
Mining Object Behavior with ADABU

Valentin Dallmeier · Christian Lindig · Andrzej Wasylkowski · Andreas Zeller
Dept. of Computer Science, Saarland University, Saarbrücken, Germany

{dallmeier, lindig, wasylkowski, zeller}@cs.uni-sb.de

ABSTRACT
To learn what constitutes correct program behavior, one can start
with normal behavior. We observe actual program executions to
construct state machines that summarize object behavior. These
state machines, called object behavior models, capture the rela-
tionships between two kinds of methods: mutators that change
the state (such as add()) and inspectors that keep the state un-
changed (such as isEmpty()): “A Vector object initially is
in isEmpty() state; after add(), it goes into ¬isEmpty()
state”. Our ADABU prototype for JAVA has successfully mined
models of undocumented behavior from the AspectJ compiler and
the Columba email client; the models tend to be small and easily
understandable.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Class invariants; D.2.1
[Requirements/Specifications]: Tools; D.2.5 [Testing and De-
bugging]: Tracing

General Terms
Experimentation, Documentation, Languages, Verification

Keywords
Program Analysis, Object Behavior Model, Mining, Automata, Ob-
server Method, Inspector Method, Purity Analysis, Java, Program
Instrumentation, Object State

1. INTRODUCTION
When some object uses the services of another object, it must sat-
isfy a number of constraints—for instance, it can only invoke public
methods, and it must provide appropriate arguments. Some con-
straints, though, are of a temporal nature: for instance, the method
Vector.add() must be called before Vector.remove().

Temporal constraints are often undocumented—but implicit in a
correct interaction between a client and an object. This observation
led several researchers to mine temporal constraints dynamically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

isEmpty() ¬isEmpty()

add()

remove()

<init>()

clear()

add()

clear() remove()

Figure 1: An object behavior model for the JAVA Vector class.

(Ammons et al., 2002; Yang and Evans, 2004; Weimer and Necula,
2005; Xie et al., 2006); applications include program understand-
ing and error detection (Weimer and Necula, 2005; Whaley et al.,
2002). Mining learns a finite-state automaton whose states repre-
sent the state of an object and whose transitions are labeled with
method names. Such automatons reflect that executing a method
like Vector.clear() leads a vector object to a new state where
calling Vector.remove() is illegal. More generally, the au-
tomaton approximates all legal method-call sequences and serves
as a temporal specification.

While transitions between states are easy to obtain, character-
izing meaningful states has always been an issue: When do two
sequences of method calls end in the same state? In this paper, we
use a both novel and simple approach to characterize states. Rather
than using anonymous states (Cook and Wolf, 1998; Ammons et al.,
2002; Weimer and Necula, 2005), or referring to implementation
details like variables or branch conditions (Xie et al., 2006; Wha-
ley et al., 2002), we characterize object states by their externally
observable state. This state is obtained by invoking automatically
identified inspector methods: executing Vector.clear() leads
to a state where Vector.isEmpty() is false. Our object behav-
ior models thus do not rely on implementation aspects and therefore
are aligned with a client’s view.

Figure 1 shows an example of an object behavior model, de-
scribing the behavior of a JAVA Vector object mined from the
execution of Columba, a modern email client whose implementa-
tion comprises more than 500 classes (Stich and Dietz, 2005). After
construction (<init>), a Vector object is empty, as indicated by
the inspector method isEmpty() returning true. After adding el-
ements using the add method, the state changes to ¬isEmpty().

By removing elements, the state can become empty again. As
shown in the example, relying on inspectors to characterize state al-
lows the model to rely on abstractions as defined in the interface—
the distinction between empty and non-empty vectors was impor-
tant enough to warrant the existence of a dedicated inspector, and
therefore is also reflected in the model.

17

A model expresses the relationship between mutator and inspec-
tor methods: calling a mutator changes the state of the object as
it is observable through its inspector methods. For instance, a call
to the clear() method always ends up in the isEmpty() state.
A model also expresses which sequences of mutator calls are pos-
sible: an invocation of remove() in isEmpty() state has not
been observed. Therefore, it is uncommon and in fact, incorrect, to
invoke remove() right after initialization or a call to clear().
Like other dynamic analyses, we build on the observation that com-
mon behavior is often correct behavior; our models thus are likely
to represent universal invariants—which gives them a great poten-
tial for documenting and validating program properties.

Mining object behavior models from JAVA programs is fully au-
tomatic and does not rely on special test cases. Indeed, we can
mine models from an arbitrary program execution for all its classes
simultaneously. Our approach takes the following steps, which are
detailed in Section 2:

1. For each class, we statically identify its inspectors—public
methods that do not change state (such as isEmpty()).
Any public non-inspector is a mutator (such as add()).

2. While executing the program, we invoke all inspectors before
and after each mutator to retrieve the object’s state—a vector
〈x1, . . . , xn〉 of concrete values. For the Vector class in
Figure 1, this is 〈size(),isEmpty(),capacity()〉.

3. We abstract from concrete values by mapping them to small
finite domains such as positive/negative/zero for integers. We
thus obtain a vector of abstracted values like 〈size() >
0,¬isEmpty(),capacity() > 0〉 for the state of a
Vector object.

4. Each abstract vector becomes a state which is reached by the
mutator. In the Vector class, there are two such states: an
empty state

isEmpty() ∧ size() = 0 ∧ capacity() > 0

and a nonempty state

¬isEmpty()∧ size() > 0 ∧ capacity() > 0 .

5. The result is a finite state model, such as the one shown in
Figure 1. The transitions occur between (abstract) object
states, summarizing normal object usage.

We have built a prototype called ADABU1 which realizes the above
approach. During a program run (or a set of program runs), ADABU
first obtains a model for each individual object; then, it merges
these models for all objects of a single class. We thus end up with
one model per class, summarizing the normal object usage across
all observed runs.

The remainder of this paper details our notion of object behav-
ior models and how we obtain them (Section 2), discusses models
that we found (Section 3), surveys related work (Section 4), and
concludes with an outlook (Section 5).

2. EXTRACTING MODELS
The process of extracting models from a run consists of two steps:
First, a static analysis identifies all side-effect free methods in the
program. A subset (defined below) of these methods constitutes
the set of inspectors for the program. During the second phase, the
program is executed and inspectors are called to extract information
about an object’s state.
1ADABU Detects All Bad Usages. “Adabu” is also the Swahili
word for “good behavior”.

2.1 Inspectors And Mutators
For the purpose of extracting models, we partition the methods of
a class into inspectors and mutators. An inspector returns informa-
tion about the state of an object. A method that is to be used as
inspector must meet the following criteria:

• Not Void. We expect inspectors to pass information to the
caller in the returned value, and thus require a return type
other than void.

• No Parameters. An inspector must not take parameters. The
reason for this is that if an inspector takes an argument a, the
return value may depend not only on the state of the object
itself, but also on the state of a. This requirement also makes
it much easier to call inspectors at runtime.

• No Side Effects. The execution of an inspector must not
have side-effects on the state of the program. This is neces-
sary because our tool invokes inspectors to extract the state
of objects. If we would allow inspectors to have side-effects,
state extraction might have an impact on the program run.

The first two criteria can be checked with a straightforward static
analysis, whereas identification of side-effect free methods (also
referred to as purity analysis) requires a static whole-program anal-
ysis as described by Rountev (2004).

ADABU currently uses the purity analysis by Salcianu and Ri-
nard (2005). This conservative analysis classifies a method as pure
only if it is certain not to modify objects that existed prior to the
invocation of that method. This definition is precise enough for our
purposes and, at the same time, allows an inspector the creation of
temporary objects, which may be also returned to the caller. Thus,
when we call an inspector to extract an object’s state, we can be
sure that this has no effects on the program state.

Methods that are not free of side-effects are called mutator meth-
ods. Invoking a mutator method on an object may change the ob-
ject’s state. Thus, an invocation of a mutator method represents
a transition in an object’s model, whereas inspector methods are
called to extract the state of an object.

2.2 Instrumentation
After static analysis, each method of the program is classified either
as an inspector or as a mutator. This information is used by the
instrumentation to enframe the body of every mutator with code to
extract and store the state of the object.

For instrumentation, ADABU uses the JAVASSIST framework by
Chiba and Nishizawa (2003). Instrumentation occurs before execu-
tion by rewriting the JAR files of the investigated program. Figure 2
demonstrates instrumentation of the Vector class. (We actually
instrument the bytecode of a program; the figure shows the equiva-
lent source code instrumentation.)

As a first step, a method extractState() is generated and
added to the class. As implied by its name, this method extracts
the state of an object: it invokes every inspector and stores the re-
sult together with the name of the inspector. For demonstration we
use only three out of nine inspector methods for Vector, namely
isEmpty(), size() and capacity(). The results of these
three inspectors are encapsulated in a State object and returned
by the method.

The extractState()method is invoked by the code injected
into every mutator method, such as add(). Method add() is a
mutator because it stores its argument in a field of Vector , thus
changing state. Prior to the execution of the original method body,
the state of the vector is extracted by calling extractState()

18

public class Vector {
...
public State extractState() {

State s = new State();
s.add("isEmpty", isEmpty());
s.add("size", size());
s.add("capacity", capacity());

}
...
public void add(Object o) {

State pre = extractState();
try {

〈body of add〉
} finally {
State post = extractState();
model.addTransition(pre, post, "add");

}
}
...

}

Figure 2: Instrumentation for Vector.add(). The instru-
mentation happens at the byte-code level but for clarity an
equivalent source code instrumentation is shown.

and the result is stored in a local variable. After the execution of the
method body, the state is extracted again and a transition is added
to the model for this object. The body of add() is surrounded
by a try-finally block to capture the state at both regular and
exceptional method exits.

The overhead of instrumentation is neglegible: instrumenting
version 1.1b4 of AspectJ (2382 classes) takes only 177 seconds
and increases the code size from 5.5 to 12 megabytes. We observed
similar values for other applications.

2.3 Model Construction
After instrumentation has finished, we can execute the instrumented
program and learn behavior models.

Concrete states. For an object, we define its state as a vector
v = (x1, . . . , xn), where each xi is the return value of an inspector.

For simplicity, let us assume a JAVA Vector object has just
three inspectors x1 = isEmpty(), x2 = capacity(), and
x3 = size(). A new Vector of capacity 20 might thus have a
state v = (true, 20, 0), reflecting the inspector values.

Traces. A trace for an object becomes a sequence of triples t =ˆ
(v1, m1, v

′
1), (v2, m2, v

′
2), . . .

˜
, where each vi and v′

i is the state
before and after invocation of a mutator mi.

Here is an example trace of a Vector object, including its ini-
tialization:

t =

2
66666666664

`
(⊥,⊥,⊥) 〈init〉(), (true, 20, 0)

´
,`

(true, 20, 0), add(), (false, 20, 1)
´
,`

(false, 20, 1), add(), (false, 20, 2)
´
,`

(false, 20, 2), remove(), (false, 20, 1)
´
,`

(false, 20, 1), remove(), (true, 20, 0)
´
,`

(true, 20, 0), add(), (false, 20, 1)
´
,`

(false, 20, 1), clear(), (true, 20, 0)
´
,`

(false, 20, 0), clear(), (false, 20, 0)
´

3
77777777775

Abstract states. If we used the plain return values for inspectors,
the model would have a very large number of states. As an exam-
ple, consider the inspector size() of the Vector class. If the
concrete value of size() was used to characterize the state of a
vector, the resulting model would have at least as many states as

the maximum size of the vector. Therefore, we use abstractions
over the return values of inspectors rather than the concrete values
themselves.

Formally, we use a state abstraction function named abs which
maps concrete values v to abstract states s as follows:

• Concrete numerical values xi (of type int, double, etc.),
are mapped to three abstract states xi < 0, xi = 0, and
xi > 0.

In the Vector example, for instance, the values returned
by the size() inspector are mapped to two abstract states
“size() = 0” and “size() > 0”.

• Object references xi are mapped either to the abstract state
xi = null, or to the abstract state xi instanceOf c for
class c of the object referenced by xi.

If the Vector from Figure 1 contained File objects, the
values returned by the firstElement() inspector would
be mapped to two abstract states “firstElement() =
null” and “firstElement() instanceOf File”.

• Enumerations and boolean values xi are mapped to one sin-
gleton abstract state for each single value.

In Figure 1, this is how the isEmpty()method induces two
abstract states.

For the Vector trace, above, we would thus obtain three abstract
states s0, s1, s2:

isEmpty() capacity() size()
s0 ⊥ ⊥ ⊥
s1 true > 0 = 0
s2 false > 0 > 0

—that is, the three states of the model in Figure 1.

Models. The abstract states, as determined in the previous step,
form the states s of object behavior models. A transition e =
(s, m, s′) occurs between two states s, s′ and is labeled with a
mutator m. A transition e is part of the model if and only if the
trace t contains a transition between two concrete states v and v′

abstracted by s and s′, respectively (formally, ∃(v,m, v′) ∈ t ·
abs(v) = s ∧ abs(v′) = s′ must hold).

For the Vector trace, we would obtain seven abstract transi-
tions between the states s0, s1, s2, as described above:

T =

8>>>>>>><
>>>>>>>:

(s0, 〈init〉(), s1),
(s1, add(), s2),
(s2, add(), s2),
(s2, remove(), s2),
(s2, remove(), s1).
(s2, clear(), s1),
(s1, clear(), s1).

9>>>>>>>=
>>>>>>>;

—that is, the transitions of the model in Figure 1.

Summarizing models. As a last step, we merge all object models
for all objects of a class into a single model that summarizes the
behavior of all instances of this class. Merging automata is easy,
because each state of the automaton is uniquely identified by the
object state it represents. The resulting model consists of the union
of all states and transitions of all observed object behavior models.

19

AspectJ Columba

Version 1.1b4 1.0
Classes 2382 1513

Models 589 538

Mutators (avrg, per model) 7.7 4.1
Inspectors (avrg, per model) 8.0 3.2
States (avrg, per model) 11.0 4.1
Transitions (avrg, per model) 17.7 5.2

Table 1: Statistics for our subjects and their models.

3. EXPERIENCES
We have implemented our approach for JAVA programs and used
it to extract models for some classes of the JAVA API, the AspectJ
compiler (Kiczales et al., 2001) and the Columba email client (Stich
and Dietz, 2005). Table 1 provides some statistics for our subjects.

3.1 Overhead
In order to instrument a program for model extraction, we first need
to know which methods we may use as inspectors. Currently, we
use the purity analysis by Salcianu and Rinard (2005), which is the
only scalable implementation we are aware of. It is based on the
FLEX compiler infrastructure (Rinard, 2002), which unfortunately
restricts analysis to programs compiled against the GNU Classpath
API 0.08. Besides this limitation, the analysis is sufficiently fast and
produces reliable results. Analyzing version 1.1b4 of the AspectJ
compiler, for example, takes about 22 minutes. Since the identifi-
cation of inspectors needs to be done only once and prior to mining,
this does not pose a problem.

We have successfully extracted models from about 100 test runs
of AspectJ. These test runs were obtained from test suite ajc1.1
included in the source distribution of AspectJ. From each of these
tests, we have learned a set of object behavior models, and merged
models for the same class from different runs into one model per
class.

Using ADABU, a run of the instrumented version of AspectJ
takes about 5 times longer than the original version. While we
believe that there is still room for optimizations, a large part of the
runtime overhead is unavoidable as we have to extract state twice
for every method invocation in the original program run.

Our second test subject, Columba, is an email client with a graph-
ical frontend. We ran an instrumented version of Columba, browsed
through several folders of an IMAP account, created and deleted
folders, and sent an email using an SMTP server. As it is difficult to
measure the precise execution time for GUI programs, we can only
report that the instrumented version was sufficiently fast to remain
usable.

3.2 Models
Altogether, we have mined models for 589 classes of AspectJ and
538 classes of Columba. Unfortunately, the purity analysis failed to
analyze parts of Columba. To address this problem, we introduced
artificial inspectors that simply return object attributes.

The bottom of Table 1 summarizes the over 1100 models we have
mined from our test subjects. The average model for AspectJ has
11.0 states and 17.7 transitions. The largest model, recorded for the
AjParser class, has 1500 states and 4975 transitions (each state
consists of the values for more than 50 integer inspectors). As a first
example, we already discussed the Vector class in Section 1. In
the remainder of this section we present four more (small) models

getParent():FAIL
getUnwovenBytes():null

isDirty():false

getParent():FAIL
getUnwovenBytes():byte[]

isDirty():true

<init>() [2672]

getLocation() [215]
setDerived() [215]

writeWovenBytes() [213]

create() [620]

Figure 3: An object behavior model for the
DeferredWriteFile class. A number in square brackets
denotes a transition’s frequency.

in detail. The corresponding diagrams in Figure 3 to Figure 6 were
derived automatically but edited for presentation.

3.3 Deferred Writes
As an example for a simple model, Figure 3 shows the model for
class DeferredWriteFile from AspectJ. Instances of this class
are used to map the contents of a file into memory, and defer any
changes like deletion and modification until the application decides
to write the current state to the file system. The isDirty()
method indicates that the cached content has changed and there-
fore the file needs to be written.

The object behavior model indicates that the usage of this class
in AspectJ is quite limited. After the call to the constructor, a call
to create causes the file to be loaded from the file system and the
dirty flag to be set. After the compiler has finished, the woven class
is written to the file system. Thus, AspectJ only uses instances
of DeferredWriteFile for usual read and write operations,
which contradicts the intention of the class.

3.4 Mutex
Figure 4 shows an object model for the Mutex class implemented
in Columba. A mutex gives a thread exclusive access to a resource.
It is used in Columba to ensure the integrity of data transmitted via
IMAP and SMTP protocols. Internally, the Mutex class uses a flag
named mutex which is true whenever the resource is locked and
false otherwise. Before a thread may access the shared resource, it
must call the lock() method. If another thread is currently using
the resource, lock() waits until the resource is free and locks it
for the thread. When a thread has finished accessing the resource,
it must call release() to release the lock again.

The behavior model has three states. Right after instantiation,
the object is in an undefined state. The first method invoked on the
new instance is the constructor (<init>). After construction, the
mutex flag is initially set to false. This is reflected in the model
by a transition from starting state to state mutex:false labeled
<init> [107]. The number in square brackets denotes how
often a method caused a transition.

mutex:truemutex:false

<init>() [107]

lock() [717]

release() [719]

lock() [2]
lock!E [1]

Figure 4: An object behavior model for the Mutex class.

20

host: java.lang.String
socket: java.net.Socket

state:= PLAIN

host: java.lang.String
socket: null

state:= NOT_CONNECTED

<init>() [1]

openPort() [1]

quit() [1]

ehlo() [1]
mail() [1]
sendCommand() [5]
ensureState() [3]

Figure 5: An object behavior model for SMTPProtocol.

The model reveals that synchronization is almost never needed
since the resource is unlocked. We know this because lock was
called 717 times when mutex was false, while we observed only
two invocations of lock when mutex was true. We also observe
that the number of lock() and release() invocations is equal.
This strongly suggests that the mutex is used correctly throughout
the program. (We cannot say this for sure as the model was learned
from multiple Mutex instances.)

There is another mysterious transition: The label lock!E [1]
indicates that one call to lock raised an exception. An investiga-
tion of the source code revealed that lock throws a runtime ex-
ception when the thread waiting for the lock is interrupted. This
is obviously a flaw in the method design and should be solved by
throwing a meaningful exception or a return code indicating that
acquiring the lock failed.

3.5 SMTPProtocol
Let us now examine the model for the SMTPProtocol class. This
class implements communication with a mail server according to
the SMTP protocol specification. For presentation, the model in
Figure 5 was slightly simplified and shows only the three most im-
portant inspectors host, socket, and state.

After a call to the constructor, the server host is set but no socket
is opened to connect to it. This is indicated by the socket be-
ing null and the attribute state being set to a constant value
NOT CONNECTED. Prior to communicating with the server, the
client must call openPort(), which causes the socket to be cre-
ated and the state variable to be set to PLAIN. During communica-
tion (e.g., ehlo, mail), the automaton remains in this state until
calling quit causes a transition to state NOT CONNECTED.

A client that uses this class must adhere to this sequence of calls.
As SMTP is not the only protocol used by Columba, there are other
classes implementing protocols which have similar requirements,
but the documentation does not mention them. Assuming that the
models capture correct usage, they do not only reveal these require-
ments but also explain them: It is only through an invocation of
openPort() that the state changes from NOT CONNECTED to
PLAIN.

3.6 IMAPProtocol
Columba also supports accessing emails through the IMAP proto-
col, implemented in the IMAPProtocol class. Figure 6 shows
the behavior model for this class. After the call to the constructor,
the protocol is in state NOT CONNECTED and the openPort()
method has to be called to open a connection to the server, just like
in the SMTP model.

In order to access data on the server, the client must call the
login()method, causing a transition to AUTHENTICATED state.
In this state, the server may be queried for its status and capabili-
ties, but it is not yet possible to access mails on the server. This
requires the selection of a mailbox using the select() method,
causing a transition to state SELECTED. Now the protocol can be

selectedMailbox: null
socket: null

state:= NOT_CONNECTED

selectedMailbox: null
socket: java.net.Socket

state:= AUTHENTICATED

<init>() [1]

selectedMailbox: null
socket: java.net.Socket

state:= NON_AUTHENTICATED

openPort() [1]

login() [1]

selectedMailbox: java.lang.String
socket: java.net.Socket

state:= SELECTED

logout() [1] select() [1]

status() [1]
capability() [1]
append() [1]

create() [1]
uidSearch() [1]

select() [2]

Figure 6: An object behavior model for IMAPProtocol.

used to look for mails, change the folder structure on the server or
log out again.

Obviously, the sequence openPort(),login(),select()
must be executed on every instance of IMAPProtocol before any
further email access. Again, this is not documented anywhere in the
source code of Columba. The behavior model not only reveals this
requirement, but also helps to understand why it is needed.

All in all, these four examples highlight the expressiveness of
object behavior models: they associate method invocations with
changes to the state of an object. This allows for a better under-
standing of objects than previous models that only considered the
sequence of method invocations.

4. RELATED WORK
Concrete program executions as a source of abstractions have in-
spired many researchers and gained enormous interests in the past
years. Most approaches express the behavior of programs or parts
thereof as finite state machines. Object behavior models are unique
in using automatically identified inspector methods to characterize
object state independent from its implementation.

Learning from Sequences. Cook and Wolf (1998) is the sem-
inal work about inference of finite-state machines from event se-
quences. The paper compares neural networks, grammar inference,
and a Markov method. While not described in the paper, this could
be applied to method-call sequences to obtain models for objects.
However, states are unlabeled and this purely syntactic approach
tends to produce models that are very detailed.

Mining Specifications. The concept of learning models from ac-
tual program runs was first explored by Ammons et al. (2002),
applying a probabilistic NFA learner on C traces. Their approach
relies on manual annotations to relate functions to objects (such as
C sockets or X11 selections) and to distinguish object definers from
object users.

21

To mine a specification like the one in Figure 1 using the work
of Ammons et al., one would have to distinguish mutators and in-
spectors manually. In the set of C functions, one would also have
to identify the one parameter which denotes the actual object being
accessed. Finally, the states would not be associated with inspec-
tors like isEmpty(), but remain anonymous—as “the state which
is reached after calling add()”.

Dynamic Invariants. Dynamic invariants, as conceived by Ernst
et al. (2001), express properties of data that hold at specific mo-
ments during the observed executions. Applied to the Vector
class above, Ernst’s DAIKON tool could detect a dynamic invari-
ant this. size > 0 at the end of add(), thus modeling the
postcondition of add().

Dynamic invariants, as mined by DAIKON, could be used to char-
acterize states in an automaton, and we may end up in a model
like the one shown in Figure 1; the invariants would also charac-
terize whether a method serves as mutator or inspector. The dif-
ference is that the states would refer to internal attributes such as
this. size. DAIKON may also use inspector methods provided
by a user, but it does not identify them automatically. In contrast
to DAIKON, we do not check a set of pre-defined abstractions on
internal data, but rather rely on abstractions as given by public in-
spectors. In this way, we do not only reflect the user’s view, but can
also express more high-level properties.

Mining Temporal Relations. Unlike most approaches, Yang and
Evans (2004) don’t build a model that captures all behavior of a
system. Instead, they check for the presence of certain temporal
patterns in a squence of events. This leads to very abstract charac-
terizations and avoids the problem of labeling states. At the same
time, the approach is limited by the a-priori knowledge of patterns
it looks for.

Mining Pairs. Weimer and Necula (2005) also avoid learning
complete automata and instead learn pairs of matching function
calls (like open and close) from method-call traces. Using this
knowledge they find errors in programs where the pairing is vio-
lated in error handlers. Like the previous one, this work benefits
from its restriction to partial temporal specifications; in addition, it
is a great showcase for an application of mined specifications.

Permissive Interfaces. Henzinger et al. (2005) learn finite state
automata that describe legal method call sequences for an API. Their
approach is based on repeatedly generating candidate graphs and
checking them against an abstract program representation. Each
state in the candidate graph corresponds to an internal state of an
object.

In contrast to mining object behavior models, their approach
works purely static on a JAVA subset. Henzinger et al. (2005) only
present interfaces learned from 4 classes of the JAVA API. They also
need to manually specify the set of predicates needed to track the
state of an object. In contrast, our approach relies on purity analysis
to identify inspectors and mutators.

Mining Object Interfaces. Whaley et al. (2002) suggest to learn
automata that capture observed sequences of method calls for an
object. These automata are then sliced by the fields each method
accesses during its execution, thus creating submodels describing
call sequences of methods that affect the same attribute of a class.

While we use side-effect free methods to extract the state of an
object, Whaley et al. (2002) ignore them in order to avoid pollution
of the automata. Unlike object behavior models, their automata
do not provide information about the state of the object and thus
cannot relate state transitions to method calls.

Object State Machines. The work closest to ours is by Xie and
Notkin (2004): they instrument JAVA programs to extract the state
of an object, which is later abstracted by calling all methods on the
object and inspecting the returned values. Unlike us, they don’t
restrict calls to pure methods. Therefore they have to cope with
side effects. To remedy this, mining relies on automatically gen-
erated test cases where the object is discarded after its state was
extracted; these test cases also provide arguments for the methods
being called. In contrast, we can instrument and mine models from
arbitrary programs since pure observers can’t affect program exe-
cution. We are thus more likely to capture common behavior of
objects.

Unlike us, Xie and Notkin (2004) do not abstract from concrete
values to avoid state space explosion. Because of this, and the fact
that transition labels include method parameters as well as their
return values, their models are more accurate than ours—but less
general and concise. Also, they do not include state-preserving
transitions in their machines, as opposed to our approach, where
every method call that happened during the execution is present in
the model.

State Abstraction. Finding useful abstractions over state is a
challenge in itself. Our approach has been inspired by the work
of Liblit et al. (2005), who characterized runs according to, among
others, functions returning positive, negative, or zero values.

Applied to the Vector class, Liblit’s approach could determine
that program failures correlate with isEmpty() being true. Es-
tablishing such correlations is orthogonal to our approach.

Method Call Sequences. In own earlier work (Dallmeier et al.,
2005), we showed that sequences of method calls could be used
to characterize sets of executions, thus helping in defect localiza-
tion. In contrast to this earlier work, we now mine full-fledged
finite state automata rather than fixed-length sequences—automata
which have many more potential uses.

Applied to the JAVA Vector class, our earlier approach could
determine that program failures correlate with a sequence of three
method calls 〈clear(), isEmpty(), remove()〉. Establish-
ing such correlations is possible for models as well, and orthogonal
to the work presented in this paper.

5. CONCLUSIONS AND FUTURE WORK
Object behavior models capture essential properties of an object
from the view of the object’s client. They can be used for docu-
menting common behavior, and therefore can serve as a base for
further specifications, with all the resulting applications.

The key ingredient and central contribution of our approach is
the distinction between mutator and inspector methods. As prior
work, we use mutators to label transitions; however, we use inspec-
tors to capture the observable state of objects, which is new.

Mining object behavior models works for real applications like
the Columba email client, is scalable, and does not rely on special
test cases: We mined models for the 538 classes in Columba at
once, all while the application was still usable.

In addition to general issues such as performance or ease of use,
our future work will concentrate on the following topics:

Dynamic Checking. In addition to learning models at runtime,
ADABU could also check behavior models dynamically. A set of
previously learned automata can be used to flag or even prevent
uncommon behavior, e.g. in security-related API s. This may be
especially interesting for security checkers, such as malware scan-
ners.

22

Alternative Abstractions. The size of our models depends on
our abstraction function abs which we apply to values returned by
inspectors. Currently, we use a coarse abstraction and consequently
our models tend to be concise. We are currently experimenting with
different abstraction styles, resulting in models where the level of
detail can be scaled arbitrarily.

Deep Models. Some inspectors return objects. Instead of just us-
ing the class name as a value, we could inspect the returned object
recursively, up to a certain depth. This would allow to express an
object’s state as the state of its constituents, and lead to models
where states are characterized by tree-structured values. By adjust-
ing the depth of the state extraction, we could control the granular-
ity of our models.

Purity Analysis. Right now, the identification of inspector meth-
ods critically relies on purity analysis, a static whole-program anal-
ysis. With currently only one usable and scalable implementation
available, we deem that purity analysis is still in its infancy. We
are currently evaluating pragmatic alternatives for the cases where
purity analysis is not usable.

Static Analysis. We would like to check programs statically a-
gainst mined models and thus find deviations from those. Under the
assumption that models capture correct behavior such deviations
may point to incorrect usage of an API.

All in all, we find that program executions offer a wealth of
data that can be mined for recurring patterns and rules. With ob-
ject behavior models, we give a concise characterization of com-
mon behavior—a characterization with which we eventually hope
to reach a sweet spot between simplicity and expressiveness. Find-
ing this sweet spot is certainly a challenge for us as well as for other
researchers; however, the multitude of potential applications will
help us and the community identify the most useful approaches.

For future and related work regarding object behavior models, see

http://www.st.cs.uni-sb.de/ample/

Acknowledgments. Silvia Breu and Tao Xie provided valuable
comments on earlier revisions of this paper.

References
Glenn Ammons, Rastislav Bodı́k, and Jim Larus. Mining speci-

fications. In Conference Record of POPL’02: The 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 4–16, Portland, Oregon, January 16–18, 2002.

Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for
efficient Java bytecode translators. In Proceedings of the 2nd
International Conference of Generative Programming and Com-
ponent Engineering, pages 364–376, 2003.

J. Cook and A. Wolf. Discovering Models of Software Processes
from Event-Based Data. ACM Transactions on Software Engi-
neering and Methodology, 7(3):215–249, July 1998.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller.
Lightweight defect localization for Java. In Andrew Black,
editor, European Conference on Object-Oriented Programming
(ECOOP), pages 528–550, 2005.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David
Notkin. Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on Software En-
gineering, 27(2):1–25, February 2001.

Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permis-
sive interfaces. In Proceedings of the Symposium on the Foun-
dations of Software Enginnering, 2005.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In
Jorgen Lindskov Knudsen, editor, Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming (ECOOP),
volume 2072 of Lecture Notes in Computer Science, pages 327–
353, 2001.

Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and
Michael I. Jordan. Scalable statistical bug isolation. In Proc.
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 15–26, June 2005.

Martin Rinard. Flex. http://www.flex-compiler.lcs.
mit.edu/, 2002. Compiler infrastructure.

Atanas Rountev. Precise identification of side-effect-free methods
in Java. In Panos Linos, editor, 20th IEEE International Confer-
ence on Software Maintenance (ICSM ’04), pages 82–91, 2004.

Alexandru Salcianu and Martin Rinard. Purity and side effect anal-
ysis for Java programs. In Proceedings of the 6th International
Conference on Verification, Model Checking and Abstract Inter-
pretation, number 3385 in LNCS, pages 199–215, January 2005.

Timo Stich and Frederik Dietz. Columba. http://
columbamail.org/, 2005. Open-source email client, im-
plemented in Java.

Westley Weimer and George C. Necula. Mining temporal specifi-
cations for error detection. In Nicolas Halbwachs and Lenore D.
Zuck, editors, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2005), pages 461–476, Edinburgh,
UK, April 4–8 2005.

John Whaley, Michael Martin, and Monica Lam. Automatic ex-
traction of object-oriented component interfaces. In Phyllis G.
Frankl, editor, Proceedings of the 2002 International Sympo-
sium on Software Testing and Analysis (ISSTA-02), volume 27(4)
of SOFTWARE ENGINEERING NOTES, pages 221–231, New
York, July 22–24 2002. ACM Press.

Tao Xie, Evan Martin, and Hai Yuan. Automatic extraction of
abstract-object-state machines from unit-test executions. In Pro-
ceedings of the 28th International Conference on Software En-
gineering (ICSE 2006), Research Demonstrations, May 2006.

Tao Xie and David Notkin. Automatic extraction of object-oriented
observer abstractions from unit-test executions. In Proceed-
ings of the 6th International Conference on Formal Engineering
Methods (ICFEM 2004), pages 290–305, November 2004.

Jinlin Yang and David Evans. Dynamically inferring temporal
properties. In Cormac Flanagan and Andreas Zeller, editors,
Proceedings of the Workshop on Program Analysis For Software
Tools and Engineering (PASTE’04), pages 23–28, June 2004.

23

