
Mining Roles with Semantic Meanings

Ian Molloy, Hong Chen, Tiancheng Li,
Qihua Wang, Ninghui Li, Elisa Bertino

Center for Education and Research in
Information Assurance and Security and

Department of Computer Science
Purdue University

West Lafayette, IN, USA

{imolloy, chen131, li83, wangq, ninghui,
bertino}@cs.purdue.edu

Seraphin Calo, and Jorge Lobo
IBM T.J. Watson Research Center

Hawthorne, NY, USA

{scalo, lobo}@us.ibm.com

ABSTRACT
With the growing adoption of role-based access control (RBAC)
in commercial security and identity management products, how
to facilitate the process of migrating a non-RBAC system to an
RBAC system has become a problem with significant business im-
pact. Researchers have proposed to use data mining techniques to
discover roles to complement the costly top-down approaches for
RBAC system construction. A key problem that has not been ad-
equately addressed by existing role mining approaches is how to
discover roles with semantic meanings. In this paper, we study
the problem in two settings with different information availability.
When the only information is user-permission relation, we propose
to discover roles whose semantic meaning is based on formal con-
cept lattices. We argue that the theory of formal concept analysis
provides a solid theoretical foundation for mining roles from user-
permission relation. When user-attribute information is also avail-
able, we propose to create roles that can be explained by expres-
sions of user-attributes. Since an expression of attributes describes
a real-world concept, the corresponding role represents a real-world
concept as well. Furthermore, the algorithms we proposed balance
the semantic guarantee of roles with system complexity. Our exper-
imental results demonstrate the effectiveness of our approaches.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access
Controls; H.2.8 [Database Management]: Database Applica-
tions—Data mining

General Terms
Security, Management

Keywords
RBAC, role engineering, role mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’08, June 11–13, 2008, Estes Park, Colorado, USA.
Copyright 2008 ACM 978-1-60558-129-3/08/06 ...$5.00.

1. INTRODUCTION
Role-based access control (RBAC) is widely used in enterprise

security management and enterprise identity management products.
Take one of the popular management products, IBM Tivoli Identity
Manager (ITIM), for example. ITIM allows centralized manage-
ment of user accounts on a variety of systems and applications. In
ITIM, accounts cannot be assigned to users directly; they must be
provisioned to roles and roles are assigned to users. According to
research conducted by IBM, RBAC “are creating both a valid Re-
turn On Investment (ROI) and driving better control over the assets
of an organization” [2]. Attracted by strong ROI, more and more
companies are driven to migrate to RBAC. However, for most com-
panies, creating an RBAC configuration from scratch is not easy.
According to a study by NIST [4], building an RBAC system is
the costliest part of migrating to an RBAC implementation. Any
improvement on methodology that can reduce the cost of RBAC
system creation will further improve the ROI of RBAC and will
accelerate RBAC’s adoption in practice.

There are two general approaches to construct an RBAC sys-
tem: the top-down approach and the bottom-up approach. In the
top-down approach, people perform a detailed analysis of business
processes and derive roles from such analysis. Since such a top-
down analysis is human-intensive, it is believed to be slow and ex-
pensive. To overcome the drawback of top-down approaches, re-
searchers have proposed to use data mining techniques to discover
roles from existing system configuration data. Such a bottom-up
approach is called role mining. Role mining can potentially accel-
erate RBAC system construction to a great extent, and it has raised
significant interests in the research community [6, 10, 14, 13, 15].
A key challenge that has not been adequately addressed so far is
how to discover roles with semantic meanings. Roles that are dis-
covered by existing role mining approaches are no more than a set
of permissions and it is unclear whether such roles correspond to
any real-world concepts, such as a job position or a work location.
Without semantic meanings, such roles may be hard to use and
maintain in practice.

While some may believe that the top-down approach is more de-
sirable despite of higher cost, because it produces higher quality
results, the configuration data we gathered from ITIM shows that
this is not always the case. These pieces of configuration data re-
veal the role-permission assignment of a number of real-world or-
ganizations that use ITIM as identity management solution. Some
of these configurations are poorly designed. In an extreme case, a
company created one role (and occasionally two roles) for each of
the 486 permissions in the system, which results in 489 roles in to-

21

tal. With such an almost one-to-one correspondence between roles
and permissions, the company can hardly enjoy the advantages of
RBAC. Some other configurations are unnecessarily complicated
due to redundancies. Some roles and permission assignments can
be removed from the configuration without affecting the privileges
of anyone.

There are several reasons that top-down approaches may some-
times fail to produce “good” RBAC systems in practice. First,
building an RBAC system is challenging. It is common for peo-
ple to adopt some trivial design, such as blindly creating one role
for each job position of the organization regardless whether these
job positions share the same set of permissions. Second, some sys-
tem designers have been deeply influenced by Discretional Access
Control (DAC). When they are asked to construct an RBAC sys-
tem, they tend to do it in a DAC manner, such as creating a role
for each permission, thinking that the most flexibility is provided
in that way. Third, many organizations do not have expertise in de-
signing RBAC systems. They do not know what is a “good” RBAC
system. Even though some companies, such as Eurekify, offer con-
sulting and technical services on role management, such services
are costly, and some companies consider their internal structure
confidential and are reluctant to reveal this information to a third
party.

Therefore, we believe that effective role mining tools will pro-
vide valuable help to role engineering and is complementary to
the top-down approach of role engineering. For companies that
do not have sufficient RBAC expertise, tools provide inexpensive
help (comparing to hiring external consultants) and avoid having to
leak sensitive organization information to outsiders.

Given the great success of data mining techniques in discover-
ing meaningful information in areas such as marketing, forecasting
and economics, it is reasonable to believe that they can be applied
to discovering meaningful roles. We believe that there are two main
reasons why existing role mining approaches fail to discover roles
with semantic meanings. First, researchers have yet to find the right
data mining techniques for role mining. Techniques that have been
applied, including permission clustering and finding frequent per-
mission sets, focus on grouping permissions. For role mining, one
needs to look at grouping permissions and users at the same time.
Second, existing role mining problem definitions use only user-
permission assignment information. Since usernames and permis-
sion names are both symbols without meanings, this limits one’s
ability to identify meaningful roles.

Finally, we would like to point out that migrating to RBAC is not
a once-and-for-all effort. Once an RBAC system is built and put
into use, we will need to maintain it. Overtime, an RBAC system
is updated to meet the changes on access needs in an organization.
For example, new employees and new applications (which bring in
new permissions) will be added into the system, and existing em-
ployees may leave or change positions. When the initial RBAC
configuration becomes bulky and inefficient after being used for a
while, as a result of many updates, we may consider improving it.
How to handle access control updates and how to improve an ex-
isting RBAC system without performing a complete reconstruction
are important research topics that will benefit all clients of RBAC
implementation. The study of role mining is just the beginning
of research on practical techniques for RBAC. Role engineering,
which consists of both the construction and the maintenance of
RBAC systems, is a rich area with a lot of practical and interest-
ing problems for researchers to explore.

The novel contributions of this paper are as follows. First, we
provide a roadmap describing the rich problem space in applying
data mining techniques to role engineering. We describe the prob-

lem space along two dimensions: the types of data available and the
problems that can be addressed by data mining techniques. Second,
we show that the theory of formal concept analysis [5] provides a
solid theoretical foundation for role mining, in the case that only
user-permission data is available. Formal concept analysis has been
applied extensively in software engineering, for example, on the
problem of generating class hierarchies from non object-oriented
code, which is very similar to the problem of mining role hierar-
chies. We develop a Hierarchical Miner based on formal concept
analysis and show that it is able to mine very good roles. Unlike
previous role mining algorithms, it naturally generates excellent
role hierarchies. Our evaluation shows that it often generates better
RBAC systems than those generated in ways similar to the top-
down approach; Third, we study the problem of role mining with
users’ attribute information in addition to user-permission relation,
and give the first definition of mining roles with semantic informa-
tion.

The rest of this paper is organized as follows. We discuss re-
lated work in Section 2, and present a roadmap of role engineering
problems in Section 3. We present our role mining algorithm us-
ing formal concept analysis in Section 4, and study the problem
of finding roles with semantic meanings from user-attribute data
in Section 5. We show the experimental results in Section 6 and
conclude the paper in Section 7.

2. RELATED WORK
Coyne [3] was the first to propose the role engineering problem

and the top-down approach to role engineering. Several subsequent
papers [9, 8, 11] focused on the top-down approach. This line of
research is orthogonal and complementary to our work.

Kuhlmann et al. [6] proposed to use data mining techniques for
finding roles from existing permission assignment data and coined
the term “role mining”. The authors described the experiences of
performing role mining using a data mining tool, IBM’s Intelligent
Miner for Data, in a seven-step process. Schlegelmilch and Stef-
fens [10] were the first to study role mining as a new algorithmic
problem and proposed the ORCA role mining tool. The ORCA
algorithm does hierarchical clustering on permissions. One starts
with the set S = {{p1}, {p2}, · · · , {pn}}, where p1, p2, · · · , pn

are all the permissions. Iteratively, one finds a pair si, sj ∈ S
such that the number of users having both si and sj is the largest
among all such pairs, and update S by merging si and sj . This
approach constructs a role hierarchy, but limits the role hierarchy
to a strict tree structure such that each permission and each user
can be assigned to only one role in the tree. In Section 4, we show
that ORCA does not work well, because natural roles do not form
a tree.

Vaidya et al. [14] proposed a role mining approach that con-
sists of two phases. The first phase generates a set of candidate
roles, each of which given by a set of permissions. They proposed
CompleteMiner, which starts with every user’s permission sets, and
compute the intersection of all these initial roles. To reduce the run-
ning time of CompleteMiner, they then proposed FastMiner which
computes the set of candidate roles as all possible intersections of at
most two initial roles. The second phase selects roles from the can-
didates based on a priority calculated from the number of users who
have exactly the permissions in the role and the number of users
who have a superset of the permissions. Recently, Vaidya et al. [13]
studied the problem of finding a minimal number of roles such that
all user-permission relation can be performed through these roles,
which they refer to as the RMP problem. They show that the RMP
problem is NP-complete, and is closely related with several exist-
ing data mining problems such as the minimal titling problem and

22

the discrete basis problem and argue that the techniques and solu-
tions for these known problems may be used for the role mining
problem. These techniques are limited to mining RBAC systems
that do not have a hierarchy.

In [15], Zhang et al. presented a heuristic algorithm for role min-
ing. The algorithm views an RBAC state as a graph (with each
user-role, user-permission, role-permission, role-role relationship
an edge). The goal is to minimize the number of edges while main-
taining the same connectivity. Their algorithm starts with an initial
RBAC system and iteratively improves the system by identifying
pairs of roles such that merging or splitting the two roles will re-
sult in a graph with a lower cost. None of the existing work on
role mining addresses the challenge of mining roles with semantic
meanings.

3. A ROADMAP FOR ROLE MINING
The general area of using data mining techniques for role engi-

neering is a very rich area. Many challenging and practical prob-
lems exist. We now give a roadmap describing these research prob-
lems. This both anchors the specific research problems we tackle in
this paper and serves as a roadmap for the research community. To
come up with the roadmap, we examine two dimensions. The first
dimension is what kinds of data are available for mining, and the
second dimension is what problems one aims to solve using data
mining techniques.

We first look at the data dimension. At the bare minimum, one
would have user permission information, that is, the set of users,
the set of permissions, and the binary user-permission relation. In
some cases, one also has user attribute information, e.g., a user’
job title, the department and location a user is in. Often times, one
also has permission parameter information, which is similar to user
attribute information, but is for permissions. For example, a num-
ber of permissions may be about the same enterprise information
management application. Or a permission may entail accounts on
machines in one domain. In some systems, one may have permis-
sion update information, i.e., from logs that record how the access
control state has evolved in the past. For example, a log entry may
record, at a certain time in the past, a user was assigned a number
of permissions soon after the user was revoked certain permissions.
This piece of information would be useful for role mining because
it may reflect a job position change event. Finally, one may have
permission usage information. For example, one may have logs
showing which permissions are used and at what time.

Now we look at the problem dimension. The first problem that
naturally comes up is to mine an RBAC state (i.e., roles, role hi-
erarchy, role-permission assignments, and user-role assignments)
while optimizing some complexity measure. The second problem
is to mine roles with good semantic meanings, i.e., roles that corre-
spond to real-world concept units, e.g. a role for lecturers in the CS
department. A similar problem is to construct parameterized roles
that correspond to categories of concepts. For example, we may
create a role for lecturers with the course name as a parameter. Fi-
nally, an access control configuration may contain noise or outliers.
For example, one may find that a permission or a role has been as-
signed to all but one users in the same department. It would be nice
if such outliers are discovered and reported to the administrator for
investigation to discover and correct potential authorization errors.

By combining the data dimension and the problem dimension,
we have a picture on what problems can be solved (or partially
solved) with different data availability. A summary of the discus-
sion below is given in Table 1.
With user permission information only. With such limited informa-
tion, the only problem that could be satisfactorily solved is creating

an RBAC system that is equivalent with the input user-permission
relation while having minimum system complexity. In the litera-
ture, people have studied optimization on number of roles and on
number of edges (user-role assignment and permission-role assign-
ment). In this paper, we introduce the notion of weighted structural
complexity as a more general system complexity measure. Further-
more, it is possible to identify potential outliers by discovering as-
sociation rules, such as 99% of the users who have permission p1

also have permission p2. However, without additional information,
such as user-attribute information, both false positive and false neg-
ative ratios could be high.
With also user-attribute information. User-attribute information
is a valuable plus for mining roles with semantic meanings. Intu-
itively, members of a role that corresponds to a real-world concept
should share some attributes. We will study this problem in the pa-
per. Also, as mentioned earlier, user-attribute information can help
better identify outliers, because in addition to comparing permis-
sions, we can now compare attributes.
With also permission-parameter information. In many situations,
permissions may be parameterized. E.g., instructor of a course,
advisor of a student, permission about a database, permission about
a file, permission about a directory, etc. This information enables
the discovery of parameterized roles, especially when combined
with user-attribute information. Using parameterized roles could
greatly reduce the number of roles in a system.
With also permission update information. Permission update in-
formation can help create roles with semantic meanings. For ex-
ample, those permissions that often change together are probably
associated with the same real-world concept. Update information
also provides evidence on legacy permissions, i.e., permissions that
should have been removed earlier.
With also permission-usage information. Permission usage data
may be helpful for finding roles as well. For instance, permissions
that are used together are likely to be associated with the same role.
Also, for systems that require role activation, it may be desirable
to group commonly-used permissions and rarely-used permissions
into separate roles so as to enforce least privilege while minimiz-
ing the number of roles one has to activate for daily tasks. Finally,
usage information also contributes to the detection of legacy per-
mission assignments and erroneous permission assignments. For
example, if a permission has never been used or has not been used
for a long time by a user, then the permission assignment may be
unnecessary.

The problems discussed above are mostly related to RBAC sys-
tem creation. Another important task in role engineering is RBAC
system maintenance. While the techniques for generating an RBAC
state is useful for migrating to RBAC, it may be limited when the
goal is to improve an already existing RBAC state. Given a messy
RBAC state resulted from a long time of usage, the administra-
tor is unlikely to adopt a completely different RBAC state. It is
thus useful to develop techniques that do two things: (1) Given an
RBAC state, come up an optimization that updates the RBAC state
in some “localized way”. (2) Given an RBAC state and a update re-
quest (e.g., changing a user’s permission from one set to another),
come up with a suggested update to the RBAC system so that the
accumulated results of multiple updates will not be a messy state
that is difficult to understand. This problem will again be affected
by the types of input data that is available.

4. USING CONCEPTS
When the input data consists of only a user-permission relation,

the role mining problem can be defined as follows.

23

Low Good Parameterized Least Detect
Complexity Semantics Roles Privilege Outliers

User Permission Only � Limited Limited
With User-Attribute � � �

With Permission-Parameter � � � �
With Update Log � � �
With Usage Log � � � �

Table 1: Summary of potential role engineering problems with different information availability. “�” indicates that the correspond-
ing problem is worth studying and a good solution to the problem is possible; “Limited” indicates that a solution could be provided
for the problem, but the solution may be limited without more information; an empty cell indicates that the provided information is
insufficient to study a problem.

DEFINITION 1. Given an access control configuration ρ =
〈U, P,UP〉, where U is a set of all users, P is a set of all permis-
sions and UP ⊆ U × P is the user-permission relation, we want
to find an RBAC state 〈R,UA,PA,RH ,DUPA〉 that is consistent
with ρ.

In the state, R is a set of roles, UA ⊆ U × R is the user-role
assignment relation, PA ⊆ R × P is the role-permission assign-
ment relation, RH ⊆ R × R is a partial order over R, which is
called a role hierarchy, and DUPA ⊆ U × P is the direct user-
permission assignment relation. The RBAC state is consistent with
〈U, P,UP〉, if that every user in U has the same set of authorized
permissions in the RBAC state as in UP .

Note that by including DUPA in an RBAC state, we allow permis-
sions to be directly assigned to users. This makes our approach
more general and provides the flexibility to handle anomalous per-
mission assignments that are not best explained by roles.

Given the above problem definition, how to discover roles with
semantic meanings other than simply a set of permissions and a set
of users that are associated with it? We examine the available tech-
niques from data mining. The input we have is essentially a binary
matrix with one dimension being the users and the other the permis-
sions. One technique is clustering. One can cluster the users based
on the similarity of their permissions, or cluster the permissions
based on the similarity of the users assigned to them. These clusters
can further be clustered together, resulting in a tree. One can also
use co-clustering (also known as biclustering or two-mode cluster-
ing), which does simultaneous clustering of the rows and columns
of a matrix. However, we believe that these techniques are not the
most suitable ones for role mining. The main reason is that most
clustering techniques seek to find mutually-disjoint groups. That
is, each entity (user or permission) can belong to only one cluster
(or appear in only one node in a tree with hierarchical clustering).
But we may expect a user to be a member of two different roles.

Among the data mining and analysis techniques we examined,
it appears that the most suitable one is formal concept analysis.
(Some consider formal concept analysis to be one kind of co-
clustering.) Formal concept analysis takes an input matrix spec-
ifying a set of objects and their properties, and aims to finding
“concepts” in them. This is exactly the same problem as finding
meaningful roles. In formal concept analysis, the concepts are ar-
ranged in a lattice. The relative relationships among concepts pro-
vide semantic information in addition to the users and permissions
that are associated with them.

In this section, we give a brief introduction to formal concept
analysis [5] and then develop an algorithm exploiting the connec-
tion between formal concept analysis and mining roles with hierar-
chy. We will use the following running example in this section.

EXAMPLE 1. The original RBAC state is given in Figure 1(a).
There are 10 users, 12 permissions, and 7 roles in the original state.

The user-permission relation resulted from the state is given in Fig-
ure 1(b).

4.1 Formal Concept Analysis
The input to formal concept analysis is called a formal context.

DEFINITION 2. A formal context is a triple (G, M, I) where
G and M are sets and I ⊆ G × M is a binary relation between
G and M . We call the elements of G objects and the elements
of M attributes. For g ∈ G and m ∈ M , we write gIm when
(g,m) ∈ I .

In role mining, the user-permission relation is a formal context,
where G is the set of all users, and M is the set of all permissions,
and (g,m) ∈ I if and only if the user corresponding to g has the
permission corresponding to m.

DEFINITION 3. A concept of the context (G, M, I) is a pair
(X, Y), where X ⊆ G and Y ⊆ M satisfy the following proper-
ties:

• Y = {m ∈ M | (∀g ∈ X) gIm}, i.e., Y is the set of all
properties shared by all objects in X.

• X = {g ∈ G | (∀m ∈ Y) gIm}, i.e., X is the set of all
objects that share all properties in Y .

X is also called the extent and Y the intent of the concept
(X, Y). The set of all concepts of the context is denoted by
B(G, M, I). A concept (X1, Y1) is a subconcept of (X2, Y2), de-
noted as (X1, Y1) ≤ (X2, Y2) if and only if X1 ⊆ X2 (or, equiva-
lently, Y1 ⊇ Y2).

For instance, in the running example,
({U3, U4}, {P0, P1, P10, P11}) is not a concept, because
U2, U5 also have the permissions {P0, P1, P10, P11}. The pair
({U2, U3, U4, U5}, {P0, P1, P10, P11}) is a concept.

The family of these concepts obeys the mathematical axioms
defining a lattice, and is called a concept lattice or Galois lattice.
The concept lattice for the running example is given in 1(c). In
this concept lattice, each concept inherits all permissions associ-
ated with its subconcepts, and users are inherited in the other direc-
tion. Therefore, we can remove redundant permissions and users
from each node. The result is called the reduced concept lattice
and is shown in Figure 1(d). The reduced concept lattice defines a
complete RBAC state. Each concept is a role and the lattice can be
viewed as the role hierarchy. In this RBAC state, each user is as-
signed exactly one role, and each permission is assigned to exactly
one role. The subconcept relation corresponds to the role inheri-
tance relation. When treating a concept as a role, we are assured
that the permission set and the user set associated with a concept

24

User P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
U0 1 0 1 0 0 1 0 0 0 0 1 1
U1 1 0 1 0 0 1 0 0 0 0 1 1
U2 1 1 1 0 0 1 0 0 0 0 1 1
U3 1 1 0 1 1 0 0 0 0 0 1 1
U4 1 1 0 1 1 0 1 0 0 1 1 1
U5 1 1 0 1 1 0 1 0 0 1 1 1
U6 1 0 0 1 0 0 1 0 0 1 1 1
U7 1 0 0 1 0 0 1 1 1 1 1 1
U8 1 0 0 1 0 0 1 1 1 0 1 1
U9 1 0 0 1 0 0 1 1 1 0 1 1

(a) Original Role Hierarchy (b) User-Permission Relation

(c) The Concept Lattice (d) Reduced Lattice

(e) Pruned role hierarchy (f) Optimal 〈1, 1, 1, 1, 1〉 (g) ORCA

Figure 1: Running Example.

25

are maximum. This already has more meanings than a role with
just a set of permissions and a set of users. The lattice hierarchy
further illustrates the semantic relationships among concepts, help-
ing people understand them.

The drawback of using the reduced concept lattice as the role hi-
erarchy is that the role hierarchy may be excessively large. For
example, in Figure 1(d) some concepts introduce no new users,
some introduce no new permissions, and some introduce neither.
However, it is incorrect to always remove all concepts with no new
users and new permissions. We need to compare the desirability
of different role hierarchies generated by choosing different sets of
concepts from the reduced concept lattice. For this, we introduce
the notion of the weighted structural complexity.

4.2 The weighted structural complexity
Given the same access control configuration, many RBAC states

are consistent with it. There has to be a measurement of how good
an RBAC state is in order to select among them. The measure used
in [13] is the number of roles needed to explain all user-permission
assignment, while the measure used in [15] is the total number of
edges when an RBAC state is visualized as a graph. The intuition is
that a major advantage of using RBAC is to simplify management.
Given m permissions and n users, if we directly assign the permis-
sions to users, and the number of permissions assigned to each user
is large, then we need to maintain on the order of mn relationships.
However, using RBAC, the number of relationships that we need
to maintain could be reduced to the order of (m + n). We gen-
eralize the previous measures and propose the notion of weighted
structural complexity. This complexity sums up the number of re-
lationships in an RBAC state, with possibly different weights for
different kinds of relationships.

DEFINITION 4. Given W = 〈wr, wu, wp, wh, wd〉, where
wr, wu, wp, wh, wd ∈ Q+∪{∞},1, the Weighted Structural Com-
plexity (WSC) of an RBAC state γ, which is denoted as wsc(γ, W),
is computed as follow.

wsc(γ, W) = wr ∗ |R| + wu ∗ |UA| + wp ∗ |PA|+
wh ∗ |t reduce(RH)| + wd ∗ |DUPA|

where | · | denotes the size of the set or relation, and t reduce(RH)
denotes the transitive reduction of role-hierarchy.

A transitive reduction is the minimal set of relation-
ships that encodes the same hierarchy. For example,
t reduce ({(r1, r2), (r2, r3), (r1, r3)}) = {(r1, r2), (r2, r3)}, as
(r1, r3) can be inferred.

Arithmetics involving ∞ is defined as follows: 0 ∗ ∞ = 0,
∀x∈N+ x ∗∞ = ∞, ∀x∈N∪{∞} x + ∞ = ∞,

Intuitively, in role mining, we would like to find an RBAC state
that has the smallest weighted structural complexity. One can ad-
just the weights to limit the RBAC states to be considered and to
meet different optimization objectives. By setting wh to ∞, we can
force a flat RBAC state since each role inheritance relation costs ∞.
By setting wd to ∞, we forbid direct user-permission assignment.
By setting wr = 1, wu = wp = 0, and wh = wd = ∞, we aim at
minimizing the number of roles.

In the experiments of this paper, we use two weight schemes
W1 : wr = wu = wp = wh = wd = 1 and W2 : wr = wu =
1, wp = wh = wd = 2. The scheme W1 assumes that the cost
of adding each element (a role or a relationship) to the RBAC state
is 1. The weighted structural complexity thus measures the cost
to create the RBAC state. The scheme W2 assumes that actions
1Q+ is the set of all non-negative rational numbers.

related to permissions are more expensive. This can be justified by
the design of commercial products such as ITIM. In ITIM, in order
to assign a permission to a role, one has to write a provisioning
policy. This takes more effort than assigning a user to a role, which
can be done by simply adding a user to a membership list.

4.3 The HierarchicalMiner
Our algorithm for generating a hierarchical RBAC state, which

we refer to as HierarchicalMiner, is based on pruning the reduced
concept lattice. We view the reduced concept lattice as the initial
role hierarchy and heuristically optimize it based on the weighted
structural complexity. HierarchicalMiner is a greedy algorithm; it
iterates over all of the roles and performs local pruning or restruc-
turing operations if the change will decrease the cost of the RBAC
state at the role. The algorithm stops when no more operations
can be performed. Figure 1(e) shows the role hierarchy generated
by HierarchicalMiner for our running example. HierarchicalMiner
uses three pruning rules.

Case 1. A role r does not have a new user or a permission asso-
ciated with it. In this case, the role is used solely as a connection
point for other roles. Removing r reduces the cost for creating the
role and the associated edges; however, we need to add back some
edges so that the inheritance relation remain correct. We remove r
only if this is beneficial. More precisely, role r is removed when

wh ∗ (|Sen(r)| + |Jun(r)|) + wr ≥ wh ∗ |Thr(r)|
when Sen(r) is the set of roles that are the immediate senior to r,
Jun(r) is the set of roles that are the immediate junior to r, and
Thr(r) is the set of pairs of roles (ri, rj) such that, without role r,
ri would no longer be senior to rj

Case 2. A role r has some user but no permission associated with
it. If role r is removed, we need to assign each user in {u | (u, r) ∈
UA} to each role in Jun(r), and add Thr(r) to RH to maintain
the relationships among other roles. Thus role r is removed when

wr + wu ∗ n + wh ∗ (|Sen(r)| + |Jun(r)|)
≥ wu ∗ n ∗ |Jun(r)| + wh ∗ |Thr(r)|

Case 3. A role r has no user but some permission associated
with it. If r is removed, we need to assign each permission in {p |
(p, r) ∈ PA} to each role in Sen(r), and add Thr(r) to RH . Thus
role r is removed when

wr + wp ∗ m + wh ∗ (|Sen(r)| + |Jun(r)|)
≥ wp ∗ m ∗ |Sen(r)| + wh ∗ |Thr(r)|

Implementation We have implemented the HierarchicalMiner.
We use the C program concepts [7] by Christian Lindig for gen-
erating concepts. The pruning code was written in C++ and uses
the Boost C++ Libraries [1] for parsing, graph data structures, and
algorithms.

4.4 Finding the Optimal RBAC State
While finding the optimal hierarchical RBAC state has been

shown to be NP-complete, highly structured data and small data
sets represents a small enough search space for finding the optimal
solution to be feasible. The optimal solution can then be used as a
benchmark to compare other approaches against. We now describe
an algorithm for finding the optimal RBAC state.

The set of candidate roles that must be considered when search-
ing for optimal RBAC states are exactly those in the concept lattice.
Once a subset of all candidate roles are selected, finding the opti-
mal ways of assigning roles and permissions to users and to roles
amounts to solving set-cover problems.

26

We reduce the search space by first adding the roles that must be
a part of the optimal solution. When a role r has more than one
permissions and there are exactly m users who have these permis-
sions, the role r must be created when m is large enough. Intu-
itively, if r is created, each of the m users needs to be assigned
only one role, and this costs wu for each user. If r is not cre-
ated, each of the m users must be assigned a combination of roles
and permissions to have the same permissions, and this would cost
more. If the saving of creating r outweighs the cost of creating
it, then r must be in the optimal solution. For example, when
wr = wh = wu = wd = wp = 1, a role should always be
created when there are at least 4 users who have the exact set of
permissions. To see this, observe that when r is not created, each
of the m users must be assigned at least (1) two roles, (2) one role
and one permission, or (3) two permissions. Let c > 1 is the low-
est cost to cover the permissions in r, then the saving of creating
r is (c − 1) ∗ m, and the cost of creating r is 1 + c, where 1 is
for creating the role. Thus r must be in the optimal state when
(c − 1) ∗ m > 1 + c, this is satisfied when m ≥ 4.

We have implemented this algorithm and use the output as a basis
for comparison in our evaluation.

Running Example The output of HierarchicalMiner for the run-
ning example is given in Figure 1(e); and the optimal state with
weight 1, 1, 1, 1, 1 is given in Figure 1(f). Since ORCA is the only
other algorithm in the literature that generates a role hierarchy, it is
natural to compare our concept analysis based approach with theirs.
ORCA will always generate a tree based structure, assigning each
permission to a single role. A role hierarchy generated by ORCA
for the running example is given in Figure 1(h). Clearly, ORCA,
which is based on hierarchical clustering on permissions, generates
a much more complicated role hierarchy.

When taking wr = wu = wp = wh = 1, the original RBAC
state (Figure 1(a)) has wsc = 40, the one found by Hierarchi-
calMiner (Figure 1(e)) has wsc = 40, the one found by ORCA
(Figure 1(h)) has wsc = 75, while the optimal solution (Figure
1(f))(without direct assignments shown) has wsc = 36.

5. USING USER ATTRIBUTES
We have studied how to mine roles when the available informa-

tion is limited to the user-permission relation. In this section, we
study mining roles when user-attribute information is also avail-
able. Examples of user-attributes include job positions, work de-
partments, and job responsibilities. For instance, if Alice is a lec-
turer in Math Department, who teaches MA101 this semester, then
she has at least three attributes: Lecturer , MathDepartment , and
MA101 . Almost all organizations maintain attribute information
of their employees for the purposes of administration, payroll, etc.
Many organizations even display a portion of their employee’s at-
tribute information on publicly accessible websites.

5.1 Semantic Meanings of Roles
We use A to denote the set of all attributes. The input data

to role mining is modeled as a configuration, given by ρ =
〈U, P,UP ,UAT 〉, where UP is the user-permission relation, and
UAT ⊆ U × A is the user-attribute information. Here, each at-
tribute has only a binary value of 0 or 1. While this cannot eas-
ily model numerical attributes such as age, it is general enough to
model most non-numerical attributes. For example, if an attribute
takes values in a tree structure (such as the division attribute) of
n nodes, then this can be encoded using n binary attributes, each
corresponding to a node in the tree.

Intuitively, a semantically meaningful role should correspond to

a real-world concept, and a real-world concept can be described by
an expression of user-attributes.

DEFINITION 5 (ATTRIBUTE EXPRESSION). An attribute ex-
pression e can take one of two forms:

• e = All : Any user satisfies e.
• e = a1 ∧ · · · ∧ ak (∀ i ∈ [1, k] ai ∈ A): A user u satisfies

e under configuration ρ if and only if ∀ i ∈ [1, k] (u, ai) ∈
UAT , i.e., u has all attributes in e.

We use Uρ(e) to denote all the users that satisfy e.

For example, an expression (CS ∧ Faculty) describes all fac-
ulty members in the CS department, while (Programer ∧ NY ∧
Project101) describes all programmers in the New York branch
who are working on Project 101. To incorporate the attribute in-
formation into an RBAC state, we use expressions to define the
memberships of some roles.

DEFINITION 6 (MEMBERSHIP DEFINITION). Given a con-
figuration ρ = 〈U, P,UP ,UAT 〉 and a consistent RBAC state γ,
an expression e is a membership definition of role r if and only if
Uγ(r) = Uρ(e).

Intuitively, a membership definition of a role represents a real-
world concept the role corresponds to. However, not every role in
an RBAC state has a membership definition; and a role may have
more than one membership definitions, as the same set of users may
satisfy different expressions.

DEFINITION 7 (MOST-GENERAL DEFINITION). An expres-
sion e is a most-general definition of a role r if and only if e is a
membership definition of r and there does not exist a strict sub-
expression e′ of e such that e′ is also a membership definition of r.
We assume that All is a strict sub-expression of any other expres-
sions.

For example, assume that both expressions e1 = (NY ∧
RegularEmployee) and e2 = NY are membership definitions
of role r (this indicates that everyone working in the New York
branch is a regular employee), and All is not a membership defini-
tion of r. By definition, e2 is a most-general definition of r; while
e1 is not, because e2 is a strict sub-expression of e1. Again, a role
may have more than one most-general definitions.

If a role does not have a membership definition, we may con-
clude that it does not correspond to a real-world concept that can
be identified by the user-attribute relation in the given configura-
tion. In this case, we may try to see if the role describes a portion
of a real-world concept.

DEFINITION 8 (MEMBERSHIP UPPERBOUND). Given a
configuration ρ = 〈UP ,UAT 〉, let γ be an RBAC state that is
consistent with ρ. An expression e is a membership upperbound of
role r if and only if Uγ(r) ⊆ Uρ(e).

In other words, given an RBAC state and a user-attribute rela-
tion, all members of role r satisfy its membership upperbound e;
but there may exist users who satisfy e but are not members of r.
Note that every role has at least one membership upperbound, All .
Furthermore, if a role has a membership definition, then the mem-
bership definition is also an upperbound of the role.

Intuitively, a role r corresponds to a portion of the real-world
concept described by its upperbound. For example, r having an
upperbound (CS ∧Faculty) indicates that members of r is a por-
tion of all faculty members in the CS department.

27

DEFINITION 9 (LEAST UPPERBOUND). An expression e is
the least upperbound of a role r if and only if e is a membership
upperbound of r and there does not exist a strict super-expression
e′ of e such that e′ is also an upperbound of r.

Given an RBAC state and a user-attribute relation, there is a
unique least upperbound for each role. To prove this, assume, for
the purpose of contradiction, that e1 and e2 are two different least
upperbounds of role r. Let a1 be an attribute that is in e1 but not
in e2. Then, by Definition 8, e3 = a1 ∧ e2, being a strict super-
expression of e2, is also an upperbound of r. Hence, e2 is not a
least upperbound, which is a contradiction.

DEFINITION 10 (LEAST-COMMON UPPERBOUND). Given
a set S of roles, an expression e is the least-common upperbound
of S if and only if e is an upperbound of every role in S, while no
strict super-expression of e is.

Similar to the case of least upperbound, we can prove that there
is a unique least-common upperbound for a given set of roles.

5.2 Attribute Miner
We now study how to construct an RBAC state exploiting the at-

tribute information. Intuitively, during the construction of a consis-
tent RBAC state, we would like to use roles with membership def-
inition whenever possible, as these roles correspond to real-world
semantic concepts. Also, in order to keep the resulted state simple,
we would like to minimize the number of roles that are used.

We allow two types of roles. Roles of the first type do not use
attribute information, and we call these roles normal roles. Roles
of the second type are called attribute roles. Every attribute role
r has a membership definition D(r) ⊆ A, and every user who
satisfies the membership definition is assigned with the role. That
is to say, ∀u ∈ U ∀r ∈ R (u satisfies D(r) ⇐⇒ (u, r) ∈ UA).
Users cannot be directly assigned to attribute rules. There may
be multiple attribute roles that have the same set of permissions,
as those roles represent different real-world concepts that have the
same permissions.

To guide our algorithm to choose attribute roles that use simple
membership definitions to assign many users and to choose nor-
mal roles that have tighter upperbound constraints, we define the
following complexity measure as an optimization objective.

DEFINITION 11 (WSC WITH ATTRIBUTES). Suppose in the
RBAC state the set of normal roles is Rn and the set of attribute
role is Ra. For every r ∈ Rn, the upperbound of r is B(r). For
every r ∈ Ra, the membership definition of r is D(r). Given
Wa = 〈wr, wu, wp, wh, wd, we〉, the Weighted Structural Com-
plexity with Attribute (WSCA) of an RBAC state γ is denoted by
wsca(γ, Wa), and

wsca(γ, Wa) = wr ∗ (|Rn| + |Ra|) + wp ∗ |PA| + wh∗
|t reduce(RH)| + wd ∗ |DUPA|+

wu ∗
X

r∈Rn

“p
|{u ∈ U | (u, r) ∈ UA}| ∗

p
|{u ∈ U | u ∈ U(B(r))}|

”
+

wc ∗
X

r∈Ra

|D(r)|

The cost of creating roles, permission assignment, role hierarchy
and direct user permission assignments are the same as in Defini-
tion 4. The cost of user assignment for each normal role is deter-
mined by both the number of users authorized for this role, and the

upperbound of this role. The intuition is that each user-role assign-
ment has a cost, and the larger the upperbound, the less desirable
the role is. We choose the geometric mean of the two number, as
we feel that an arithmetic mean penalizes too much.

Our AttributeMiner algorithm takes a configuration as well as a
list of permission sets as input. These permission sets are candi-
dates for the algorithm to generate roles. They can be computed
using HierarchicalMiner, CompleteMiner, or frequent permission
set mining. The algorithm has two phases. The first phase is to
identify candidate roles. For each permission set P in input, we
create a candidate normal role r, and for every most general mem-
bership definition a, create a candidate attribute role using a as def-
inition, if all users that satisfy the definition have permissions in P .
The second phase selects roles and assigns them to users. Here, we
use a greedy approach. For each candidate role, we calculate the
benefits and cost of creating the role, and choose the role that has
the largest benefits-cost ratio. The benefits is the number of edges
in UA′ that the selection can cover, and the cost is the complexity
cost we need to pay to choose the selection. They are calculated as
in table 3.

6. EVALUATION
In this section, we evaluate the effectiveness of Hierarchi-

calMiner and AttributeMiner. As we aim at constructing roles with
semantic meanings, we analyze the resulting role hierarchies that
have been mined in addition to the WSC numbers. Due to the space
limit, we present the detailed results for one dataset. The results
show that HierarchicalMiner and AttributeMiner are able to gen-
erate RBAC states that have lower complexities than the original
RBAC state, while preserving roles with semantic meanings and
discovering some new roles with semantic meaning. We have con-
ducted experiments with other synthetic datasets; they show similar
results.

This dataset we use is a synthetic dataset based on a template
used in a recent paper [12].2 Researchers from Stony Brook Uni-
versity generated a template for a RBAC system in a university
setting, presumably through a process similar to top-down role en-
gineering. They created this template for the purpose of studying
security analysis in role based access control, rather than role en-
gineering. Thus, the main consideration was to make the RBAC
system as realistic as possible. This template specifies roles, per-
missions, the role hierarchy, and the role permission assignment re-
lation. We generated a dataset using the template by creating users
and assigning roles to them. The dataset contains 493 users and 56
permissions.

Table 2 shows the weighted structure complexities of the origi-
nal role-engineered RBAC state, the state generated by Hierarchi-
calMiner, by the optimal search algorithm described in Section 4.4,
and by AttributeMiner. For AttributeMiner, we use attributes that
are likely to be maintained in a typical university data system, e.g.,
Undergrad, Grad, HonorsStudent, TA, faculty. We show results us-
ing two different weight schemes. From the results, one can see
that HierarchicalMiner generates significant fewer roles and fewer
user-role assignments than the original state. In fact Hierarchi-
calMiner generates results that are close to an optimal state, which
has fewer roles and more direct user-permission assignments. At-
tributeMiner is able to further dramatically decrease the complex-
ity by replacing regular roles with attribute roles, which results in
a large number of user-role assignments being replaced by a single
attribute-based role assignment.

Figure 2 shows a portion of the original and generated states

2 http://www.cs.sunysb.edu/∼stoller/ccs2007/university-policy.txt

28

W = { 1, 1, 1, 1, 1 } W = { 1, 1, 2, 2, 2 }
R UA PA RH DUPA CR Total Cost R UA PA RH DUPA CR Total Cost

Original 22 799 65 19 0 0 875 22 799 65 19 0 0 959
Optimal 19 496 59 14 12 0 600 19 496 57 16 12 0 685
Hierarchical 21 498 67 19 0 0 605 21 505 65 20 0 0 696
Attribute 14 142 73 5 35 4 273 15 175 73 5 17 5 385

In the table, W is the weight defined in Definition 4. We use two sets of weights to evaluate this dataset. Costs in columns show a breakdown
of the total cost. The column of R, UA, PA, RH, DUPA and CR represents cost for role, user assignment, permission assignment, role
hierarchy, direct user permission assignment, and role membership (only used in attribute miner), respectively. The ‘Total Cost’ column
represents the total cost of the Weighted Structural Complexity. The row of ‘Original’, ‘Optimal’, ‘Hierarchical’ and ‘Attribute’ shows the
cost for the original dataset (the dataset comes with role assignment and permission assignment), the result by the optimal miner, the result
by the hierarchical miner and the result by the attribute miner.

Table 2: Mining results for the university dataset.

Figure 2: Graphical Representation of roles in the student part of the university dataset: The original roles are shown in the top
column, the roles generated by HierarchicalMiner are shown in the middle, and the roles generated by AttributeMiner are shown in
the bottom. The optimal search algorithm finds the same roles for the student part as HierarchicalMiner. The first line in a role is
the name, the other lines are the permissions; the number to the right indicates the number of users assigned each role.)

29

Choose an attribute
candidate role r

benefits |{(u, p) | u ∈ r.users ∧ p ∈ r.perms ∧ (u, p) ∈ UP ′}|
cost wr + we ∗ |r.attrs| + wp ∗ |r.perms|

Choose a normal
candidate role r and a
user set U0

benefits |{(u, p) | u ∈ U0 ∧ p ∈ r.perms ∧ (u, p) ∈ UP ′}|
cost wu ∗ |U0| +

j
wr + wp ∗ |r.perms| r.users = φ
0 r.users �= φ

Choose a direct
assignment (u, p)

benefits 1
cost wd

Table 3: Calculating benefits and costs in AttributeMiner

graphically. The portion shown are the roles related to students. By
analyzing the resulting roles, we observe that HierarchicalMiner
finds semantically meaningful roles. All except for two roles are
from the original state. In some cases, the mined roles have more
permissions than in the original state. For example, the role TA in-
herits the role Grad in the mined state. This is because in the orig-
inal state all users assigned to the TA role are also assigned to the
Grad role. HierarchicalMiner found this implicit semantic relation-
ship, while also reducing the complexity. HierarchicalMiner finds
two roles that do not exist in the original state; they are the compos-
ite roles HonorsStudent and UndergradPermittedGradClass, which
has 9 users, and Grader and UndergradPermittedGradClass, which
has 12 users. They represent meaningful concepts.

AttributeMiner finds four attribute roles corresponding to Grad,
UnderGrad, HonorStudent, and TA, having 100, 300, 20, and 40
users respectively. AttributeMiner uses fewer roles and has more
direct user-permission assignments. It does not create those roles
that have a smaller number of users.

7. CONCLUSIONS
Existing role mining approaches fall short on mining roles with

semantic meanings. In the paper, we have studied how to mine
roles using different information. Our approaches take into account
both the semantic of roles and system complexity. We have shown
that formal concept analysis provides a solid theoretical founda-
tion on mining roles with user permission information only. We
have developed the Hierarchical Miner based on formal concept
analysis and demonstrated its capability of mining very good roles
as well as to generate excellent role hierarchies. Furthermore, we
have studied the problem of mining roles with user-attribute infor-
mation. We have formally defined the problem and designed the
Attribute Miner. Our experiments demonstrated the effectiveness
of the approach. Finally, role engineering is a rich area. A roadmap
has been proposed to provide advice on future research.

8. REFERENCES
[1] Boost C++ Libraries. http://www.boost.org/.
[2] A. Buecker, J. C. Palacios, B. Davis, T. Hastings, and I. Yip.

Identity management design guide with ibm tivoli identity
manager, Nov. 2005.

[3] E. J. Coyne. Role engineering. In Proc. ACM Workshop on
Role-Based Access Control (RBAC), 1995.

[4] M. P. Gallaher, A. C. O’Connor, and B. Kropp. The
economic impact of role-based access control. Planning
Report 02-1, National Institute of Standards and Technology,
Mar. 2002.

[5] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer, 1998.

[6] M. Kuhlmann, D. Shohat, and G. Schimpf. Role mining -
revealing business roles for security administration using
data mining technology. In Proc. ACM Symposium on Access
Control Models and Technologies (SACMAT), pages
179–186, New York, NY, USA, 2003. ACM Press.

[7] C. Lindig. Fast concept analysis. In G. Stumme, editor,
Working with Conceptual Structures - Contributions to ICCS
2000, 2000.

[8] G. Neumann and M. Strembeck. A scenario-driven role
engineering process for functional rbac roles. In Proc. ACM
Symposium on Access Control Models and Technologies
(SACMAT), pages 33–42, New York, NY, USA, 2002. ACM
Press.

[9] H. Roeckle, G. Schimpf, and R. Weidinger. Process-oriented
approach for role-finding to implement role-based security
administration in a large industrial organization. In
Proc. ACM Workshop on Role-Based Access Control
(RBAC), pages 103–110, 2000.

[10] J. Schlegelmilch and U. Steffens. Role mining with ORCA.
In Proc. ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 168–176, New York, NY,
USA, 2005. ACM Press.

[11] D. Shin, G.-J. Ahn, S. Cho, and S. Jin. On modeling
system-centric information for role engineering. In
Proc. ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 169–178, New York, NY,
USA, 2003. ACM Press.

[12] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I.
Gofman. Efficient policy analysis for administrative role
based access control, Oct. 2007.

[13] J. Vaidya, V. Atluri, and Q. Guo. The role mining problem:
Finding a minimal descriptive set of roles. In Proc. ACM
Symposium on Access Control Models and Technologies
(SACMAT), New York, NY, USA, 2007. ACM Press.

[14] J. Vaidya, V. Atluri, and J. Warner. Roleminer: Mining roles
using subset enumeration. In Proc. ACM Conference on
Computer and Communications Security (CCS), pages
144–153, New York, NY, USA, 2006. ACM Press.

[15] D. Zhang, K. Ramamohanarao, and T. Ebringer. Role
engineering using graph optimisation. In Proc. ACM
Symposium on Access Control Models and Technologies
(SACMAT), pages 139–144, 2007.

30

