
UC Berkeley
UC Berkeley Previously Published Works

Title
Mining Requirements From Closed-Loop Control Models

Permalink
https://escholarship.org/uc/item/95q77327

Journal
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(11)

ISSN
0278-0070

Authors
Jin, X
Donzé, A
Deshmukh, JV
et al.

Publication Date
2015-11-01

DOI
10.1109/TCAD.2015.2421907

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95q77327
https://escholarship.org/uc/item/95q77327#author
https://escholarship.org
http://www.cdlib.org/

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 1

Mining Requirements from

Closed-Loop Control Models
Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, Sanjit A. Seshia

Abstract—Formal verification of a control system can be per-
formed by checking if a model of its dynamical behavior conforms
to temporal requirements. Unfortunately, adoption of formal
verification in an industrial setting is a formidable challenge
as design requirements are often vague, non-modular, evolving,
or sometimes simply unknown. We propose a framework to
mine requirements from a closed-loop model of an industrial-
scale control system, such as one specified in Simulink. The
input to our algorithm is a requirement template expressed in
Parametric Signal Temporal Logic: a logical formula in which
concrete signal or time values are replaced with parameters.
Given a set of simulation traces of the model, our method
infers values for the template parameters to obtain the strongest
candidate requirement satisfied by the traces. It then tries to
falsify the candidate requirement using a falsification tool. If a
counterexample is found, it is added to the existing set of traces
and these steps are repeated; otherwise, it terminates with the
synthesized requirement. Requirement mining has several usage
scenarios: mined requirements can be used to formally validate
future modifications of the model, they can be used to gain
better understanding of legacy models or code, and can also help
enhancing the process of bug-finding through simulations. We
demonstrate the scalability and utility of our technique on three
complex case studies in the domain of automotive powertrain
systems: a simple automatic transmission controller, an air-fuel
controller with a mean-value model of the engine dynamics, and
an industrial-size prototype airpath controller for a diesel engine.
We include results on a bug found in the prototype controller by
our method.

Index Terms—Model-based design; Parametric Temporal Log-
ics; Simulink; software engineering and verification

I. INTRODUCTION

Industrial-scale controllers used in automobiles and avionics

are now commonly developed using a model-based develop-

ment (MBD) paradigm [36], [42]. The MBD process consists

of a sequence of steps. In the first step, the designer captures

the plant model, i.e., the dynamical characteristics of the

physical parts of the system using differential, logic, and

algebraic equations. Examples of plant models include the

rotational dynamics model of the camshaft in an automobile

engine, the thermodynamic model of an internal combustion

engine, and atmospheric turbulence models. The next step is

to design a controller that employs some specific control law

to regulate the behavior of the physical system. The closed-

X. Jin and J. Deshmukh are with Toyota Technical Center e-mail:
{xiaoqing.jin,jyotirmoy.deshmukh}@tema.toyota.com.

A. Donzé and S. A. Seshia are with the University of California, Berkeley
e-mail: {donze,seshia}@eecs.berkeley.edu.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

loop model consists of the composition of the plant and the

controller.

In the next step, the designer may perform extensive simu-

lations of the closed-loop model. The objective is to analyze

the controller design by observing the time-varying behavior of

the signals of interest by exciting the exogenous, time-varying

inputs of the closed-loop model. An important aspect of this

step is validation, i.e. checking if the time-varying behavior

of the closed-loop system matches a set of requirements.

Unfortunately, in practice, these requirements are high-level

and often vague. Examples of requirements the authors have

encountered in the automotive industry include “better fuel-

efficiency”, “signal should eventually settle”, and “resistance

to turbulence”. If the simulation behavior is deemed unsatis-

factory, then the designer refines or tunes the controller design

and repeats the validation step.

In the formal methods literature, a requirement (also called

a specification) is a mathematical expression of the design

goals or desirable design properties in a suitable logic. In

an industrial setting, many companies have made a strenuous

effort to document clear and concise requirements. However,

for systems built on legacy models or legacy code, require-

ments are normally not available. Moreover, to date, formal

validation tools have been unable to digest the format or

scale of industrial-scale requirements and models. As a result,

widespread adoption of formal tools has been restricted to

testing syntactic coverage of the controller code, which is

an open-loop system without the important behavior of the

physical system, with the hope that higher coverage implies

better chances of finding bugs.

In this paper, we propose a scalable technique to system-

atically mine requirements from the closed-loop model of

an industrial-scale control system from observations of the

system behavior. In addition to the closed-loop model, our

technique takes as input a template requirement. The final

output is a synthesized requirement matching the template.

We assume that the model is specified in Simulink [41], an

industry-wide standard that is able to: (1) express complex

dynamics (differential and algebraic equations), (2) capture

discrete state-machine behavior by allowing both Boolean and

real-valued variables, (3) allow a layered design approach

through modularity and hierarchical composition, and (4)

perform high-fidelity simulations.

Formalisms such as Metric Temporal Logic (MTL) [2], [31],

and later Parametric Signal Temporal Logic (PSTL) [9] have

emerged as logics adept at capturing both the real-valued and

time-varying behaviors of hybrid control systems. PSTL is

particularly well-suited to expressing template requirements

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 2

of a broad nature: It can be used both to express control-

theoretic properties such as overshoot, undershoot, settling-

time, rise-time, RMS error, and dwell-time, as well as proper-

ties involving timing relations between events corresponding

to discrete switching behavior. With the increasing acceptance

of temporal logics in practical domains such as automotive

systems [11], [21], it is reasonable to expect that libraries of

commonly-used requirements will become available to control

designers.

As a concrete example of an STL requirement, consider the

following English specification: “eventually between time 0
and some unspecified time τ1, the signal x is less than some

value π1, and from that point for some τ2 seconds, it remains

less than some value π2”. In PSTL the above property would

be expressed as:

✸[0,τ1](x < π1 ∧ ✷[0,τ2](x < π2)).

We refer to the unspecified values τ1, τ2, π1, π2 as parameters.

The proposed mining algorithm is an iterative procedure; in

each iteration, it does the following steps:

1) In the first step, the algorithm synthesizes a candidate

requirement from a given template requirement expressed in

PSTL and a set of simulation traces of the model.

2) It then tries to falsify the candidate requirement using an

optimization-based search algorithm.

3) If the falsification tool finds a counterexample, we add this

trace to the existing set of simulation traces, and go to Step

1 of the next iteration. If no counterexample is found, the

algorithm terminates.

For our implementation of the mining algorithm, we use

the framework provided by the BREACH tool [15]. BREACH

contains both key ingredients for the mining algorithm: a

sophisticated parameter synthesizer [9] and an efficient STL

falsifier [16]. At the heart of Step 1 is an efficient search over

the space defined by the parameters in the PSTL property in

order to generate a candidate requirement. A naı̈ve way to

use BREACH would (1) grid the parameter-space, (2) for each

point in the grid, instantiate the PSTL property for each grid

value (to get an STL property), and (3) pick the grid-point

leading to an STL property with the minimum satisfaction

value over all traces. (A lower satisfaction value1 corresponds

to a stronger STL property.) If the number of parameters is

n, and the number of grid points for each parameter is m,

then the number of times this naı̈ve approach would invoke

BREACH to compute the satisfaction values is O(mn), i.e.,

exponential in the number of parameters.

However, we observe that the satisfaction value of certain

PSTL properties is monotonic in the parameter values. For

example, for the property ✸[0,τ](x > π), the satisfaction value

monotonically increases in the parameter τ and decreases in

π. When monotonicity holds, we can get exponential savings

when searching over the parameter-space by using methods

like binary search. Though syntactic rules for polarity of a

PSTL property identified in previous work [9] ensure satis-

faction monotonicity, these rules are not complete. Hence, we

1We define satisfaction value of an STL property with respect to a given
trace in Sec. IV-A

provide a general way of reasoning about monotonicity of ar-

bitrary PSTL properties using Satisfiability-Modulo-Theories

(SMT) solving [12].

In this paper, we explore two applications for requirement

mining. The first application is the obvious one: to generate

requirements that serve as high-level specifications for the

closed-loop model. The second application explores the use

of mining as an enhanced bug-finding procedure.

In an industrial setting, formalized requirements that can be

used for design validation are often unavailable. For example,

consider the case of legacy controller code. Such code usually

goes through several years of refinement, is developed in a

non-formal setting, and is not very easy to understand for any

engineers other than its original developers. In this context,

mined requirements can enhance understanding of the code

and help future code maintenance.

Consider another scenario. The model-based design of a

controller usually involves different representations of the

same controller at varying levels of abstraction. For example,

a controller model could be in a visual, block-diagram-based

language such as Simulink, or as just low-level code (e.g. in a

language like C); it could be a research prototype, or the final

mass-production-stage controller, and so on. A requirement

mined for one model at any of these levels of abstraction could

be used to validate the behavior of all other models, and thus

ensure consistency across models.

To better explain the second application, we consider a

motivating example. Suppose we wish to check if the model

behavior ever has a signal that oscillates with an amplitude

greater than a threshold. Considering the huge space of input

signals, simply running tests on the closed-loop model requires

executing a large number of simulations in order to detect

such behavior. We instead attempt to mine the requirement,

“the signal settles to a steady value π in time τ” (roughly

corresponding to the negation of the original property). In each

step, our algorithm pushes the trajectory-space exploration

of the falsification tool in a region not already subsumed

by existing traces. Hence, the search for a counterexample

is guided by the intermediate candidate requirements. Note

that state-of-the-art falsifiers such as S-TALIRO and BREACH

would require a concrete STL property encoding the oscil-

lation behavior, which would require tedious manual effort

given many possible expressions of such behavior arising from

unknowns such as the oscillation amplitude, frequency, and the

time at which oscillations start.

To summarize, our contributions are as follows:

1) We propose a novel counterexample-guided iterative pro-

cedure for mining temporal requirements satisfied by signals

of interest of an industrial-scale closed-loop control model

(i.e., a highly nonlinear hybrid system of significant dynamical

and mode complexity). Specifically, we target the mining of

properties expressible in PSTL.

2) We extend BREACH to support Simulink models and the

falsification of STL formulas. In addition we enhance the

BREACH tool framework with efficient strategies for synthe-

sizing parameters of monotonic PSTL properties. To extend

the range of formula for which we can prove monotonicity,

and hence apply these strategies, we formulate the query for

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 3

Fig. 1: The close-loop Simulink model of an automatic trans-
mission controller. The input to the model is the throttle position
and the brake torque.

monotonicity in a fragment of first order logic with quantifiers,

real arithmetic and uninterpreted functions, and use an SMT

solver to answer the query.

3) We demonstrate the practical applicability of our technique

in three case studies: (a) a simple automatic transmission

controller, (b) a complex air-fuel control closed-loop model,

and (c) an industrial closed-loop model of the airpath-control

in an automobile engine model. We also demonstrate the use

of the mining technique as a bug-finding tool, showing how

it found a bug in the industrial model that was confirmed

by a designer. All three case studies use closed-loop models

specified in the Simulink language.

The rest of the paper is as follows: In Sec. II, we present

a transmission controller as a running example. In Sec. III

we present the background, the problem formulation, and

an overview of our technique. We present our approach for

finding the counterexample to a candidate requirement in

Sec. IV, and the procedure for synthesis of parameter values

for a template requirement from simulation traces in Sec. V.

We collect a set of common requirements for automotive

control systems and express them in temporal logic in Sec. VI.

Finally, we present three case studies and experimental results

for each in Sec. VII, and conclude with a discussion on related

work in Sec. VIII.

II. A RUNNING EXAMPLE

As an illustrative example throughout the paper, we consider

a closed-loop model designed for a four-speed automatic trans-

mission controller of a vehicle (shown in Fig. 1). Although this

model is not a real industrial model, it has all necessary me-

chanical components: models for the engine, the transmission,

and the vehicle. The transmission block computes the torque

converter impeller torque (Ti) and the transmission output

torque (Tout) from engine speed (Ne), gear status (Gear),

and transmission output speed (Nout). The logic of gear

selection for the transmission is implemented using a Stateflow

block [41] labeled ShiftLogic. Block ThreshholdCalculation

computes the upshift and downshift speed thresholds for the

gear shifting logic. The model takes as inputs the percentage

of the throttle position and the brake torque.

The transmission controller has four gears, and the system

switches from gear i up to gear i + 1 or down to gear i − 1

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

2000

4000

6000
RPM

0 5 10 15 20 25 30
0

50

100

150
Speed

Violation

Violation

Fig. 2: Falsifying trace for the automatic transmission controller
and the requirement that RPM never goes beyond 4500 or speed
beyond 120 mph.

based on certain conditions on the current gear i, the current

vehicle speed and the applied throttle. The threshold speed that

causes a shift in the gear is specified using a look-up table that

is indexed by the current gear and the applied throttle.

We are interested in the following signals: the vehicle

speed, transmission gear position, and engine speed mea-

sured in RPM (rotations per minute). Suppose we want to use

this controller to ensure the requirement that the engine speed

never exceeds 4500 rpm, and that the vehicle never drives

faster than 120 mph. After simulating the closed-loop system

Fig. 2 shows that these requirements are not met.

However, this negative result does not provide further

insight into the model. If a requirement does not hold, we

would like to know what does hold for the controller, and

how narrowly the controller misses the requirement. Such

a characterization would shed more light on the working

of the system, especially in the context of legacy systems

and for reverse engineering the behavior of a very complex

system. In the context of this example, it would help to know

the maximum speed and RPM that the model can reach, or

the minimum dwell time that the transmission enforces to

avoid frequent gear shifts. Next, we present a technique to

automatically obtain such requirements from the model.

Note that such specific, precise requirements automatically

mined from the model can help understand and enforce a

high-level requirement. For example, the frequency of gear

shifting is correlated with the less precise requirement of

“better driving experience” and “better fuel consumption”.

III. PRELIMINARIES AND OVERVIEW

Signals and Systems. The systems considered in this paper

are hybrid dynamical systems, that is systems mixing discrete

dynamics (such as the shifting logic of gears) and continuous

dynamics (such as the rotational dynamics of the car engine).

We define a signal as a function mapping the time domain

T = R≥0 to the reals R. Boolean signals, used to represent

discrete dynamics, are signals whose values are restricted to

false (denoted ⊥) and true (denoted ⊤). Vectors in Rn with

n > 1 are denoted in bold fonts and their components are

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 4

indexed from 1 to n, e.g., p = (p1, · · · , pn). Likewise, a multi-

dimensional signal x is a function from T to Rn such that ∀t ∈
T, x(t) = (x1(t), · · · , xn(t)). A system S (such as a Simulink

model) is an input-output state machine: it takes as input a

signal u(t) and computes an output signal x(t). A trace is a

collection of output signals resulting from the simulation of a

system, i.e., it can be viewed as a multi-dimensional signal.

In the following, we use interchangeably the words trace and

signal.

Signal Temporal Logic. Temporal logics were introduced

in the late 70s by Amir Pnueli [37] to reason formally

about the temporal behaviors of reactive systems – origi-

nally input-output systems with Boolean, discrete-time signals.

Temporal logics to reason about real-time signals, such as

Timed Propositional Temporal Logic [3], and Metric Temporal

Logic (MTL) [31] were introduced later to deal with dense-

time signals. More recently, Signal Temporal Logic [34] was

proposed in the context of analog and mixed-signal circuits as

a specification language for constraints on real-valued signals.

These constraints, or predicates can be reduced to inequalities

of the form µ = f(x) ∼ π, where f is a scalar-valued function

over the signal x, ∼∈ {<,≤,≥, >,=, 6=}, and π is a real

number.

Temporal formulas are formed using temporal operators,

“always” (denoted as ✷), “eventually” (denoted as ✸) and

“until” (denoted as U). Each temporal operator is indexed

by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞)
or [a,∞) where each of a, b is a non-negative real-valued

constant. If I is an interval, then an STL formula is written

using the following grammar:

ϕ := ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

The always and eventually operators are defined as spe-

cial cases of the until operator as follows: ✷Iϕ , ¬✸I¬ϕ,

✸Iϕ , ⊤UI ϕ. When the interval I is omitted, we use the

default interval of [0,+∞). The semantics of STL formulas

are defined informally as follows. The signal x satisfies

f(x) > 10 at time t (where t ≥ 0) if f(x(t)) > 10. It

satisfies ϕ = ✷[0,2) (x > −1) if for all time 0 ≤ t < 2,

x(t) > −1. The signal x1 satisfies ϕ = ✸[1,2) x1 > 0.4 iff

there exists time t such that 1 ≤ t < 2 and x1(t) > 0.4. The

two-dimensional signal x = (x1, x2) satisfies the formula ϕ =

(x1 > 10) U[2.3,4.5] (x2 < 1) iff there is some time u where

2.3 ≤ u ≤ 4.5 and x2(u) < 1, and for all time v in [2.3, u),
x1(u) is greater than 10. Formally, the semantics are given as

follows:
(x, t) |= µ iff x satisfies µ at time t
(x, t) |= ¬ϕ iff (x, t) |=/ ϕ
(x, t) |= ϕ1 ∧ ϕ2 iff (x, t) |= ϕ1 and (x, t) |= ϕ2

(x, t) |= ϕ1 U[a,b] ϕ2 iff ∃t′ ∈ t+ [a, b] s.t. (x, t′) |= ϕ2

and ∀t′′ ∈ [t, t′], (x, t′) |= ϕ1

Extension of the above semantics to other kinds of intervals

(open, open-closed, and closed-open) is straightforward. We

write x |= ϕ as a shorthand of (x, 0) |= ϕ.

Hunter et al. [25] show that MTL with rational constants

(of which STL is a generalization) is as expressive as first

order logic with < (a binary order operation), and a family of

unary functions +q, q ∈ Q. This indicates the rich expressive

power of STL. The kind of properties that cannot be expressed

in STL require quantifying over time or parameter values. For

example, the following property (inexpressible in STL) defines

the standard Lyapunov stability of a system: ∀ǫ∃δ : (‖x‖ <
δ ⇒ ✸(‖x‖ < ǫ)).

Parametric Signal Temporal Logic (PSTL) is an extension of

STL introduced in [9] to define template formulas containing

unknown parameters. Syntactically speaking, a PSTL formula

is an STL formula where numeric constants, either in the con-

straints given by the predicates µ or in the time intervals of the

temporal operators, can be replaced by symbolic parameters.

These parameters are divided into two types:

• A Scale parameter π is a parameter appearing in predi-

cates of the form µ = f(x) ∼ π,

• A Time parameter τ is a parameter appearing in an

interval of a temporal operator.

An STL formula is obtained by pairing a PSTL formula

with a valuation function that assigns a value to each symbolic

parameter. For example, consider the PSTL formula ϕ(π, τ) =

✷[0,τ]x > π, with symbolic parameters π (scale) and τ (time).

The STL formula ✷[0,10]x > 1.2 is an instance of ϕ obtained

with the valuation v = {τ 7→ 10, π 7→ 1.2}.

Example III.1. For the example from Sec. II, suppose we want

to specify that the speed never exceeds 120 and RPM never

exceeds 4500. The predicate specifying that the speed is above

120 is: speed>120 and the one for RPM is RPM>4500. The

STL formula expressing these to be always false is:

ψ = ✷(speed ≤ 120) ∧✷(RPM ≤ 4500). (III.1)

To turn this into a PSTL formula, we rewrite by introducing

parameters πspeed and πrpm :

ϕ(πspeed , πrpm) = ✷(speed ≤ πspeed) ∧✷(RPM ≤ πrpm).
(III.2)

The STL formula ψ expressed in (III.1) is then obtained by

using the valuation v = (πspeed 7→ 120, πrpm 7→ 4500).

In this work, we evaluate the satisfaction of STL formulas

over finite traces resulting from numerical simulation. In

principle, this means that formulas such as ((III.2)) with

unbounded horizon cannot be evaluated. In practice, however,

we adopt the view of [18] where finite traces are completed

toward ∞ with constant extrapolation, and assume that the

simulation time is long enough to give meaningful results.

Problem III.1. Given (a) a system S with a set U of

inputs, and, (b) a PSTL formula with n symbolic parameters

ϕ(p1, . . . , pn) where p could either be scale parameter π or

time parameter τ , the objective is to find a “tight” valuation

function v such that

∀u ∈ U : S(u) |= ϕ(v(p1), . . . , v(pn)).

Note that by “tight”, we mean to enforce mining for non-

trivial or not overly conservative requirements. E.g., we are

not interested in the requirement that “the car cannot go

faster than 500 mph”. We define this notion more precisely

in Section V-A.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 5

Algorithm 1: Requirement mining algorithm. Note that the
initial trace x is obtained using some nominal input of the system
S. The algorithm can also be initiated with a set of traces or
inputs. Using particular inputs (extremal or corner cases) can
sometimes speed up the convergence.

Data: A Model S , a trace x, and a PSTL Formula ϕ
Result: An STL formula ϕ(p)

1 FTraces← {x};
2 while True do

3 p← FINDPARAM(FTraces, ϕ);
4 FTracesnew = FALSIFYALGO(S, ϕ(p));
5 if FTracesnew == ∅ then

6 return ϕ(p)
7 else

8 FTraces← FTraces ∪ FTracesnew;

Simulink
Model

+ Controller
Plant
Model

e u

y

FINDPARAM

Counter-
example
Traces

Simulation
Traces

Candidate
Requirement FALSIFYALGO

✷[0,τ1](x1 < π1 ∧

✸[0,τ2](x2 > π2))

Template Requirement

✷[0,1.1](x1 < 3.2 ∧

✸[0,5](x2 > 0.1))

Inferred Requirement

Counter-
example
Found

No Counterexample

Fig. 3: Flowchart of the requirement mining.

Requirement Mining Algorithm: Overview. Our algorithm

(Algorithm 1) for mining STL requirements from the closed-

loop model in Simulink is an instance of a counterexample-

guided inductive synthesis procedure [43], shown in Fig. 3. It

consists of two key components:

1) A falsification engine, which, given a formula ϕ generates

a set of traces F = {x1, . . .xl} such that for all x in F , there

is an input u such that x(t) = S(u)(t) |=/ ϕ. We denote this

functionality by FALSIFYALGO.

2) A synthesis function denoted FINDPARAM that given a set

of traces x1, . . . ,xk, finds parameters p such that ∀i, xi |=
ϕ(p). We denote this function by FINDPARAM.

The algorithm terminates if the set F , i.e., the result of

FALSIFYALGO(S, ϕ(p)) is empty (the falsification algorithm

failed to find a falsifying trace). In the next sections, we detail

possible implementations of FALSIFYALGO and FINDPARAM.

IV. FALSIFICATION PROBLEM

Recall that we need to implement a function F =
FALSIFYALGO(S, ϕ) such that x ∈ F is a valid output signal

of a system S and x |=/ ϕ. Unfortunately, this is an undecidable

problem for general hybrid systems. Indeed, if ϕ is a simple

safety property, this problem can be reduced to the reachability

problem which is undecidable except for specific subclasses,

such as initialized rectangular hybrid automata [23]. For such

classes the mining technique can be complete, i.e., absence of

a counterexample means that we have identified the strongest

requirement. Due to its incompleteness for general systems,

the falsification tool may not be able to find a counterexample

though one exists. We argue that a requirement mined in

this fashion is still useful as it is one that FALSIFYALGO is

unable to disprove even after extensive simulations, and is thus

likely to be close to the actual requirement. An alternative is

to use a sound verification tool [22], [44]. However, in our

experience, they do not scale to the complex control systems

that we consider here. In this paper, we follow the approach

taken by the developers of the tool S-TALIRO [8] and propose

a falsification algorithm based on the minimization of the

quantitative satisfaction of a temporal logic formula.

A. Quantitative Semantics of STL

The quantitative semantics of STL are defined using a real-

valued function ρ of a trace x, a formula ϕ, and time t
satisfying the following property:

ρ(ϕ,x, t) ≥ 0 iff (x, t) |= ϕ. (IV.1)

Quantitative semantics capture the notion of robustness of

satisfaction of ϕ by a signal x, i.e., whenever the absolute

value of ρ(ϕ,x, t) is large, a change in x is less likely

to affect the Boolean satisfaction (or violation) of ϕ by x.

In [18], different quantitative semantics for STL have been

proposed. Without loss of generality, an STL predicate µ can

be identified to an inequality of the form f(x) ≥ 0 (the use

of strict or non strict inequalities is a matter of choice and

other inequalities can be transformed into this form). The

quantitative semantics of STL are then defined inductively

using the following rules:

ρ(µ,x, t)= f(x(t)) (IV.2)

ρ(¬ϕ,x, t)=−ρ(ϕ,x, t) (IV.3)

ρ(ϕ1 ∧ ϕ2,x, t)=min(ρ(ϕ1,x, t), ρ(ϕ2,x, t)) (IV.4)

ρ(ϕ1UIϕ2,x, t)= sup
t′∈t⊕I

min

(

ρ(ϕ2,x, t
′),

inf
t′′∈[t,t′)

ρ(ϕ1,x, t
′′)

)

(IV.5)

Then it can be shown [18] that ρ satisfies (IV.1) and thus

defines a quantitative semantics for STL. Additionally, by

combining (IV.5), and ✷Iϕ , ¬✸I¬ϕ, we get:

ρ(✸Iϕ,x, t) = sup
t′∈t+I

ρ(ϕ,x, t′) (IV.6)

ρ(✷Iϕ,x, t) = inf
t′∈t⊕I

ρ(ϕ,x, t′) (IV.7)

Example IV.1. Consider again the STL property:

ϕ = ✷(speed ≤ 120) ∧✷(RPM ≤ 4500).

It has two predicates, say µ1 : speed ≤ 120 and µ2 : RPM ≤
4500. To put them into the standard form µi : fi(x) ≥ 0, we

define x = (speed, RPM), f1(x) = 120− speed and f2(x) =
4500− RPM. From (IV.2), we get

ρ(speed ≤ 120,x, t) = 120− speed(t).

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 6

Algorithm 2: FALSIFYALGO algorithm.

Data: A Model S and an STL Formula ϕ
Result: A falsifying input u∗ or S |= ϕ.

1 Solve ρ∗ = minu∈U ρ(ϕ,S(u), 0)
2 if ρ∗ < 0 then return u∗ = argmin

u∈U
ρ(ϕ,S(u), 0)

3 else return S |= ϕ

Applying rule (IV.7) for the semantics of ✷, we get:

ρ(✷(speed ≤ 120),x, t) = inf
t∈T

(120− speed(t)).

Similarly for µ2,

ρ(✷(RPM ≤ 4500),x, t) = inf
t∈T

(4500− RPM(t)).

Finally, by applying rule (IV.4):

ρ(ϕ,x, t) = min(inf
t∈T

(120− speed(t)), inf
t∈T

(4500− RPM(t)).

In other word, the resulting satisfaction function ρ looks

for the maximum speed and RPMs over time and returns the

minimum of the differences with the thresholds 120 and 4500.

Note that, in the previous example, speed and RPM are

measured in different units. However, the standard quantitative

semantics for STL does not capture this difference. BREACH

supports weighted STL (WSTL) semantics which associate

a weight with each predicate to normalize the numerical

difference and improve the expressiveness [27].

B. Solving the Falsification Problem

The objective of the falsification problem can be reduced to:

given an STL formula ϕ, find a signal u such that S(u) |=/ ϕ.

Following the above definitions, this is equivalent to finding a

trace x of S such that ρ(ϕ,x, 0) < 0. A common approach to

solve this problem, described in the Algorithm 2, is to frame

it as an optimization problem, where the objective function (to

minimize) is ρ(ϕ,x, 0) and the decision variable is u.

The undecidability of the falsification problem is reflected

here in the fact that the minimization problem (Line 1 in

Algorithm 2) is a general non-linear optimization problem

for which no solver can guarantee convergence, uniqueness

or even existence of a solution. On the other hand, many

heuristics can be used to find an approximate solution. In a

series of recent papers, the authors of S-TALIRO proposed and

implemented different strategies, namely Monte-Carlo [35],

ant-colony optimization [7] and the cross entropy method [38].

Going into the details of these methods and their comparison is

beyond the scope of the paper. In previous work, we document

the use of S-TALIRO as a falsification tool [28]. In this paper,

we focus on using the falsification engine in BREACH to attack

(Line 1 in Algorithm 2) as follows:

1) Define the space of permissible input signals with the

help of m input parameters k = (k1, . . . , km) that take

values from a set Pu, and a generator function g such

that u(t) = g(v(k))(t) is a permissible input signal for

S for any valuation v(k) ∈ Pu.

2) Sample the space of the signal-parameters uniformly at

random to obtain Ninit distinct valuations vi(k) ∈ Pu.

3) For i ≤ Ninit, solve min
v(k)∈Pu

ρ(ϕ,S(g(v(k))), 0) using

Nelder-Mead non-linear optimization algorithm and vi(k)
as an initial guess.

4) Return the minimum ρ thus found.

One motivation for implementing a falsification module in

BREACH has been to get more flexibility in the definition of

input parameters than available in existing implementations of

falsifiers such as S-TALIRO. For example, if permissible input

signals are step functions, then the input parameters would

characterize the amplitude of the step, and the time at which

the step input is applied. Note that g does not necessarily

generate all possible inputs to the system. However, it is

useful in a very generic way to restrict the search space of

possible input signals. It is worth mentioning again that many

different strategies exist to solve the falsification problem us-

ing optimization algorithms. The particular strategy described

above was chosen to allow some trade-off between global

randomized exploration (by the number Ninit of random initial

valuations) and local optimization (using Nelder-Mead) ex-

ploiting the gradient of the satisfaction function. Experiments

in Section VII-A illustrates the importance of this trade-off.

V. PARAMETER SYNTHESIS

A. Parameter Synthesis Algorithm

We now discuss the function FINDPARAM. Recall that given

a trace2 x, we need to find a valuation v for the parameters

p1, . . . , pn, of ϕ such that x satisfies ϕ(v(p1), . . . , v(pn))
(which we sometimes abbreviate in ϕ(v) in the following).

In the following, we call such a valuation a valid valuation

for x and ϕ (or simply a valid valuation if x and ϕ are clear

from the context). This problem can be treated as a dual of the

falsification problem: instead of minimizing the satisfaction

function in an attempt to make it negative, we can try to

maximize it in an attempt to make it positive, i.e., to make

the formula ϕ true. However, this approach is not directly

applicable in the context of this work, due to the additional

tightness requirement on the mined parameters. The rationale

is that for a specification to be useful it should not be too

conservative: it is of not much use to know that a vehicle

speed will never exceed 200 miles per hour. Now maximizing

the satisfaction function will precisely tend toward the most

conservative parameters: not exceeding 200 miles per hour

is a very robustly true property, i.e., with a high satisfaction

function value. A more useful piece of information is to know

that a car can go up to 100 miles per hour, but not 101. More

generally, for each parameter mined in a formula, when it is

possible, we require that a change of some amplitude δ > 0 in

a given direction makes the formula false. We formalize this

with the following notion of δ-satisfaction:

Definition V.1. Given 1 ≤ i ≤ n and δi > 0, the signal x

δi-satisfies ϕ(v), denoted as x |=δi ϕ(v), iff x |= ϕ(v) and

2We restrict our presentation to one trace even though in Algorithm 1,
FINDPARAM is applied to a set of traces. The generalization to multiple traces
is straightforward.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 7

−100

−100

−5
0

−50

−50

−50

0

0

0

0

0

50
50

10
0

5 10 15 20 25 30 35

20

40

60

80

100

120

140

ϕ(π, τ) = ✷[0, τ](speed < π)

x |=/ ϕ(π, τ)

x |= ϕ(π, τ)

time parameter τ

sc
al

e
p

ar
am

et
er
π

(s
p

ee
d

)

v1

v2

Fig. 4: Validity domain of a simple formula for a trace
x obtained from the automatic transmission model. The
FINDPARAM algorithm will return valuation v1 (resp. v2)
depending if time (resp. scale) parameter is optimized first. The
contour lines are isolines for the satisfaction function ρ.

there exists a valuation v′ such that |v(pi)− v
′(pi)| ≤ δi and

x |=/ ϕ(v′). In that case, v is called a δi-tight valuation for x

and ϕ.

When a valuation is tight for all pi, we can omit the index

i and call it a δ-tight valuation for x and ϕ, where δ is the

n-dimensional vector δ = (δ1, . . . , δn).
In general, there is no guarantee of existence or uniqueness of

δ-tight valuations. We note

D(ϕ,x) , {v(p) s.t. x |= ϕ(v(p))}

the validity domain of ϕ and x, i.e., the set of valid valuations

for x and ϕ. The existence of a valid valuation is given by

D(ϕ,x) ∩ P 6= ∅, where P is feasible parameter range. A

δ-tight valuation v is such that there exists another valuation

v′ such that v′(p) is at distance at most δ from v(p) and is

not in D(ϕ,x). Intuitively, this means that the valuation is

closed to the boundary of the validity domain. Under certain

regularity conditions, one can show that on such boundary, the

satisfaction function ρ is equal to 0. On Fig. 4, we represent

the validity domain for a simple property and a signal. In

this example, the boundary of the validity domain is exactly

given by the isoline ρ(ϕ(v),x, 0) = 0, and any valuation above

this line at a distance less than δ is a δ-tight valuation. This

suggests a generic optimization strategy to solve the parameter

synthesis problem. If we note Bδ(v) = {v
′ s.t. maxi |v(pi)−

v′(pi)| < δ}, then a δ-tight valuation, if it exists, is given by

v∗ = argmin
v
|ρ(ϕ(v),x, 0)| (V.1)

s.t. v(p) ∈ D(ϕ,x) ∩ P (V.2)

Bδ(v) 6⊂ D(ϕ,x) (V.3)

A simple practical solution for (V.1-V.3) is to solve (V.1) using

the same strategy as for the optimization-based falsification

approach, then check (V.2-V.3) on the solution found. Clearly,

Algorithm 3: FINDPARAM algorithm.

Data: A trace x, a PSTL Formula ϕ, and parameter set

P , δ > 0
Result: A valuation v s.t. x |=δ ϕ(v)

1 Find v⊤ s.t. x |= ϕ(v⊤) or return ϕ unsat.;

2 Find v⊥ s.t. x |=/ ϕ(v⊥) or return v maybe not tight;

3 Let v = v⊤;

4 for i = 1 to n do

5 Find vi and set v(pi) = vi s.t. x |=δi ϕ(v)

other approaches are possible, but the problem is difficult in

general without additional assumptions. In this work we focus

on the specific situation where the PSTL formula is monotonic

in its parameters, as described in the following sections.

B. Computing δ-tight Valuations for Monotonic Formulas

Intuitively, a formula is monotonic if when it is satisfied

with a valuation v, then it is satisfied by any valuation v′

greater than v. For example, if the car cannot go faster than

100 mph, it cannot go faster than 101, 150, 200 or any speed

above 100 mph. Formally:

Definition V.2. A PSTL formula ϕ(p1, · · · , pn) is monotoni-

cally increasing with respect to pi if for every signal x,

∀v, v′,x |= ϕ(. . . , v(pi), . . .),

v′(pi) ≥ v(pi)⇒ x |= ϕ(. . . , v′(pi), . . .) (V.4)

It is monotonically decreasing if this holds when replacing

v′(pi) ≥ v(pi) with v′(pi) ≤ v(pi).

Asarin et al. [9] noted that, if the formula is monotonic, the

boundary of the validity domain has the properties of a Pareto

surface for which there are efficient computational methods,

basically equivalent to multi-dimensional binary search. Here

we propose an algorithm for monotonic formulas that takes

advantage of this property (Algorithm 3) to find a valuation

satisfying (V.2-V.3), i.e., a δ-tight valuation. It starts by trying

to find a valuation v⊤ that satisfies the property and a valuation

v⊥ that violates it in a parameter range P provided by the

user. By property of monotonicity, it is sufficient to check

the corners of P for the existence of v⊤ and v⊥. Then, each

parameter i is adjusted using a binary search initialized with

v⊤(pi) and v⊥(pi). The user can choose which parameter to

optimize in priority by specifying a different order for the

input parameters.

Example V.1. Consider ϕ(π, τ) = ✷[0, τ](speed < π)
and the scenario that the vehicle constantly accelerates at

throttle = 100. The validity domain of ϕ is plotted on

Fig. 4. The algorithm will return different values depending

on the tightness parameter δ and if we order the parameters

as (π,τ) or (τ, π). Here, the order represents the preference

in optimizing a parameter over the other when mining for a

tight specification.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 8

Formula Monot. Time (sec)

✷(0,∞)(x < π) + 0.09

✷[s,s+1](x≥3 ⇒ ✸(0,∞)x<3) – 0.10

✷(0,100)((x < π) ⇒ ✸(0,5)(x > π)) – 0.09

geariU(s,s+5)geari+1 * 0.13

TABLE I: Proving monotonicity with an SMT solver.

C. Satisfaction monotonicity

In this section, we provide additional results on monotonic-

ity of PSTL formulas. We first show that checking if an

arbitrary PSTL formula is monotonic in a given parameter

is undecidable.

Theorem V.1. The problem of checking if a PSTL formula

ϕ(p) is monotonic in a given parameter pi is undecidable.

Proof. First, we observe that STL is a superset of MTL. We

know from [2] that the satisfiability problem for MTL is unde-

cidable. Thus, it follows that the satisfiability problem for STL

is also undecidable. This, in turn, implies undecidability of

the satisfiability problem of PSTL with at most one parameter

(denoted as PSTL-1-SAT). We now show that PSTL-1-SAT

can be reduced to a special case of the problem of checking

monotonicity of a PSTL formula.

Let ϕ(p) be an arbitrary PSTL formula where the set of

parameters p is the singleton set with one time parameter τ
(thus, τ ≥ 0). Construct the formula ψ(p)

.
= (τ=0) ∨ ϕ(p).

Consider the monotonicity query for ψ(p) in parameter τ :

∀v, v′,x : [x |=ψ(v(τ)) ∧ v(τ)≤v′(τ)] ⇒ x |=ψ(v′(τ)).

Consider the specialization of this formula for the case v(τ) =
0. Note that, in this case, ψ(0) = ⊤, and that v′(τ) ≥ 0 for

all v′. Thus, the query simplifies to ∀v′,x : x |= ψ(v′(τ)),
which is checking the validity of the PSTL formula ψ(τ).

Thus, if one needs to check monotonicity of PSTL formula

ϕ in one parameter τ , one needs to check that the negation

of ψ(τ) is unsatisfiable. Thus the above specialization of the

problem of checking the monotonicity of PSTL formulas is

also undecidable, implying undecidability of the general case.

Monotonicity is closely related to the notion of polarity

introduced in [9], in which syntactic deductive rules are

given to decide whether a formula is monotonic based on

the monotonicity of its subformulae. Thus, one way to tackle

undecidability is to first query if the given PSTL formula

belongs to the syntactic class described in [9]. Unfortunately,

the syntactic rules described therein are not complete; there are

monotonic PSTL formulas that do not belong to this syntactic

class, for instance, formulas with intervals in which both end-

points are parameterized, such as the following:

✷[τ,τ+1]((x ≥ 3)⇒ ✸(0,∞)(x < 3)) (V.5)

Next, we show how we can use SMT solving to query

monotonicity of a formula. If the SMT solver succeeds, it

tells us that the formula is monotonic and allows us to use

a more efficient search in the parameter space. For instance,

we were able to show that the PSTL formula represented in

(V.5) is monotonically decreasing in the parameter τ .

Encoding PSTL as constraints. Given a PSTL formula ϕ,

we define the SMT encoding of ϕ in a fragment of first-order

logic with real arithmetic and uninterpreted functions. Let

E(ϕ) denote the encoding of ϕ, which we define inductively

as follows:

− Consider a constraint µ , g(x) > τ , where x =
(x1, . . . , xn). We model each signal xi as an uninterpreted

function χi from R to R. We create a new free variable t
of the type Real and replace each instance of the signal xi
in g(x) by χi(t). We assume that the function g itself has a

standard SMT encoding. For example, consider the formula

g(x) > τ , where x = {x1, x2}, and g(x) = 2 ∗ x1 + 3 ∗ x2.

Then E(µ) is: 2 ∗ χ1(t) + 3 ∗ χ2(t) > τ .

− For Boolean operations, the SMT encoding is inductively

applied to the subformulas, i.e., if ϕ = ¬ϕ1, then E(ϕ) =
¬E(ϕ1). If ϕ = ϕ1 ∧ ϕ2, then first we ensure that if E(ϕ1)
and E(ϕ2) both have a free time-domain variable, then we

make it the same variable, and then, E(ϕ) = E(ϕ1) ∧ E(ϕ2).
Note that as a consequence, there is at most one free time-

domain variable in any subformula.

− Consider ϕ = H(a,b)(ϕ1), where a, b are constants or

parameters, and H is a unary temporal operator (i.e., ✸,✷).

There are two possibilities:

(1) The SMT encoding E(ϕ1) has one free variable t. In this

case, we bound the variable t over the interval (a, b) using a

quantifier that depends on the type of the temporal operator

H. With ✸ we use ∃ as the quantifier, and with ✷ we use ∀.
E.g., let ϕ = ✸(2.3,τ)(x > π), then E(ϕ) is:

∃t : (2.3 < t < τ) ∧ (χ(t) > π).

(2) The SMT encoding E(ϕ1) has no free variable. This can

only happen if ϕ1 is ⊤ or ⊥, or if all variables in ϕ1 are bound.

In the former case, the encoding is done exactly as in Case

1. In the latter case, the encoding proceeds as before, but all

bound variables in the scope are additionally offset by the top-

level free variable. Suppose, ϕ = ✷(0,∞)✸(1,2)(x > 10). Then,

the encoding of the inner ✸-subformula has no free variable.

Note how the bound variable of this formula is offset by the

top-level free variable in the underlined portion in E(ϕ) below:

∀t : [∃u : [(t+ 1 < u < t+ 2) ∧ (χ(u) > 10)]].

− Consider ϕ = ϕ1U(a,b)ϕ2, where a, b are constants or

parameters. For simplicity, consider the case where ϕ1 and ϕ2

have no temporal operators, i.e., E(ϕ1) and E(ϕ2) both have

exactly one free variable each. Let t1 be the free variable in

E(ϕ1) and t2 the free variable in E(ϕ2). Then E(ϕ) is given

by the formula:

∃t2 : [(t2 ∈ (a, b)) ∧ E(ϕ2) ∧ ∀t1 : [(t1 ∈ (a, t2))⇒ E(ϕ1))].

If ϕ1, ϕ2 contain no free variables, then t1, t2 are respectively

used to offset all bound variables in their scope as before.

Using an SMT solver to check monotonicity. To check

monotonicity, we check the satisfiability of the negation of

each of the following assertions:

E(ϕ(τ)) ∧ (τ > τ ′) ∧ ¬E(ϕ(τ ′))
E(ϕ(τ)) ∧ (τ < τ ′) ∧ ¬E(ϕ(τ ′))

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 9

If either of these queries is unsatisfiable, then it means that

satisfaction of ϕ is indeed monotonic in τ . If both queries

are satisfiable, then it means that there is an interpretation

for the (uninterpreted) function representing the signal x and

valuations for τ, τ ′ which demonstrate the non-monotonicity of

ϕ. We conclude by presenting a small sample of formulas for

which we could prove or disprove monotonicity using the Z3

SMT solver [14] in Table I. The symbols +, –, and * represent

monotonically increasing, monotonically decreasing, and non-

monotonic formulas respectively.

VI. REQUIREMENT TEMPLATES FOR AUTOMOTIVE

CONTROL SYSTEMS

We now discuss a set of PSTL formulas that serve as useful

template requirements for continuous and hybrid dynamical

systems. We start with a general discussion on useful templates

for such systems, and then present particular templates special-

ized to express requirements on closed-loop control systems,

with an emphasis on the automotive domain. Most of the

requirements discussed herein were obtained by discussions

with designers, and correspond to well-known metrics and

tests used to judge design quality. In what follows, we use

T to represents the simulation time horizon.

A. Temporal Requirements on Hybrid behaviors

By hybrid behaviors, we mean typical behaviors of hybrid

dynamical systems, i.e., a continuous-time evolution of the

continuous states of the system consistent with a given set

of ordinary differential equations, interleaved with discrete

transitions corresponding to a discrete mode-change.

Dwell-time Requirements. A common requirement on a

switched or hybrid system is that the system should not switch

discrete modes (chatter) too often. This can be achieved by

enforcing that the system dwells in a given discrete mode

for a desired minimum amount of time. Let m be a discrete-

valued signal denoting the system mode. Then the requirement

specifying that the dwell-time is at least τ is specified as

follows:

✷[0,T]

(

(m 6= mj)∧
✸[0,ǫ](m = mj)

)

⇒ ✷[ǫ,τ](m = mj) (VI.1)

Timed and Untimed Safety. A basic safety requirement for

a hybrid or continuous system can be specified as follows:

✷[0,T]ϕ(m,y). (VI.2)

Here, y is the continuous state of the system, m is the

discrete mode, and ϕ(m,y) is a bounded-time STL formula

over the hybrid state-space. For example, ϕ(m,y) could be the

propositional formula (m = m0)∧(|x| < c). A minor variation

on a basic safety requirement is timed safety requirement; here,

the outermost temporal operator ✷ is also bounded by some

time τ . For example, the property: ✷[0,τ](x < c).

Timed Inevitability. A timed inevitability requirement spec-

ifies that a certain temporal behavior must happen before

a certain time τ expires. This is useful to specify timed

reachability of a certain mode or a certain region in the state

space. The template for such a property is as follows:

✸[0,τ]ϕ(m,y). (VI.3)

Here, ϕ(m,y) is some bounded-time STL formula. For exam-

ple, ϕ(m,y) could be the propositional formula (m = m0).

B. Temporal Requirements on Control Systems

1) Input Profiles: So far, the requirements discussed in this

paper are temporal specifications on the behavior of output

signals or states of a closed-loop control system. Typically,

a control system is designed to regulate the behavior of the

state or outputs of a dynamical system when stimulated by

an external disturbance or to respond to an external input. To

quantify the performance of a control system, control designers

typically make certain assumptions about the disturbances or

external inputs. Often, these assumptions can be characterized

using a STL formula.

1) A common assumption for control systems is for distur-

bance signals to have a bounded norm. Suppose u(t) is a

disturbance signal, then a disturbance signal with the infinity

norm bounded above by D is specified by the STL formula:

✷[0,T)|u| < D.

2) One of the basic tests that control designers use to under-

stand the efficacy of their designs is a step response. A step

input can be specified by the STL formula:

✸[d,d+δ)(u = uℓ) ∧✸[0,δ)(u = uh).

Here, d is an initial delay, uℓ is a constant specifying the input

value before the step, uh − uℓ is the amplitude of the step,

and δ is a small number representing the smallest simulation

step time.

3) Also of interest to control designers is a pulse response.

To define a pulse, we first define some parameterized events.

Here uℓ is a parameter representing the input value before

the pulse, and uh − uℓ is a parameter representing the pulse

amplitude.

rise ≡ (u = uℓ)⇒ ✸[0,δ)(u = uh)
fall ≡ (u = uh)⇒ ✸[0,δ)(u = uℓ)

Now, a pulse signal of period p, initial delay d, and pulse

width w can be specified using the STL formula:

✷[d,T]

((

rise⇒ ✸[w,w]fall
)

∧
(

fall⇒ ✸[p−w,p−w]rise
)

)

We remark that other input profiles such as sinusoidal

inputs, ramp inputs can also be specified using STL.

2) Control-theoretic Requirements on Outputs: In general,

the form of requirements of interest for control systems

takes the form of ϕI ⇒ ϕO, where ϕI is a STL property

characterizing the input profile. Note that ϕI can be the

property true , i.e., no assumptions are placed on the input. In

what follows, we focus on the RHS of the above implication,

i.e., on the requirements on the output signals.

Overshoot/Undershoot. An overshoot/undershoot require-

ment is a basic safety requirement. As output signals often

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 10

represent physical quantities in a system, e.g., pressure, tem-

perature, acceleration, etc., control designers try to impose

requirements on the maximum “overshoot” or “undershoot”,

i.e., maximum and minimum excursions of a given signal from

a reference value yref . The following STL requirements re-

spectively specify limits c1 and c2 on the maximum overshoot

and undershoot of a signal x between the times t1 and t2.

✷[t1,t2](y − yref < c1) (VI.4)

✷[t1,t2](yref − y < c2) (VI.5)

As mentioned before, a step response is a standard technique

in control theory to gauge the temporal behavior of a system

(especially linear dynamical systems), and is often used to

estimate maximum overshoot and undershoot.

Settling Time. A settling time requirement is a safety require-

ment. In a control system, a disturbance or a change in an input

may lead to transient oscillations in the regulated output. It is

important for these oscillations to be within the settling region,

i.e., a region specifying the tolerated deviations from the given

reference value, and for them to settle to the reference within a

specified settling time. Let disturbance denote a disturbance

event. Let y be the output signal of interest, let yref be the

reference value for y, and let |y−yref | < δ denote the settling

region. The STL property specifying the requirement that the

settling time is less than η is given below:

✷[0,T]

(

disturbance⇒ ✷[η,T] (|y − yref | < δ)
)

(VI.6)

Error measurement. In any control system, an important

quantity is the error between the desired reference value and

the actual signal. A standard way of measuring this error is

the root mean square (RMS) value of the error over time. We

first define an RMS error signal:

yrms(t) =

√

1

t

∫ t

0

(y(τ)− yref)2dτ

RMS error is essentially the value of yrms(t) at t = T . The

following STL formula specifies that the RMS error is always

less than c; note that this is a timed inevitability requirement.

✸[T,T](yrms < c) (VI.7)

VII. CASE STUDIES

In what follows, we present three case studies of require-

ment mining from the automotive doman. The first is the

running example described in Sec. II, the second is an air-

fuel ratio-control benchmark model [26], and the third is an

industrial-scale experimental model of an airpath controller for

a diesel engine.

A. Automatic Transmission Model

For the model described in Sec. II, we tested different

template requirements:

1) Requirement ϕsp_rpm(π1, π2) specifying that always the

speed is below π1 and RPM is below π2 :

✷(speed < π1) ∧✷(RPM < π2).

2) Requirement ϕrpm100(τ, π) specifying that the vehicle can-

not reach the speed of 100 mph in τ seconds with RPM always

below π:

¬(✸[0,τ](speed > 100) ∧✷(RPM < π)).

3) Requirement ϕstay(τ) specifying that whenever the sys-

tem shifts to gear 2, it dwells in gear 2 for at least τ seconds:

✷

((

gear 6= 2 ∧
✸[0,ε]gear = 2

)

⇒ ✷[ε,τ]gear = 2

)

.

Here, the left-hand-side of the implication captures the event of

the transition to gear 2 from another gear. The operator ✸[0,ε]

here is an MTL substitute for a next-time operator. With dense

time semantics, ε should be an infinitesimal quantity, but in

practice, we use a value close to the simulation time-step.

The above requirements have strong correlation with the

quality of the controller. The first is a safety requirement

characterizing the operating region for the engine parameters

speed and RPM. The second is a measure of the performance

of the closed loop system. By mining values for τ , we can

determine how fast the vehicle can reach a certain speed,

while by mining π we find the lowest RPM needed to reach this

speed. The third requirement encodes undesirable transient

shifting of gears. Rapid shifting causes abrupt output torque

changes leading to a jerky ride.

Results on the mined specifications are given in Table II.

We used the Z3 SMT solver [14] to show that all of the

requirements are monotonic. For the second template, we tried

two possible orderings for the parameters. By prioritizing the

time parameter τ , we obtained the δ-tight requirement that

the vehicle cannot reach 100 mph in less than 12.2s (we set δ
to 0.1). As the requirement mined is δ-tight, it means that we

found a trace for which the vehicle reaches 100 mph in 12.3s.

Similarly, by prioritizing the scale parameter π, we found

that the vehicle could reach 100 mph in 50s keeping the RPM

below 3278 (δ = 5 in that case). For the third requirement, we

found that the transmission controller could trigger a transient

shift as short as 0.056s. This corresponds to the up-shifting

sequence 1-2-3. Using a variant of the requirement (not

shown here), we verified that a (definitely undesirable) short

transient sequence of the form 1-2-1 or 3-2-3 was not possible.

Based on results shown in Table II and our experience, we

make some observations:

• The FINDPARAM algorithm takes in general significantly

less time than the FALSIFYALGO algorithm in the mining

process. As can be expected, there is a correlation between the

number of simulations and the time spent in the falsification

process, and between the number of iterations and the time

spent in parameter synthesis.

• The space of input signals needs to be parameterized with a

sensible number of signal parameters. If too many parameters

are used, the search space is too big and falsification becomes

difficult. This is demonstrated in the 4 first instances in Table II

which are all performed on formula ϕsp_rpm with different

input parameterization. For this formula, it is straightforward

to obtain exact tigth parameter values since the maximum

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 11

Template dim. Pu Ninit Parameter mined Nb. Sim. Nb. Iter. Fals. time (sec) Synth. time (sec)

1 ϕsp_rpm(π1, π2) 1 1 π1 = 155.5 mph, π2 = 4857 rpm 120 11 75.89 34.26
2 ϕsp_rpm(π1, π2) 2 1 π1 = 155.5 mph, π2 = 4857 rpm 513 24 199.02 94.23
3 ϕsp_rpm(π1, π2) 2 10 π1 = 155.5 mph, π2 = 4857 rpm 1482 23 534.65 80.01
4 ϕsp_rpm(π1, π2) 4 10 π1 = 155.5 mph, π2 = 4857 rpm 2362 35 862.26 185.31
5 ϕrpm100(π, τ) 3 2 π = 3682 rpm, τ = 49.90 s 1475 23 885.31 143.83
6 ϕrpm100(τ, π) 3 2 τ = 12.20 s, π = 4997 rpm 340 3 182.32 2.60
7 ϕstay(π) 3 5 τ = 1.05 s 77 5 50.21 6.84
8 ϕstay(π) 3 100 τ = 0.1367 s 243 7 116.14 9.40
9 ϕstay(π) 3 1000 τ = 0.0586 s 1246 8 608.24 9.55

TABLE II: Results on mining requirements for the automatic transmission control model. For each instance, we indicate the template
formula used, the dimensionality of the input parameter space, the value of Ninit used, the parameter values returned, the number of
simulations, the number of iterations of the mining algorithm, the time spent in falsification and the time spent in parameter synthesis.

speed and rpm corresponds to the case of constant acceleration

with maximum throttle. The correct values are found for all

instances, but the time needed to obtain these parameters

significantly increases with dimensionality of Pu.

• Requirements involving discrete modes are challenging be-

cause they induce “flat” quantitative satisfaction functions that

are challenging to optimizers and thus have limited value in

guiding the falsifier. This is illustrated by the performance

of the mining algorithm with template ϕstay (instances 7-9).

The satisfaction function is locally “flat” due to the fact that

the predicate gear = 2 induces piecewise-constant integer

quantitative satifaction (equal to -1 if gear is 1, 0 if gear is 2,

etc). For small Ninit, the algorithm stops after a few iterations

because the optimizations around the Ninit initial valuations are

stuck in those locally flat regions. On the other hand, for higher

values of Ninit, the input parameter space is better covered by

the initial sampling, hence a better valuation for τ is found.

B. Air-Fuel Ratio Control Model

Next, we consider the model of a fuel control system for a

gasoline engine presented in [26]. The model consists of an air-

fuel ratio (AFR) controller and a model of the engine dynamics

specifying the mean behavior of the engine over the various

combustion cycle phases. While the model presented in [26]

allows four discrete modes of operation, we are interested in

mining requirements in the nominal mode (called the normal

mode of operation). The basic purpose of the control system

is to regulate the AFR quantity to a reference value (known

as the stoichiometric value). The experimental results shown

in Table III use the following requirements.

The requirement ϕabs_over(π) specifies the absolute value

of the deviation of AFR from the reference value. In other

words, it specifies the maximum allowed overshoot or under-

shoot. The requirements ϕovershoot(π) and ϕundershoot(π)
separately specify the maximum value for the overshoot and

the minimum value for the undershoot respectively.

The requirement ϕsettling_time(τ, π) specifies the settling

time for the AFR signal when the throttle angle input of the

model is excited by a train of pulses. In our first experiment

mining this requirement, we prioritize the settling region π,

i.e., we wish to find the smallest region in which the AFR

signal settles, at the cost of allowing a longer time (τ) for

the transients. In the second experiment, we wish to find the

smallest time at which the AFR signal settles, but at the cost

Abstract fuel control model
Template Parameter value Time (sec) #Iter.

ϕabs_over(π) π = 9.76e− 3 3111 2
ϕovershoot(π) π = 8.78e− 3 3201 2
ϕundershoot(π) π = −9.76e− 3 3121 2
ϕsettling_time(π, τ) τ = 1.405, π = 0.005 3502 7
ϕsettling_time(τ, π) τ = 1.244, π = 0.0075 3117 5
ϕrms(π) π = 0.040 3301 4

TABLE III: Results on mining requirements for the abstract
fuel control model of [26]. The stopping criterion for the last
falsification step was set to 1000 simulations.

of settling in a larger region. Both experiments are valuable,

as the first experiment is an indicator of how tightly the

control system can track the reference value, while the second

experiment indicates the control system’s response time.

C. Diesel Engine Model

Next, we consider two different versions of an industrial-

scale, closed-loop Simulink model of an experimental airpath

controller for a diesel engine. The original model has more

than 4000 Simulink blocks such as data store memories,

integrators, 2D-lookup tables, functional blocks with arbitrary

Matlab functions, S-Function blocks, and blocks that induce

switching behaviors such as level-crossing detectors and sat-

uration blocks. The models takes two signals as input: the

fuel injection rate and the engine speed. The output signal is

the intake manifold pressure denoted by x. For proprietary

reasons, we suppress the mined values of the parameters and

the time-domain constants from our requirements. We replace

the time-domain constants by symbols such as c1 and c2. As

before, we use T to represent the simulation time-horizon.

We note that in this case study, we have available two

sets of results. In previous work that appears in [28], we

mined requirements on an older version of the closed-loop

diesel airthpath control system. We first summarize the results

obtained therein. We then present the results3 of mining re-

quirements on a new version of the model, which incorporates

the feedback that we provided to the designers through our first

set of mining experiments.

3In Fig. 5 and Fig. 6 respectively corresponding to the two experiments,
we suppress the values along the plot-axes for proprietary reasons. We remark
that the actual values are irrelevant and the intention is to show the shape of
the design behaviors.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 12

0

�

TimeP
re

ss
u

re
d

if
f.

(x
)

0

Fig. 5: The simulation trace (in blue) for the signal x denoting
the difference between the intake manifold pressure and its
reference value4found when mining ϕsettling_time(τ, π) dis-
plays unstable behavior. The maximum error threshold that we
expected to mine is depicted in red. The ideal x signal is in
green.

We found from the designers that characterizing the over-

shoot behavior is important for the intake manifold pressure

signal. The inputs to the closed-loop model are a step function

to the fuel injection rate input at time c1, and a constant value

for the engine speed input. The first requirement is:

ϕovershoot(π) = ✷(c1,T)(x < π).

This template characterizes the requirement that the signal

x never exceeds π during the time interval (c1, T), i.e., it

finds the maximum peak value (i.e., π) of the step response.

Our mining algorithm obtained 7 intermediate candidate re-

quirements that were falsified by S-TALIRO, till we found a

requirement that it could not falsify in its 8th iteration. The

total number of simulations was 7000 over a period of 13
hours.

Next, we chose to mine the settling behavior of the signal.

The settling time is the time after which the amplitude of

signal is always within a small error from its calculated ideal

reference value. We wish to mine both the error and how fast

the signal settles. Such a template requirement is given by the

following PSTL formula:

ϕsettling_time(τ, π) = ✷[τ,∞)(|x| < π).

It specifies that the absolute value of x is always less than

π starting from the time τ to the end of the simulation. The

smaller the settling time and the error, the more stable is the

system. We found out from the control designer that a smaller

settling time needs to be prioritized over the error (as long as

the error lies within the 10% of the signal amplitude), so we

prioritize minimizing τ over minimizing π.

After 4 iterations, the procedure stopped as the inferred

value for τ was very close to the end of the simulation trace,

but the error was still larger than the tolerance. The implication

here is that the algorithm pushed the falsifier to finding

a behavior in the model that exhibits hunting behavior, or

oscillations of magnitude exceeding the tolerance. This output

signal is shown in Fig. 5. This behavior was unexpected;

discussions with the designers revealed that it was a real bug.

Investigating further, we traced the root-cause to an incorrect

value in a lookup table; such lookup tables are commonly used

to speed up the computation time by storing pre-computed

values approximating the control law.

This experiment demonstrates the use of mining as an

advanced, guided debugging strategy. Instead of verifying

Time

P
re

ss
u

re
d

if
f.

(x
)

0

Fig. 6: The simulation trace (in blue) for the signal x denotes
the worst case settling time for the difference between the intake
manifold pressure and its reference value found by mining
ϕsettling_time(τ, π) in the newer diesel engine model.

correctness with a concrete formal requirement, the process

of trying to infer what requirement a model must satisfy can

reveal erroneous behaviors that could be otherwise missed.

The counterexample we found helped the designers to

rectify the erroneous behavior. Incidentally, the designers also

chose to refactor the model by eliminating some blocks to

reduce the computation time for the control code. This is

reflected in the decreased simulation time, which in turn leads

to a reduction in the time required for mining requirements.

The resulting new version contains around 3000 blocks. The

results are shown in Table IV. Here, we list the number of

simulations, the total elapsed time (in hours), and the number

of iterations of the mining algorithm. Here, through extensive

simulation, the worst-case behavior we found on the new

version of the model for ϕsettling_time is shown in Fig. 6,

with the absence of the previous hunting behavior. Through

this example, we demonstrate that requirement mining process

could be use to help designers detect corner cases in a design

and ensure quality in design evolution.

Template #Sim. Time (hour) #Iter.

ϕovershoot(π) 4733 4.12 5
ϕsettling_time(τ, π) 100828 9.15 18

TABLE IV: Requirement mining results on the new diesel
control model. The stopping criterion for the last falsification
step was set to 2000 simulations.

VIII. RELATED WORK

Mining requirements from programs and circuits is well-

studied in the field of computer science [5], [6], [20], [32],

[33], [39], [40], [46]. In computer science, the word “re-

quirement” is often synonymous with “specification”. These

techniques vary based on what is mined, e.g., automata,

temporal rules, and sequence diagrams. They also differ on

the input to the mining tool; e.g., techniques based on static

analysis or model checking operate on the source code, dy-

namic techniques mine from execution traces. Work on mining

temporal rules [5], [40] involves learning an automaton to

capture the temporal behavior and focusses on API usage in

libraries, and specification automata encode legal interaction-

patterns between library components. In contrast to most

software programs with discrete-time semantics, the behav-

ioral requirements that we mine are for systems with both

continuous and discrete-time semantics. It may be worthwhile

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 13

to see if automata-based mining could be adapted to the hybrid

systems domain. The work closest to the proposed approach

appears in [47], where the authors introduce Parametric MTL

(PMTL), which is able to specify single time or scale param-

eters in MTL formulas. These parameters are estimated using

stochastic optimization within the tool S-TALIRO. We remark

that we provide a way to reason about monotonicity of PSTL

formulas with arbitrary number of parameters, and also allow

mining non-monotonic PSTL formulas (albeit less efficiently).

Asarin et al. [9] introduce Parametric Signal Temporal Logic

and use it to infer properties of continuous-time signals. This

technique only statically infers specifications, where given

signals are queried, without mention (and, a fortiori, actuation)

of a model that produces these signals. Kong et al. [30] also

focus on inferring temporal logic patterns from data. They

define a fragment of PSTL that allows a separation of cause

and effect formulas. With this structural separation, the authors

can impose a lattice structure on the space of the PSTL

formulas, allowing for simultaneous parameter estimation and

structural identification. Note that in our prior work [28],

as well as in this paper, we do not address the problem of

learning the structure of the PSTL formula. An important part

of our future work will involve exploring the space of PSTL

templates, using the algorithms developed in this paper.

We note that falsification of a given STL formula by a

model behavior is a key component of our framework. The

complement of the falsification problem is the verification

problem. Reachability analysis tools such as SpaceEx [22],

Flow* [13], C2E2 [19], HyCreate [10], and CORA [1], are

verification tools based on overapproximating the set of reach-

able behaviors of a given dynamical system. These tools can

check (in a sound fashion) whether a given model contains a

finite time behavior that violates a specified safety property.

Such safety properties are expressed using regions in the state-

space that should not be reached. Verification algorithms do

not typically produce counterexamples (which we need in our

counterexample-guided mining algorithm), thus their use in a

falsification setting is unlikely. If verification tools are able to

support checking general temporal logic specifications, then it

may be possible to use them as a final step to check if the

mined requirement is satisfied by all model behaviors.

To the best of our knowledge, this work is among the

first to address the specification mining problem for cyber-

physical systems. From a broader perspective, the literature

reports several attempts to apply formal methods to industrial-

scale block-based design tools such as Simulink. There is

prior work [17] on verifying simple safety properties us-

ing sensitivity analysis. Other approaches that are able to

work with Simulink diagrams include approaches to transform

Simulink diagrams into models amenable to formal verifica-

tion [24], [45], [48] or approaches to perform guided symbolic

simulation using user-provided block-level annotations [4],

[29]. When successful, such approaches provide very strong

guarantees. However, in the former class of approaches, the

type of blocks that can be handled is usually limited and we are

not aware of scalable analysis tools for models representing

general hybrid systems. The approaches based on symbolic

simulation could be interesting alternatives for falsification.

ACKNOWLEDGMENT

We thank the anonymous referees for their comments, and

James Kapinski, Koichi Ueda, and Ken Butts for help with

Simulink models, experiments, and insightful discussions. The

second and fourth authors were funded in part by Toyota

via the Center for Hybrid and Embedded Software Systems

(CHESS) at UC Berkeley, and by the MultiScale Systems

Center (MuSyC), funded under the Focus Center Research

Program, a Semiconductor Research Corporation program

sponsored by MARCO and DARPA.

REFERENCES

[1] M. Althoff. Reachability Analysis of Nonlinear Systems using Con-
servative Polynomialization and Non-Convex Sets. In Proc. of Hybrid

Systems: Computation and Control, pages 173–182, 2013.

[2] R. Alur, T. Feder, and T. A. Henzinger. The Benefits of Relaxing
Punctuality. J. ACM, 43(1):116—-146, Jan. 1996.

[3] R. Alur and T. A. Henzinger. A Really Temporal Logic. J. ACM,
41(1):181–203, 1994.

[4] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic
Analysis for Improving Simulation Coverage of Simulink/Stateflow
Models. In Proc. of Int. Conf. on Embedded Software, pages 89–98,
2008.

[5] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of Interface
Specifications for Java Classes. ACM SIGPLAN Notices, 40(1):98–109,
2005.

[6] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. ACM

Sigplan Notices, 37(1):4–16, 2002.

[7] Y. S. R. Annapureddy and G. E. Fainekos. Ant Colonies for Temporal
Logic Falsification of Hybrid Systems. In Proc. of the 36th Annual Conf.

of the IEEE Industrial Electronics Society, pages 91–96, 2010.

[8] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan.
S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems.
In Proc. of Tools and Algorithms for the Construction and Analysis of

Systems, pages 254–257, 2011.

[9] E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric identifi-
cation of temporal properties. In Proc. of Runtime Verification, pages
147–160, 2011.

[10] S. Bak and M. Caccamo. Computing Reachability for Nonlinear Systems
with HyCreate. In Demo and Poster Session at Hybrid Systems:

Computation and Control, 2013.

[11] H. A. Bardh Hoxha and G. Fainekos. Benchmarks for Temporal
Logic Requirements for Automotive Systems. In Workshop on Applied

Verification for Continuous and Hybrid Systems, 2014.

[12] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability
modulo theories. In A. Biere, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[13] X. Chen, E. Abraham, and S. Sankaranarayanan. Flow*: An Analyzer for
Non-Linear Hybrid Systems. In Proc. of Computer Aided Verification,
pages 258–263, 2013.

[14] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc.

of Tools and Algorithms for the Construction and Analysis of Systems,
page 337–340, 2008.

[15] A. Donzé. Breach, A Toolbox for Verification and Parameter Synthesis
of Hybrid Systems. In Proc. of Computer Aided Verification, pages
167–170, 2010.

[16] A. Donzé, T. Ferrère, and O. Maler. Efficient Robust Monitoring for
STL. In Proc. of Computer Aided Verification, pages 264–279, 2013.

[17] A. Donzé, B. Krogh, and A. Rajhans. Parameter Synthesis for Hybrid
Systems with an Application to Simulink Models. In Proc. of Hybrid

Systems: Computation and Control, pages 165–179, 2009.

[18] A. Donzé and O. Maler. Robust Satisfaction of Temporal Logic over
Real-Valued Signals. In Proc. of Formal Modeling and Analysis of Timed

Systems, pages 92–106, 2010.

[19] P. S. Duggirala, S. Mitra, and M. Viswanathan. Verification of Annotated
Models from Executions. In Intl. Conf. on Embedded Software, 2013.

[20] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1-3):35–45,
2007.

IEEE TRANSACTION ON COMPUTER AIDED DESIGN SPECIAL SECTION ON AUTOMOTIVE EMBEDDED SYSTEMS AND SOFTWARE. 14

[21] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verifi-
cation of Automotive Control Applications using S-TaLiRo. In Proc. of

the American Control Conference, 2012.
[22] G. Frehse, C. Le Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado,

A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable Verification of
Hybrid Control Systems. In Proc. of Computer-Aided Verification, 2011.

[23] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s Decidable about
Hybrid Automata? In Proc. of the Symposium on Theory of Computing,
pages 373–382, 1995.

[24] P. Herber, R. Reicherdt, and P. Bittner. Bit-precise formal verification
of discrete-time matlab/simulink models using smt solving. In Proc.

International Conference on Embedded Software, 2013.
[25] P. Hunter, J. Ouaknine, and J. Worrell. Expressive completeness for

metric temporal logic. In Proc. of Logic in Computer Science, pages
349–357, 2013.

[26] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. Powertrain
Control Verification Benchmark. In Proc. of Hybrid Systems: Compu-

tation and Control, pages 253–262, 2014.
[27] X. Jin, A. Donzé, and G. Ciardo. Mining Weighted Requirements

from Closed-loop Control Models. In Workshop on Numerical Software

Verification (NSV), 2013.
[28] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. Mining Require-

ments from Closed-loop Control Models. In Proc. of Hybrid Systems:

Computation and Control, 2013.
[29] A. Kanade, R. Alur, F. Ivančić, S. Ramesh, S. Sankaranarayanan, and

K. C. Shashidhar. Generating and Analyzing Symbolic Traces of
Simulink/Stateflow Models. In Proc. of Computer Aided Verification,
pages 430–445, 2009.

[30] Z. Kong, E. A. G. Austin Jones, Ana Medina Ayala, and C. Belta.
Temporal logic inference for classification and prediction from data. In
Proc. of Hybrid Systems: Computation and Control, 2014.

[31] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Syst., 2(4):255–299, 1990.

[32] C. Lee, F. Chen, and G. Rosu. Mining Parametric Specifications. In
Proc. of Int. Conf. on Software Engineering, page 591–600, 2011.

[33] W. Li, A. Forin, and S. A. Seshia. Scalable Specification Mining for
Verification and Diagnosis. In Proc. of Design Automation Conference,
page 755–760, 2010.

[34] O. Maler and D. Nickovic. Monitoring Temporal Properties of Con-
tinuous Signals. In Proc. of Formal Modeling and Analysis of Timed

Systems/ Formal Techniques in Real-Time and Fault Tolerant Systems,
pages 152–166, 2004.

[35] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta,
and G. J. Pappas. Monte-carlo techniques for falsification of temporal
properties of non-linear hybrid systems. In Proc. of Hybrid Systems:

Computation and Control, pages 211–220, 2010.
[36] G. Nicolescu and P. J. Mosterman. Model-Based Design for Embedded

Systems. CRC Press, 2009.
[37] A. Pnueli. The Temporal Logic of Programs. In Proc. of Foundations

of Computer Science, pages 46–57, 1977.
[38] S. Sankaranarayanan and G. E. Fainekos. Falsification of Temporal

Properties of Hybrid Systems using the Cross-Entropy Method. In Proc.

of Hybrid Systems: Computation and Control, 2012.
[39] S. Sankaranarayanan, F. Ivancic, and A. Gupta. Mining Library Speci-

fications using Inductive Logic Programming. In Proc. of Int. Conf. on

Software Engineering, page 131–140, 2008.
[40] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static Specification

Mining using Automata-based Abstractions. IEEE Trans. on Software

Engineering, 34(5):651–666, 2008.
[41] Simulink. version 8.0 (R2012b). The MathWorks Inc., Natick, Mas-

sachusetts, 2012.
[42] S. Skogestad and I. Postlethwaite. Multivariable feedback control:

Analysis and Design. Wiley, 2007.
[43] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat.

Combinatorial Sketching for Finite Programs. ACM SIGPLAN Notices,
pages 404–415, 2006.

[44] A. Tiwari. HybridSAL Relational Abstracter. In Proc. of Computer

Aided Verification, pages 725–731, 2012.
[45] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating Discrete-

Time Simulink to Lustre. ACM Trans. on Embedded Comput. Syst.,
4(4):779–818, 2005.

[46] W. Weimer and G. Necula. Mining Temporal Specifications for Error
Detection. In Proc. of Tools and Algorithms for the Construction and

Analysis of Systems, page 461–476, 2005.
[47] H. Yang, B. Hoxha, and G. Fainekos. Querying Parametric Temporal

Logic Properties on Embedded Systems. In Int. Conf. on Testing

Software and Systems, pages 136–151, 2012.

[48] C. Zhou and R. Kumar. Semantic Translation of Simulink Diagrams
to Input/Output Extended Finite Automata. Discrete Event Dynamic

Systems, 22(2):223–247, 2012.

Xiaoqing Jin Xiaoqing Jin is a research engineer
with the Model-Based Development group at the
Toyota Technical Center in Los Angeles. She re-
ceived the B.Eng. and M.S. degrees in Computer
Science from the Wuhan University, China in 2005
and 2007 respectively, and the Ph.D. degree in
Computer Science from the University of California
Riverside in 2013. Her work at Toyota focuses
on advanced research on verification and validation
techniques for automotive control systems modeled
as nonlinear and hybrid dynamical systems. Her

research interests include techniques for modeling, monitoring, analysis, and
formal verification of large scale control systems.

Alexandre Donzé Alexandre Donzé is a research
scientist at the University of California, Berkeley
in the department of Electrical Engineering and
Computer Science. He received his Ph.D. degree
in Mathematics and Computer Science from the
University of Joseph Fourier at Grenoble in 2007.
He worked as a post-doctoral researcher at Carnegie
Mellon University in 2008, and at Verimag in Greno-
ble from 2009 to 2012. His research interests are in
simulation-based design and verification techniques
using formal methods, Signal Temporal Logic (STL)

with applications to cyber-physical systems and systems biology.

Jyotirmoy V. Deshmukh Jyotirmoy V. Deshmukh
is a research engineer at Toyota Technical Center
in Los Angeles. His research interests are in the
broad area of formal verification of cyberphysical
systems, automatic synthesis and repair of systems,
and temporal logic. His current focus is in the area
of automotive control systems, nonlinear and hybrid
dynamical systems. He received the Ph.D. degree
from the University of Texas at Austin in 2010, and
worked a post-doctoral researcher at the University
of Pennsylvania from 2010-2012.

Sanjit A. Seshia Sanjit A. Seshia received the
B.Tech. degree in Computer Science and Engineer-
ing from the Indian Institute of Technology, Bombay
in 1998, and the M.S. and Ph.D. degrees in Com-
puter Science from Carnegie Mellon University in
2000 and 2005 respectively. He is currently an As-
sociate Professor in the Department of Electrical En-
gineering and Computer Sciences at the University
of California, Berkeley. His research interests are in
dependable computing and computational logic, with
a current focus on applying automated formal meth-

ods to embedded and cyber-physical systems, electronic design automation,
computer security, and synthetic biology. He has served as an Associate Editor
of the IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. His awards and honors include a Presidential Early Career Award
for Scientists and Engineers (PECASE) from the White House, an Alfred P.
Sloan Research Fellowship, the Prof. R. Narasimhan Lecture Award, and the
School of Computer Science Distinguished Dissertation Award at Carnegie
Mellon University.

