from the traditional approach.
Experiments using several “hard” as well as “easy” real and synthetic databases confirm the utility of our framework
in terms of reduction in the number of rules presented to the user, and in terms of time.
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1. Introduction

Association rule discovery, a successful and important mining task, aims at uncovering
all frequent patterns among transactions composed of data attributes or items. Results are
presented in the form of rules between different sets of items, along with metrics like
the joint and conditional probabilities of the antecedent and consequent, to judge a rule’s
importance.

It is widely recognized that the set of association rules can rapidly grow to be unwieldy,
especially as we lower the frequency requirements. The larger the set of frequent itemsets
the more the number of rules presented to the user, many of which are redundant. This is true
even for sparse datasets, but for dense datasets it is simply not feasible to mine all possible
frequent itemsets, let alone to generate rules, since they typically produce an exponential
number of frequent itemsets; finding long itemsets of length 20 or 30 is not uncommon
(Bayardo, 1998).

Prior research has mentioned that the traditional association rule mining framework pro-
duces too many rules, but the extent of redundancy is a lot larger than previously suspected.
More concretely, the number of redundant rules are exponential in the length of the longest
frequent itemset. We present a new framework for association rule mining based on the
concept of closed frequent itemsets. The set of all closed frequent itemsets can be orders of
magnitude smaller than the set of all frequent itemsets, especially for real (dense) datasets.
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02ER25538 and NSF NGSP grant EIA-0103708.
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At the same time, we don’t loose any information; the closed itemsets uniquely determine the
set of all frequent itemsets and their exact frequency. Note that using the maximal frequent
itemsets results in loss of information, since subset frequency is not available. We show that
the new framework produces exponentially (in the length of the longest frequent itemset)
fewer rules than the traditional approach, again without loss of information. Our framework
allows us to mine even dense datasets, where it is not feasible to find all frequent itemsets.

Experiments using several “hard” or dense, as well as sparse databases confirm the utility
of our framework in terms of reduction in the number of rules presented to the user, and in
terms of time. We show that closed itemsets can be found in a fraction of the time it takes
to mine all frequent itemsets (with improvements of more than 100 times), and the number
of rules returned to the user can be smaller by a factor of 3000 or more! (the gap widens for
lower frequency values).

1.1. Related work

There has been a lot of research in developing efficient algorithms for mining frequent
itemsets (Agrawal et al., 1996; Bayardo, 1998; Brin et al., 1997; Lin and Kedem, 1998;
Savasere et al., 1995; Zaki et al., 1997). Most of these algorithms enumerate all frequent
itemsets. Using these for rule generation produces many redundant rules, as we will show
later. Some methods only generate maximal frequent itemsets (Bayardo, 1998; Lin and
Kedem, 1998). Maximal itemsets cannot be used for rule generation, since support of
subsets is required for confidence computation. While it is easy to make one more data scan
to gather the supports of all subsets, we still have the problem of many redundant rules.
Further, for all these methods it is simply not possible to find rules in dense datasets which
may easily have frequent itemsets of length 20 and more (Bayardo, 1998). In contrast the set
of closed frequent itemsets can be orders of magnitude smaller than the set of all frequent
itemsets, and it can be used to generate rules even in dense domains.

In general, most of the association mining work has concentrated on the task of mining
frequent itemsets. Rule generation has received very little attention. There has been some
work in pruning discovered association rules by forming rule covers (Toivonen et al., 1995).
Other work addresses the problem of mining interesting association rules (Klemettinen et al.,
1994; Bayardo and Agrawal, 1999; Liu et al., 1999; Ng et al., 1998). The approach taken is to
incorporate user-specified constraints on the kinds of rules generated or to define objective
metrics of interestingness. As such these works are complimentary to our approach here.
Furthermore, they do not address the issue of rule redundancy.

A preliminary study of the idea of using closed frequent itemsets to generate rules was
presented by us in Zaki and Ogihara (1998). This paper substantially improves on those
ideas, and also presents experimental results to support our claims. Independently, Pasquier
et al. (1999a, 1999b) have also used closed itemsets for association mining. However, they
mainly concentrate on the discovery of frequent closed itemsets, and do not report any
experiments on rule mining. We on the other hand are specifically interested in generating
a smaller non-redundant rule set, after mining the frequent closed itemsets. Furthermore,
we recently proposed the CHARM algorithm (Zaki and Hsiao, 2002) for mining all closed
frequent itemsets. This algorithm outperforms, by orders of magnitude, the AClose method
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proposed by Pasquier et al. (1999b), as well as the Apriori (Agrawal et al., 1996) method
for mining all frequent itemsets. CHARM was also shown to outperform other recent closed
set mining algorithms like Closet (Pei et al., 2000), Mafia (Burdick et al., 2001) and Pascal
(Bastide et al., 2000).

The notion of closed frequent sets has its origins in the elegant mathematical framework of
formal concept analysis (FCA). A number of algorithms have been proposed within FCA for
generating all the closed sets of a binary relation (Ganter and Wille, 1999). However, these
methods have only been tested on very small datasets. Further, these algorithms generate
all the closed sets, and thus have to be adapted to enumerate only the frequent concepts.
The foundations of rule generation (in FCA) were studied in Luxenburger (1991), but no
experimentation on large sets was done. They also proposed an approach for obtaining a
generating set of rules, but did not consider frequent rules, and no algorithms were proposed.
Our characterization of the non-redundant rule set of association rules is different, and we
also present an experimental verification. Other work has extended the FCA approach to
incorporate incremental rule mining (Godin et al., 1995).

Like our earlier work in Zaki and Ogihara (1998), Taouil et al. (2000) proposed a basis
for association rules based on the work of Guigues and Duquenne (1986) and Luxenburger
(1991). The work by Bastide et al. (2000a) has independently addressed the problem of
extracting minimal association rules. Their definition of minimal rules is different from
ours, but based on similar ideas. The different definition of minimal and non-redundant
rules leads to different, mutually complementary, notions of smaller association rule sets.

2. Association rules

The association mining task can be stated as follows: Let I = {1, 2, . . . , m} be a set of
items, and let T = {1, 2, . . . , n} be a set of transaction identifiers or tids. The input database
is a binary relation δ ⊆ I ×T . If an item i occurs in a transaction t , we write it as (i, t) ∈ δ,
or alternately as iδt . Typically the database is arranged as a set of transactions, where each
transaction contains a set of items. For example, consider the database shown in figure 1, used
as a running example in this paper. Here I = {A, C, D, T, W }, and T = {1, 2, 3, 4, 5, 6}.
The second transaction can be represented as {Cδ2, Dδ2, Wδ2}; all such pairs from all
transactions, taken together form the binary relation δ. A set X ⊆ I is called an itemset,
and a set Y ⊆ T is called a tidset. For convenience we write an itemset {A, C, W } as ACW,
and a tidset {2, 4, 5} as 245.

For an itemset X , we denote its corresponding tidset as t(X ), i.e., the set of all tids that
contain X as a subset. For a tidset Y , we denote its corresponding itemset as i(Y ), i.e., the set
of items that appear in every transaction (tid) in Y . Note that t(X ) = ⋂

x∈X t(x), and i(Y ) =⋂
y∈Y i(y). For example, t(ACW) = t(A) ∩ t(C) ∩ t(W ) = 1345 ∩ 123456 ∩ 12345 =

1345 and i(12) = i(1) ∩ i(2) = ACTW ∩ CDW = CW. We use the notation X × t(X )
to refer an itemset and the corresponding tidset where it appears. The properties of the
mappings t(X ) and i(Y ) will be studied in detail in Section 3.

The support of an itemset X , denoted σ (X ), is the number of transactions in which it
occurs as a subset, i.e., σ (X ) = |t(X )|. An itemset is frequent if its support σ (X ) ≥ minsup,
where minsup is a user-specified minimum support threshold.
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Figure 1. Generating frequent itemsets.

An association rule is an expression A
q,p−→ B, where A and B are itemsets. The support of

the rule is q = σ (A ∪ B) = |t(A ∪ B)| (i.e., the joint probability of a transaction containing
both A and B), and the confidence p = σ (A∪B)

σ (A) = |t(A∪B)|
|t(A)| (i.e., the conditional probability

that a transaction contains B, given that it contains A). A rule is frequent if the itemset A∪ B
is frequent (i.e., q ≥ minsup). A rule is confident if p ≥ minconf , where where minconf is
a user-specified minimum threshold. When support is understood, we omit q and write a
rule as A

p−→ B.
Association rule mining consists of two steps (Agrawal et al., 1996): (1) Find all frequent

itemsets, and (2) Generate high confidence rules.

2.1. Finding frequent itemsets

This step is computationally and I/O intensive. Consider figure 1, which shows a bookstore
database with six customers who buy books by different authors. It shows all the frequent
itemsets with minsup = 50% (i.e., 3 transactions). ACTW and CDW are the maximal
frequent itemsets (i.e., not a subset of any other frequent itemset).

Let |I| = m be the number of items. The search space for enumeration of all frequent
itemsets is 2m , which is exponential in m. One can prove that the problem of finding a
frequent set of a certain size is NP-Complete, by reducing it to the balanced bipartite
clique problem, which is known to be NP-Complete (Zaki and Ogihara, 1998). How-
ever, if we assume that there is a bound on the transaction length, the task of finding
all frequent itemsets is essentially linear in the database size, since the overall complex-
ity in this case is given as O(r · n · 2l), where |T | = n is the number of transactions,
l is the length of the longest frequent itemset, and r is the number of maximal frequent
itemsets.
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Figure 2. Generating Confident Rules (for a rule X −→ Y (n/d), its support is given by n and its confidence by
n/d).

2.2. Generating confident rules

This step is relatively straightforward; rules of the form Y
p−→ X − Y , are generated for all

frequent itemsets X , for all Y ⊂ X , Y 	= ∅, and provided p ≥ minconf . Since X is frequent,
the rule is guaranteed to be frequent. For example, from the frequent itemset ACW we can
generate 6 possible rules (all of them have support of 4): A

1.0−→ CW, C
0.67−→ AW, W

0.8−→
AC, AC

1.0−→ W, AW
1.0−→ C , and CW

0.8−→ A. This process is also shown pictorially in fig-
ure 2. Notice that we need access to the support of all subsets of ACW to generate rules
from it. To obtain all possible rules we need to examine each frequent itemset and repeat
the rule generation process shown above for ACW . Figure 2 shows the set of all other
association rules with confidence above or equal to minconf = 80%.

For an itemset of size k there are 2k − 2 potentially confident rules that can be generated.
This follows from the fact that we must consider each subset of the itemset as an antecedent,
except for the empty and the full itemset. The complexity of the rule generation step is thus
O( f · 2l), where f is the number of frequent itemsets, and l is the longest frequent itemset.

3. Closed frequent itemsets

In this section we describe the concept of closed frequent itemsets, and show that this set
is necessary and sufficient to capture all the information about frequent itemsets, and has
smaller cardinality than the set of all frequent itemsets. We refer the reader to Davey and
Priestley (1990) and Ganter and Wille (1999) for more details on lattice theory and formal
concept analysis, respectively.

Let (P, ≤) be an ordered set with the binary relation ≤, and let S be a subset of P . An
element u ∈ P (l ∈ P) is an upper bound (lower bound) of S if s ≤ u (s ≥ l) for all s ∈ S.
The least upper bound is called the join of S, and is denoted as

∨
S, and the greatest lower

bound is called the meet of S, and is denoted as
∧

S. If S = {x, y}, we also write x ∨ y for
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Figure 3. Frequent itemsets (corresponding tidsets are shown in brackets).

the join, and x ∧ y for the meet. An ordered set (L , ≤) is a lattice, if for any two elements
x and y in L , the join x ∨ y and meet x ∧ y always exist. L is a complete lattice if

∨
S and∧

S exist for all S ⊆ L . Any finite lattice is complete (Davey and Priestley, 1990).
LetP denote the power set of S (i.e., the set of all subsets of S). The ordered set (P(S), ⊆)

is a complete lattice, where the meet is given by set intersection, and the join is given by
set union. For example the partial orders (P(I), ⊆), the set of all possible itemsets, and
(P(T ), ⊆), the set of all possible tidsets are both complete lattices. Figure 3 shows the
lattice1 of all frequent itemsets we found in our example database.

Let the binary relation δ ⊆ I × T be the input database for association mining. Let
X ⊆ I, and Y ⊆ T . The following two mappings together define a Galois connection
between P(I) and P(T ) (Ganter and Wille, 1999):

1. t : I �→ T , t(X ) = {y ∈ T | ∀x ∈ X, xδy}
2. i : T �→ I, i(Y ) = {x ∈ I | ∀y ∈ Y, xδy}

Figure 4 illustrates the two mappings. Recall that the mapping t(X ) is the set of all transac-
tions (tidset) which contain the itemset X , and i(Y ) is the itemset that is contained in all the
transactions in Y . We denote an itemset X and its corresponding tidset t(X ) as X × t(X ).
Similarly a tidset Y and its corresponding itemset i(Y ) is denoted as i(Y )×Y . For example,
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Figure 4. (A) Galois connection and (B) Closed itemset: Round-trip.

t(ACW) = 1345, and i(245) = CDW. In terms of individual elements t(X ) = ⋂
x∈X t(x),

and i(Y ) = ⋂
y∈Y i(y). For example t(ACW) = t(A) ∩ t(C) ∩ t(W ) = 1345 ∩ 123456 ∩

12345 = 1345. Also i(245) = i(2) ∩ i(4) ∩ i(5) = CDW ∩ ACDW ∩ ACDTW = CDW.
The Galois connection satisfies the following properties (Ganter and Wille, 1999) (where

X, X1, X2 ∈ P(I) and Y, Y1, Y2 ∈ P(T )):

1. X1 ⊆ X2 ⇒ t(X1) ⊇ t(X2)
2. Y1 ⊆ Y2 ⇒ i(Y1) ⊇ i(Y2)
3. X ⊆ i(t(X )) and Y ⊆ t(i(Y )).

For example, for ACW ⊆ ACTW, t(ACW) = 1345 ⊇ 135 = t(ACTW). For 245 ⊆ 2456,
i(245) = CDW ⊇ CD = i(2456). Also, AC ⊆ i(t(AC)) = i(1345) = ACW.

Let S be a set. A function c : P(S) �→ P(S) is a closure operator on S if, for all X, Y ⊆ S,
c satisfies the following properties (Ganter and Wille, 1999):

1. Extension: X ⊆ c(X )
2. Monotonicity: if X ⊆ Y , then c(X ) ⊆ c(Y )
3. Idempotency: c(c(X )) = c(X ). A subset X of S is called closed if c(X ) = X .
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Lemma 3.1 (Ganter and Wille, 1999). Let X ⊆ I and Y ⊆ T . Let cit (X ) denote the
composition of the two mappings i ◦ t(X ) = i(t(X )). Dually, let cti (Y ) = t ◦ i(Y ) = t(i(Y )).
Then cit : P(I) �→ P(I) and cti : P(T ) �→ P(T ) are both closure operators on itemsets
and tidsets respectively.

We define a closed itemset as an itemset X that is the same as its closure, i.e., X = cit (X ).
For example the itemset ACW is closed. A closed tidset is a tidset Y = cti (Y ). For example,
the tidset 1345 is closed.

The mappings cit and cti , being closure operators, satisfy the three properties of extension,
monotonicity, and idempotency. We also call the application of i ◦ t or t ◦ i a round-trip.
Figure 4 illustrates this round-trip starting with an itemset X . For example, let X = AC,
then the extension property say that X is a subset of its closure, since cit (AC) = i(t(AC)) =
i(1345) = ACW. Since AC 	= cit (AC) = ACW, we conclude that AC is not closed. On
the other hand, the idempotency property say that once we map an itemset to the tidset
that contains it, and then map that tidset back to the set of items common to all tids in
the tidset, we obtain a closed itemset. After this no matter how many such round-trips
we make we cannot extend a closed itemset. For example, after one round-trip for AC
we obtain the closed itemset ACW. If we perform another round-trip on ACW, we get
cit (ACW) = i(t(ACW)) = i(1345) = ACW.

For any closed itemset X , there exists a closed tidset given by Y , with the property that
Y = t(X ) and X = i(Y ) (conversely, for any closed tidset there exists a closed itemset).
We can see that X is closed by the fact that X = i(Y ), then plugging Y = t(X ), we get
X = i(Y ) = i(t(X )) = cit (X ), thus X is closed. Dually, Y is closed. For example, we have
seen above that for the closed itemset ACW the associated closed tidset is 1345. Such a
closed itemset and closed tidset pair X × Y is called a concept.2

A concept X1 × Y1 is a subconcept of X2 × Y2, denoted as X1 × Y1 ≤ X2 × Y2, iff
X1 ⊆ X2 (iff Y2 ⊆ Y1). Let B(δ) denote the set of all possible concepts in the database.
Then the ordered set (B(δ), ≤) is a complete lattice, called the Galois lattice. For example,
figure 5 shows the Galois lattice for our example database, which has a total of 10 concepts.
The least element is C × 123456 and the greatest element is ACDTW × 5. The mappings
between the closed pairs of itemsets and tidsets are anti-isomorphic, i.e., concepts with
large cardinality itemsets have small tidsets, and vice versa.

The concept generated by a single item x ∈ I is called an item concept, and is given as
Ci (x) = cit (x) × t(x). Similarly, the concept generated by a single transaction y ∈ T is
called a tid concept, and is given as Ct (y) = i(y) × cti (y). For example, the item concept
Ci (A) = i(t(A)) × t(A) = i(1345) × 1345 = ACW × 1345. Further, the tid concept
Ct (2) = i(2)× t(i(2)) = CDW × t(CDW) = CDW ×245. An item concept x is the smallest
item that generates the closed set cit (x), and a tid concept y is the smallest tid that generates
the closed tidset cit (y) or the closed itemset i(y). These two are useful for labeling the
closed itemset lattice.

In figure 5 if we relabel each node with the item concept or tid concept that it is equivalent
to, then we obtain a lattice with minimal labeling (Ganter and Wille, 1999), with item or tid
labels, as shown in the figure in bold letters. Such a relabeling reduces clutter in the lattice
diagram, which provides an excellent way of visualizing the structure of the patterns and



MINING NON-REDUNDANT ASSOCIATION RULES 231

Figure 5. Galois lattice of concepts.

relationships that exist between items. We shall see its benefit in the next section when we
talk about high confidence rules extraction.

It is easy to reconstruct the concepts from the minimal labeling. Consider the tid concept
Ct (2) = X × Y . To obtain the closed itemset X , we append all item labels reachable below
it. Conversely, to obtain the closed tidset Y we append all labels reachable above Ct (2).
Since W , D and C are all the labels reachable by a path below it, X = CDW forms the
closed itemset. Since 4 and 5 are the only labels reachable above Ct (2), Y = 245; this gives
us the concept CDW × 245, which matches the concept shown in the figure.

3.1. Frequent closed itemsets vs. frequent itemsets

We begin this section by defining the join and meet operation on the concept lattice (see
Ganter and Wille, 1999 for the formal proof): The set of all concepts in the database relation
δ, given by (B(δ), ≤) is a (complete) lattice with join and meet given by

join: (X1 × Y1) ∨ (X2 × Y2) = cit (X1 ∪ X2) × (Y1 ∩ Y2)

meet: (X1 × Y1) ∧ (X2 × Y2) = (X1 ∩ X2) × cti (Y1 ∪ Y2)

For the join and meet of multiple concepts, we simply take the unions and joins over all
of them. For example, consider the join of two concepts, (ACDW × 45) ∨ (CDT × 56) =
cit (ACDW ∪ CDT) × (45 ∩ 56) = ACDTW × 5. On the other hand their meet is given
as, (ACDW × 45) ∧ (CDT × 56) = (ACDW ∩ CDT) × cti (45 ∪ 56) = CD × cti (456) =
CD×2456. Similarly, we can perform multiple concept joins or meets; for example, (CT ×
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Figure 6. Frequent concepts.

1356) ∨ (CD × 2456) ∨ (CDW × 245) = cit (CT ∪ CD ∪ CDW) × (1356 ∩ 2456 ∩ 245) =
cit (CDTW) × 5 = ACDTW × 5.

We define the support of a closed itemset X or a concept X × Y as the cardinality of the
closed tidset Y = t(X ), i.e, σ (X ) = |Y | = |t(X )|. A closed itemset or a concept is frequent
if its support is at least minsup. Figure 6 shows all the frequent concepts with minsup = 50%
(i.e., with tidset cardinality at least 3). All frequent itemsets can be determined by the join
operation on the frequent item concepts. For example, since join of item concepts D and
T , Ci (D) ∨ Ci (T ), doesn’t exist, DT is not frequent. On the other hand, Ci (A) ∨ Ci (T ) =
ACTW×135, thus AT is frequent. Furthermore, the support of AT is given by the cardinality
of the resulting concept’s tidset, i.e., σ (AT) = |t(AT)| = |135| = 3.

Lemma 3.2. The support of an itemset X is equal to the support of its closure, i.e.,
σ (X ) = σ (cit (X )).

Proof: The support of an itemset X is the number of transactions where it appears, which is
exactly the cardinality of the tidset t(X ), i.e., σ (X ) = |t(X )|. Since σ (cit (X )) = |t(cit (X ))|,
to prove the theorem, we have to show that t(X ) = t(cit (X )).

Since cti is closure operator, it satisfies the extension property, i.e., t(X ) ⊆ cti (t(X )) =
t(i(t(X ))) = t(cit (X )). Thus t(X ) ⊆ t(cit (X )). On the other hand since cit is also a closure
operator, X ⊆ cit (X ), which in turn implies that t(X ) ⊇ t(cit (X )), due to property 1) of
Galois connections. Thus t(X ) = t(cit (X )).

This lemma, independently reported in Pasquier et al. (1999a), states that all frequent
itemsets are uniquely determined by the frequent closed itemsets (or frequent concepts).
Furthermore, the set of frequent closed itemsets is bounded above by the set of frequent
itemsets, and is typically much smaller, especially for dense datasets. For very sparse
datasets, in the worst case, the two sets may be equal. To illustrate the benefits of closed
itemset mining, contrast figure 3, showing the set of all frequent itemsets, with figure 6,
showing the set of all closed frequent itemsets (or concepts). We see that while there are
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only 7 closed frequent itemsets, in contrast there are 19 frequent itemsets. This example
clearly illustrates the benefits of mining the closed frequent itemsets.3

3.2. Mining closed frequent itemsets

Here we briefly describe CHARM, an efficient algorithm for mining closed itemsets (Zaki
and Hsiao, 2002). We say that two itemsets X, Y of length k belong to the same prefix
equivalence class, [P], if they share the k − 1 length prefix P , i.e., X = Px and Y = Py,
where x, y ∈ I. More formally, [P] = {Xi | Pxi , xi ∈ I}, is the class of all itemsets
sharing P as a common prefix.

In CHARM there is no distinct candidate generation and support counting phase. Rather,
counting is simultaneous with candidate generation. For a given prefix class, one performs
intersections of the tidsets of all pairs of itemsets in the class, and checks if the resulting
tidsets have cardinality at least minsup. Each resulting frequent itemset generates a new
class which will be expanded in the next step. That is, for a given class of itemsets with
prefix P , [P] = {Px1, Px2, . . . , Pxn}, one performs the intersection of Pxi with all Px j

with j > i to obtain a new class [Pxi ] = [P ′] with elements P ′x j provided the itemset
Pxi x j is frequent. The computation progresses recursively until no more frequent itemsets
are produced.

Figure 7 shows the pseudo-code for CHARM, which performs a novel search for closed
itemsets using subset properties of tidsets. The initial invocation is with the class of frequent
single items (the class [∅]). All tidset intersections for pairs of class elements are computed.

Figure 7. Pseudo-code for CHARM.



234 ZAKI

However in addition to checking for frequency, CHARM eliminates branches that cannot
lead to closed sets, and grows closed itemsets using subset relationships among tidsets. There
are four cases: if t(Pxi ) ⊂ t(Px j ) or if t(Pxi ) = t(Px j ) we replace every occurrence of Pxi

with Pxi x j , since whenever Pxi occurs Px j also occurs, which implies that cit (Pxi ) ⊆
cit (Pxi x j ). If t(Pxi ) ⊃ t(Px j ) then we replace Px j for the same reason. Finally, R is
processed further if t(Pxi ) 	= t(Px j ). These four properties allow CHARM to efficiently
prune the search tree (for additional details see Zaki and Hsiao, 2002).

4. Non-redundant association rules

Recall that an association rule is of the form X1
q,p−→ X2, where X1, X2 ⊆ I. Its support

is given as q = |t(X1 ∪ X2)|, and its confidence is given as p = P(X2|X1) = |t(X1 ∪
X2)|/|t(X1)|. We are interested in finding all high support and high confidence rules. It is
widely recognized that the set of such association rules can rapidly grow to be unwieldy. In
this section we will show how the closed frequent itemsets help us form a non-redundant
set of rules. Thus, only a small and easily understandable set of rules can be presented to
the user, who can later selectively derive other rules of interest.

Before we proceed, we need to formally define what we mean by a redundant rule.
Let Ri denote the rule Xi

1
qi ,pi−→ Xi

2. We say that a rule R1 is more general than a rule R2,
denoted R1 � R2 provided that R2 can be generated by adding additional items to either
the antecedent or consequent of R1, i.e., if X1

1 ⊆ X2
1 and X1

2 ⊆ X2
2.

Let R = {R1, . . . , Rn} be a set of rules, such that all their supports and confidences are
equal, i.e., qi = q and pi = p for all 1 ≤ i ≤ n. Then we say that a rule R j is redundant
if there exists some rule Ri , such that Ri � R j . Since all the rules in the collection R
have the same support and confidence, the simplest rules in the collection should suffice to
represent the whole set. Thus the non-redundant rules in the collection R are those that are
most general, i.e., those having minimal antecedents and consequents, in terms of subset
relation. We now show how to eliminate the redundant association rules, i.e., rules having
the same support and confidence as some more general rule.

Lemma 4.1. The rule X1
q,p−→ X2 is equivalent to the rule X1

q1,p1−→ X1 ∪ X2, i.e., q = q1

and p = p1.

Proof: For support we have q = σ (X1 ∪ X2) = σ (X1 ∪ (X1 ∪ X2)) = q1. For confidence,
we have p = q

σ (X1) = q1

σ (X1) = p1.

Lemma 4.2. The rule X1
q,p−→ X2 is equivalent to the rule cit (X1)

q1,p1−→ cit (X2), i.e.,
q = q1 and p = p1.

Proof: For support we have q = σ (X1 ∪ X2) = |t(X1 ∪ X2)| = |t(X1) ∩ t(X2)|. By
Lemma 3.2, we get q = |t(cit (X1)) ∩ t(cit (X2))|, since the support of an itemset and its
closure is the same. The last expression can be rewritten as q = |t(cit (X1) ∪ cit (X2))| =
σ (cit (X1) ∪ cit (X2)) = q1. For confidence, we have p = q

|t(X1)| = q1

|t(X1)| = q1

|t(cit (X1))| = p1.
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Corollary 4.1. The rule X1
q,p−→ X2 is equivalent to the rule cit (X1)

q1,p1−→ cit (X1 ∪ X2),
i.e., q = q1 and p = p1.

Proof: Follows directly by applying Lemma 4.2 to Lemma 4.1.

Lemma 4.2 says that it suffices to consider rules only among the frequent concepts, i.e.,
a rule between any two itemsets is exactly the same as the rule between their respective
closures. Another observation that follows from the concept lattice is that for closed itemsets
related by the subset relation, it is sufficient to consider rules among adjacent concepts, since
other rules can be inferred by transitivity (Luxenburger, 1991), that is:

Lemma 4.3. Transitivity: Let X1, X2, X3 be frequent closed itemsets, with X1 ⊆ X2 ⊆
X3. If X1

q1,p1−→ X2 and X2
q2,p2−→ X3, then X1

q2,(p1 p2)−→ X3.

Proof: First let’s consider support of X1 −→ X3. Since X2 ⊆ X3, q2 = σ (X2 ∪ X3) =
|t(X2 ∪ X3)| = |t(X3)|. Since X1 ⊆ X3, we get σ (X1 ∪ X3) = |t(X1 ∪ X3)| = |t(X3)| = q2.

Now let’s consider the confidence of X1 −→ X3, given as r = |t(X1∪X3)|
|t(X1)| = |t(X3)|

|t(X1)| .
From first rule we have p1 = |t(X1∪X2)|

|t(X1)| = |t(X2)|
|t(X1)| , and from the second rule we have p2 =

|t(X2∪X3)|
|t(X2)| = |t(X3)|

|t(X2)| . Thus (p1 · p2) = |t(X2)|
|t(X1)| · |t(X3)|

|t(X2)| = |t(X3)|
|t(X1)| = r .

In the discussion below, we consider two cases of association rules, those with 100%
confidence, i.e., with p = 1.0, and those with p < 1.0.

4.1. Rules with confidence = 100%

Lemma 4.4 (Luxenburger, 1991). An association rule X1
p=1.0−→ X2 has confidence p = 1.0

if and only if t(X1) ⊆ t(X2) (or equivalently if and only if cit (X2) ⊆ cit (X1)).

Proof: If X1
1.0−→ X2, it means that X2 always occurs in a transaction, whenever X1 occurs

in that transaction. Put another way, the tidset where X1 occurs must be a subset of the tidset
where X2 occurs. But this is precisely given as t(X1) ⊆ t(X2). More formally, the confidence
of the rule X1

p−→ X2 is given as p = |t(X1 ∪ X2)|/|t(X1) = |t(X1) ∩ t(X2)|/|t(X1)|.
Since t(X1) ⊆ t(X2), we have p = |t(X1)|/|t(X1)| = 1.0. This also implies that the support
of the rule is the same as support of X1. Finally, by Property 2 of Galois connection, t(X1) ⊆
t(X2) implies cit (X2) ⊆ cit (X1).

By Lemma 4.2, X1
1.0−→ X2 is equivalent to cit (X1)

1.0−→ cit (X2). By Lemma 4.4 we get
cit (X2) ⊆ cit (X1). Since a rule between frequent itemsets is equivalent to the rule between
their closures, we can assume without loss of generality in the rest of this section that X1

and X2 are closed itemsets. The lemma above then says that all 100% confidence rules are
those that are directed from a super-concept (X1 × t(X1)) to a sub-concept (X2 × t(X2))
since it is in precisely these cases that t(X1) ⊆ t(X2) (or cit (X1) ⊇ cit (X1)). Combining
this fact with Lemma 4.3, we conclude that it is sufficient to consider 100% confidence
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Figure 8. Rules with 100% Confidence (the support of each rule can be taken from the numerator, e.g., for rules
with label 1 = 3/3, their support is 3, and so on): The arrows denote rules between adjacent closed itemsets.

rules only among adjacent closed itemsets (not just any closed itemsets), since the other
rules can be derived by transitivity.

There are two cases that lead to 100% confidence rules:

1. Self-rules: These rules are generated when X1 = X2 (or equivalently t(X1) = t(X2)).
That is, the rule is directed from a frequent closed itemset to itself.

2. Down-rules: These rules are generated when X1 ⊂ X2 (or equivalently t(X1) ⊃ t(X2)).
In other words, the rule is directed from a frequent closed itemsets to its closed proper
subset.

Consider the item concepts Ci (W ) = CW × 12345 and Ci (C) = C × 123456. The rule
W

1.0−→ C is a 100% confidence rule with support of 5. Note that if we take the itemset
closure on both sides of the rule, we obtain CW

1.0−→ C , i.e., a rule between closed itemsets,
but since the antecedent and consequent are not disjoint in this case, we prefer to write the
rule as W

1.0−→ C , although both rules are exactly the same.
Figure 8 shows some of the other rules among adjacent concepts with 100% confidence.

We notice that some down-arcs are labeled with more than one rule. In such cases, all rules
within a box are equivalent, and we prefer the rule that is most general. For example, consider
the rules (all with support 3): TW

1.0−→ A, TW
1.0−→ AC, and CTW

1.0−→ A. TW
1.0−→ A is

more general than the latter two rules, since the latter two are obtained by adding one (or
more) items to either the antecedent or consequent of T W

1.0−→ A. In fact, we can say that
the addition of C to either the antecedent or the consequent has no effect on the support or
confidence of the rule. Thus, according to our definition, we say that the other two rules are
redundant.

Theorem 4.1. Let R = {R1, . . . , Rn} be the set of all possible rules that satisfy the
following conditions:
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1. qi = q for all 1 ≤ i ≤ n (i.e., all rules have the same support).
2. pi = p = 1.0 for all 1 ≤ i ≤ n (i.e., all rules have 100% confidence).
3. I1 = cit (Xi

1) = cit (Xi
1 ∪ Xi

2), and I2 = cit (Xi
2) for all 1 ≤ i ≤ n.

Let RG = {Ri | �R j ∈ R, R j ≺ Ri }, denote the most general rules in R. Then all rules
Ri ∈ R are equivalent to the rule I1

q,1.0−→ I2, and all rules in R − RG are redundant.

Proof: Consider any rule Ri = Xi
1

q,1.0−→ Xi
2. Then the support of the rule is given as

q = |t(Xi
1 ∪ Xi

2)| and its confidence p = |t(Xi
1∪Xi

2)|
|t(Xi

1)| . By Lemma 4.4 we have t(Xi
1) ⊆ t(Xi

2),

giving |t(Xi
1 ∪ Xi

2)| = |t(Xi
1) ∩ t(Xi

2)| = |t(Xi
1)|. Thus q = |t(Xi

1)|, and p = |t(Xi
1)|

|t(Xi
1)| = 1.

Since t(Xi
1) ⊆ t(Xi

2), by Property 2 of Galois connections, we have i(t(Xi
1)) ⊇ i(t(Xi

2)),
i.e, cit (Xi

1) ⊇ cit (Xi
2). By monotonicity of closure we have cit (Xi

1) ⊆ cit (Xi
1 ∪ Xi

2).
By Lemma 3.2 we also have σ (cit (Xi

1 ∪ Xi
2)) = σ (Xi

1 ∪ Xi
2), i.e., |t(cit (Xi

1 ∪ Xi
2))| =

|t(Xi
1 ∪ Xi

2)|.
The support of the rule I1 −→ I2 is given as |t(I1 ∪ I2)| = |t(cit (Xi

1 ∪ Xi
2) ∪ cit (Xi

2))| =
|t(cit (Xi

1 ∪ Xi
2))| = |t(Xi

1 ∪ Xi
2)| = |t(Xi

1) ∩ t(Xi
2)| = |t(Xi

1)| = q. The confidence of the

rule I1 −→ I2 is given as |t(I1∪I2)|
|t(I1)| = |t(Xi

1)|
|t(Xi

1)| = 1.

Let’s apply this theorem to the three rules we considered above. For the first rule cit (TW ∪
A) = cit (ATW) = ACTW. Similarly for the other two rules we see that cit (TW ∪ AC) =
cit (ACTW) = ACTW, and cit (CTW ∪ A) = cit (ACTW) = ACTW. Thus for these three
rules we get the closed itemset I1 = ACTW. By the same process we obtain I2 = ACW.
All three rules correspond to the arc between the tid concept Ct (1, 3) and the item concept
Ci (A). Finally T W

1.0−→ A is the most general rule, and so the other two are redundant.
The set of all non-redundant rules constitutes a generating set, i.e., a rule set, from which

other 100% confidence rules can inferred (Guigues and Duquenne, 1986; Luxenburger,
1991; Taouil et al., 2000; Zaki and Phoophakdee, 2003). Figure 8 shows the generating
set in bold arcs, which includes the 5 most general rules {TW

1.0−→ A, A
1.0−→ W, W

1.0−→
C, T

1.0−→ C, D
1.0−→ C} (the down-arcs that have been left out produce rules that cannot

be written with disjoint antecedent and consequent. For example, between Ct (2) and Ci (D),
the most general rule is DW

1.0−→ D. Since the antecedent and consequent are not disjoint,
as required by definition, we discard such rules).

4.2. Rules with confidence <100%

We now turn to the problem of finding a non-redundant rule set for association rules with
confidence less than 100%. By Lemmas 4.1 and 4.3, we need to consider the rules only
between adjacent concepts. But this time the rules correspond to the up-arcs, instead of the
down-rules (or self-rules) for the 100% confidence rules, i.e., the rules go from sub-concepts
to super-concepts.

Consider figure 9. The edge between item concepts Ci (C) and Ci (W ) corresponds to
C

0.83−→ W . Rules between non-adjacent concepts can be derived by transitivity. For example,
for C

p−→ A we can obtain the value of p using the rules C
p1=5/6−→ W and W

p2=4/5−→ A. We
have p = p1 p2 = 5/6 · 4/5 = 2/3 = 0.67.
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Figure 9. Rules with Confidence <100% (the support of each rule can be taken from the numerator, e.g., for
rules with label 3/4, their support is 3, and so on): The arrows denote rules between adjacent closed itemsets.

Theorem 4.2. Let R = {R1, . . . , Rn} be the set of all possible rules that satisfy the
following conditions:
1. qi = q for all 1 ≤ i ≤ n (i.e., all rules have the same support).
2. pi = p < 1.0 for all 1 ≤ i ≤ n (i.e., all rules have same confidence).
3. I1 = cit (Xi

1), and I2 = cit (Xi
1 ∪ Xi

2) for all 1 ≤ i ≤ n.
Let RG = {Ri | �R j ∈ R, R j ≺ Ri }, denote the most general rules in R. Then all rules
Ri ∈ R are equivalent to the rule I1

q,p−→ I2, and all rules in R − RG are redundant.

Proof: Consider any rule Ri = Xi
1

p−→ Xi
2. Then the support of the rule is given as

q = |t(Xi
1 ∪ Xi

2)| and its confidence as p = q/d, d = |t(Xi
1)|. We will show that the

I1 −→ I2 also has support |t(I1 ∪ I2)| = q and confidence |t(I1∪I2)|
|t(I1)| = q/d.

Let’s consider the denominator first. We have |t(I1)| = |t(cit (Xi
1))| = |t(Xi

1)| = d.
Now consider the numerator. We have |t(I1 ∪ I2)| = |t(cit (Xi

1) ∪ cit (Xi
1 ∪ Xi

2))|. Since
Xi

1 ⊆ (Xi
1 ∪ Xi

2), we have, from the property of closure operator, cit (Xi
1) ⊆ cit (Xi

1 ∪ Xi
2).

Thus, |t(I1 ∪ I2)| = |t(cit (Xi
1 ∪ Xi

2))| = |t(Xi
1 ∪ Xi

2)| = q.

This theorem differs from that of the 100% confidence rules to account for the up-arcs.
Consider the rules produced by the up-arc between item concepts Ci (W ) and Ci (A). We
find that for all three rules, I1 = cit (W ) = cit (CW) = CW, and I2 = cit (W ∪ A) =
cit (W ∪ AC) = cit (CW ∪ A) = ACW. The support of the rule is given by |t(I1 ∪ I2)| =
|t(ACW)| = 4, and the confidence given as |t(I1 ∪ I2)|/|t(I1)| = 4/5 = 0.8. Finally, since
W

0.8−→ A is the most general rule, the other two are redundant. Similarly for the up-arc
between Ci (A) and Ct (1, 3), we get the general rule A

0.75−→ T . The other 8 rules in the box
are redundant! The two bold arrows in figure 9 constitute a generating set for all rules
with 0.8 ≤ p < 1.0. Due to the transitivity property, we only have to consider arcs with
confidence at least minconf = 0.8. No other rules can be confident at this level.
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By combining the generating set for rules with p = 1.0, shown in figure 8 and the
generating set for rules with 1.0 > p ≥ 0.8, shown in figure 9, we obtain a gener-
ating set for all association rules with minsup = 50%, and minconf = 80%: {T W

1.0−→
A, A

1.0−→ W, W
1.0−→ C, T

1.0−→ C, D
1.0−→ C, W

0.8−→ A, C
0.83−→ W }.

Using the closed itemset approach we produce 7 rules versus the 22 rules produced in
traditional association mining. To see the contrast further, consider the set of all possible
association rules we can mine. With minsup = 50%, the least value of confidence can be
50% (since the maximum support of an itemset can be 100%, but any frequent subset must
have at least 50% support; the least confidence value is thus 50/100 = 0.5). There are 60
possible association rules versus only 13 in the generating set (5 rules with p = 1.0 in
figure 8, and 8 rules with p < 1.0 in figure 9).

4.3. Non-redundant rule generation

In this section we give the algorithms for non-redundant rule generation. They rely on
the concept of minimal generators (Bastide et al., 2000) of a closed itemset. We begin by
defining this concept and then present the rule generation algorithms.

4.3.1. Minimal generators. Let X be a closed itemset. We say that an itemset X ′ is a
generator of X if and only if (1) X ′ ⊆ X , and (2) σ (X ′) = σ (X ). X ′ is called a proper
generator if X ′ ⊂ X (i.e., X ′ 	= X ). A proper generator cannot be closed, since by definition,
no closed subset of X can have the same support as X . Let G(X ) denote the set of generators
of X . We say that X ′ ∈ G(X ) is a minimal generator if it has no subset in G(X ). Let Gmin(X )
denote the set of all minimal generators of X . By definition Gmin(X ) 	= ∅, since if there
is no proper generator, X is its own minimal generator. Consider the closed set ACTW.
The generators of ACTW are G(ACTW) = {AT, TW, ACT, ATW, CTW}, and the minimal
generators are Gmin(ACTW) = {AT, TW}.

An algorithm to find minimal generators is shown in figure 10. It is based on the fact
that the minimal generators of a closed itemset X are the minimal itemsets that are subsets
of X but not a subset of any of X ’s (immediate) closed subsets. Let S = {Xi | (cit (Xi ) =
Xi ) ∧ (Xi ⊂ X ) ∧ (�X j : (cit (X j ) = X j ) ∧ (Xi ⊂ X j ⊂ X ))}, be the set of immediate
closed subsets of X .

First, any item appearing for the first time in X , given as I = X −⋃
Xi ∈S Xi is a minimal

generator by definition. From the remaining items, i.e., those that appear in subsets of
X , we find all minimal generators using an Apriori-style (Agrawal et al., 1996) level-wise
procedure. We initialize the candidate generators to be all single items of size one appearing
in X ’s subsets, i.e., G1 = {i | i ∈ X − I }. For any current candidate generator G ∈ Gk we
test if G is a subset of any itemset in S. If true, G is not a generator for X . If false, then G is
a minimal generator, and it is added to Gmin(X ), and removed from Gk . After we have seen
all G ∈ Gk , we have found all minimal generators of length k. The next step is to generate
candidate generators for the next iteration. For each possible generator G ′ ∈ Gk+1, all its
immediate subsets must be present in Gk . Let G ′ = i1i2 . . . ikik+1 be a possible candidate
in Gk+1. The subset check is done by checking whether the subset G j of length k obtained
by removing item i j from G ′ is present in Gk . Since we remove from Gk any minimal
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Figure 10. Find minimal generators.

generator G, none of G’s supersets can ever become candidate generators. We next repeat
the whole process with Gk+1 as the current set of candidates. The process stops when no
more candidates can be generated.

As an example consider X = ACTW again. We have S = {CW, CT, AW}. We thus
get I = ∅ and G1 = {A, C, T, W }. We find that all these items are subsets of some
set in S, so there can be no single item generators. For the next pass we get G2 =
{AC, AT, AW, CT, CW, T W}. From these, we find that AT, TW are not subsets of any itemset
inS, so we add them toGmin(X ) and remove them fromG2, givingG2 = {AC, AW, CT, CW}.
Now for the next pass we get G3 = {ACW}. Since this is a subset of an itemset in S, it
cannot be a generator. Finally, we get G4 = ∅, and the computation stops. The final answer
is Gmin(ACTW) = {AT, TW}.

4.3.2. Rule generation. Given any two closed itemsets X1 and X2, with X1 ⊆ X2, figure 11
shows an algorithm to generate all possible non-redundant rules between them, based on
the notion of minimal generators. The first step is to compute the minimal generators of X1

and X2.
The 100% confidence rules are directed from X2 to X1. Every set in X ′ ∈ Gmin(X2) forms

a potential LHS (left hand side) for a rule, and by definition X ′ is the most general itemset
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Figure 11. Non-redundant rule generation algorithm.

that can represent X2. Furthermore, as required by Theorem 4.4, cit (LHS) = cit (X ′) = X2.
Likewise every minimal set X ′′ ∈ Gmin(X1) can serve as a potential RHS (right hand side).
Since we require RHS to be disjoint from LHS, we set RHS = X ′′ − X ′ (thus LHS ∩ RHS =
∅). If the remaining two conditions in Theorem 4.4 are met (i.e., cit (RHS) = X1 and
cit (LHS ∪ RHS) = X2), we can generate a 100% confidence rule LHS −→ RHS.

Rules with confidence <100% are directed from X1 to X2. As before every X ′ ∈ Gmin(X1)
forms a potential LHS, and every X ′′ ∈ Gmin(X2) forms a potential RHS for a rule. To ensure
disjointness, we set RHS = X ′′−X ′. As required by Theorem 4.1, cit (LHS) = cit (X ′) = X1,
and if cit (LHS ∪ RHS) = X2 then we can generate a <100% confidence rule LHS −→ RHS.

The final step is to find the most general rules among rules having the same support and
confidence, RG , which then represents all possible non-redundant rules between X1 and
X2.

As an example let X1 = ACW and X2 = ACTW. We have Gmin(ACW) = {A} and
Gmin(ACTW) = {AT, TW}. The possible 100% confidence rules are AT −→ (A − AT),
but since A − AT = ∅ this rules is not possible. The other possibility is T W −→ (A −
TW), which gives us the rule TW

3,1.0−→ A. A possible < 100% confidence rules is A −→
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(AT − A), giving us A
3,3/4−→ T . The second possibility is A −→ (TW − A), resulting in

the rule A
3,3/4−→ TW. Thus the possible non-redundant rules between ACW and ACTW are

R = {TW
3,1.0−→ A, A

3,3/4−→ T, A
3,3/4−→ TW}. Since A

3,3/4−→ T is equivalent to (i.e., has same
support and confidence) and more general than A

3,3/4−→ TW, we finally get RG = {TW
3,1.0−→

A, A
3,3/4−→ T } as the final answer.

4.4. Complexity of rule generation: Traditional vs. new framework

The complexity of rule generation in the traditional framework is O( f · 2l), exponential in
the length l of the longest frequent itemset ( f is the total number of frequent itemsets). On
the other hand using the closed itemset framework, the number of non-redundant rules is
linear in the number of closed itemsets. To see how much savings are possible using closed
frequent itemsets, lets consider the case where the longest frequent itemset has length l;
with all 2l subsets also being frequent.

In the traditional association rule framework, we would have to consider for each frequent
itemset all its subsets as rule antecedents. The total number of rules generated in this
approach is given as

∑l
i=0 ( l

i ) · 2l−i ≤ ∑l
i=0 ( l

i ) · 2l = 2l
∑l

i=0 ( l
i ) = 2l · 2l = 0(22l).

On the other hand the number of non-redundant rules produced using closed itemsets is
given as follows. Let’s consider two extreme cases: In the best case, there is only one closed
itemset of length l, i.e., all 2l subsets have the same support as the longest frequent itemset.
Thus all rules between itemsets must have 100% confidence. The closed itemset approach
produces the most general rules for the single itemset. These simple rules would be the
rules between all single items. There are l · (l − 1) = l2 − l possible rules, all with 100%
confidence. This corresponds to a reduction in the number of rules by a factor of O(22l/ l2).

In the worst case, all 2l frequent itemsets are also closed. In this case there can be no
100% confidence rules and all (<100% confidence) rules point upward, i.e., from subsets to
their immediate supersets. For each subset of length k we have k rules from each of its k −1
length subsets to that set. The total number of rules generated is thus

∑l
i=0 ( l

i ) · (l − i) ≤∑l
i=0 ( l

i ) · l = O(l · 2l). Thus we get a reduction in the number of rules by of a factor of
O(2l/ l), i.e., asymptotically exponential in the length of the longest frequent itemset.

5. Experimental evaluation

All experiments described below were performed on a 400 MHz Pentium PC with 256 MB
of memory, running RedHat Linux 6.0. Algorithms were coded in C++. Table 1 shows the
characteristics of the real and synthetic datasets used in our evaluation. The real datasets were
obtained from IBM Almaden (www.almaden.ibm.com/cs/quest/demos.html). All datasets
except the PUMS (pumsb and pumsb∗) sets, are taken from the UC Irvine Machine Learning
Database Repository. The PUMS datasets contain census data. pumsb∗ is the same as pumsb
without items with 80% or more support. The mushroom database contains characteristics
of various species of mushrooms. Finally the connect and chess datasets are derived from
their respective game steps. Typically, these real datasets are very dense, i.e., they produce
many long frequent itemsets even for very high values of support.
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Table 1. Database characteristics.

Database No. of items Record length No. of records

Chess 76 37 3,196

Connect 130 43 67,557

Mushroom 120 23 8,124

pumsb∗ 7117 50 49,046

pumsb 7117 74 49,046

T20I12D100K 1000 20 100,000

T40I8D100K 1000 40 100,000

T10I4D100K 1000 10 100,000

T20I4D100K 1000 20 100,000

We also chose a few synthetic datasets (also available from IBM Almaden), which have
been used as benchmarks for testing previous association mining algorithms. These datasets
mimic the transactions in a retailing environment. Usually the synthetic datasets are sparse
when compared to the real sets. We used two dense and two sparse (the last two rows in
Table 1) synthetic datasets for our study.

5.1. Traditional vs. closed framework

Consider Tables 2 and 3, which compare the traditional rule generation framework with the
closed itemset approach proposed in this paper. The tables shows the experimental results
along a number of dimensions: (1) total number of frequent itemsets vs. closed frequent
itemsets, (2) total number of rules in the traditional vs. new approach, and (3) total time
taken for mining all frequent itemsets (using Apriori) and the closed frequent itemsets (using
CHARM).

Table 2 shows that the number of closed frequent itemsets can be much smaller than
the set of all frequent itemsets. For the support values we look at here, we got reductions
(shown in the Ratio column) in the cardinality upto a factor of 45. For lower support values
the gap widens rapidly (Zaki and Hsiao, 2002). It is noteworthy, that CHARM finds these
closed sets in a fraction of the time it takes Apriori to mine all frequent itemsets as shown
in Table 2. The reduction in running time ranges upto a factor of 145 (again the gap widens
with lower support). For the sparse sets, and for high support values, the closed and all
frequent set coincide, but CHARM still runs faster than Apriori. Table 3 shows that the
reduction in the number of rules (with all possible consequent lengths) generated is drastic,
ranging from a factor of 2 to more than 3000 times!

We also computed how many single consequent rules are generated by the traditional
approach. We then compared these with the non-redundant rule set from our approach (with
possibly multiple consequents). The table also shows that even if we restrict the traditional
rule generation to a single item consequent, the reduction with the closed itemset approach
is still substantial, with upto a factor of 66 reduction (once again, the reduction is more
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Table 2. Number of itemsets and running time (Sup = minsup, Len = longest frequent itemset).

Number of itemsets Running time

Database Sup (%) Len #Freq #Closed Ratio Apriori CHARM Ratio

Chess 80 10 8227 5083 1.6 18.54 1.92 9.7

Chess 70 13 48969 23991 2.0 213.03 8.17 26.1

Connect 97 6 487 284 1.7 19.7 4.15 4.7

Connect 90 12 27127 3486 7.8 2084.3 43.8 47.6

Mushroom 40 7 565 140 4.0 1.56 0.28 5.6

Mushroom 20 15 53583 1197 44.7 167.5 1.2 144.4

pumsb∗ 60 7 167 68 2.5 11.4 1.0 11.1

pumsb∗ 40 13 27354 2610 10.5 847.9 17.1 49.6

pumsb 95 5 172 110 1.6 19.7 1.7 11.7

pumsb 85 10 20533 8513 2.4 1379.8 76.1 18.1

T20I12D100K 0.5 9 2890 2067 1.4 6.3 5.1 1.2

T40I8D100K 1.5 13 12088 4218 2.9 41.6 15.8 2.6

T10I4D100K 0.5 5 1073 1073 1 2.0 1.1 1.8

T10I4D100K 0.1 10 27532 26806 1.03 32.9 8.3 4.0

T20I4D100K 1.0 6 1327 1327 1 6.7 4.8 2.6

T20I4D100K 0.25 10 30635 30470 1.01 32.8 10.7 3.1

Table 3. Number of rules (all vs. consequent of length 1) (Sup = minsup, Len = longest itemset).

All possible rules Rules with one consequent

Database Sup (%) Len #Traditional #Closed Ratio #Traditional Ratio

Chess 80 10 552564 27711 20 44637 2

Chess 70 13 8171198 152074 54 318248 2

Connect 97 6 8092 1116 7 1846 1.7

Connect 90 12 3640704 18848 193 170067 9

Mushroom 40 7 7020 475 15 1906 4.0

Mushroom 20 15 19191656 5741 3343 380999 66

pumsb∗ 60 7 2358 192 12 556 3

pumsb∗ 40 13 5659536 13479 420 179638 13

pumsb 95 5 1170 267 4 473 2

pumsb 85 10 1408950 44483 32 113089 3

T20I12D100K 0.5 9 40356 2642 15 6681 3

T40I8D100K 1.5 13 1609678 11379 142 63622 6

T10I4D100K 0.5 5 2216 1231 1.8 1231 1.0

T10I4D100K 0.1 10 431838 86902 5.0 90350 1.04

T20I4D100K 1.0 6 2736 1738 1.6 1738 1.0

T20I4D100K 0.25 10 391512 89963 4.4 90911 1.01
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Figure 12. Number of rules: Traditional vs. closed itemset framework.
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for lower supports). It is worth noting that, even though for sparse synthetic sets the closed
frequent itemsets is not much smaller than the set of all frequent itemsets, we still get upto
a factor of 5 reduction in the number of rules generated.

The results above present all possible rules that are obtained by setting minconf equal to
the minsup. Figure 12 shows the effect of minconf on the number of rules generated. It shows
that most of the rules have very high confidence; as the knee of the curves show, the vast
majority of the rules have confidences between 95 and 100 percent! This is a particularly
distressing result for the traditional rule generation framework. The new approach produces
a rule set that can be orders of magnitude smaller. In general it is possible to mine closed
sets using CHARM for low values of support, where it is infeasible to find all frequent
itemsets. Thus, even for dense datasets we can generate rules, which may not be possible
in the traditional approach.

6. Conclusions

This paper has demonstrated in a formal way, supported with experiments on several
datasets, the well known fact that the traditional association rule framework produces too
many rules, most of which are redundant. We proposed a new framework based on closed
itemsets that can drastically reduce the rule set, and that can be presented to the user in a
succinct manner.

This paper opens a lot of interesting directions for future work. For example we plan to
use the concept lattice for interactive visualization and exploration of a large set of mined
associations. Keep in mind that the frequent concept lattice is a very concise representation
of all the frequent itemsets and the rules that can be generated from them. Instead of
generating all possible rules, we plan to generate the rules on-demand, based on the user’s
interests. Finally, there is the issue of developing a theory for extracting a base, or a minimal
generating set, for all the rules.

Notes

1. Only meet is defined on frequent sets, while the join may not exist. For example, AC ∧ AT = AC ∩ AT = A is
frequent. But, while AC ∨ AT = AC ∪ AT = ACT is frequent, AC ∪ DW = ACDW is not frequent.

2. The term formal concept was introduced by Wille in the 80’s (Ganter and Wille, 1999) to formalize the notion
of a concept. The set of tids denotes the extent of the concept, i.e., the objects that share some attributes, while
the set of items denotes the intent of the concept, i.e., the attributes or properties shared by the objects.

3. One possible objection that can be raised to the closed itemset framework is that a small change in the data
can change the number of closed itemsets. However, the frequency requirement makes the framework robust
to small changes, i.e., while the set of closed itemsets can still change, the set of frequent closed itemsets is
resilient to change.
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