
Mining Scale-free Networks using Geodesic Clustering ∗

Andrew Y. Wu
Dept. of Computer Science

University of Illinois
Urbana-Champaign, IL 61801

a.wu@acm.org

Michael Garland
Dept. of Computer Science

University of Illinois
Urbana-Champaign, IL 61801

garland@uiuc.edu

Jiawei Han
Dept. of Computer Science

University of Illinois
Urbana-Champaign, IL 61801

hanj@cs.uiuc.edu

ABSTRACT
Many real-world graphs have been shown to be scale-free—
vertex degrees follow power law distributions, vertices tend
to cluster, and the average length of all shortest paths is
small. We present a new model for understanding scale-free
networks based on multilevel geodesic approximation, using
a new data structure called a multilevel mesh.

Using this multilevel framework, we propose a new kind
of graph clustering for data reduction of very large graph
systems such as social, biological, or electronic networks.
Finally, we apply our algorithms to real-world social net-
works and protein interaction graphs to show that they can
reveal knowledge embedded in underlying graph structures.
We also demonstrate how our data structures can be used
to quickly answer approximate distance and shortest path
queries on scale-free networks.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
graphs, social networks, scale-free networks, clustering

1. INTRODUCTION
In recent years, the analysis of structurally rich graph data

sets has received increasing amounts of attention in data
mining and related disciplines. The core problem of graph
mining [17] arises in many important problem domains. For
example, recent work in the related area of mining social
networks includes the study of viral marketing [4, 15] and of

∗This work was supported in part by the National Science
Foundation NSF CCR-0098170, NSF IIS-02-09199, and the
University of Illinois at Urbana-Champaign. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

measuring the relative importance of nodes [19]. Graph and
social network mining have also been used to find hubs in hy-
perlinked corpora [3, 9] and to detect community structure
in social networks [13].

Our focus is on the class of graphs termed scale-free net-
works. Graphs of this type are distinguished by three pri-
mary characteristics. First, they are highly clustered; if two
vertices share a common neighbor, it is likely the two are
themselves adjacent. Second, the average shortest path be-
tween two vertices is logarithmically small. And finally, the
vertex degrees are distributed according to a power law [1].
Data fitting this profile arise quite naturally in physics, so-
ciology, network analysis, and biology.

In this paper we present a scalable framework for ana-
lyzing the structure of scale-free networks. We approach
this problem from the perspective of data reduction. Given
an initial complex graph, we aim to produce a far simpler
graph that preserves the structure of the original as faith-
fully as possible. We describe a novel algorithm for cluster-
ing graphs based on graph geodesics (i.e., shortest paths).
Furthermore, we outline a hierarchical model for scale-free
networks, and couple this with our clustering algorithm to
produce hierarchical representations of the input data.

2. BACKGROUND
We use the terms graph, network, and mesh interchange-

ably to mean an undirected simple graph with positive edge
weights. We define a mesh clustering of a graph G = (V, E)
as a graph partition into p disjoint clusters V1, . . . , Vp where⋃

i Vi = V , with a representative vertex set U = {u1, . . . , up}
where ui ∈ Vi. A median function M maps vertices to their
representative vertices (medians). That is, M(v) = ui iff
v ∈ Vi. A graph partition of a graph G is a vertex clustering
where each vertex cluster forms a connected component.

Many real-world systems can be modeled as graphs. Ex-
amples include power grids, communication networks, bio-
chemical interactions, and social networks. On social net-
working sites such as orkut.com and Friendster, an edge
between Paul and Carol exists if they specify that they
know each other. In a publication network, edges connect
coauthors. Although such graphs capture many aspects of
the real world, they also capture the complexity of the real
world. Thus, it becomes important to develop mathemati-
cal models for how very large graphs form. We can then use
these models to mine knowledge from massive graphs.

In the Erdös-Rényi random graph model, edges are added
by picking random vertex pairs and the degree distribution is
Gaussian [2]. Several years ago, it was discovered that many

real-world networks do not follow this random model [1].
Instead, they often exhibit power law distributions, where
the probability that a vertex has degree k, P (k) ∼ 1/kc for
some small constant c (often between two and three) [12].

This means that most vertices have a relatively small de-
gree, but a few vertices have a very high degree. These are
known as hubs, and are well connected. Unlike in a Gaussian
distribution, where a mean element defines a characteris-
tic “scale” in the probability distribution, no single element
characterizes the scale of a power law distribution. Thus,
Barabási named such graphs scale-free networks [1].

To perform data mining on such graphs, we exploit their
scale-free nature, noting that the power law distribution tells
us that most vertices are of low degree. This means that the
average degree of a vertex is generally bounded by a small
constant constant. Since the sum of the vertex degrees must
be twice the number of edges, the total number of edges in
the graph G is linear in the number of vertices (G is sparse).
We also exploit the tendency of these networks to cluster to
perform good data reduction on such graphs.

Barabási showed that the world-wide web, for example, is
a scale-free network [1]. Scale-free characteristics have been
found in many real-world networks, such as social networks,
publication and citation graphs, power grids, the Internet,
and real neural and other biological networks. More details
can be found in the recent survey of Newman [12].

2.1 Social Networks
Sociologists have defined many ways of measuring the cen-

trality or prestige of an “actor” in a social network [18]. One
such measure, betweenness centrality, has been used to find
community structures in networks [13]. However, a simple
implementation of these measures often leads to quadratic
or cubic running times, because they often compute all-pair
shortest paths, or invert matrices. In contrast, we focus on
scalable algorithms for very large graphs.

2.2 Data Mining
Most work on clustering considers unorganized points in-

stead of considering the network structure of graph systems,
as is common in graph partitioning [16]. Graph mining re-
search [17] has studied problems of finding frequent sub-
graphs [20] and compressing graphs using the minimum-
description length principle [7].

In comparison, we focus primarily on the problem of graph
clustering and data reduction of large real-world graphs.
One problem of working with graphs as opposed to unor-
ganized data points is that most non-trivial graph proper-
ties are computationally difficult to verify, and many simple
graph algorithms have exponential running times. Just as
microclustering has been useful for speeding up algorithms
that run on unorganized point sets [21], we suggest that
graph clustering and data reduction techniques can be used
to speed up data mining of very large graph data.

3. APPROXIMATION CLUSTERING
Given a complex graph representing some data set, we

would like to extract meaningful knowledge from that graph.
However, if the graph has thousands or millions of vertices,
it becomes difficult to visualize or mine that graph algorith-
mically in any meaningful or efficient way.

A common approach to dealing with such complexity is
to find meaningful clusters or partitions in the graph. How-

ever, there are dozens if not hundreds of different clustering
algorithms. As suggested by Mirkin [11], we evaluate the
quality of a clustering in terms of the approximation error
induced by that clustering.

Given a clustering of a graph G, we can approximate G
with a smaller graph G′ by contracting each cluster to a rep-
resentative vertex. To quantitatively measure how much the
contraction of a clustering distorts a graph, we can measure
how much it distorts the lengths of all possible geodesics.

In this section, we describe how to find geodesic clusters
on graphs, how to contract these clusters to form an approx-
imate graph, and how to measure the distortion (approxi-
mation error) associated with a cluster contraction.

3.1 Geodesic Clustering
We now describe a novel graph clustering technique de-

signed for large sparse graph data. Later, we will use this
clustering technique as a basis for graph data reduction.

Given a weighted graph, we want to find p representative
vertices, which we call median vertices, that minimize the
average length of the shortest path from any vertex to its
closest median. In operations research, this is known as the
network p-median problem in discrete facility location [5].

Formally, we define M(v) as the median vertex associated
with v’s cluster and dist(x, y) to be the length of the shortest
path from x to y. We also define D(v) to be dist(v, M(v)),
the distance from a vertex to its nearest median vertex.
Then we want to find the mesh clustering with mapping
M that minimizes the contraction cost

∑
v∈V D(v). We de-

scribe how to pick good medians in a future section.
After finding p medians, we assign each vertex to its near-

est median vertex, forming p geodesic clusters. The cluster-
ing algorithm keeps track of two properties per vertex v: the
nearest median vertex, M(v), and the shortest path distance
to that nearest median, D(v). Initially, distances are infinite
and each vertex is in a singleton set. We chose p vertex me-
dians and assign each a distance of zero. We can then run
a modified version of Dijkstra’s algorithm that updates the
“parent” of a vertex (its closest median) whenever the ver-
tex’s distance is updated. In the resulting graph, each vertex
has a single distance to its nearest median and a “parent”
pointer to that same median vertex. This algorithm runs in
O(V log V) time on a sparse graph system.

3.2 Graph Approximation
Our approach for data reduction on large social and scale-

free networks is inspired by work on geometric mesh simpli-
fication in the graphics community [6]. Given a graph G,
we want to find a simpler graph G′ that well approximates
G (minimizing some distortion measure).

To solve this primal problem of mesh simplification, we
consider the dual problem of mesh clustering. Given a mesh
clustering of a graph G, we construct a simpler graph G′ by
contracting each cluster to a representative vertex.

We give the pseudocode for cluster contraction as Algo-
rithm 1. The cluster contraction algorithm creates a new
approximate graph G′ given a clustered graph G. It first
copies the representative vertices, those for which M(v) = v.
(u, v) is an edge of G′ if and only if there exists an edge (s, t)
in G such that M(s) = u and M(t) = v. We define the new
edge weight as the length of the shortest path between u
and v in G that has an edge with endpoints in u’s cluster
and v’s cluster.

Algorithm 1: Contract Clustering

Input: Clustered graph G = (V, E)

Output: Approximate graph G’

for each vertex v in V do
if v = M(v) then copy v to G’

end

for every edge e = (u, v) in E do
if M(u) 6= M(v) then

d ← D(u) + length(e) + D(v);
Create edge e′ = {M(u), M(v)} in G’ if not present;
length(e’) ← min(length(e’), d);

end
end

4. SCALE-FREE NETWORKS
We now apply the geodesic clustering techniques we have

developed to scale-free networks such as social networks and
protein-protein interaction graphs.

4.1 Multilevel Mesh
We propose a new way of understanding and mining scale-

free networks, using a new data structure called a multilevel
mesh. A multilevel mesh is a hierarchy of microclusters sim-
ilar to the tree structure used in BIRCH [21], but designed
specifically for graph clustering.

Unlike a regular cluster hierarchy, a multilevel mesh is
not a tree. It is a list of graphs L = (G0, G1, . . . , Gn) where
Gi+1 is a simplified version of Gi, with virtual edges that
map every vertex from Gi to its parent vertex in Gi+1.

We can construct a multilevel mesh by recursive graph
simplification—geodesic clustering followed by cluster con-
traction. We begin with a graph G and produce a list of
graph approximations of decreasing complexity. The user
chooses an average branching factor b, which determines the
average cluster size. If b = 10, then the average cluster will
contain ten vertices. Dividing the number of vertices |V | by
b gives us p, the number of clusters we need to find. We
find p geodesic clusters as described previously, using some
heuristic to find median vertices. We contract each cluster
to its representative vertex to form a new graph G′ with
p = |V |/b vertices, and recurse on G′.

4.2 Modeling Scale-free Networks
Vertices in scale-free networks are not created equal—

some are more “important” than others. A few Web pages
are linked to more frequently and thus may be more relevant
for keyword search [9, 3]. Some actors in a social network
are better connected than their peers, and some proteins are
more important to an organism’s survival than others [8].

Exploiting these power law distributions and the tendency
for such networks to cluster, we use the multilevel techniques
we have developed so far to mine such networks. The un-
equal distribution of importance and the high connectivity
of hubs means that we can approximate a graph well using
only a relatively small fraction of the vertices. The tendency
for vertices to cluster reduces the amount of approximation
error when building such graph approximations.

As an example, we could build a multilevel mesh that
approximates a social network, favoring well-known people.
Instead of a large population of social actors, we can instead
imagine a smaller set of community leaders as well as the
interaction graph between those leaders.

Now that we have defined a multilevel model for under-
standing scale-free networks, we show how to mine such net-
works to extract a multilevel structure. We use this self-
similar hierarchy of graphs to perform data reduction, visu-
alization, and approximate distance queries on large graphs.

4.3 Clustering Scale-free Networks
Previously we showed how to find geodesic clusters on

graph systems, but did not describe how to find represen-
tative vertices. We experimented with several methods for
finding p median vertices on scale-free networks: random
sampling, degree ranking, HITS, and Betweenness-Centrality.

In random sampling, we pick p median vertices uniformly
at random, without replacement. In degree ranking, we
pick the p vertices with the highest degree. We also used
HITS [9] to find good median vertices, sorting vertices by
their “authority” measure. Finally, we used an importance
measure named Betweenness-Centrality previously used for
finding community structures [13]. Betweenness-Centrality
estimates the importance of a node by counting how many
shortest paths pass through that node. Each of these meth-
ods define a total ordering of the vertex set, and to pick p
medians we choose the p highest ranked vertices.

4.4 Approximate Distance Queries
A fundamental query operation on a graph is to return the

length of the shortest path between two vertices, or to return
the shortest path itself. Unlike the computation of distance
queries between points in Euclidean space, we cannot answer
a distance query on a large graph in constant time unless
we store all possible answers. With massive graph data,
this may not be feasible since there are a quadratic number
of vertex pairs. On the other hand, a simple single source
shortest path such as Dijkstra’s algorithm may explore many
parts of a graph, especially in scale-free networks where the
average path length is logarithmically small.

We can use our graph hierarchy to quickly approximate
shortest path queries, without touching as much of the graph
as a standard search (Algorithm 2). It only uses two graphs,
but is easy to extend to use more levels, depending on the
accuracy desired. We call this a focused search method be-
cause we use the graph hierarchy to focus our geodesic search
on a relatively small part of the graph.

Algorithm 2: Find Approximate Shortest Path

Input: Base graph G0, Simpler graph G1, Vertex source,
Vertex target

Output: Path P

Find shortest path P’ from M(source) to M(target) on G1;

Find shortest path P between source and target on G0, not
exploring vertex v if M(v) is not on path P’

By varying the branching factor and number of clusters,
we can tradeoff between efficiency and approximation error.
These distance queries can be used as a building block to
speed up more complicated graph analysis techniques.

4.5 Experiments
We compare several heuristics for picking median vertices

on scale-free network data, and demonstrate how we can
trade-off between graph approximation error and distance
query times. We show that random sampling is useful for
approximating distance (path length) queries efficiently, but

data set # vertices # edges
smyth.net 286 554

c-erdos971.net 429 1312
c-erdos972.net 5440 14382

hep-th.net 5835 19652
protein-bo.net 1458 1948

Table 1: Graph data sets

data set (# hubs) B-C Degree HITS Random
c-erdos971 (12) 1.7 1.9 1.9 2.8

c-erdos972 (100) 1.5 1.5 1.9 2.5
hep-th (287) 1.8 2.0 2.9 2.3

Table 2: Average distance to nearest hub

does not work as well for approximating the paths them-
selves, or for yielding informatively simplified graphs. We
show that Betweenness-Centrality is a good heuristic for
choosing median vertices but that ranking by vertex degree
is often nearly as good, and can be used as a simple and
efficient heuristic for finding geodesic clusters to contract.

We implemented our algorithms in Java using the JUNG
framework [14], which provides a graph library and visual-
ization capabilities. We used several data sets, mainly publi-
cation networks in addition to a protein interaction network.
In each data set, we considered only the largest connected
component which contains the majority of the vertices.

Smyth.net is a publication network centered around Dr.
Padhraic Smyth. We use two subsets of the Erdös pub-
lication network, and a publication network of theoretical
high energy physicists (hep-th). Protein-bo.net is a scale-
free protein-protein interaction graph, where each vertex is
a protein and edges connect interacting proteins. This data
set was studied by Jeong et al. who found that the degree
of a protein in this graph correlates to its lethality [8].

In these experiments, we used unit edge weights. If the
graph data provided edge weights, or if there were a reliable
way of finding appropriate weights given some application
domain, our algorithms can also use that information.

4.5.1 Average hub distance
When choosing hubs (representative vertices), we would

like to pick hubs that are quickly reachable from any other
vertex. Table 2 contains the average distances to the nearest
hub for several data sets. We see that choosing hubs based
on Betweenness-Centrality (B-C) and on vertex degree min-
imizes the average distance to the nearest hub. Random
sampling and HITS often do significantly worse.

If our goal is to uniformly spread the graph distortion
across all vertices, then we would like to minimize this aver-
age. Such a measure is also a fast way of approximating the
potential influence of a set of nodes in a social network. That
is, if we pick an “influential” set of people in a social network,
we can expect that they can more quickly spread informa-
tion throughout the network. These experiments support
the commonsense notion that to quickly reach many people
in a network, a simple heuristic that works well is to target
the most “popular” people, in terms of vertex degree.

4.5.2 Distance Approximation Error
Table 3 shows the average percent difference between the

lengths of paths on simplified graphs as compared to actual

data set (b) B-C Degree HITS Random
c-erdos972 (10) 20% 20% 34% 18%

hep-th (10) 24% 24% 41% 17%
protein-bo (6) 18% 16% 26% 13%

Table 3: Avg. Distance Approximation Error

0

20

40

60

80

100

120

140

160

180

200

0% 10% 20% 30% 40% 50% 60% 70% 80%

relative distortion

p
at

h
 c

o
u

n
t

random
HITS
B-Centrality
degree

0

50

100

150

200

250

300

350

0% 10% 20% 30% 40% 50% 60% 70% 80%

relative distortion
p

at
h

 c
o

u
n

t

random
HITS
degree
B-Centrality

Figure 1: Distortion, w/o focused search (above)
and with focused search (below), hep-th, b = 10

lengths, measured over a random sample of 512 vertex pairs.
On the c-erdos972 data, we see that random sampling, B-
Centrality, and degree ranking all result in a similar amount
of distortion, about 20%, which is relatively small when we
consider we are reducing the size of the graph by an order
of magnitude. Overall, random sampling often results in a
lower overall distortion. We believe that this occurs because
the vertices are chosen without bias, whereas degree ranking
and HITS may spread the distortion unevenly.

4.5.3 Path Approximation Error
In the previous section, we measured the relative error in-

volved in approximating distance queries with a single-level
graph approximation. We now measure the same relative
error, but test the algorithm that finds better approximate
geodesics using a two-level focused search (Algorithm 2).

Comparing the two histograms in Figure 1, we see that
a two-level focused search obviously leads to a smaller path
approximation error (about half) when compared to a single-
level approximation.

Table 4 shows the average relative geodesic approxima-
tion error when finding the shortest path between 512 ran-
domly chosen vertex pairs. Looking at this table and at
Figure 1, we can see that Betweenness-Centrality leads to
the smallest approximation error, but that degree ranking
does nearly as well. But, because of the O(V 2) cost of com-
puting Betweenness-Centrality, we generally suggest the use
of degree ranking for purposes of geodesic approximation.

data set (b) Degree HITS Random B-C
c-erdos972 (64) 12% 9% 17% 12%

hep-th (20) 18% 26% 22% 13%
hep-th (10) 12% 18% 25% 9%

protein-bo (6) 4% 13% 16% 5%

Table 4: Avg. Path Approximation Error

Figure 2: Smyth.net – 286 vertices

4.6 Simplified graph visualization
We can also use graph approximation to visualize very

large graphs. When graphs of thousands of vertices are dis-
played, a user cannot easily make sense of the data. How-
ever, if we reduce the data size while still retaining informa-
tion about the graph topology, the user can visually under-
stand the underlying graph patterns in the data.

They can also perform a kind of roll-up and drill-down
by shrinking clusters to their representative vertices, or ex-
panding a representative vertex to its original cluster.

As a concrete example, a manager may want to under-
stand the structure of her organization based on how em-
ployees interact, to see which divisions tend to collaborate.
An electrical engineer might want to roll-up a power grid to
understand how the overall system is operating.

We give several visual examples of how graph simplifica-
tion can reveal underlying patterns in graph connectivity.
(Simplified graphs are laid out independently of the base
graphs, which is why the geometric layouts do not match.
Similarly shaded vertices are in the same clusters.)

Figures 2 and 3 show the Smyth publication network sim-
plified using degree ranking, which favors well-known social
actors. We see that the resulting graph of 17 vertices con-
tains well-known researchers and makes it easy to see how
researchers from different subfields connect to each other.

The protein interaction graphs in Figure 4 were both laid
out automatically using a simple spring layout. Whereas
this simple algorithm cannot easily find a good layout for the
original graph, the same algorithm can find a good layout
for a data set simplified using HITS for median ranking. A
researcher looking at this data set can then visually see what
protein clusters tend to interact with what other protein
clusters, and what proteins seem to be unrelated.

Figure 3: Reduced Smyth.net – 71, 17 vertices

5. SCALABILITY
Except for Betweenness-Centrality, which takes O(V 2)

time to rank V vertices, each vertex ranking method takes
O(V) time to compute and O(V) time to select the p top
ranked vertices. Growing p clusters and constructing a mul-
tilevel mesh both take O(V log V) time. On a 933MHz Pen-
tium III, constructing a multilevel mesh given a graph of six
thousand vertices takes an average of five or six seconds.

In Table 5, we compare the scalability of Dijkstra’s algo-
rithm to our focused search (these experiments used a two-
level structure, but more levels could be used to focus the
search more tightly). We chose 512 random distance queries
on the high energy physics publication data. We recorded
the average number of vertices explored by Dijkstra’s algo-
rithm (column b = 1) as compared to focused search.

The number of vertices explored can be an order of mag-
nitude smaller, depending on the average branching factor
b. This is an important speedup if I/O dominates the cost
of computation, as is common with massive data sets. The
amount of time spent in the search was also reduced drasti-
cally whereas the error rates increased relatively slowly, as
we increased the average branching factor.

b=1 b=5 b=10 b=20 b=40
vertices explored 2900 599 320 234 236

approximation error 0% 5% 12% 18% 22%
speedup factor 1x 5.5x 13x 18x 16x

Table 5: hep-th branching factor comparison

Figure 4: protein-bo – 1458, 242 vertices

6. CONCLUSION
The properties of scale-free networks have only been dis-

covered in the past five years, and thus not much work
has been done in modeling or analyzing such networks from
an algorithmic or data mining perspective. However, since
scale-free characteristics are found in many real-world graphs,
we believe that it is an important problem to mine such net-
works. We developed algorithms that exploit these charac-
teristics and applied new graph approximation techniques
to large social networks and protein interaction graphs.

We introduced a form of graph clustering designed for
large sparse graphs, specifically scale-free networks, based
on geodesics and the idea of approximation clustering. We
noted that the problem of graph data reduction is dual to the
problem of graph clustering and described how to simplify
graphs by contracting clusters to representative vertices.

Using this new framework, we described a new data struc-
ture called a multilevel mesh that approximates a graph sys-
tem at multiple levels of detail. We showed that these mul-
tilevel structures are useful for visualizing large scale-free
networks, understanding underlying graph patterns, and for
speeding up computations on very large graphs.

7. FUTURE WORK
We developed algorithms for graph data reduction, but

believe that our multilevel data structures could be applied
toward other mining problems on scale-free networks. For
example, we may want to exploit network structure when
classifying graph data, performing visual data mining, or

when looking for graph outliers that exhibit unusual con-
nectivity patterns, which may correspond to terrorist activ-
ity in social networks [10] or fraudulent activity in a finan-
cial transaction graph. Other important problems include
privacy-preserving data mining on social networks and the
study of how such networks grow and change over time.

8. ACKNOWLEDGMENTS
We thank Sariel Har-Peled and Jeff Erickson for useful

discussions. We also thank Mark Newman for the high en-
ergy theoretical physics publication data and Albert-Lázló
Barabási for the protein-protein interaction data set.

9. REFERENCES
[1] A. L. Barabási, R. Albert, H. Jeong, and G. Bianconi.

Power-law distribution of the world wide web. Science, 287,
2000.

[2] B. Bollobás. Random Graphs. Cambridge University Press,
second edition, 2001.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the Seventh
International Conference on World Wide Web 7, pages
107–117. Elsevier Science Publishers B. V., 1998.

[4] P. Domingos and M. Richardson. Mining the network value of
customers. In Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 57–66. ACM Press, 2001.

[5] Z. Drezner and H. W. Hamacher. Facility Location:
Applications and Theory. Springer, 2002.

[6] M. Garland. Multiresolution modeling: Survey & future
opportunities. In State of the Art Report, pages 111–131.
Eurographics, Sept. 1999.

[7] L. Holder, D. Cook, and S. Djoko. Substructure discovery in
the subdue system. In Proceedings of the Workshop on
Knowledge Discovery in Databases, pages 169–180, 1994.

[8] H. Jeong, S. P. Mason, A. L. Barabási, and Z. Oltvai. Lethality
and centrality in protein networks. In Nature, volume 411,
pages 41–42, 2001.

[9] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604–632, 1999.

[10] V. Krebs. Mapping networks of terrorist cells. Connections, 24,
2001.

[11] B. Mirkin. Mathematical Classification and Clustering.
Kluwer Academic Publishers, 1996.

[12] M. E. J. Newman. The structure and function of complex
networks. In SIAM Review, volume 45, pages 167–256, 2003.

[13] M. E. J. Newman. Detecting community structure in networks.
In Eur. Phys. J. B., 2004.

[14] J. O’Madadhain, D. Fisher, S. White, and Y. Boey. The JUNG
(Java Universal Network/Graph) framework. Technical report,
UC Irvine, 2003.

[15] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 61–70. ACM Press, 2002.

[16] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning
for high performance scientific simulations. In CRPC Parallel
Computing Handbook. Morgan Kaufmann, 2000.

[17] T. Washio and H. Motoda. State of the art of graph-based data
mining. SIGKDD Explor. Newsl., 5(1):59–68, 2003.

[18] S. Wasserman and K. Faust. Social network analysis.
Cambridge University Press, Cambridge, 1994.

[19] S. White and P. Smyth. Algorithms for estimating relative
importance in networks. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 266–275. ACM Press, 2003.

[20] X. Yan and J. Han. gSpan: Graph-based substructure pattern
mining. In Proc. 2002 Int. Conf. on Data Mining (ICDM’02),
2002.

[21] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient
data clustering method for very large databases. In ACM
SIGMOD Intl. Conf. on Management of Data, pages 103–114,
June 1996.

