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Abstract. The goal of personalization is to deliver information that is
relevant to an individual or a group of individuals in the most appropriate
format and layout. In the OLAP context personalization is quite bene-
ficial, because queries can be very complex and they may return huge
amounts of data. Aimed at making the user’s experience with OLAP as
plain as possible, in this paper we propose a proactive approach that
couples an MDX-based language for expressing OLAP preferences to a
mining technique for automatically deriving preferences. First, the log of
past MDX queries issued by that user is mined to extract a set of asso-
ciation rules that relate sets of frequent query fragments; then, given a
specific query, a subset of pertinent and effective rules is selected; finally,
the selected rules are translated into a preference that is used to annotate
the user’s query. A set of experimental results proves the effectiveness
and efficiency of our approach.

1 Introduction and Motivation

Personalization has attracted a lot of attention in the database community dur-
ing the last few years, and also raised plenty of interest in the OLAP area. The
goal of personalization is to deliver information that is relevant to an individual
or a group of individuals in the most appropriate format and layout, and in the
OLAP area it has been pursued using different approaches:

– Query recommendation: Based on the current query and on the past sessions,
the system suggests further queries to help users navigating the cube [1].

– Personalized visualization: Users specify a set of constraints that are used to
determine a preferred visualization [2].

– Result ranking: Query results are organized in a total or partial order so that
the user visualizes the most relevant data first [3].

– Query contextualization: The query is enhanced by adding preference predi-
cates that depend on the query context [4].

These approaches differ from different points of view, in particular:
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– Formulation effort: personalization criteria for queries may be either manu-
ally specified by users, or transparently inferred from the context and from
the user profile.

– Prescriptiveness: personalization criteria may either be used as “hard” con-
straints that are added to queries, or be meant as “soft” constraints, i.e.,
preferences.

– Proactiveness: some approaches propose new queries to the user based on
the query log and on the context, while others change the current query or
post-process its results before returning them to the user.

With reference to the above, the user’s experience with OLAP can be made as
plain as possible by decreasing the formulation effort (i.e., having query per-
sonalization criteria inferred), providing low prescriptiveness (i.e., annotating
queries with preferences rather than constraints), and enhancing proactiveness
(i.e., transparently changing the current query). The result ranking approach we
propose in this paper goes in this direction by coupling an MDX-based language
for expressing OLAP preferences to a mining technique for automatically de-
riving a set of preferences for a user’s query from the log of past MDX queries
issued by that user. This is done in four steps:

1. The user’s query log is mined off-line to extract a set of association rules
that relate sets of frequent query fragments (such as group-by attributes,
returned measures, selection predicates).

2. When the user formulates a query q, among the rules whose antecedent
matches with q, a subset of rules is selected whose cardinality depends on a
parameter set by the user to express the desired personalization degree, i.e.,
the complexity of the preference that will be formulated.

3. The selected rules are translated into an OLAP preference p concerning the
group-by set for aggregating data, the measures to be returned, and the
values of levels or measures.

4. Query q is annotated with p and executed. The results returned are ranked
according to p, so that the user can more effectively explore them by focusing
on the most relevant data first.

Remarkably, like in the other result ranking approaches, the overall set of tuples
returned by q annotated with p is the same set of tuples that would be returned
by q without annotation, because p expresses a soft constraint. This guarantees
that the user’s intentions are preserved, and makes our approach non-invasive.

The paper outline is as follows. After summarizing the related work in Section
2, we introduce a formal setting to manipulate multidimensional data in Section
3. In Section 4 we describe the main features of the myMDX language we adopt
to express OLAP preferences, while Section 5 describes in detail our approach.
Section 6 shows an implementation and reports the results of some experimental
tests we performed to test our approach for effectiveness and efficiency.

2 Related Work

Several approaches to personalization were devised in the OLAP context.
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In the field of profile-based personalization, we mention [2], that presents a
framework for providing personalized visualization of OLAP results based on
user profiles in form of constraints, and [4], that achieves OLAP personalization
by dynamically enhancing queries with context-aware user preferences. Both ap-
proaches are proactive and demand low formulation effort, but in both cases the
user profile is given, nothing being said on its construction. A recommendation
framework for OLAP systems is presented in [5]; new queries are suggested to
users based on the current analysis context and on the user’s profile. Though the
authors mention that the profile could be mined from the user’s previous behav-
ior, no specific suggestion is given to this end. A non-prescriptive approach is
presented in [3,6], where the myOLAP algebra for formulating and evaluating
OLAP preferences is introduced; the proposed algebra is very expressive, but at
the cost of a substantial formulation effort.

The term history-based personalization is borrowed from [7], and refers to
approaches that suggest a new database query based on the past actions recorded
in a log file. The following approaches fall into this category and do not rely
on a user profile; they are proactive and demand no formulation effort —like
our approach—, but they are prescriptive. The approaches in [1,8] are aimed at
suggesting OLAP queries based on a comparison between the current session and
former sessions stored in a query log. Also [9] has a similar goal in the context
of SPJ queries; here, recommendations are computed based on the presence of
tuples in sessions. This approach is further improved in [10] by relying on query
fragments instead of tuples. A query log is exploited in [11] to support users in
writing new SQL queries; the log is transformed into a graph of query fragments,
where edges are labelled with the conditional probability of having one fragment
given another fragment. Noticeably, all these work generally assume that history
is taken from a query log shared by all users.

To the best of our knowledge, our work is the first that proposes to extract
preferences from database query logs. However, the same idea has been used in
other contexts. In the context of information retrieval, [12] presents algorithms
to extract association rules at query time from a set of documents. These rules
are used to associate the documents retrieved by a query to a relevance class and
eventually to rank them. In the context of the web, [13] introduces algorithms
for preference extraction from web logs, with a targeted preference language.
Extraction is based on the frequency of the terms appearing in the log, and clus-
tering is used for identifying preference constructs. A comprehensive overview of
the techniques using data mining for personalization can be found in [14].

3 Preliminaries

3.1 Schemata and Instances

Our datacube formalization involves hierarchies; however, to keep the formalism
simpler, and without actually restricting the validity of our approach, we will
consider hierarchies without branches, i.e., consisting of chains of levels.
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Fig. 1. Roll-up orders for the five hierarchies in the CENSUS schema (Mrn stands for
MajorRacesNumber)

Definition 1 (Multidimensional Schema). A multidimensional schema (or,
briefly, a schema) is a triple M = 〈A, H, M〉 where:

– A is a finite set of levels, each defined on a categorical domain Dom(a);
– H = {h1, . . . , hn} is a finite set of hierarchies, each characterized by (1) a

subset Lev(hi) ⊆ A of levels (such that the Lev(hi)’s for i = 1, . . . , n define
a partition of A); (2) a roll-up total order �hi of Lev(hi);

– a finite set of measures M , each defined on a numerical domain Dom(m).

For each hierarchy hi, the top level of the order determines the finest aggregation
level for the hierarchy. Conversely, the bottom level has a single possible value
and determines the coarsest aggregation level.

A group-by set includes one level for each hierarchy, and defines a possible way
to aggregate data. A coordinate of a group-by set is a point in the n-dimensional
space defined by the levels in that group-by set.

Definition 2 (Group-by Set). Given schema M = 〈A, H, M〉, let Dom(H) =
Lev(h1) × . . . × Lev(hn); each G ∈ Dom(H) is called a group-by set of M.
Let G = 〈ak1 , . . . , akn〉 and Dom(G) = Dom(ak1) × . . . × Dom(akn); each
g ∈ Dom(G) is called a coordinate of G.

Example 1. The CENSUS schema includes the five hierarchies whose roll-up or-
ders are shown in Figure 1, and measures AvgIncome, AvgCostGas, and AvgCost-
Elect. It is City �RESIDENCE State; examples of group-by sets are:

G0 = 〈City, Race, Year, Occ, Sex〉
G1 = 〈Region, Mrn, Year, Occ, Sex〉
G2 = 〈AllCities, AllRaces, AllYears, AllOccs, AllSexes〉

A schema is populated with facts, each recording a useful information for the
decision-making process. A fact is characterized by a group-by set G that defines
its aggregation level, by a coordinate of G, and by a value for one measure.
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Definition 3 (Fact). Given schema M = 〈A, H, M〉, a group-by set G ∈
Dom(H), and a measure m ∈ M , a fact is a couple fG,m = 〈g, v〉, where
g ∈ Dom(G) and v ∈ Dom(m). The space of all facts for M is

FM =
⋃

G∈Dom(H),m∈M

(Dom(G) × Dom(m))

Example 2. An example of fact is fG1,AvgIncome = 〈〈’Pacific’, ’White’, ’2008’,
’Dentist’, ’Male’〉, 600〉.
Finally, an instance of a schema (datacube) is a set of facts D ⊆ FM such that
no two facts characterized by the same coordinate and measure exist in D.

3.2 Queries

The MDX (MultiDimensional eXpressions) language is a de-facto standard for
querying multidimensional databases [15]. Some of its distinguishing features are
the possibility of returning query results that contain data with different aggre-
gation levels and the possibility of specifying how the results should be visually
arranged into a multidimensional representation. In this paper we consider MDX
queries that aggregate data at one or more group-by sets, optionally select them
using a predicate in CNF, and return one or more measures. The semantics of
such an MDX query is that of a union of GPSJ queries1 whose group-by sets
are the cross product of n sets of levels, one for each hierarchy. This semantics
corresponds to the following subset of MDX:

– Clauses SELECT, FROM, WHERE are supported.
– All functions for navigating hierarchies are supported: AllMembers, Ancestor,

Ascendants, Children, etc.
– All functions for manipulating sets of members or tuples are supported

(Crossjoin, Except, Exists, Extract, Filter, Intersect, etc.) except the union.
– All functions for manipulating members/tuples are supported.

To effectively use association rules for modeling frequent portions of queries, we
formally split MDX queries into fragments as explained below.

Definition 4 (Query Fragment, Query, Log). Given schema M = 〈A, H,
M〉, a query fragment is either a level in A, a measure in M , or a simple Boolean
predicate involving a level and/or a measure. A qf-set is a set of query fragments.
A multidimensional query (briefly, query) is represented by a qf-set that includes
at least one level for each hierarchy in H and at least one measure in M . A log
is a set of multidimensional queries.

1 A GPSJ query takes form πak1 ,...,akn ,Aggrσp(χ) where, in our context: χ is the star
join between the fact table and the n dimension tables; p is a selection formula in
CNF; {ak1 , . . . , akn} is a group-by set; and Aggr is a list of aggregations of the form
αj(mj), where mj is a measure and αj is an aggregation operator.
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Representing an MDX query as a qf-set q means:

1. Including a fragment m in q for each measure m returned by the MDX query.
2. Including a fragment a in q for each level a used in the MDX query to

aggregate data.
3. Including a fragment (a ∈ V ) in q for each simple predicate on a level/measure

a used in the MDX query to filter data.

Example 3. The MDX query on the CENSUS schema

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

is the union of four GPSJ queries:

πAllCities,AllRaces,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)
πAllCities,Mrn,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

πRegion,AllRaces,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)
πRegion,Mrn,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

and is represented by the qf-set q = {Region, AllCities, Mrn, AllRaces, Occ, Year,
AllSexes, AvgIncome, (Year ∈ 2009)}.

4 The myMDX Preference Language

The language we adopt in this paper to express OLAP preferences is myMDX
[6], an extension of the MDX language based on the myOLAP algebra [3]. In
this section we summarize its features of interest for this work.

A (qualitative) preference on a datacube is a strict partial order (i.e., an
irreflexive and transitive binary relation) on the space FM of all facts. In the
myOLAP algebra, preferences are inductively engineered by writing a preference
expression that can be either a base constructor or a composition operator applied
to two preference expressions. The constructors used in this paper are2:

– POS(a, V ), where V ⊂ Dom(a), that operates on level values; facts for which
a takes a value in V are preferred to the others.

– BETWEEN(m, vlow, vhigh), where m is a measure and vlow , vhigh ∈ Dom(m),
that operates on measure values. Facts whose value of m is between vlow and
vhigh are preferred; the other facts are ranked according to their distance
from the [vlow, vhigh] interval.

2 The constructors we adopt are actually a generalization of those presented in [3] from
two points of view. Firstly, the CONTAIN constructor is extended to work also on a
fake hierarchy including all measures. Secondly, all constructors except BETWEEN
are extended to operate on sets of values rather than on single values.
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– CONTAIN(h, L), where h is a hierarchy and L ⊂ Lev(h), that operates on
levels. Facts whose group-by set includes a level in L are preferred to the
others.

– CONTAIN(measures, Meas), where Meas ⊂ M , that operates on measures.
Facts whose measure is in Meas are preferred to the others.

Preference composition relies on the Pareto operator (⊗), that gives the same
importance to both the composed preferences. Remarkably, the Pareto operator
is closed on the set of preferences.

The myMDX language allows an MDX query to be annotated with a prefer-
ence expression through a PREFERRING clause.

Example 4. The MDX query in Example 3 can be annotated with preference ex-
pression BETWEEN(AvgIncome,500,1000) ⊗ POS(Occ,’Engineer’) ⊗ CONTAIN
(RESIDENCE, Region) to state that facts aggregated by region and related to
engineers with average income between 500 and 1000 kiloeuros are equally pre-
ferred. The corresponding myMDX query is:

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

PREFERRING AvgIncome BETWEEN 500 AND 1000

AND Occ POS ’Engineer’ AND RESIDENCE CONTAIN Region

5 A Proactive Approach to OLAP

As sketched in the Introduction, our approach relies on four steps:

1. Log mining. For efficiency reasons this step is executed off-line, before the
current query session starts. It consists in running a data mining algorithm
on the user’s query log to extract the set R of association rules whose support
and confidence are above a given threshold.

2. Rule selection. When that user formulates an MDX query q, a subset Rq ⊆ R
of rules is selected. Each rule in Rq is pertinent, meaning that its antecedent
matches with q, and effective, meaning that the preference it would be trans-
lated into can actually induce an ordering on the facts returned by q. Then,
let a positive integer personalization degree α be chosen by the user to ex-
press the desired preference complexity. A qf-set Fα is generated from Rq in
such a way that α base constructors are included in the overall preference
expression the fragments of Fα will be translated into.

3. Fragment translation. Each fragment in Fα is translated into a base con-
structor; the resulting base constructors are then coalesced and composed
using the Pareto operator into a preference expression p.
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Algorithm 1. Extract rules with support and confidence adjustment
Input: Log: A set of queries; minSup, minConf : Floats
Output: R: A set of association rules
Uses: mine(set, float, float): An association rule extractor
Variables: stop: A Boolean; confidence, support: Floats; Covered: A set of qf-sets
1: stop =false
2: confidence = 1
3: support = 1
4: while !stop do
5: R = mine(Log, support, confidence) � Mine rules above support and confidence
6: R = R \ {r ∈ R s.t. |r.cons| > 1} � Only keep rules with singleton consequent
7: Covered = ∅
8: for each rule r ∈ R do
9: Covered = Covered ∪ {q ∈ Log|r.ant ∪ r.cons ⊆ q}

10: if Covered = Log then � If all queries in the log are covered in R stop...
11: stop =true
12: else � ...else mine again with lower thresholds
13: confidence = confidence − 0.1
14: if confidence < minConf then
15: support = support − 0.1
16: confidence = 1
17: if support < minSupp then
18: stop = true

19: return R

4. Querying. Query q is annotated with p, translated into myMDX, and ex-
ecuted. As shown in [6], the user can effectively explore query results by
visually interacting with a graph-like structure that emphasizes the better-
than relationships induced by p between different sets of facts. Preferred
facts are then displayed in a multidimensional table.

The following subsections explain in detail how steps 1, 2, and 3 are carried out.
For details about step 4, see [3,6].

5.1 Log Mining

We now briefly describe the mining step. The input of this step is a set of qf-sets
that represents the user’s query log, while the output is a set R of association
rules.

Interestingly, the problem of associating a query with a set of fragments repre-
senting user preferences bears resemblance to the problem of associating objects
with a set of most relevant labels. This problem, named label ranking, is a form
of classification. Both label ranking and classification have been proved to be
effectively handled by association rules (see for instance [16,17]). In this context,
rules have a set of features that should match the object to be classified as an-
tecedent, and one label as consequent. We adopt a similar approach here, and we
search for rules having exactly one item as consequent, so each rule r ∈ R takes
the form ant → cons, where ant is a qf-set and cons is a single query fragment.
In the following, r.cons (resp., r.ant) denotes the consequent (resp., antecedent)
of rule r, and conf(r) its confidence.
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The mining step is done off-line, and uses any classical association rule ex-
tractor that is parametrized by support and confidence thresholds (e.g., Apriori
[18]). The only issue in this step is to extract rules that faithfully represent
the user’s query log. Since the user is not involved at this step, support and
confidence have to be adjusted automatically [16]. Algorithm 1 is used for this
purpose, and it extracts rules until the whole log is covered by the set of rules
extracted. More precisely, the algorithm starts extracting rules with confidence
and support equal to 1 (lines 2,3). If the set of rules covers the entire log, then
the algorithm stops (line 11,12). Otherwise, extraction starts again with a lower
confidence (line 13), and confidence is decreased until the log is entirely covered
or the confidence is considered too low (line 14). In this case, confidence goes
back to 1 and support is decreased (line 16,17), and extraction is launched again.
If both support and confidence are considered too low, then the algorithm stops.

Algorithm 1 needs two thresholds, minConf and minSupp. Realistic values
for these thresholds can be learned by training the algorithm on query logs, or
be derived from log properties like size and sparseness.

5.2 Rule Selection

The output of the mining step, R can be a large set. In this section we present
the algorithm that first selects, among the rules in R, the subset Rq of pertinent
and effective rules for query q, and then returns a qf-set Fα including a subset
of the query fragments that appear as consequents of the rules in Rq. These
fragments will be used for annotating q with a preference.

Following the approach presented in [12], the selection of query fragments
is made by associating a score to each group of rules in Rq having the same
fragment ϕ as consequent. This score is the average confidence of the rules in
the group, i.e., score(ϕ) = avgr∈Rϕconf(r) where Rϕ ⊆ Rq is the subset of rules
having ϕ as a consequent. The selected query fragments are those with highest
scores, and are limited by the number α of base preference constructors that the
user wants to annotate her queries with.

Given schema M = 〈A, H, M〉 and a qf-set F , we adopt the following notation:

– F.hier(h) = F ∩ Lev(h) is the set of levels of hierarchy h ∈ H in F ;
– F.meas = F ∩ M is the set of measures in F ;
– F.val(a) =

⋃
(a∈Vk)∈F Vk denotes the set of selected values for level/measure

a ∈ A ∪ M in F .

Algorithm 2 selects, among the set R of association rules mined from the log,
the consequents of rules that will be used to annotate the current query with
preferences. It starts by removing from R all non-pertinent rules (i.e., those
whose antecedent does not match q — line 1), and some non-effective rules (those
whose consequent, if it is an attribute or a measure, does not appear in the list
of group-by attributes or returned measures of q — line 2). The remaining rules
are grouped by their consequent and the score of each group is computed (line
3). Then the top consequents corresponding to α base constructors are returned
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Algorithm 2. Select Consequents
Input: R: A set of rules; q: A query represented as a qf-set; α: A user-defined personalization degree
Output: Fα: A qf-set that will be used to annotate q with a preference
Variables: numBC: The current number of base constructs; Rq : The set of pertinent and effective

rules; F , Fsim: Two qf-sets
1: R = R \ {r ∈ R|r.ant �⊆ q} � Drop non-pertinent rules
2: Rq = R \ {r ∈ R|r.cons ∈ A ∪ M, r.cons �∈ q} � Drop non-effective rules
3: F = {r.cons|r ∈ Rq} � Consequents of the rules in Rq

4: Fα = ∅
5: numBC = 0
6: while numBC ≤ α and F �= ∅ do � Iteratively construct Fα...
7: let ϕ = ArgMaxF score(ϕ) � ...starting with the fragment having highest score
8: F = F \ {ϕ}
9: if makesIneffective(ϕ, Fα, q) then � If ϕ drives the preference ineffective...

10: Fsim = {ϕ′ ∈ Fα|similar(ϕ, ϕ′)} � ...find the similar fragments, if any...
11: Fα = Fα \ Fsim � ...and drop them
12: if Fsim �= ∅ then
13: numBC − −
14: else
15: if ∃ϕ′ ∈ Fα|similar(ϕ, ϕ′) then � Other similar fragments were already added to Fα...
16: Fα = Fα ∪ {ϕ} � ...so numBC must not be increased
17: else
18: if numBC < α then � Add ϕ only if this does not violate the α constraint
19: Fα = Fα ∪ {ϕ}
20: numBC + +

21: return Fα

Function 3. makesIneffective
Input: ϕ: A fragment; Fα: A qf-set; q: a query represented as a qf-set
Output: A Boolean
1: if ∃h ∈ H|ϕ ∈ Lev(h) then � ϕ is a level
2: if (Fα.hier(h) ∪ {ϕ}) = q.hier(h) then � All query hierarchies are preferred
3: return true
4: if ϕ ∈ M then � ϕ is a measure
5: if (Fα.meas ∪ {ϕ}) = q.meas then � All query measures are preferred
6: return true
7: if ϕ = (a ∈ V ) then � ϕ is a predicate
8: if q.val(a) �= ∅ and !((Fα.val(a) ∪ V ) ⊂ q.val(a)) then � All values for a are preferred
9: return true

10: return false

Function 4. similar
Input: ϕ1: A fragment; ϕ2: A fragment
Output: A Boolean
1: if ∃h ∈ H|ϕ1 ∈ Lev(h) and ϕ2 ∈ Lev(h) then � Two levels of the same hierarchy
2: return true
3: if ϕ1 ∈ M and ϕ2 ∈ M then � Two measures
4: return true
5: if ϕ1 = (a ∈ V1) and ϕ2 = (a ∈ V2) then � Two predicates on the same attribute
6: return true
7: return false

(lines 4-21). If a fragment ϕ that is about to be selected drives the preferences
ineffective because it states that all the query results are preferred (Function 3),
it is removed together with the other similar fragments (lines 10-13).

Example 5. Consider the qf-set of Example 3, q = {Region, AllCities, Mrn, AllRaces,
Occ, Year, AllSexes, AvgIncome, (Year ∈ 2009)}. Let the set R of rules extracted
from the log be as follows:
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r1: (Region ∈ {’Pacific’,’Atlantic’}) → Year (0.8)
r2: Year → Region (0.80)
r3: Year → AllCities (0.60)
r4: AvgIncome → Region (0.60)
r5: Year → Sex (0.90)
r6: (Year ∈ 2009) → Region (0.70)
r7: Year → (Year ∈ 2009) (0.50)
r8: Year → (AvgIncome ∈ [500, 1000]) (0.55)
r9: AvgIncome → Mrn (0.45)
r10: Occ → Region (0.70)
r11: Occ → Year (0.10)
r12: AvgIncome → Year (0.70)

and let Algorithm 2 be called with α = 2. First, the algorithm removes r1 (non
pertinent) and r5 (non effective). Then the remaining rules are grouped by their
consequents, resulting in the set of fragments F = {Region, AllCities, (AvgIncome
∈ [500, 1000]), (Year ∈ 2009), Mrn, Year} (listed by decreasing order of score).
The fragments in F are now orderly explored. The first two fragments are not
selected since, together, they drive the preference ineffective (they are exactly
the fragments of hierarchy RESIDENCE included in q). Fragment (AvgIncome ∈
[500, 1000]) is selected. Fragment (Year ∈ 2009) is not selected since it corre-
sponds precisely to the selection on Year of q. Then fragment Mrn is selected
and, finally, Algorithm 2 outputs Fα = {(AvgIncome ∈ [500, 1000]), Mrn}.

5.3 Fragment Translation

The output Fα of Algorithm 2 is a qf-set used to annotate the current query
q with a preference. To this end, each query fragment ϕ ∈ Fα is translated
into a base constructor (see Section 4); the resulting base constructors are then
coalesced and composed using the Pareto operator.

The rules for translating fragment ϕ are explained below:

– if ϕ is a level a ∈ A, it is translated into a constructor CONTAIN(h, a), where
h is the hierarchy a belongs to.

– If ϕ is a measure m ∈ M , it is translated into a constructor CONTAIN
(measures,m).

– If ϕ is a Boolean predicate on a level, (a ∈ V ), it is translated into a con-
structor POS(a, V ).

– If ϕ is a Boolean predicate on a measure, (m ∈ [vlow, vhigh]), it is translated
into a constructor BETWEEN(m, vlow, vhigh).

The resulting base constructors are coalesced by merging all CONTAIN’s on the
same hierarchy, all POS’s on the same level, and all BETWEEN’s on the same
measure.

Example 6. The preference expression that translates the qf-set Fα in Example 5
is p = BETWEEN(AvgIncome,500,1000)⊗CONTAIN(RACE, Mrn). The myMDX
formulation for q annotated with p is:
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SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

PREFERRING AvgIncome BETWEEN 500 AND 1000 AND RACE CONTAIN Mrn

6 Experimental Results and Conclusions

In this paper we proposed a proactive approach to personalization, where mining
techniques are applied to transparently annotate OLAP queries with preferences.
This section briefly describes the implementation of our approach and reports
the results of tests assessing its efficiency and effectiveness.

The approach was implemented in Java, using the Mondrian API for handling
MDX queries, the Weka implementation of Apriori for rule extraction, and the
myOLAP tool for evaluating preferences [6]. The tests were conducted starting
from synthetic MDX logs generated through Algorithm 5, that uses the Diff
operator proposed in [19]. This operator explores the reasons why an aggregate
is significantly lower in one fact compared to another. It takes as parameters two
facts f and f ′ and an integer N , and looks into the two isomorphic sub-cubes C
and C′ that detail the two facts (i.e., that are aggregated to form f and f ′). As
a result, it summarizes the differences in these two sub-cubes by providing the
top-N informative pairs of cells. Our generator simulates OLAP sessions on a
datacube by starting from a random query q and then deriving the subsequent
queries in the session using the result of the Diff operator applied to q. The Java
implementation of Diff was obtained from [20]; N is set to 20 to simulate OLAP
sessions including no more than 20 queries.

Algorithm 5. Generate a log
Input: minSize: Minimum log size
Output: Log: A set of queries
Uses: Diff(cell, cell): The Diff operator defined in [19]
Variables: q: A query ; nbGenerated: Integer
1: nbGenerated = 0
2: while nbGenerated < minSize do
3: randomly generate a query q on a sub-cube
4: Log = Log ∪ {q}
5: nbGenerated + +
6: let f1, f2 be facts that show the maximum difference in the result of q
7: for each pair 〈f ′

1, f ′
2〉 ∈ Diff(f1, f2) do

8: let q′ be the drill-down of q to the group-by set of f ′
1 and f ′

2
9: Log = Log ∪ {q′}

10: nbGenerated + +

11: return Log

The architecture used for testing is an Intel Core 2 Duo 3 GHz, with 4GB
RAM. All tests were made on the CENSUS schema, using real data extracted
from the IPUMS database [21], corresponding to about 107 facts stored on Oracle
11g. For our tests, we generated a log of about 1000 queries; the initial query of
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Fig. 2. Effectiveness and efficiency of our approach

each session was generated randomly by selecting group-by sets, measures and
selections from a small pool. A small selection pool (3 selections on different
dimensions) is used to simulate the log of a single user querying a sub-cube.
Then, 8 queries to be personalized were extracted randomly from the log and
removed from it. Minimum support and confidence were adjusted with Algorithm
1 to 0.6 and 0.7, respectively, resulting in 20 rules that cover the log and have
an average support and confidence of 0.63 and 0.85, respectively. The confidence
ranges from 0.76 to 1, with a standard deviation of 0.063.

As to effectiveness, Figure 2.a reports, for each query in the benchmark, the
ratio between the number of preferred facts returned by the annotated query
(i.e., those included in the best-match only result of the query [3]) and the one
returned by the original query, when the personalization degree ranges between 1
and 3. Our approach is always effective in reducing the number of facts returned
to the user. Though in general the reduction gets stronger as the personalization
degree is increased, two different trends are apparent. In some cases (queries 2,
3, and 4) the reduction is independent on the personalization degree since only
one pertinent and effective fragment was found. In other cases (queries 1 and 7),
as the complexity of the preference increases, there are no facts that fully satisfy
it so a larger set of facts that partially satisfy the preference are returned.

As to efficiency, we point out that the log mining step was executed in less than
4 secs, while the time for rule selection and fragment translation never exceeded
5 msecs. Figure 2.b reports the ratio between the time taken to execute each an-
notated query and the time to execute the original query. The reduction is always
above 40%, and it is not relevantly affected by the personalization degree. Overall,
we can conclude that our approach to personalization not only puts no overhead
on the querying process, but it significantly reduces query response times.

While in this paper we used preference mining for result ranking, in our fu-
ture work we will attempt to generalize it to address query recommendation as
well. Besides, we will investigate the feasibility of extending our approach to
incrementally manage OLAP sessions, i.e., to take delta queries into account at
runtime without having to mine the log from scratch.
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