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ABSTRACT In the current blockchain network, many participants rationally migrate the pool to receive

a better compensation according to their contribution in situations where the pools they engage encounter

undesirable attacks. The Nash equilibria of attacked pool has been widely analyzed, but the analysis of

practical methodology for obtaining it is still inadequate. In this paper, we propose an evolutionary game

theoretic analysis of Proof-of-Work (PoW) based blockchain network in order to investigate the mining pool

dynamics affected by malicious infiltrators and the feasibility of autonomous migration among individual

miners. We formulate a revenue model for mining pools which are implicitly allowed to launch a block

withholding attack. Under our mining game, we analyze the evolutionary stability of Nash equilibrium with

replicator dynamics, which can explain the population change with time between participated pools. Further,

we explore the statistical approximation of successful mining events to show the necessity of artificial

manipulation for migrating. Finally, we construct a better response learning based on the required block size

which can lead to our evolutionarily stable strategy (ESS) with numerical results that support our theoretical

discoveries.

INDEX TERMS Blockchain, block withholding attack, evolutionary game theory, mining pool selection,

proof-of-work, replicator dynamics.

I. INTRODUCTION

After Satoshi Nakamoto first proposed the Bitcoin

in 2008 [1], the blockchain network has attracted tremendous

attentions from both industry and academia as a breakthrough

technology. The blockchain network is a global ledger main-

tained by a public and credible decentralized system, which

contains the full history of all the transactions ever processed.

Due to its innovative potential benefits in terms of cost-

efficiency, security and reliability from no intermediary,

blockchain has recently explored into a broad range of fields

such as smart contracts [2]–[4], Internet of Things (IoT)

[5]–[10], big data [11], smart grid [12]–[15], edge comput-

ing [16]–[18], medical purpose [19], [20], etc.

In order to prevent the alteration from malicious partici-

pants, blockchain applies several types of consensus algo-

rithm which can maintain the integrity of whole network.

The Nakamoto protocol, a core consensus algorithm used

in Bitcoin, adopts a crypto-puzzle solving process which
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is implemented by a Proof-of-Work (PoW) mechanism [1].

PoW requires miners to exert significant computing power by

exhaustively querying a SHA-256 hash function, and the first

miner who proved their work is allowed to generate a valid

block in blockchain network. To increase their successful

mining rate, they have tried various strategies. In particular,

the average time of eachmining step is intended to be constant

while steadily increases the difficulty of mining. Even though

the expected revenue of solo miners is positive, they have to

wait for such time interval to generate a consecutive block.

Therefore, miners have organizedmining pools which engage

in sharing both mining reward and workload to reduce the

risk [21].

Typical mining pools consist of pool manager and individ-

ual miners. The differentiated role of pool manager is out-

sourcing the work to miners and conducting the blockchain

protocol. Miners are required to submit partial proof-of-work

(PPoW) and full proof-of-work (FPoW), and if a miner solves

and submits a FPoW then pool manager propagates that block

to the whole blockchain system. After receiving a reward for

generating a valid block, the pool manager distributes it to
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own miners depending on their relative contributions based

on the fraction of submitted solutions including PPoWs. That

is, to the bad side, an individual miner can earn a profit

without full exertion for solving FPoW unless they are caught

on neglect of duty.

Due to the above weakness of PoW consensus, such

mining pools are susceptible to several classical attacks

on blockchain [21]–[23]. In a block withholding attack,

a miner submits only PPoWs and discards FPoWs in order

to exploit the shared revenue while reducing the relative

mining effort with respect to honest miners [22]. Especially,

Slushpool has about 240,000 miners carrying on Bitcoin as

of August 2019 whose network hash rate is about 12%.

If we assume all pools have a similar aspect in numbers

of miners, there are likely to be over a million individuals

mining bitcoins. Since only 144 blocks per day are mined on

average in bitcoin and the fork rate due to the propagation

delay has decreased substantially in the past years [24], even

if an individual miner cannot submit a single FPoW for one

year, there is nothing unnatural. Although this scenario is now

widely known, many pools based on PoW consensus is still

vulnerable to block withholding attack since no concrete and

effective solution is emerged yet.

Motivated by the above arguments, Eyal first applied a

game modelling between two mining pools where both inten-

tionally launch a block withholding attack each other [25],

which is built upon one of the key observations of present

research [21]. The remarkable study of Eyal is called a

miner’s dilemma: the Nash equilibrium can be obtained by

attacking each other even if it causes a profit deterioration

for both. This is somewhat analogous to classical prisoner’s

dilemma, attack is the best strategy which cannot earn a best

total utility among participated pools. Each pool dispatches

own loyal miners as infiltrators to the other pools and they

only submit PPoW which does not contribute to a successful

mining. A pool employing such infiltrator registers him as a

regular miner, so the infiltrator can earn a distributed mining

reward. Consequently, the profit of attacking pool become

relatively higher than the efforts they made while total utility

become lower due to the gap of meaningless work only

for PPoWs.

Following the admirable result, various forms of extension

have been explored in the literatures taking into account the

game theoretic approach. In [26], Courtois et al. analyzed

several attacks in which dishonest miners obtain a higher

reward than their relative contribution and proposed a new

block withholding attack which can maximize the profit of

subversive miners. Luu et al. investigated a quantitative anal-

ysis of incentive a miner may gain under systematically con-

ducted block withholding attack [27]. They emphasized that

the existing pool protocols are susceptible to such attacks by

showing the attack is always well-incentivized. Laszka et al.

developed a game theoretic model that allows to investigate

the long-term viability of attacks against mining pools [28].

They studied a peaceful and one-sided attack equilibria, that

is, the conditions under which mining pool has no incentive

to launch attack against other pools. Kwon et al. proposed a

novel attack namely a fork after withholding (FAW) attack,

not just a modified form of block withholding attack but

rather a more profitable for attacker in the sense of new Nash

equilibrium [29]. Liu et al. applied the evolutionary game

theory to analyze the stability for pool selection dynamics by

investigating the evolutionarily stable strategy [30]. In [31],

Li et al. investigated the robust constrained reachability of

networked evolutionary game (NEG) which is effective in

dealing with attackers and forbidden profiles. They estab-

lished a constructive procedure for the robust consensus of

NEGs based on algebraic representation. Qin et al. modelled

a risk decision problem to study a pool selection problem

by adopting the maximum-likelihood criterion under various

type of reward mechanisms in one blockchain network [32].

In [33], Wang et al. presented a mining pool selection game

modelled by two stages to study a trade-off between the

risk of openness of pool and the impact of potential attacks

targeting PoW consensus based protocol. Tang et al. proposed

a non-cooperative iterated game in terms of zero-determinant

(ZD) strategies which can optimize the efficiency of the

blockchain network by incentivizing the cooperative min-

ers [34]. They obtained the optimal solution of the maximum

system welfare with cooperative miners friendly approach on

the quasi-public goods game (PGG).

Most previous works for blockwithholding attack based on

game theory have presented only the result of Nash equilib-

rium, not the process of pool dynamics. However, to check the

feasibility of such theoretic result, the intermediate process is

still need to be considered in practice. Therefore, in this paper,

we explore the whole mining pool dynamics and build up a

practical construction by addressing the detailed process of it.

To establish the intermediate process, we mainly investigate

the impact of required block size to the revenue with respect

to individual miners since it has become an important factor

to be considered as the discussion about block size limit

controversy became more active such as Bitcoin Cash or

SegWit.

Our study not only suggests the detailed manipulation

process with proper game theoretic approach, but also arouses

a specific attention to the block size limit controversy which

is directly related to the practical situation. One of the results

supporting the increase in block size concluded that even

though there is no block size limit, the unhealthy fee market,

i.e., mining larger block size is always beneficial, cannot

emerge under the current market economic theories [35].

Eachminer has an optimal block size up to theirmining power

and then mining pool can cover more wider range of block

size by controlling revenue trade-off based on mining power,

once the block size limit is relaxed. Under such circumstance,

the mining pool in our mining game can rig the ESS more

easily since the wider the available block size range, the better

our manipulation will work. Therefore the results obtained

in this work can provide a concrete and practical insight to

blockchain standards. The main contributions of this paper

are summarized as follows:
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• We formalize the mining game based on the PoW con-

sensus to analyze the evolutionary stability. Specifically,

in order to apply the block withholding attack, we build

a revenue model with the information theory that can

reflect the factors which affect our equilibrium including

network propagation delay, infiltrating rate, etc.

• To analyze the evolutionary stability, we compute the

replicator dynamics of evolutionary game theory. The

results give 3 types of stable solution, only one of which

will show what we want since the others bring about

the vanishing of one pool. Moreover, we give certain

conditions for such equilibria.

• Before constructing the intermediate process, we inves-

tigate the feasibility of autonomous migration across

mining pools according to the previous theoretic results.

By adopting the statistics, we approximate the success-

ful mining event into random variable and conclude

that the natural migration will rarely occur without an

artificial manipulation.

• In order to resolve the previous limitation that individual

miners are not expected to move on their own, we con-

struct a manipulation stage in the sense of controlling

the revenue model by adjusting the required block size.

We allow a better response learning which can migrate

a miner with the lowest revenue inductively. We thus

conclude our manipulation converges to ESS in finite

stages within acceptable block size variations.

The rest of this paper is organized as follows. Section II

introduces an overview of common game theoretic concepts.

Section III presents the mining game model with concrete

problem solving direction step by step. In section IV, we for-

mulate the revenue function of mining pool and solve the

evolutionary stability, then establish a better response learn-

ing for migrating individual miners inductively. Section V

demonstrates numerical results which provide evidences sup-

porting our theoretical discoveries, and finally, we conclude

the contents in Section VI.

II. PRELIMINARIES

A. NASH EQUILIBRIA

We can define the mining game as a 3-tuple : G = {N , S, f },
where

• N is the population of players, |N | = n.

• S = S1 × S2 × · · · × Sn is the set of strategy profiles

where Si is the strategy set for player i.

• f is the strategy-dependent payoff function evaluated at

s ∈ S, i.e., f (s) = (f1(s), f2(s), · · · , fn(s)), fi denotes the
payoff of player i.

Let si be a strategy for player i with s = (s1, · · · , sn) ∈ S and

let s−i := (s1, · · · , si−1, si+1, · · · , , sn) be a strategy profile

for all players other than player i.

Definition 1 ( [36]): A strategy profile s∗ = {s∗i } ∈ S is a

Nash equilibrium (NE) if any unilateral changes of strategy

by players lead to undesirably lower utility. That is,

∀i, si ∈ Si : fi(s∗i , s∗−i) ≥ fi(si, s∗−i). (1)

Here,

(s∗i , s
∗
−i) = {s∗i } ∪ s∗−i
= {s∗i } ∪ (s∗1, · · · , s

∗
i−1, s

∗
i+1, · · · , s

∗
n)

= (s∗1, · · · , s
∗
i−1, s

∗
i , s
∗
i+1, · · · , s

∗
n) = s∗ (2)

is called a Nash equilibrium and

(si, s
∗
−i) = (s∗1, · · · , s

∗
i−1, si, s

∗
i+1, · · · , s

∗
n) (3)

is a dominated strategy of player i with respect to the Nash

equilibrium, where the only difference is the strategy of

player i. If the inequality (1) holds, player i has no reason to

change his strategy and if it holds for every participants in the

game, we say a Nash equilibrium is obtained, i.e., no player

is willing to change their strategy under any other external

factors and can get the optimal utilities.

For n = 1, one-player game, it is nothing but an opti-

mization problem, so let us consider the case of n = 2.

Let aij, bij be the payoffs for player 1, 2, respectively, when

player 1 uses strategy i ∈ S1 and player 2 uses strategy

j ∈ S2. Then the payoffs are given by the n × m matrices

as A = {aij}, B = {bij} where n, m are the cardinalities of

each pure strategies, respectively. When the mixed strategy

is allowed, the strategy profile of player 1 can be denoted as

a = (a1, · · · , an)T ∈ Sn, ai refers to the probability of using

strategy i ∈ S1 and Sn refers to the unit simplex spanned by

the standard unit base. Similarly, if we denote the strategy

profile of player 2 as b ∈ Sm with the unit simplex spanned

by the standard unit base, the strategy a ∈ Sn is said to be a

best reply to b if

cTAb ≤ aTAb (4)

for all c ∈ Sn. In other word, a pair (a,b) ∈ Sn × Sm is

a Nash equilibrium if both a and b are best replies for each

other. One of the most remarkable results of J. F. Nash is that

every game with a finite number of players has at least one

Nash equilibrium in which each player can use their mixed

strategies from the compact, convex, and non-empty set.

B. EVOLUTIONARY DYNAMICS

Nash equilibrium gives a solution of non-cooperative game

involving two or more players that no individual can obtain

more utility by changing their own strategies. Though it is still

a powerful tool to analyze several static games, the limitation

was revealed when the game became repetitive and dynamic.

That is, in terms of optimization theorem, Nash equilibrium

approach only can give local optimal solutions.

For example, the standard prisoner’s dilemma shows that

both prisoners must defect due to the dominant strategy and

the mutual defection is a NE. However, if two players play the

game more than once and can remember the opponent’s pre-

vious action, the iterated prisoner’s dilemma became chaotic.

If both players know the total number of rounds, the only

Nash equilibrium is to always defect. This is very counter-

intuitive compared to the standard prisoner’s dilemma since

both players are aware of the opponent’s previous response.
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To make them cooperate, the total number of rounds must not

be known to them; in this case always defect is still a Nash

equilibrium but is no longer a strictly dominant strategy. Tit

for tat, responds to cooperate with cooperate and defect with

defect, can be an evolutionarily stable status with respect to

formal two strategies.

In order to describe the long-term behaviour of the dynam-

ics, we use more fancy tool called a imitation dynamics [37].

There is one simple plausible assumption for game player; to

imitate the better. Let xi be the frequency of type iwith n types

of strategy. Here, xi are differentiable functions with respect

to time t which represents the growth rate of the population.

Let the symmetric payoff matrix A holds all the fitness infor-

mation for the population with the assumption that the fitness

depends linearly upon the population distribution. Then the

replicator equation yields

ẋi = xi((Ax)i − xTAx) (5)

where (Ax)i is the expected payoff for an individual of type i,

and xTAx is the average payoff in the population state x.

The replicator equation (5) describes a pool selection process

with one rational criteria: more beneficial strategies spread

across the whole population, bymeasuring the surplus of each

players. In our model, the replicator equation will be used

to estimate the portion of migration among honest miners

to reach a stable configuration called a evolutionarily stable

strategy (ESS).

The zeros of the equation (5), the rest points of the repli-

cator equation, have interesting properties called as the folk

theorem of evolutionary game theory [39]:

• if z is a Nash equilibrium, then it is a rest point

• if z is a strict Nash equilibrium, then it is asymptotically

stable

• if the rest point z is the limit of an interior orbit, then

z is a Nash equilibrium

• if the rest point z is stable, then it is a Nash equilibrium.

An evolutionarily stable strategy, or ESS, is the status that

no other minority can invade and confuse the original resi-

dent. A strategy used by this invader only leads to the elimi-

nation of species unless the size of group is large enough. The

replicator equation can be written as

ẋi = xi[(p(i)− p(x))TAp(x)] (6)

where p(x) =
∑

xip(i) is the average strategy within the

population, which is an analogue of (5).

Definition 2 ( [37]): Let G = {N , S, f } be a game defined

as previous with population state p∗. For some neighborhood

B ∈ S, p∗ is an evolutionarily stable strategy (ESS) if

∀p ∈ B − p∗, the condition (p− p∗)TAp∗ = 0 implies

(p− p∗)TAp < 0. (7)

Evolutionarily stable strategies were originally motivated

from the biological evolution mechanism [37]. With the

specific genetic characteristics like heredity or mutation,

the behavior of repetitive game players also can be explained

FIGURE 1. Flow chart of evolutionary game model in a blockchain
network.

by ESS. Based on the imitation protocol, we can predict

the population dynamics when a malicious infiltration is in

progress. Moreover, we can depict the conditions for stability

and pool strategy in terms of the evolutionary game dynamics.

III. SYSTEM MODEL

In this section, we present a mining game model of

blockchain network adopting the Nakamoto consensus based

on Proof-of-Work (PoW) [1]. According to the result of [25],

no-pool-attacks are not Nash equilibria. One tragic equilib-

rium is composed by malicious infiltrators where attacking

other participating pools can earn less than they would have

if none had attacked though. This tragedy, namely the miner’s

dilemma, imposes each pool to attack the other unreliable

pools. As same as the prisoner’s dilemma, even though the

superrational strategy in the iterated mining game is to coop-

erate against a superrational opponent, it is hard to gather

whole mining pools into one since the size of major mining

pools are too large to unite. We propose such a game model

in three steps. The flow chart of our model is described

in Fig. 1.

The first step is to formulate the mining game based on

the ratio of each pool’s loyal miners and infiltrators with

the agreement of existence of baleful miners, and to analyze

the evolutionarily stable strategy (ESS). One recent research

modelled a similar two-stage game whether to open or not the

mining pool based on the expected revenue after simultane-

ous infiltrations [33]. However, frequent opening and closing

movement of mining pool may unsettle their own miners in

the manner of sustainability. The other research modelled a

non-cooperative iterated game with zero-determinant (ZD)

strategies, which is also a fancy tool for analyzing the pris-

oner’s dilemma [34]. Even though the ZD strategy is still

effective, it is in conflict with our main purpose; we aim to

migrate honest miners in a situation where ESS is achieved,

but ZD strategy is at most weakly dominant yet be evolu-

tionarily unstable and may be driven to the extinction of one
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pool [38], which is the worst situation for our model. Hence,

we mainly focus on the flow of mining pool population and

the dynamics of ESS with unrelenting block withholding

attack.

One important point to consider is how to estimate the infil-

trating ratio before computing the ESS. To say the conclusion

first, the portion of infiltrators may play a decisive role in

the ESS such as the overturn of one dominating mining pool,

which detail will be depicted later with numerical analysis on

Section V. The case of attacking pool is simple; they them-

selves can control the portion according to the precomputed

ESS up to a reasonable value. However, they cannot estimate

the infiltrating portion of targeted opponent pool that either

implicitly allowed to attack due to the concealment of mali-

cious attack. Under this lack of information, we assume the

opponent side adopts the worst strategy because the increase

in infiltrating ratio until just before the collapse of the min-

ing pool results in a positive benefit for the pool. In short,

we explore the stability analysis step with fixed infiltrating

ratio and give a detailed discussion about change of it later

with several numerical results.

The second step is to adjust statistical tools and fig-

ure out the characteristic of mining distribution. In general,

a block withholding attack is reckoned to be detectable in

terms of long-term observation based on the ratio of partial

proofs-of-work(PPoWs) and full proofs-of-work(FPoWs).

One blind spot is how to measure such insufficient proof-

of-work in statistical manner. Blockchain mining is com-

posed by hash functions where the output is expected to

behave as independent random variables, which means suc-

cessful mining events are governed by the laws of statis-

tics. After adapting it to our model, we evaluate the validity

for current methodology of tracking malicious infiltrator.

For the convenience of computation, we consider two

static states of initial phase under innocent and malicious

minings.

The last step is to construct the process of migration. If the

mining system has several Nash equilibria, there always is a

better-response learning that moves the system configuration

from any initial equilibrium to a desired equilibrium [40].

Basically miners face a simple problem before mining: where

should I mine? The miners are free to choose a mining pool

for higher revenue from the coin set, that is, some portion

of miners will take a step to improve their own revenue

whenever they benefit from changing the pool mined before.

Although the infiltrator shares the reward from the attacked

pool, it is hard for typical miners to realize that the pool they

mined is being attacked in secret. That is, the reality may not

follow such theoretic result honestly due to the discrepancy

between underlying assumption of fairness of common infor-

mation and hierarchical structure as an administrator or an

individual miner. Our goal is to construct an iterative protocol

that moves a game to a desired game theoretical equilibrium

with a better response learning by controlling the required

block size. The migration process of our model is illustrated

in Fig. 2.

FIGURE 2. Migration process with mining power based hierarchical
structure.

IV. MINING GAME ANALYSIS WITH EVOLUTIONARY

BLOCK WITHHOLDING ATTACK

In this section, we analyze the evolutionarily stable strategy

of mining pool dynamics with an assumption that each pools

allow to dispatch own loyal miners as infiltrators adopting

a block withholding attack. Moreover, we study a better

response learning which migrates the configuration of min-

ing game to the game theoretic equilibrium by enforcing

individuals to change their mining pool. The validity for

detecting the existence of malicious infiltrator in the view of

individual miners may result in a different better response

learning, so we estimate a statistical approximation of the

mining process before constructing the manipulation step.

A. REVENUE MODEL FORMULATION

Assume that large enough population of N individual mining

pools are participated in the blockchain network. As we

defined before, consider the mining game G = {N , S,F}
where N = {M1,M2, · · · ,MN } denotes the set of N mining

pools with totally n = |N | =
N
∑

i=1
|Mi| individual miners,

S = S1 × S2 × Sn denotes the set of strategy profiles, and

f = (f1, f2, · · · , fn) denotes the payoff of miners depends

on the strategy profile σ ∈ S. In our model, the strategy

profile σ is consistent as every mining pools choose to attack

other pools. In fact, this choice is somewhat natural for large

pools since it became harder to counteract against malicious

infiltrators as the pool size become larger, moreover that

is the static Nash equilibrium for PoW consensus [25]. Let

hi be the required individual hash rate for joining pool i and xi
be the miners’ population fraction in pool i, i.e.,

∑

i∈N xi = 1

with ∀i, xi ≥ 0. According to the Nakamoto consensus,

the chance of mining a new block is proportional to individual

hash rate for solving PoW problem [41]. Without attacks,

the probability of successful one round mining for pool i is

then

Prwithouti (x,h) =
hixi

∑N
j=1 hjxj

, (8)
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where x = {x1, · · · , xN } and h = {h1, · · · , hN } are the

configurations of population fraction and required hash rates

in whole network, respectively.

Now let xi,j be the population fraction of infiltrators from

pool i to pool j. These infiltrators cannot positively contribute

the successful mining rate while they get some reward from

the target pool, since they just waste the mining power trying

to find only PPoWs which are useless in comparison with

FPoW. In other word, for the pool i,
∑

k 6=i xi,k is nothing but

the loss portion of work in the view of total network. Then,

by adapting it to (8), the malicious attack changes the success

probability as

Prwithi (x,h,h−) =
hi(xi −

∑

k 6=i xi,k )
∑N

j=1 hj(xj −
∑

k 6=j xj,k )
. (9)

where h− = {xi,j}i 6=j∈N is the configuration of population

fraction of infiltrators. One observation that the attacked pool

has higher success probability than attacking pool provides

a rational reason how the reward from infiltration covers the

loss of mining power.

During themining phase, pool imust broadcast the solution

to its neighborhoods after solving a crypto puzzle for dissem-

inating their mined block to the entire blockchain network.

Since the mining events can be seen as a random event in

the sense of hash function, sometimes the situation called a

fork that several mining pools discover a new block simulta-

neously can occur. Unfortunately, the only block propagated

their solution to the most of network for the first time will

be confirmed as the new head block even though the others

also reach a consensus. To deal with such unfavorable acci-

dents, we consider a propagation probability as an important

factor and follow the process of [34]. A few empirical studies

support that the transmission delay and the transaction verifi-

cation time between each nodes mainly determine the block

propagation time [41], [42]. Shannon-Hartley theorem states

the theoretical upper bound on the information rate of data

that can be transmitted at any arbitrarily low error rate, and by

virtue of the power series a lower bound of channel’s carrying

capacity c can be approximated as

1τd (s) = τd (s)− τd (0) ≈
s/γ

c
(10)

where τd is the block transmission delay, s is the block

size, and γ is the network-related parameter named coding

gain [41]. The block verification time is nothing but a linear

function of block size since verifying a block requires almost

same time regardless of hash string, i.e., τv(s) = bs where

b is the average verification speed. Consequently, we get a

propagation delay as

τ (s) = 1τd (s)+ τv(s) =
s/γ

c
+ bs. (11)

The proof-of-work propagation can be seen as a Poisson

process [43], therefore the time difference governed by an

exponential distribution. After combining (10) and (11) with

TABLE 1. Major parameters.

the approximation of Andresen [44], the orphaning probabil-

ity, or the incidence of discarding, can be written as

Prorphan = 1− e−τ (s)/T = 1− e−(
s/γ
c +bs)/T , (12)

where T is an average mining time such as 600s in Bitcoin as

widely known [1].

Finally, a total revenue in one round contains not only the

fixed reward of currently mined block and the extra trans-

action fee, but the shared rewards of previous rounds from

the other pools gathered by own infiltrators. One caution is

that the expedition reward cannot be distributed immediately.

If not, honest miners may doubt their unsubstantiated reward

sharing while the pool they worked didn’t mined successfully

yet. Thanks to the result in [25], the pool revenuewith consec-

utive infiltration reward converges, that is we may consider a

revenue in one round already includes such external rewards.

Moreover, the transaction fee is a linear function of each

required block size si, so the total revenue in one round can be

written as R0 + rsi where R0 is the fixed mining reward and

r is the transaction fee per unit block size. For the conve-

nience of computation, we assume that the effect of trans-

action fee is consistent with fixed si and just denote the

whole revenue as R. The pool can earn a mining reward

when they 1) successfully find a block and 2) propagate

it to whole network, i.e., mined block orphaning does not

happened. Expectation of revenue is the product of total

revenue, success probability for both mining and prop-

agation with subtraction on the sunk cost, therefore by

joining (9) and (12) together, our mining revenue for pool i

under configurations of population fraction x, required hash

rates h, and population fraction of infiltrators h− can be

formulated as

Ei(x,h,h−) = R · Prsuccess · (1− Prorphan)− phi
= R · Prwithi (x,h,h−)e−τ (s)/T − phi (13)

where phi refers to an electricity charge of mining machine

querying hash strings with unit price p as a sunk cost.

B. EVOLUTIONARILY STABILITY ANALYSIS

From this subsection, we study a special competitive

blockchain network with two mining pools N = {P1,P2}.
Since individual miners want to maximize their net profit
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and are willing to transfer their mining pool depends on

the revenue, it is natural to solve an ordinary differential

equation with respect to the population. Let (x1, x2) =
(x, 1 − x) be the population fractions of pool 1, 2 with

positive x and denote yi the expected revenue of pool i.

In this case, the replicator equation (5) became fairly simple

as

ẋ1 = x1((Ax)1 − xTAx)

= x1(y1 − ȳ) = x1(1− x1)(y1 − y2). (14)

Also, our revenue model (13) became


































y1 =
h1(x1 − x1,2)

h1(x1 − x1,2)+ h2(x2 − x2,1)
· Re−τ (s)/T

[4pt] − ph1(x1 − x1,2),

y2 =
h2(x2 − x2,1)

h1(x1 − x1,2)+ h2(x2 − x2,1)
· Re−τ (s)/T

[4pt] − ph2(x2 − x2,1).

(15)

For convenience, if we define as

c1(x1, x2) = h1(x1 − x1,2)+ h2(x2 − x2,1), (16)

c2(x1, x2) = h1(x1 − x1,2)− h2(x2 − x2,1), (17)

we can state Theorem 1 as follows.

Theorem 1: Consider the game G = {N , S, f } with two

mining pools modeled by the payoff function (15), where

both pools intend to infiltrate their own miners into each

other for the relatively high utility based on the miner’s

dilemma.

1) The boundary states (x1, x2) = (1, 0) or (0, 1) are ESSs

if the conditions

h1(1− x1,2)− h2x2,1 <
R

p
e−τ (s)/T , (18)

h2(1− x2,1)− h1x1,2 <
R

p
e−τ (s)/T (19)

hold, respectively.

2) Without loss of generality, suppose pool 1 requires

more hash rate than pool 2, i.e., h1 > h2. The non-

trivial rest point of replicator equation (14) is given by

(x1, x2) = (x⋆, 1− x⋆) where

x⋆=
1

h1−h2
(h1x1,2−h2(1−x2,1)+

R

p
e−τ (s)/T ), (20)

and it is an ESS if the both conditions

1−
2h2

c1
(x2 − x2,1) > 0, (21)

1−
4h1h2

c21
(x1 − x1,2)(x2 − x2,1) < 0 (22)

hold. Moreover, x⋆ is the unique globally sta-

ble point and it is the only Nash equilibrium in

game G.

Proof: By the definition 2 and the folk theorem of

evolutionary game theory in section II, it is enough to find

the asymptotically stable state of the replicator equation (14).

At the rest point x in the (14), (Ax)1 − xTAx refers to

eigenvalues for the Jacobian whose stability can be evaluated

depending on its corresponding eigenvector. That is, a rest

point x is an ESS if all its eigenvalues have negative real

parts, or equivalently, the Jacobianmatrix is negative definite.

Rewrite our target ODE:

f (x1, x2) = x1(1− x1)(y1 − y2)
= x1(1− x1)

{c2

c1
Re−τ (s)/T − pc2

}

. (23)

The entries of Jacobian can be derived by some tedious

calculations:















































































































∂f1

∂x1
=

{

(1−2x1)
c2

c1
+x1(1− x1)

2h1h2(x2−x2,1)
c21

}

Re
−

τ (s)

T

−p{(1− 2x1)c2 + x1(1− x1)h1},

∂f1

∂x2
= x1

{c1c2 − 2x2h1h2(x1 − x1,2)
c21

Re
−

τ (s)

T

−p(c2 − x2h2)
}

,

∂f2

∂x1
= −x2{

c1c2 + 2x1h1h2(x2 − x2,1)
c21

Re
−

τ (s)

T

−p(c2 − x1h1)},

∂f2

∂x2
=

{

(2x2−1)
c2

c1
+x2(1−x2)

2h1h2(x1−x1,2)
c21

}

Re
−

τ (s)

T

+p{(1− 2x2)c2 − x2(1− x2)h2}.
(24)

On the boundary rest point (1, 0), the corresponding Jacobian

matrix looks more clear,

J |(1,0) =







−
c2

c1
Re−τ (s)/T + pc2

c2

c1
Re−τ (s)/T − pc2

0 −
c2

c1
Re−τ (s)/T + pc2







(25)

which is an upper triangular form. It is easy to see that

the corresponding eigenvalues are diagonal entries, that is,

repeated − c2
c1
Re−τ (s)/T + pc2. To guarantee the negative def-

initeness of Jacobian (25), we get (18) by simply substitut-

ing x = (1, 0). In a similar manner, we can get (19) for

the case of x = (0, 1). Hence, the proof of first part is

done.

On the other hand, the nontrivial rest point of (23) can be

obtained from c2
c1
Re−τ (s)/T −pc2 = 0, which coincides to the
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solution (20). Again by some tedious calculations,






















































































































J11 = (1− 2x1)pc2 + x1(1− x1) · 2h1h2(x2 − x2,1)
p

c1
−p{(1− 2x1)c2 + x1(1− x1)h1)}

= px1(1− x1)h1
{2h2

c1
(x2 − x2,1)− 1

}

,

J12 = x1

{

pc2 −
2h1h2x2(x1 − x1,2)

c1c2
pc2 − pc2 + px2h2

}

= px1x2h2

{

1−
2h1

c1
(x1 − x1,2)

}

,

J21 = x2

{

pc2 +
2h1h2x1(x2 − x2,1)

c1c2
pc2 − pc2 + px1h1

}

= px1x2h1

{

1+
2h2

c1
(x2 − x2,1)

}

,

J22 = −(1− 2x2)pc2 − x2(1− x2) · 2h1h2(x1 − x1,2)
p

c1
+p{(1− 2x2)c2 − x2(1− x2)h2}

= −px2(1− x2)h2
{2h1

c1
(x1 − x1,2)+ 1

}

,

where J |(x⋆,1−x⋆) =
[

J11 J12
J21 J22

]

is the corresponding Jacobian

matrix. Moreover,

det(J ) = J11J22 − J12J21
= 2x21x

2
2p

2h1h2

{4h1h2

c21
(x1 − x1,2)(x2 − x2,1)− 1

}

(26)

gives a required condition for ESS. To be an asymptotically

stable rest point, negative definiteness forces J11 < 0 and

det(J ) > 0, which are exactly (21) and (22).

The remaining part is to show a global stability. Note that

our revenue model (23) has 1 discontinuity and 2 tangent

points, indeed our ODE is a typical Lyapunov function. Thus,

our ESS is an asymptotically stable and an interior ESS

(x⋆, 1− x⋆) is globally stable [45]. One can easily check that

the discontinuity c1 = 0 is not in [0, 1] by (21) as

c1 > 2h2(x2 − x2,1) > 0 (27)

since 0 < x2,1 < x2 by the definition of x2,1.

�

Remark 1: The replicator dynamics of N = 2 case admits

only three outcomes; no interior point, stable interior point,

and unstable interior point. If the interior point exists and

is globally stable, it is the only Nash equilibrium whose

corresponding strategy is called a stable coexistence.

The boundary states (x1, x2) = (1, 0) or (0, 1) are not the

desirable results to mining pool even though they are ESSs.

For instance, (x1, x2) = (1, 0) indicates the collapse of

pool 2, consequently the infiltrators of pool 1 loses a host

for exploiting mining revenue and they should go back to

pool 1. Hence, the utilities of both mining pool and infiltrator

decrease; mining pool cannot earn the extra revenue with no-

full-exertion by dispatching own miner, and the infiltrators

have to put their whole mining power honestly to get the

reward from originally affiliated mining pool.

One situation that the mining pool may worry about is an

unexpected deviation of infiltrator who was prescribed to fol-

low the evolutionarily stable strategy. As we discussed above,

the infiltrators have no reason to adopt the defiant behavior

unless they are not rational players of mining game. If they

are real antagonists and act a hostile behavior with some

reason, the mining pool must respond immediately before

facing a difficult situation. The first case is the infiltrator

underestimating himself to deceive the original pool, i.e., x1,2
became smaller than required. This case is partially related to

the main result of FAW attack [29]; it does not harm the ESS

critically but the attacking pool may get lower extra revenue

from the target pool. Unfortunately, as block withholding

attack does, there is no concrete and effective solution yet to

our best knowledge. The second case is performingmore than

prescribed mining power to the target pool, i.e., x1,2 became

larger than required. Then the ESS falls into the conditions

either (18) or (19), which results very dangerous situation of

vanishing of pool 2. Unlike the first case, the second case can

identify the indication by steady checking of target pool’s

population. Therefore the proper remedies should be taken

such as reducing the portion of infiltrators with tracking such

antagonists down. The detailed discussion of latter case will

be handled at section V with numerical figures.

C. STATISTICAL DISTINGUISHABILITY

The argument studied at the previous subsection only works

when the game is fair, that is, every game player must know

whole information and strategic background of pools. One

mismatch of our intended infiltration game with block with-

holding attack is, honest miner needs to be moved depends

on the result of replicator dynamics while the fundamental

reason of migration is still concealed. From the point of view

of mining pools, publicly known infiltrators may harm their

own loyalminers so it is hardly possible to admit the existence

of malicious action. In this subsection, we study whether

honest miners may obey the theoretical ESS in the lack of

information or not.

In the case of miners, the main motivation of migration

comes from the revenue. This revenue is directly related to

the successful mining rate of crypto puzzle and since PoW

consensus requires to solve a hash problem on the certain

condition, each mining trials act like random variables.

Lemma 1: Let {Xj,i}i∈N be a sequence of independent and

identically distributed random variables which refers themin-

ing event of ith miner in pool j, that is, Xj,i = 1 if a miner i

finds the hash solution. Then the successful mining rate of

pool j can be approximated by normal distribution whose the

mean is approximately equal to its variance.

Proof: First of all, we assume that the influence of

temporary change of mining pool population is minor. Also

note that the consecutive mining events are independent due

to the characteristic of hash function.

As we saw at (8), the expected mining rate Ki of pool i

is proportional to hixi. If a winning block computes a hash

with exactly k zeros, we may say that the total trial is
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m = Ki · 2k by brute force and the randomness of hash func-

tion forces the expectation as µ = 2−k . Let Xj denotes the
mining probability of miner j and Pl denotes the probability

mass function, then

Var(Xj) =
m

∑

l=1
Pl(xl − µ)2

= µ(1− µ)2 + (1− µ)(0− µ)2

= µ(1− µ). (28)

Indeed, X1 + · · · + Xm is also a normal distribution with

N (mµ,mµ(1− µ)). �

Remark 2: The result of Lemma 1 agrees to the previous

discussion of (12), that is, the mining event can be approxi-

mated by Poisson process. It is well-known that the binomial

distribution converges toward the Poisson distribution.

Theorem 2: Suppose the expected number of mined block

is a linear function of hash rate. In the game G = {N , S, f }
with two mining pools, the successful mining rates 1) with

infiltrator and 2) without infiltrator are statistically close in

a short term, i.e., individual miners cannot recognize the

existence of external attack.

Proof: We focus on the honest miner of pool 1 without

loss of generality. By the Lemma 1, each step of mining

game can be approximated by normal distribution. Let D =
N (µ, σ 2) and D0 = N (µ0, σ

2
0 ) be such distributions of

with and without infiltrator, respectively. Since the expected

mining rate is proportional to hixi andµ0 ≈ σ 2
0 holds, wemay

say

D0 = N
(

d1h1(x1 − x1,2), d2
√

h1(x1 − x1,2)
)

(29)

for some constants d1, d2 > 0. For pool 1, the infiltrator from

pool 2 believed to work honestly brings a positive benefit and

µ = d1(h1(x1 − x1,2)+ h2x2,1), (30)

σ = d2
√

h1(x1 − x1,2)+ h2x2,1 (31)

are two parameters of D.

To measure the amount of overlap between two statistical

samples, we calculate the statistical distance. For multivariate

normal distributions Di = N (µi, 6i), the Bhattacharyya

distance is defined as

DB=
1

8
(µ1−µ2)

T6−1(µ1−µ2)+
1

2
ln

( det6
√
det61 det62

)

,

(32)

where6 = (61+62)/2. In our case of |N | = 2, the distance

is

DB =
1

4

( (µ− µ0)
2

σ 2 + σ 2
0

)

+
1

4
ln

{1

4

(σ 2
0

σ 2
+

σ 2

σ 2
0

+ 2
)}

. (33)

We claim that DB is a negligible function. The first term is

1

4
·

d1h
2
2x

2
2,1

2h1(x1 − x1,2)+ h2x2,1
=

1

poly(x1)
,

and in the second term,

σ 2
0

σ 2
= 1+

−h2x2,1
h1(x1 − x1,2)+ h2x2,1

,

σ 2

σ 2
0

= 1+
h2x2,1

h1(x1 − x1,2)

infer the logarithm converges to 0 since

lim
x1→∞

1

h1(x1 − x1,2)
−

1

h1(x1 − x1,2)+ h2x2,1
= 0.

Therefore, D and D0 are statistically close. �

Remark 3: In a long term, the infiltrating rate x1,2 and

x2,1 are no more constants. As the result of Theorem 1,

the solution of replicator equation (20) implies that x∗ is a
linear function of x1,2 and x2,1. Furthermore, DB = poly(x1)

results a meaningful difference between initial state and

ESS state of game G.

D. MOVING BETWEEN EQUILIBRIA

Theorem 2 refers that unless the portion of infiltrator is

large enough, it is hard to expect the individual miners to

migrate mining pool on their own. Furthermore, increasing

the number of infiltrators up to notable portion at once is

even risky since it may harm the loyalty of honest miners.

In this subsection, we suggest a somewhat gentle reward

model which avoids both of the mentioned problems.

The main idea of our artificial manipulation is based on a

better response learning. For the configuration s ∈ S with

payoff function f , a move from s = (si, s−i) to s∗ = (s∗i , s−i)
is a better response step for miner i if f (s) < f (s∗), and
a better response learning is a sequence of configurations

in better response step. Our main claim is the revenue per

unit (RPU) with respect to hash rate is an ordinal potential

for a game G, and it has a better response learning further.

After constructing a better response step, we conclude that

our reward model converges to the required ESS state.

Note that hixi, the mining power of pool i, is an average

value. Definitely major mining group of one pool has over-

whelming computing power than individual miners, and our

proposal is to move such ‘minor’ while ‘major’ is still mining

in original pool by changing reward. Consider the ordered

set 〈P1,≺〉 where ≺ is a partial order with respect to mining

power. For the convenience, we divide P1 into two groups

as the mover of size Nm and the anchor of size Na with

N1 = Nm+Na. It is natural to assume Nm < Na, and suppose

the average mining power of anchor is k times better than the

mover’s.

The easiest way to control the revenue is changing the

block size si. Even though we assumed every circumstances

are equally regulated except the required hash rate for cal-

culating the ESS configuration, the mining game G performs

billions of operations per hour and pool population fluctuates

frequently. Thus, an exact equality on parameter setting is

undesirable, i.e., G is a generic game and the expected reward

differs. As we discussed at the model formulation step, we set
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the total reward as R0 + rsi where R0 is the fixed mining

reward and r is the transaction fee per unit block size. Then

the initial RPU of mover can be written as

RPUm,s1 =
1

N1c1
(R0 + rs1)e−τ (s1)/T − p. (34)

If the pool 1 changes the size of mining block with rate q,

we get

RPUm,qs1 =
1

N1c1
(R0 + rqs1)e−τ (qs1)/T − p. (35)

As the function of si, the unique global maximum of RPU is

∂

∂s
RPUm,s = 0⇔ s∗ =

T

τ
−
R0

r
(36)

For s1 > s∗, RPUm,s1 > RPUm,qs1 if q ≥ 1 and this is

intuitively reasonable because increasing the block size also

increases the burden for miners. If the mover migrates to

pool 2, the new RPU is

RPU ′m,s2
=

1

(N2 + Nm)c1
·
h1

h2
(R0+rs2)e−τ (s2)/T−p. (37)

We may assume the initial state was stable with respect to

mover, that is (34) and (37) are in balance. Then we get

RPU ′m,s2
> RPUm,qs1 and the mover has an advantage

to migrate if the pool 1 requires larger block size. Denote

1χ,t = RPUχ,ts1 −RPU ′χ,s2
with χ ∈ {a,m}, then 1m,1 = 0

and 1m,q < 0.

On the other hand, in a similar manner,

RPUa,s1 = k · RPUm,s1 , RPUa,qs1 = k · RPUm,qs1 , (38)

RPU ′a,s2 =
k

(N2 + Na)c1
·
h1

h2
(R0+rs2)e−τ (s2)/T−pk. (39)

First, the anchor is also in a stable configuration:

1a,1 = k(RPUm,s1 −
N2 + Nm
N2 + Na

RPU ′m,s2
)

> k ·1m,1 = 0 (40)

implies the anchor gets more revenue for mining at pool 1.

Now we claim that the anchor need not to have an advantage

of migrating:

1a,q = k(RPUa,qs1 −
N2 + Nm
N2 + Na

RPU ′a,s2 ) (41)

is still non-negative while 1m,q < 0 under certain

circumstance.

Theorem 3: There is a better response learning on G,

i.e., RPUχ,s is an ordinal potential and can make the mover

to migrate while the anchor stays by adjusting total revenue.

Proof: By the above arguments, it is enough to show

∃q∗ > 1 such that 1a,q∗ ≥ 0. Let

g(s) =
N2 + Nm
N2 + Na

(R0 + rs)e−τ (s)/T , (42)

then

1a,q ≥ 0⇔ (R0 + rqs1)e−τ (qs1)/T ≥ g(s1). (43)

To solve the equality, we use the Lambert W function which

is an inverse of f (z) = zez:

q∗ = −
T

τ s1
W

(

−
τ

rT
g(s1)e

− τR0
rT

)

−
R0

rs1
. (44)

By the characteristic of LambertW function, we may say that

W (zez) ≤ −1 with corresponding −1/e ≤ zez < 0, which

guarantees the injectivity. Consequently, theW function part

is

W
(

−
τ

rT
·
N2 + Nm
N2 + Na

(R0 + rs1)e−
τ
rT (R0+rs1)

)

< W
(

−
τ

rT
(R0 + rs1)e−

τ
rT (R0+rs1)

)

= −
τ

rT
(R0 + rs1) (45)

by the assumption Nm < Na andW is a monotone decreasing

function on z ≤ −1. Hence,

q∗ > −
T

τ s1
· (−

τ

rT
(R0 + rs1))−

R0

rs1
= 1 (46)

and we can find such q∗ satisfies q∗ > 1. Therefore, we get

1a,q∗ ≥ 0 and this completes the argument by increasing the

required block size of pool 1 as q∗s1. �

Remark 4: The condition W (zez) ≤ −1 sometimes is

denoted as W−1 alternatively. In particular, the equality case

W−1 = −1 on (44) satisfies

q∗ =
T

τ s1
−
R0

rs1
=
s∗

s1
< 1, (47)

which converts RPUm,s1 to RPUm,s∗ . Since s
∗ is an optimal

block size for global maximum with respect to the mover

by (36), this action only binds them more tightly in pool 1.

Now, we inductively applying Theorem 3. In the set of

anchor, there is still a relative power order. If we define a set

{RPUmj,s|mj ∈ P1, j ∈ N} ordered lexicographically from

smallest to largest RPU, we can find a maximal index j0 such

that
∑j0

j=1 |mj| ≤ (1 − x∗)|P1| where x∗ is an evolutionarily

stable portion of total anchors of pool 1, which can be derived

from Theorem 1. Since P1 is a finite set, our inductive step

completes in a finite number of iteration j0 and the remaining

population x∗|P1| converges to ESS.
Remark 5: A concrete estimation of q∗ is independent to

the infiltrating rate. xi,j only determines the equilibrium state

(x∗, 1− x∗) of populations.
Corollary 1: Revenue manipulation scheme with better

response learning in Theorem 3 converges to a required ESS

configuration in finite steps. That is, the mining pool can rig

the system from initial to a desired ESS state by controlling

block size si.

V. NUMERICAL ANALYSIS

In this section, we analyze the mining game G by presenting

numerical simulations. In order to verify our mathematical

discussion, we investigate our model step by step. Consider a

blockchain network with N = 2 under generic game assump-

tion, that is, no two pools provide exactly same revenue.
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Algorithm 1 Inductive Manipulation Toward an ESS

Require: R≺ = {RPUmj,s|mj ∈ P1, j ∈ N}
1: j← 1

2: compute the number of expected iterations j0
3: repeat

4: find a minimal q such that RPUmj,qs1 < RPU ′mj,s2 and
RPUcj+1,qs1 ≥ RPU ′cj+1,s2

5: set the required block size s1 to qs1
6: allow better response learning and make only lower

class mj migrates while higher class mj+1 stays
7: until j = j0

TABLE 2. Constants used in stability analysis.

First of all, we demonstrate the evolutionary dynamics of

our revenue model Ei(x,h,h−) in (13). As we discussed at

Remark 1, there are totally 3 types of solutions in replicator

equation with two pools. The ESS condition x∗ is determined

by several parameters, but R, p, s,T , τ acts as one constant

so we fix p = 0.1, s = 10,T = 600, τ = 20 and control R

only for convenience.

Fig. 3 shows the dominating strategy of pool 1 under

initial state (x1, x2) = (0.7, 0.3), (x1,2, x2,1) = (0.05, 0.03),

(h1, h2) = (2, 1) and R = 6. The inequality (18) holds and

results a whole vanishing of relatively weak pool 2. On the

other hand, Fig. 4 shows the stable coexistence strategy of

pool 1 and pool 2, that is, populations of both pool converge

to some interior point (x∗, 1 − x∗) which is approximately

(0.357, 0.643) in our parameter setting. The only changed

parameter is smaller mining reward R = 2. We can check the

same aspect when the mining reward is fixed as R = 6 but

the required hash rates increased to (h1, h2) = (4, 2). This

provides a strong evidence that the ratio of mining reward

to mining power acts as an important factor of evolutionary

stability. Notice that the mining power also involves the infil-

trating rate xi,j as of forms hi(1 − xi,j) or xi − xi,j, and we

will discuss it more precisely soon. In practice, dominating

strategy is undesirable and rarely happens; the only possibil-

ity is due to its relatively low competitiveness, and such pools

fell behind by natural selection at a very early stage. Then

our main interest is on a stable coexistence strategy, that is,

how to artificially relocate miners and lead to interior ESS by

assigning infiltrators.

Fig. 5 illustrates the variation of population ratio dynamics

on dominating strategy for pool 1. Unless the initial pop-

ulation is 0, our revenue model is guaranteed to converge

to some ESS as in the first three cases x1 = 0.8, 0.5,

and 0.3. As we mentioned at the previous analysis, the ratio

of mining reward to mining power mainly determines the

FIGURE 3. Stable with no interior equilibrium for (x1, x2) = (0.7, 0.3) and
x
∗

= 1, pool 1 dominates pool 2.

FIGURE 4. Globally stable interior equilibrium for (x1, x2) = (0.7, 0.3)
and 0 < x

∗
< 1, stable coexistence.

FIGURE 5. Convergence of dominating strategies with respect to x1.

end state of ESS. When x1 = 0.3, which is relatively poor

than x2 = 0.7, it is easy to converge to the lower end as

long as pool 1 does not take strong actions. One solution

is to make the mining power competitive by increasing h1,

and we get such population dynamic by taking R = 15

and h1 = 4 while h2 = 1 is still fixed. The next point

should be noticed is the variations of x1 = 0.5. Except the

variation 3, a dash-dot styled line with x12 = 0.3, three cases

converge to x∗ = 1. The only difference between these three

cases is the infiltrating ratio x1,2. Since such infiltrators get
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FIGURE 6. Convergence of stable coexistence with respect to x1,2.

a mining reward without working honestly and redistribute it

to the original pool, the demand at the right level has proved

necessary by game theoretic approach [25]. If not, Fig. 5 also

implies that the increase in infiltrating ratio to the appropri-

ate level further accelerates the convergence rate, but also

shows the convergence totally reversed if x1,2 exceeds that

level. Indeed, stable coexistence strategy has onemore feature

about increasing x1,2. As shown in Fig. 6, the ESS converges

from stable coexistence to dominating strategy up to certain

level as the infiltrating ratio increases. These result provide a

reasonable reference for assigning infiltrator ratio xi,j.

In Fig. 7, we depict the statistical distinguishability on exis-

tence of malicious infiltrators among 100 individual miners.

On the same parameter setting of Fig. 6 with x1,2 = 0.05,

a solid line, which converges to the interior ESS, we

constructed a Poisson samples based on the PoW consensus

with an expected number of mined blocks and its frequency

for each miners. The corresponding control group is non-

attacked pool, and we can approximate two sets with a

normal distribution according to the Lemma 1. To check

whether individual miner can detect the infiltrators or not,

we applied linear discriminant analysis(LDA) that separates

two classes of events which is also well-known in pattern

recognition or machine learning. The necessity for LDA is

the conditional pdf of sample is normally distributed, which

fits well with our model. LDA attempts to figure out the

best separating line of two classes of data by maximizing

the distance between centers while minimizing the variances.

In most cases, LDA outputs a line divides both groups

into almost half which implies indistinguishability and two

distributionsD andD0 almost overlapped. In short, the effect

of infiltrators seems indistinguishable in general, which sup-

ports Theorem 2.

Now, we investigate the feasibility of our manipulation

discussed at Theorem 3. Main idea is the existence of a

boundary point such that the increase in the required block

size only induces the mover to migrate while the anchor still

stays in the original pool. For the convenience of visibility,

we adjust several parameters as R0 = 1500, τ = 600,

ρ = 3000 and (h1, h2) = (2.5, 2). For n = 1000 miners,

we set the mover at 10% of n1 = x1 n and assume the anchor

FIGURE 7. Statistical distance on normal approximations D and D0.

FIGURE 8. RPU of the mover with (x1, x2) = (0.6, 0.4).

FIGURE 9. RPU of the anchor with (x1, x2) = (0.6, 0.4), k = 1.5.

yields 1.5 times higher mining power than themover, i.e., k =
1.5. Fig. 8 presents RPUm,s1 ,RPUm,qs1 and RPU ′m,s2

where

q = 1.2. As shown in the figure, both RPUm,s1 and RPUm,qs1 ,

the red and blue lines respectively, have exactly same global

maximum RPU but the corresponding required block size

became smaller for RPUm,qs1 when q > 1. We already

discussed at Remark 4 that such block size maximizes the

mover’s revenue rather than the anchor’s is undesirable in

the view of mining pool, so we may consider the monotone

decreasing part of RPUm,s1 only. Then we may assume that

the mover is in a balance between pool 1 and pool 2, that is,

RPUm,s1 = RPU ′m,s2
. Hence, the mover has enough reason to
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FIGURE 10. Replicator dynamics of the pool selection with respect to the population ratio x1 and the required block
size s1.

TABLE 3. Concrete parameters for better response learning.

migrate to pool 2 by the inequality RPUm,qs1 < RPU ′m,s2
if

pool 1 requires larger block size as qs1.

On the other hand, the anchor’s RPU does not follow the

same aspect. With the same block sizes s1 and s2 of pool 1

and pool 2 respectively, we always get RPUa,s1 > RPUa,s2
as Fig. 9. Furthermore, still RPUa,qs1 > RPU ′a,s2 holds

unlike the mover side and the anchor does not willing to

migrate. Note that | ∂
∂s
RPUa,qs| > | ∂

∂s
RPU ′a,s| for s ≥ s1,

it is clear that there must be a break-even point for the anchor

as RPUa,qs′1
= RPU ′

a,s′2
and this supports that our inductive

step will work properly.

Finally, we present the replicator dynamics as a function

of both x1 and s1. Note that, the miner’s dilemma can be

categorized as a prisoner’s dilemma, i.e., the destination

of block withholding attack cannot yield the maximal total

utility for every participated pools and the globalmaximumof

RPU is meaningless. Under this circumstance, the pool need

to migrate their own miners by adjusting required block size

and Fig. 10 explains it well. For a fixed block size there are

exactly 2 critical points, and if x1 is interposed between the

boundary and the closer critical point, the replicator equation

enforces the vanishing of that pool. Also Fig. 10 implies

the pool with relatively higher population more attempts to

migrate their own miners. Moreover, as required block size

increases, the replicator dynamics converges to the zero line.

That is, enough portion of miners finished to migrate and

the remaining anchors are barely willing to move without

high stimulation due to their enormous mining power, i.e., the

mining game almost reached to the ESS.

VI. CONCLUSION

In this paper, we have investigated the evolutionary min-

ing game with miner’s dilemma under block withholding

attack which affects the population dynamics of mining pool.

We havemodelled a rigorous game theoreticmodel to analyze

the ESS of replicator dynamics and evolutionary stability of

mining pool selection in the view of pools. Based on the

statistics, we have designed an approximation for successful

mining rate which affected by malicious infiltrators to ver-

ify if individual miners will migrate themselves. Moreover,

we have constructed a reward scheme that moves the config-

uration from initial state to a desired ESS by allowing a better

response learning. The numerical analysis have demonstrated

the feasibility of our approach and provided the guarantee for

our theoretical discoveries.

Our study focuses on the detailed process of evolutionarily

stable movements. Unlike the static analysis of existing
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results, the dynamics is more complicated to analyze at once

due to the intervention of time sequences even though it is

strongly required to be applied in practice. As our future

work, wemay consider the extendedmodel for the scenario of

multiple pools joined with multiple network-related param-

eters. We also expect the results obtained in this work to

provide a new approach for more sophisticated blockchain

network model which can be used to analyze both security

and vulnerability, especially block size limit controversy.
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