Mining Sequential Patterns

Authors: Rakesh Agrawal and Ramakrishnan Srikant

Presenter: Yunping Wang

Background

- Sequential Pattern Mining was first introduced in 1995
- Sequential Pattern are ordered list of itemsets
- Sequential Pattern Mining Applications: shopping history, weblog mining, DNA sequence modeling, disease treatment, natural disasters, etc.

Introduction

- What is Sequential Pattern Mining?

Definition:

Given a set of sequences, where each sequence consists of a list of elements and each element consists of a set of items, and given a user-specified min support threshold, sequential pattern mining is to find all of the frequent subsequences, i.e., the subsequences whose occurrence frequency in the set of sequences is no less than min support.

Introduction---Definition

- Itemset $i_{1}\left(i_{1} i_{2} \ldots i_{m}\right)$ where i_{j} is an item.
- Sequence $s_{1}\left\langle s_{1} s_{2} \ldots s_{n}\right\rangle$ where s_{j} is an itemset.
- Sequence $\left\langle a_{1} a_{2} \ldots a_{n}\right\rangle$ contained in $\left\langle b_{1} b_{2} \ldots b_{n}\right\rangle$ if there exist integers $i_{1}<i_{2} \ldots$ $<i_{n}$ such that $a_{1} \subseteq b_{i 1}, a_{2} \subseteq b_{i 2}, \ldots, a_{\mathrm{n}} \subseteq b_{i n}$.
- A sequence s is maximal if it is not contained in any other sequence.

Introduction---Definition

ner

Introduction

- Support of a sequence - \% of customers who support the sequence.
- For mining association rules, support was \% of transactions.
- Sequences that have support above minsup are large sequences.
- Key Components of Sequential pattern mining:
- Frequent time-ordered sequential patterns in the database.
- Two conditions: Min Support and Maximal Sequence
- Association rule --- intra-transaction;
- Sequential rule --- inter-transaction

Sequence Pattern Examples

- Examples 1
- 60% of customers typically rent "star wars", then "Empire strikes back", and then "Return of Jedi".
- Note: these rentals need not to be consecutive.
- Example 2
- 60% of customers buy "Fitted Sheet and flat sheet and pillow", followed by "comforter", followed by "drapes and ruffles"
- Note: elements of a sequential pattern need not to be simple items.

MinSupport $=40 \%$, i.e. 2 customers
Answer: $(<30><90>)(C I D 1,4) \quad(<30><40,70>)(C I D 2,4)$
Not Answer: <30> <40><70><90> $(<30><40>)(<30><70>)(<4070>)$ Why?
November 18, 2004
Mining Sequential Pattern

Solution--- Sort Phases(1)

- Customer ID - Major key
- Transaction-time - Minor key

Converts the original transaction database into a database of customer sequences.

Solution--- sort Phases(2)

- Sort Phases

CID: major key, TID: secondary key

Customer ID	TransactionTime	Items
1	1	30
1	2	90
2	1	10,20
2	2	30
2	3	$40,60,70$
3	1	$30,50,70$
4	1	30
4	2	40,70
4	3	90
5	1	90

Solution--- Litemset Phase(1)
Litemset Phase:

- Find all large itemsets.

Why?

- Because each itemset in a large sequence has to be a large itemset.
$\{30\}\{40\}\{70\}\{4070\}\{90\}$
- the support count should be incremented only once per

Solution--- Litemset Phase(2)

- To get all large itemsets we can use the Apriori algorithms.
- Need to modify support counting.
- For sequential patterns, support is measured by fraction of customers.
- Litemset Phase:
- Example: find large itemset

Customer ID	TransactionTime	Items
1	1	30
1	2	90
2	1	10,20
2	2	30
2	3	$40,60,70$
3	1	$30,50,70$
4	1	30
4	2	40,70
4	3	90
5	1	90

Litemset Result:

Difference from Apriori: customer

Solution --- Transform Phase(1)

- Each large itemset is then mapped to a set of contiguous integers.
Why?
Used to compare two large itemsets in constant time.

itemset	Map
$\{30\}$	1
$\{40\}$	2
$\{70\}$	3
$\{4070\}$	4
$\{90\}$	5

[^0]
Solution --- Transform Phase(2)

- Need to repeatedly determine which of a given set of large sequences are contained in a customer sequence.
- Represent transactions as sets of large itemsets.
- Customer sequence now becomes a list of sets of itemsets.

Solution --- Transform Phase(3)

Solution --- Transform Phase (5)

Solution--- Sequence Phase (1)

Solution--- Sequence Phase (2)

Two types of algorithms:

- Count-all: counts all large sequences, including non-maximal sequences.
- AprioriAll
- Count-some: try to avoid counting nonmaximal sequences by counting longer sequences first.
- AprioriSome
- DynamicSome

Solution -- Maximal phase (1)

Solution -- Maximal phase(2)

- Maximal phase example:

The large sequence is <1 $234>$, the sub-sequence $<123><124>$ $<134><135><234>$ need to be deleted from final result.

Large 3 -Sequence	Candidate 4-sequences (after join)	Candiate 4-Sequence (after Pruning)
$<123>$	$<1234>$	$<1234>$
$<124>$	$<1243>$	
$<134>$	$<1345>$	
$<133>$	$<1354>$	
$<234>$		

Algorithm

Algorithm ---Aprioriall algorithm(1)

- AprioriAll
- AprioriSome
- DynamicSome
- AprioriAll Algorithm
C_{k} : Candidate sequence of size k
L_{k} : frequent or large sequence of size k

```
\(L_{1}=\{\) large 1-sequence \(\} ; / /\) result of litemset phase
    for \(\left(k=2 ; L_{k-1}!=\varnothing ; k++\right)\) do begin
        \(C_{k}=\) candidates generated from \(L_{k-1}\)
        for each customer-sequence \(c\) in database do
            Increment the count of all candidates in \(C_{k}\)
            that are contained in \(c\)
        \(L_{k}=\) Candidates in \(C_{k}\) with minimum support
    end
Answer \(=\) Maximal sequences in \(\cup_{k} L_{k}\) i
```


Algorithm ---AprioriAll Algorithm(2)

Highlight:

- Candidate generation similar to candidate generation in finding large itemsets.
- The order matters !

Algorithm ---AprioriAll Algorithm(3)

- Candidate Generation --Join Step:
C_{k} is generated by joining L_{k-1} with itself
Insert into C_{k},
Select p.litemset ${ }_{1}, \ldots$, p.litemset $_{k-1}$, q. litemset $_{k-1}$
From $L_{k-1} p, L_{k-1} q$
Where p.litemset ${ }_{1}=$ q. litemset $_{1}, \ldots$,
p. litemset $\mathrm{t}_{\mathrm{k}-2}=\mathrm{q}$. litemset $_{\mathrm{k}-2}$

For example: $\{1,2,3\} \mathrm{X}\{1,2,4\}=\{1,2,3,4\}$ and $\{1,2,4,3\}$

Algorithm ---AprioriAll Algorithm(5)

- Candidate Generation example:

Large 3-Sequence	Candidate 4-sequences (after join)	Candiate 4-Sequence (after Pruning)
$<123>$	$<1234>$	$<1234>$
$<124>$	$<1243>$	
$<134>$	$<1345>$	
$<134>$	$<1354>$	
$<234>$		

November 18, 2004
Mining Sequential Pattern

- Candidate Generation -Prune Step:

Any ($k-1$)-subsequences of s (length k) that is not frequent cannot be a subsequence of a frequent k-sequence.

Algorithm

- Count-some Algorithms
- AprioriSome, DynamicSome
- Try to avoid counting non-maximal sequences by counting longer sequences first.
- 2 phases:
- Forward Phase - find all large sequences of certain lengths.
- Backward Phase - find all remaining large sequences.

Algorithm---AprioriSome(1)

Algorithm---AprioriSome(2)

- Determines which lengths to count using next() function.
- next() takes in as a parameter the length of the sequence counted in the last pass.
- $\operatorname{next}(\mathrm{k})=\mathrm{k}+1$ - Same as AprioriAll
- Balances tradeoff between:
- Counting non-maximal sequences
- Counting extensions of small candidate sequences

Algorithm---AprioriSome(3)

Algorithm---AprioriSome(4)
Backward Phase:

- For all lengths which we skipped:
- Delete sequences in candidate set which are contained in some large sequence.
- Count remaining candidates and find all sequences with min. support.
- Also delete large sequences found in forward phase which are non-maximal.

Algorithm---DynamicSome(4)

- Divided into 4 phase: initialization, forward, intermediate \& backward phase.
- Use the variable step to decide how to jump.
- Use otf-generate function to generate candidate sequence.

Performance

Performance

Testing Setting:

- $|C|$: Average number of transactions per customer
- |T|: Average number of items per Transaction
- $|\mathrm{S}|$: Average length of maximumal potentially large Sequence
- |I|: Average size of Itemsets in maximal potentiallly large sequences

Name	$\|C\|$	$\|T\|$	$\|S\|$	$\|I\|$	Size (MB)
C10-T5-S4-T1.25	10	5	4	1.25	5.8
C10-T5-S4-I2.5	10	5	4	2.5	6.0
C20-T2.5-S4-I1.25	20	2.5	4	1.25	6.9
C20-T2.5-S8-I1.25	20	2.5	8	1.25	7.8

Parameter settings (Synthetic datasets)

Performance

Advantage of AprioriSome is reduced for 2 reasons:

- DynamicSome generates more candidates.
- Candidates remain memory resident even if skipped over.
- Cannot always follow heuristic.

Conclusion

- Pos:
$>$ Described a new problem Sequential Pattern Mining
$>$ Provided a solution --decomposed the problem into 5 steps to solve it
$>$ In Sequence phase, three algorithm were introduced. AprioriAll, AprioriSome, and DynamicSome
\Rightarrow AprioriALL is the basis of many efficient algorithm developed later

Conclusion

Correlation Literature

- Cons:
- Algorithm limitation:

The solution is not memory efficient, it need to create transform
database which need more disk space.

- R. Agrwal \& R. Srikant, "Mining Sequential Patterns:Generalizations and Performance Improvements "1996
- The limitations of AprioriAll:
- Absence of time constraints
- Rigid definition of a transaction

Question?

[^0]: Litemsets

