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Abstract

Modern enterprises increasingly use the workow paradigm to prescribe how
business processes should be performed. Processes are typically modeled as anno-
tated activity graphs. We present an approach for a system that constructs process
models from logs of past, unstructured executions of the given process. The graph
so produced conforms to the dependencies and past executions present in the log.
By providing models that capture the previous executions of the process, this tech-
nique allows easier introduction of a workow system and evaluation and evolution
of existing process models. We also present results from applying the algorithm to
synthetic data sets as well as process logs obtained from an IBM Flowmark instal-
lation.

1 Introduction

Organizations typically prescribe how business processes have to be performed, particu-
larly when activities are complex and involve many people. A business process speci�es
the way in which the resources of an enterprise are used. The performance of an enter-
prise depends on the quality and the accuracy of the business process. Thus techniques
to manage and support business processes are an active research area. [RW92] [DS93]
[GHS95] [LA92] [MAGK95].

In particular, a signi�cant amount of research has been done in the area of modeling
and supporting the execution of business processes. The model generally used is the
workow model [Hol94]. Workow systems assume that a process can be divided in
small, unitary actions, called activities. To perform the process, one must perform the
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set (or perhaps a subset) of the activities that comprise it. In addition, there may be
dependencies between di�erent activities.

The main approach used in workow systems is to model the process as a directed
graph. The graph vertices represent individual activities and the edges represent depen-
dencies between them. In other words, if activity A has to be executed before activity
B, an edge appears in the graph from A to B. In practice, certain executions of the
process may include a given activity and others may not. Each edge A! B is, therefore,
annotated with a Boolean function that determines whether the control ows from A to
B.

Current workow systems assume that a model of the process is available and the
main task of the system is to insure that all the activities are performed in the right order
and the process terminates successfully [GR97] [LA92]. The user is required to provide
the process model. Constructing the desired process model from an unstructured model
of process execution is quite di�cult, expensive and in most cases require the use of an
expert [CCPP96] [Sch93].

Contribution We present a new approach to address the problem of model construc-
tion. We describe an algorithm that, given a log of unstructured executions of a process,
generates a graph model of the process. The resulting graph represents the control ow
of the business process and satis�es the following desiderata:

� Completeness: The graph should preserve all the dependencies between activities
that are present in the log. It should also permit all the executions of the process
present in the log.

� Irredundancy: The graph should not introduce spurious dependencies between ac-
tivities.

� Minimality: To clarify the presentation, the graph should have the minimal number
of edges.

The work we present has been done in the context of the IBM workow product,
Flowmark [LA92]. However, the process model we consider is quite general and the
algorithms we propose are applicable to other workow systems. The new capability we
are proposing can be applied in several ways. A technique that takes logs of existing
process executions and �nds a model that captures the process can ease the introduction
of a workow management system. In an enterprise with an installed workow system, it
can help in the evaluation of the workow system by comparing the synthesized process
graphs with purported graphs. It can also allow the evolution of the current process
model into future versions of the model by incorporating feedback from successful process
executions.

The following schema is being adopted in Flowmark for capturing the logs of existing
processes in an enterprise that does not yet have an workow system in place. First, all
the activities in a process are identi�ed. But since the control ow is not yet known,
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all possible activities are presented to the user for consideration through a graphical
interface. The user selects the activities that, according to user's informal model of the
business process, have to be executed next. Thus the successful executions of the process
are recorded.

Related research The speci�cation of dependencies between events has received much
attention [Kle91] [ASE+96]. Our dependency model is a simpli�cation of that proposed
in [Kle91], and is consistent with the directed graph process model.

In previous work in process discovery [CW95] [CW96], the �nite state machine model
has been used to represent the process. Our process model is di�erent from the �nite
state machine model. Consider a simple process graph: (fS;A;B;Eg, fS ! A, A! E,
S ! B, B ! Eg), in which two activities A and B can proceed in parallel starting from
an initiating activity S and followed by a terminating activity E. This process graph can
generate SABE and SBAE as valid executions. The automaton that accepts these two
strings is a quite di�erent structure. In an automaton, the activities (input tokens) are
represented by the edges (transitions between states), while in a process graph the edges
only represent control conditions and vertices represent activities. An activity appears
only once in a process graph as a vertex label, whereas the same token (activity) may
appear multiple times in an automaton.

The problem considered in this paper generalizes the problem of mining sequential
patterns [AS95] [MTV95], but it is applicable in a more restricted setting. Sequential
patterns allow only a total ordering of fully parallel subsets, whereas process graphs are
richer structures: they can be used to model any partial ordering of the activities and
admit cycles in the general setting. On the other hand, we assume that the activities
form only one graph structure, whereas in the sequential patterns problem the goal is to
discover all patterns that occur frequently.

Organization of the paper The rest of the paper is organized as follows. In Section
2 we describe the process model used in the paper. In Section 3 we present an algorithm
to �nd a process graph, assuming that the graph is acyclic and that each activity appears
exactly once in each execution. The algorithm �nds the minimal such graph in one
pass over the log. In Section 4 we extend this algorithm to handle the case where some
activities may not appear in each execution. In Section 5 we consider the case of general
directed graphs admitting cycles. In these sections, we make the assumption that the log
contains correct executions of the business process. However, this may not be the case
in practice, and we outline a strategy to deal with this problem in Section 6. Section 7
presents implementation results using both synthetic datasets and logs from a Flowmark
installation. We conclude with a summary in Section 8.
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Figure 1: Example 1

2 Process model

Business processes consist of separate activities. An activity is an action that is a se-
mantical unit at some level. In addition, each activity can be thought of as a function
that modi�es the state of the process. Business processes are modeled as graphs with
individual activities as nodes.

The edges on the graph represent the potential ow of control from one activity to
another1. Each edge is associated with a Boolean function (on the state of the process),
which determines whether the edge will be followed or not. If a vertex (activity) has more
than one outgoing edge, the respective Boolean functions are independent from each other.

De�nition 1 (Business process) A business process P is de�ned as a set of activities
VP = V1; : : : ; Vn, a directed graph GP = (VP ; EP ), an output function oP : VP ! N k,
and 8(u; v) 2 EP a Boolean function f(u;v) : N k ! f0; 1g.

We will assume that GP has a single source and a single sink. These are the process'
activating and terminating activities. If there are no such activities, one can add an
activating node with edges to the �rst executed activities in the graph, and a terminating
node with edges from the terminating activities of the process. The execution of the
business process follows the activity graph: for each activity u that terminates, the output
o(u) is computed. Then the functions on the outgoing edges are evaluated on the output.
If f(u;v)(o(u)) is true, then we test if v can be executed. This test in general is a logical
expression involving the activities that point to v in G. When v is ready, the outputs of
incoming activities are passed as input to v, and it is inserted into a queue to be executed
by the next available agent.

Example 1 Figure 1 gives the graph GP of a process P . The process consists of �ve ac-
tivities VP = fA;B;C;D;Eg. A is the starting activity and E is the terminating activity.
The edges of the graph GP (EP = f(A;B), (A;C), (B;E), (C;D), (C;E), (D;E)g repre-
sent the ow of execution, so that D always follows C, but B and C can happen in parallel.
Not shown in Figure 1 are oP and the Boolean conditions on the edges. Each activity has
a set of output parameters that are passed along the edges, o(A); : : : ; o(E) 2 N 2. The

1For the purposes of this paper, we will not di�erentiate between control ow and data ow, a dis-
tinction made in some systems [GR97] [LA92].
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output parameters are represented as a vector (o(A)[1]; o(A)[2]). Each edge has a Boolean
function on the parameters, such as: f(C;D) = (o(C)[1] > 0) ^ (o(C)[2] < o(C)[1])). For
example an execution of this process will include activity D if f(A;C) and f(C;D) are true.

Each execution of a process is a list of events that record when each activity was
started and when it terminated. We can therefore consider the log as a set of separate
executions of an unknown underlying process graph.

De�nition 2 (Execution log) The log of one execution of a process (or simply execu-
tion) is a list of event records (P;A;E; T;O) where P is the name of the process execution,
A is the name of the activity, E 2 fSTART, ENDg is the type of the event, T is the time
the event occured, and O = o(A) is the output of the activity if E = END and a null
vector otherwise.

For notational simplicity, we will not write the process execution name and output in
the event records. We assume that the activities are instantaneous and no two activities
start at the same time. With this simpli�cation, we can represent an execution as a list
of activities. This simpli�cation is justi�ed because if there are two activities in the log
that overlap in time, then they must be independent activities. As we will see, the main
challenge in inducing a process graph from a log of past executions lies in identifying
dependency relationship between activities.

Example 2 Sample executions of the graph in Figure 1 are ABCE, ACDBE, ACDE.

If there exists a dependency between two activities in the real process, then these two
activities will appear in the same order in each execution. However only the executions
that are recorded in the log are known, and so we de�ne a dependency between two
activities with respect to the log. In the model graph, each dependency is represented
either as a direct edge or as a path of edges from an activity to another.

De�nition 3 (Following) Given a log of executions of the same process, activity B
follows activity A if either activity B starts after A terminates in each execution they
both appear, or there exists an activity C such that C follows A and B follows C.

De�nition 4 (Dependence between activities) Given a log of executions of the same
process, if activityB follows A but A does not follow B, then B depends on A. IfA follows
B and B follows A, or A does not follow B and B does not follow A, then A and B are
independent.

Example 3 Consider the following log of executions of some process: fABCE, ACDE,
ADBEg. The activityB follows A (because B starts after A in the two executions both of
them appear) but A does not follow B, therefore B depends on A. On the other hand, B
follows D (because it is recorded after D in the only execution that both are present) and
D follows B (because it follows C, which follows B), therefore B and D are independent.
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Let us add ADCE to the above log. Now, B and D are no longer independent; rather,
B depends on D. It is because B follows D as before, but C and D are now independent,
so we do not have D following B via C.

Given a log of executions, we can de�ne the concept of a dependency graph, that is,
a graph that represents all the dependencies found in the log.

De�nition 5 (Dependency graph) Given a set of activities V and a log of executions
L of the same process, a directed graph GV L is a dependency graph if there exists a path
from activity u to activity v in GV L if and only if v depends on u.

In general, for a given log, the dependency graph is not unique. In particular, two
graphs with the same transitive closure represent the same dependencies.

Every execution of the process recorded in the log may not include all the activities
of the process graph. This can happen when not all edges outgoing from an activity
are taken (e.g. the execution ACE in Figure 2). An execution R induces a subgraph
G0 of the process graph G = (V;E) in a natural way: G0 = (V 0; E0), where V 0 = fv 2
V j v appears in Rg and E0 = f(v; u) 2 E j v terminates before u starts in Rg.

De�nition 6 (Consistency of an execution) Given a process model graph G = (V;E)
of a process P and an executionR, R is consistent with G if the activities in R are a subset
V 0 of the activities in G, and the induced subgraph G0 = (V 0; f(u; v) 2 E j u; v 2 V 0g)
is connected, the �rst and last activities in R are process' initiating and terminating
activities respectively, all nodes in V 0 can be reached from the initiating activity, and no
dependency in the graph is violated by the ordering of the activities in R.

This de�nition of consistency is equivalent to the following one: R can be a successful
execution of P for suitably chosen activity outputs and Boolean edge functions.

Example 4 The execution ACBE is consistent with the graph in Figure 1, but ADBE
is not.

Given a log of executions, we want to �nd a process model graph that preserves all the
dependencies present in the log. At the same time, we do not want the graph to introduce
spurious dependencies. The graph must also be consistent with all executions in the log.
A graph that satis�es these conditions is called a conformal graph.

De�nition 7 (Conformal graph) A process model graph G is conformal with a log L
of executions if all of the following hold:

� Dependency completeness: For each dependency in L, there exists a path in G.

� Irredundancy of dependencies: There is no path in G between independent activities
in L.
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Figure 2: Example 5

� Execution completeness: G is consistent with every execution in L.

Example 5 Consider the log fADCE, ABCDEg. Both the graphs in Figure 2 are
dependency graphs. The �rst graph is conformal, but the second is not because it does
not allow the execution ADCE.

Problem statement. We de�ne the following two problems:

Problem 1: Graph mining. Given a log of executions of the same process, �nd a
conformal process graph.

Problem 2: Conditions mining. Given a log of executions of the same process
and a corresponding conformal process graph G = (V;E), �nd the Boolean functions
f(u;v); (u; v) 2 E.

Having thus divided the process model mining problem into two parts, we will consider
Problem 1 in Sections 3{6. We will address Problem 2 in Section 7. Assume throughout
that the process graph has jV j = n vertices, and the log contains m separate executions
of the process. Generally, m� n.

In Sections 3 and 4, we will assume that the process graph is acyclic. This assumption
is reasonable in many cases and, in fact, it is also frequently the case in practice [LA92].
We will relax this assumption in Section 5 and allow for cycles in the process graph.

3 Finding directed acyclic graphs

We �rst consider the special case of �nding model graphs for acyclic processes whose
executions contain exactly one instance of every activity. For this special case, we can
obtain a faster algorithm and prove the following minimality result:

Given a log of executions of the same process, such that each activity appears exactly
once in each execution, there exists a unique process model graph that is conformal and
minimizes the number of edges.
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Lemma 1 Given a log of executions of the same process, such that each activity appears
in each execution exactly once, if B depends on A then B starts after A terminates in
every execution in the log.

Proof: Assume that this is not the case. Then there exists an execution such that B
starts before A terminates. From the de�nition of dependency, there must be a path of
followings from A to B. But since all activities are present in each execution, there must
be at least one following which does not hold for the execution where B starts before A,
a contradiction. 2

Lemma 2 Let G and G0 be graphs with the same transitive closure. Then both graphs
are consistent with the same set of executions if each activity appears exactly once in each
execution.

Proof: Since every activity appears in each execution, the induced subgraph for any
execution is the original graph. The two graphs have the same transitive closure, so if
there is a path between two activities in one, then there is a path between the same
activities in the other. It follows that if a dependency is violated in one graph, then it
must be violated in the other one. 2

Lemma 3 Given a log of executions of the same process, where all activities appear in
each execution once, and a dependency graph G for this log, G is conformal.

Proof: By de�nition, the dependency graph preserves all the dependencies present in
the log, and none other. For a given execution in the log, the induced subgraph is again
the graph G because all activities are present. Further, no dependency is violated because
if one was, it would not be in the dependency graph. It follows that G is conformal. 2

We can now give an algorithm that �nds the minimal conformal graph.

Algorithm 1 (Special DAG) Given a log L of m executions of a process, �nd the mini-
mal conformal graph G, assuming there are no cycles in the graph and each activity appears
in each execution of the process.

1. Start with the graph G = (V;E), with V being the set of activities of the process and
E = ;. (V is instantiated as the log is scanned in the next step.)

2. For each process execution in L, and for each pair of activities u; v such that u
terminates before v starts, add the edge (u; v) to E.

3. Remove from E the edges that appear in both directions.

4. Compute the transitive reduction2 of G.

2The transitive reduction of a directed graph G is the smallest subgraph of G that has the same closure
as G [AGU72]. A DAG has a unique transitive reduction.
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5. Return (V;E).

Theorem 4 Given a log of m executions of a given process having n activities, Algorithm
1 computes the minimal conformal graph in O(n2m) time.

Proof: First we show that after step 3, G is a dependency graph. From Lemma 1
we know that the graph after step 2 at least contains an edge corresponding to every
dependency. Since the edges we remove in step 3 form cycles of length 2, where there are
activities u and v such that u follows v and v follows u, such edges cannot be dependencies.

After step 4, G is the minimal graph with the same transitive closure and, using
Lemma 2, the minimal dependency graph.

Lemma 3 shows that this graph is also conformal and, since a conformal graph has to
be a dependency graph, it is the minimal conformal graph.

Since m� n, the second step clearly dominates the running time. The running time
of step 4 is O(jV jjEj) = O(n3) [AGU72]. A simpler algorithm to compute the transitive
reduction is given in the Appendix. 2

Example 6 Consider the log fABCDE, ACDBE, ACBDEg. After step 3 of the al-
gorithm, we obtain the �rst graph of Figure 3 (the dashed edges are the edges that are
removed at step 3), from which the next underlying process model graph is obtained with
the transitive reduction (step 4).

4 The complete algorithm

We now consider the general case where every execution of an acyclic process does not
necessarily include all the activities. The problem is that all dependency graphs are no
longer conformal graphs: it is possible to have a dependency graph that does not allow
some execution present in the log (Example 5).

The algorithm we give that solves this problem is a modi�cation of Algorithm 1. It
makes two passes over the log and uses a heuristic to minimize the number of the edges.

First it computes a dependency graph. As before, we identify those activities which
ought to be treated as independent because they appear in reverse order in two separate
executions. In addition, to guard against spurious dependencies, we also identify those
activity pairs A,B that have a path of followings from A to B as well as from B to A, and
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hence are independent. To �nd such independent activities we �nd the strongly connected
components in the graph of followings. For two activities in the same strongly connected
component, there exist paths of followings from the one to the other; consequently, edges
between activities in the same strongly connected component are removed.

We must also ensure that the dependency graph is such that it allows all executions
present in the log. Having formed a dependency graph as above, we remove all edges that
are not required for the execution of the activities in the log. An edge can be removed only
if all the executions are consistent with the remaining graph. To derive a fast algorithm,
we use the following alternative: for each execution, we identify a minimal set of edges
that are required to keep the graph consistent with the execution, and include them in
the �nal graph. Note that we can no longer guarantee that we have obtained a minimal
conformal graph. We can now state our algorithm.

Algorithm 2 (General DAG) Given a log L of m executions of a process, �nd the
dependency graph G, assuming there are no cycles in the process graph.

1. Start with the graph G = (V;E), with V being the set of activities of the process and
E = ;. (V is instantiated as the log is scanned in the next step.)

2. For each process execution in L, and for each pair of activities u; v such that u
terminates before v starts, add the edge (u; v) to E.

3. Remove from E the edges that appear in both directions.

4. For each strongly connected component of G, remove from E all edges between ver-
tices in the same strongly connected component.

5. For each process execution in L:

(a) Find the induced subgraph of G.

(b) Compute the transitive reduction of the subgraph.

(c) Mark those edges in E that are present in the transitive reduction.

6. Remove the unmarked edges in E.

7. Return (V;E).

Theorem 5 Given a log of m executions of a given process having n activities, Algorithm
2 computes a conformal graph in O(mn3) time.

Proof: After step 3, we are left with a directed graph where each edge path represents
a following in L. Step 4 �nds cycles in this graph and the set of vertices in each cycle
represent independent activities by de�nition. We thus have a dependency graph for L
after step 4. This graph maintains execution completeness as step 2 created a graph that
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at least allows every execution in L and steps 3-4 do not exclude any of them. Steps 5-6
retain only those edges from this graph that are necessary for at least one execution in L.

The running time is dominated by step 5 (m� n), whose asymptotic time complexity
is O(mn3). 2

Example 7 Consider the log fABCF;ACDF;ADEF;AECFg. After step 2 of Algo-
rithm 2, the graph G is the �rst graph in Figure 4. Step 3 does not �nd any cycle of
length 2. There is one strongly connected component, consisting of vertices C;D;E. Af-
ter step 4, G is the second graph in Figure 4. Some of the edges are removed in step 6,
resulting in the last graph in Figure 4.

An open problem In absence of the requirement that each execution of a process
contain all of its activities, there may be more than one graph that is conformal with
a given log. Consider the log fACF , ADCF , ABCF , ADECFg. Both the graphs in
Figure 6 are conformal with this log and they have the same number of edges.

A F

ED

CB

A F

ED

CB

Figure 5: Two conformal graphs for the same log

The di�erence in the two graphs is that they allow a di�erent set of extraneous exe-
cutions (executions other than those present in the log). In general, one cannot construct
a graph that allows only those executions that are present in a log. A valid goal for a
process graph discovery algorithm could be to �nd a conformal graph that also minimizes
extraneous executions. Properly de�ning the semantics of an extraneous execution and
developing a polynomial algorithm for this task is an open, intriguing problem. However,
as we will see in Section 8, we did not �nd this problem to be a major handicap in our
experiments.
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5 Finding general directed graphs

If the process model graph can have cycles, the previous algorithms break down. The
main problem is that we are going to remove legitimate cycles along with cycles created
because two activities are independent and have appeared in di�erent order in di�erent
executions. An additional problem is that in the case of a directed graph with cycles the
transitive reduction operation does not have a unique solution.

A modi�cation of our original approach works however. The main idea is to treat
di�erent appearances of the same activity in an execution as two distinct activities.

A cycle in the graph will result in multiple appearances of the same activity in a single
process execution. We use labeling to arti�cially di�erentiate the di�erent appearances:
for example the �rst appearance of activity A is labeled A1, the second A2, and so on.
Then Algorithm 2 is used on the new execution log.

The graph so computed contains, for each activity, an equivalent set of vertices that
correspond to this activity. In fact, the size of the set is equal to the maximum number
that the given activity is present in an execution log.

The �nal step is to merge the vertices of each equivalent set into one vertex. In doing
so, we put an edge in the new graph if there exists an edge between two vertices of di�erent
equivalent sets of the original graph.

Algorithm 3 (Cyclic Graphs) Given a log L of executions of a process, �nd the de-
pendency graph G.

1. Start with the graph G = (V;E), with V being the set of activities of the process and
E = ;.

2. Go through each execution in the log and uniquely identify each activity recorded in
the log, thus create a new set of vertices V 0 and graph G = (V 0; E0).

3. For each process execution in L, and for each pair of activities u; v such that u
terminates before v starts, add the edge (u; v) to E0. (In practice, steps 1-3 are
executed together in one pass over the log.)

4. Remove from E0 the edges that appear in both directions.

5. For each strongly connected component of G0, remove from E0 all edges between
vertices in the same strongly connected component.

6. For each process execution present in the log:

(a) Find the induced subgraph of G0.

(b) Compute the transitive reduction of the subgraph.

(c) Mark those edges in E 0 that are present in the transitive reduction.

7. Remove the unmarked edges in E0.
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8. In the graph so obtained, merge the vertices that correspond to di�erent instances of
the same activity in the graph, thus reverting to the original set of vertices V .

9. Return the resulting graph.

Theorem 6 Given a log of m executions of a process having n activities with each activity
repeated at most k times, Algorithm 3 �nds a conformal graph in O(m(kn)3) time.

A A

B

D

C

E

B2

D

C1 C2

E

B1

Figure 6: Example 8

Example 8 Consider the log fABDCE;ABDCBCE;ABCBDCE;ADEg. The �rst
graph in Figure 6 is the graph computed after step 4 of Algorithm 3. There are no edges
between D and C1 because D there is an execution where D appears before C1, and an
execution where it appears after C1. Similarly there are no edges between D and B2.
The edges (A;E), (B1; B2), (B1; C2), (B1; E), (C1; C2) and (B2; E) are removed in step
7. The result after the merging (step 8) is the second graph in Figure 6. This graph shows
the cycle consisting of the activities B and C.

6 Noise

A problem we have to consider is noise in the log. This problem can arise because
erroneous activities were inserted in the log, or some activities that were executed were
not logged, or some activities were reported in out of order time sequence.

We make a slight modi�cation of Algorithm 2 to deal with these kinds of noise. The
main change is in step 2 where we add a counter for each edge in E to register how many
times this edge appears. Then, we remove all edges with a count below a given threshold
T . The rationale is that errors in the logging of activities will happen infrequently. On
the other hand, if two activities are independent, then their order of execution is unlikely
to be the same in all executions.

One problem here is determining a good value for T . A few extra erroneous executions
may change the graph substantially, as the following example illustrates.

Example 9 Assume that the process graph is a chain with vertices A;B;C;D;E. Then
there is only one correct execution, namely ABCDE. Assume that the log contains m�k
correct executions, and k incorrect executions of the formADCBE. If the value of T is set
lower than k, then Algorithm 2 will conclude that activities B;C; and D are independent.
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Let us assume that activities that must happen in sequence are reported out of se-
quence with an error rate of �. We assume that � < 1=2. Then, given m executions, the
expected number of out of order sequences for a given pair of activities is �m. Clearly T
must be larger than �m. The probability that there are at least T errors, assuming they
happen at random, is [CLR90]:

P [ more than T errors in m executions] =
TX
i=1

 
m
i

!
�i(1 � �)n�i �

 
m
T

!
�T

The use of T implies that if two independent activities have been executed in a given
order at least m� T times, a dependency between them will be added. We assume that
activities that are independent in the process graph are executed in random order. Then
the probability that they were executed in the same order in at least m�T executions is

P [ more than m� T executions in same order] �

 
m

m� T

!
(1=2)(m�T )

Then with probability � � 1 �max

  
m
T

!
�T ;

 
m

m� T

!
(1=2)(m�T )

!
, Algorithm

2 �nds the correct dependency.
Note that, if T increases, the probability of wrongly reporting an edge decreases, but

the probability of adding an edge increases. If � is approximately known, then we can set 
m
T

!
�T =

 
m

m� T

!
(1=2)(m�T ), and from there we get �T = (1=2)(m�T ), and we can

obtain the value of T that minimizes the probability that an error occurs.

7 Learning the conditions

The control conditions can be arbitrary Boolean functions of some global process state. To
obtain useful information about these functions, additional information about the changes
in the global state of the process must be present in the log.

We can however make the simplifying assumption that the control conditions are
simple Boolean functions of the output of the activity [LA92].

In this case, the set of output parameters o(u) of a given activity u de�ne the state of
the activity. From each execution of an activity u we obtain an example for all functions
f(u;v); (u; v) 2 E. If activity v is also executed in the same process execution, the example
is a positive one, otherwise it is a negative.

Formally the training set for f(u;v) is de�ned as follows. For each execution of the
process that u and v appear, the point (o(u); 1) 2 N k � f0; 1g is inserted. For each
execution of the process that u but not v appears, the point (o(u); 0) 2 N k � f0; 1g is
inserted.

We can now use a classi�er [WK91] to learn the Boolean fuctions f(v;u). In particular,
the use of a decision tree classi�er will give a set of simple rules that classify when a given
activity is taken or not.
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Figure 7: A synthetic process model graph (Graph10) with 10 activities. Typical execu-
tions are ADBEJ , AGHEJ , ADGHBEJ , AGCFIBEJ .

8 Implementation results

In this section, we present results of applying our algorithm to synthetic datasets as well
as logs obtained from a Flowmark installation. Both the synthetic data and the Flowmark
logs are lists of event records consisting of the process name, the activity name, the event
type, and the timestamp. The experiments were run on a RS/6000 250 workstation.

8.1 Synthetic datasets

To generate a synthetic dataset, we start with a random directed acyclic graph, and using
this as a process model graph, log a set of process executions. The order of the activity
executions follows the graph dependencies. The START activity is executed �rst and then
all the activities that can be reached directly with one edge are inserted in a list. The
next activity to be executed is selected from this list in random order. Once an activity
A is logged, it is removed from the list, along with any activity B in the list such that
there exists a (B;A) dependency. At the same time A's descendents are added to the list.
When the END activity is selected, the process terminates. In this way, not all activities
are present in all executions.

Figure 7 gives an example of a random graph of 10 activities (referred to as Graph10)
that was used in the experiments. The same graph was generated by Algorithm 2, with
100 random executions consistent with Graph10.

Table 1 summarizes the execution times of the algorithm for graphs of varying number
of vertices and with logs having varying number of executions. The physical size of the
log was roughly proportional to the number of recorded executions (all executions are not
of equal length). For 10,000 executions, the size of the log was 46MB, 62MB, 85MB and
107MB for graphs with 10, 25, 50 and 100 vertices respectively.

For practical graph sizes, the number of executions in the input is the dominant factor
in determining the running time of the algorithm. Table 1 shows that the algorithm is
fast and scales linearly with the size of the input for a given graph size. It also scales well
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Number of Number of vertices
executions 10 25 50 100

100 4.6 6.5 9.9 15.9
1000 46.6 64.6 100.4 153.2
10000 393.3 570.6 879.7 1385.1

Table 1: Execution times in seconds (synthetic datasets)

with the size of the graph in the range size that we ran experiments.

Number of vertices 10 25 50 100
Edges Present 24 224 1058 4569

Edges found 100 24 172 791 1638
with 1000 24 224 1053 3712

executions 10000 24 224 1076 4301

Table 2: Number of edges in synthesized and original graphs (synthetic datasets)

Table 2 presents the size of the graphs that our algorithm discovered for each of the
experiment reported in Table 1. The graphs our algorithm derived in these experiments
were good approximations of the original graphs (checked by programmatically comparing
the edge-set of the two graphs). When a graph has a large number of vertices, the log
must correspondingly contain a large number of executions to capture the structure of
the graph. Therefore, the largest graph was not fully found even with a log of 10000
executions. When the number of vertices was small, the original graphs were recovered
even with a small number of executions. In the case of 50 vertices, the algorithm eventually
found a supergraph of the original graph. As we noted earlier, in the case when every
execution of a process does not contain all the activities, the conformal graph for a given
log is not unique. We use heuristics to minimize the number of edges in the graph we
�nd.

8.2 Flowmark datasets

For a sanity check, we also experimented with a set of logs from a Flowmark installation.
Currently, Flowmark does not log the input and output parameters to the activities.
Hence, we could not learn conditions on the edges. The correctness of the the process
model graphs mined was veri�ed with the user. In every case, our algorithm was able to
recover the underlying process.

Table 3 sumarizes the characteristics of the datasets and the execution times.

16



Process Number of Number of Number of Size of Execution time
Name vertices edges executions the log (seconds)

Upload and Notify 7 7 134 792KB 11.5
StressSleep 14 23 160 3685KB 111.7
Pend Block 6 7 121 505KB 6.3
Local Swap 12 11 24 463KB 5.7
UWI Pilot 7 7 134 779KB 11.8

Table 3: Experiments with Flowmark datasets

ENDFree_UIDBEGIN Set Path

Get_UID

Notify

Load

Figure 8: Process model graph for process Upload and Notify

ENDNotifyBEGIN

Dr_ExSys

Obt. Rates

Acc. Pends Res. Pends

Figure 9: Process model graph for process UWI Pilot
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END

Pg_A_6

BEGIN Set Sleep

Pg_A

Pg_A_1

Pg_A_1_2

Pg_A_2

Pg_A_2_!

Pg_A_2_2

Pg_A_3

Pg_A_3_2

Pg_A_4

Pg_A_4_2

Figure 10: Process model graph for process StressSleep

END

RSO

BEGIN

Set Path Proc. Pends

RPB

Figure 11: Process model graph for process Pend Block

BEGIN

END

Set Sleep A_8 A_9 A_10 A_11

A_12 A_13 A_14 Local Swap Start Pr.

Figure 12: Process model graph for process Local Swap
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9 Summary

We presented a novel aproach to expand the utility of current workow systems. The
technique allows the user to use existing execution logs to model a given business process
as a graph. Since this modeling technique is compatible with workow systems, the
algorithm's use can facilitate the introduction of such systems.

In modeling the process as a graph, we generalize the problem of mining sequential
patterns [AS95] [MTV95]. The algorithm is still practical, however, because it computes
a single graph that conforms with all process executions.

The algorithm has been implemented and tested with both real and synthetic data.
The implementation uses Flowmark's model and log conventions [LA92]. The results
obtained from these experiments validated the scalability and usability of the proposed
algorithm.
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A Computing the transitive reduction

We outline an algorithm to compute the transitive reduction of a directed acyclic graph.
The fact that the graph we are considering is known to be acyclic allows for a simpler
algorithm than the one given in [AGU72].

Lemma 7 ([AGU72]) Let G = (V;E) be a directed acyclic graph, and let G0 = (V;E0)
be the transitive reduction of G. Then 8(u; v) 2 E; (u; v) 2 G0 i� there exists no other
path from u to v in G.

Our algorithm is based on this lemma. The algorithm �rst �nds the topological order-
ing of the directed acyclic graph. We keep two arrays of size jV j for each vertex v. One
keeps the descendants of v, and the other the successors of v (that is, the nodes u such
that (v; u) 2 E). Then each vertex is visited in reverse topological order.

Algorithm 4 (TR) Given a directed acyclic graph G = (V;E), �nd its transitive reduc-
tion.

20



1. Find a topological ordering of G.

2. For each v, let the successors of v be succ(v) = fuj(v; u) 2 Eg:

3. For each vertex v, in reverse topological order:

(a) Set the descendants of v equal to the union of the descendants of its successors.

(b) If a successor of v is also a descendant of v, remove it from the successors of
v.

(c) Add the remaining successors of v to its descendants.

4. Return the graph (V; f(v; u)ju 2 succ(v)g).

Theorem 8 Given a directed acyclic graph G = (V;E), Algorithm 2 computes its tran-
sitive reduction in O(jV jjEj) time.

Proof The correctness of the algorithm is straightforward from the discussion above.
The running time is O(jV jjEj) because we perform two O(jV j) operations for each edge
in the graph. 2
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