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Abstract. A good shopping recommender system can boost sales in a retailer store. To provide accurate recom-

mendation, the recommender needs to accurately predict a customer’s preference, an ability difficult to acquire.

Conventional data mining techniques, such as association rule mining and collaborative filtering, can generally be

applied to this problem, but rarely produce satisfying results due to the skewness and sparsity of transaction data.

In this paper, we report the lessons that we learned in two real-world data mining applications for personalized

shopping recommendation. We learned that extending a collaborative filtering method based on ratings (e.g.,

GroupLens) to perform personalized shopping recommendation is not trivial and that it is not appropriate to apply

association-rule based methods (e.g., the IBM SmartPad system) for large scale prediction of customers’ shopping

preferences. Instead, a probabilistic graphical model can be more effective in handling skewed and sparse data.

By casting collaborative filtering algorithms in a probabilistic framework, we derived HyPAM (Hybrid Poisson

Aspect Modelling), a novel probabilistic graphical model for personalized shopping recommendation. Experi-

mental results show that HyPAM outperforms GroupLens and the IBM method by generating much more accurate

predictions of what items a customer will actually purchase in the unseen test data. The data sets and the results

are made available for download at http://chunnan.iis.sinica.edu.tw/hypam/HyPAM.html.

Keywords: graphical models, user profiles, collaborative filtering, shopping recommendation, transaction

data

1. Introduction

A good shopping recommender system can boost sales in a retailer store by reminding cus-

tomers to purchase additional items not in their original shopping lists. With the most recent

telecommunication technologies, recommendation can be pushed to potential customers via

the Internet as well as all types of mobile and wireless devices. To provide personalized

recommendation requires ability to accurately predict a customer’s shopping preference,

but this is difficult to achieve because usually there are tens of thousands of product items

for tens of thousands of customers and the number of possible preference orderings is huge.

Another challenge lies in the fact that it is intractable to collect and model all factors that

may affect each individual customer’s behavior. On the other hand, the problem is not totally

out of reach. A large chain store can generate millions of transactions everyday. Large sets
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of transaction records are always available for data mining systems to achieve adequate

predictive accuracy for practical use.

In 2001, we had a chance to collaborate with a local retail supermarket to develop a

personalized shopping recommender. After surveying a variety of technologies and avail-

able data, we agreed a specification of the recommender. The specification requires that

for each customer, the recommender should produce a ranked list of items in the order

of his/her preference, given his/her historical shopping record. The goal of this specifica-

tion is to use accurate ranked lists for individual customers to support various marketing

decision making in addition to personalized recommendation. Though we also had cus-

tomers’ demographic data, containing their age, gender, address, income level, etc., we

decided to use historical shopping records only because customers rarely provided correct

data.

Initially, we tried to directly apply an existing data mining technique: association rule min-

ing (Agrawal & Srikant, 1994). Though association rule mining was originally developed

for mining retailer transaction data, very few useful association rules could be discovered

for shopping recommendation. Examining the data revealed that this is because the data set

was extremely skewed and sparse. The data set was skewed in the sense that a large portion

of sales is concentrated in a small number of items. The data set was also very sparse, in the

sense that each customer only purchased a very small subset of the entire set of available

items. This is typical for transaction data in retailer stores. Our collaborator suspected that

this is partly because certain items become highly popular in a short period of time due to

discounts, holidays and other campaign events. We removed the shopping records of those

items from the data set. However, the resulting data set was still skewed and sparse and the

number of discovered association rules was further reduced.

Then we applied a variety of collaborative filtering techniques, which are known to handle

sparse data better. We achieved some preliminary results, but those techniques usually

assume that a database of preference ratings from customers is given. The translation of

transaction data into preference ratings usually depends on unreliable heuristics. To address

the problem at hand, we cast previous work in collaborative filtering in a probabilistic

framework. That allows us to analytically compare different techniques and understand

their underlying assumptions. Based on the results of the analysis, we developed HyPAM

(Hybrid Poisson Aspect Modelling), an approach that learns a probabilistic graphical model

from historical transaction data. Given a customer’s shopping record, the learned model

can predict his/her future shopping preference by estimating the probability that he/she is

interested in a given item without a database of preference ratings.

Meanwhile, we tried several different metrics to empirically evaluate HyPAM and other

recommenders. Again, many metrics for evaluating recommenders, such as absolute devia-

tion, are based on ratings and not applicable to shopping recommendation. We adopted two

metrics, rank score (Breese, Heckerman, & Kadie, 1998) and lift index (Ling & Li, 1998) to

evaluate ranked lists produced by the recommenders. However, rank score favors a ranked

list that predicts one or two items at the top accurately, while lift index favors one with a

better overall predictive accuracy. To remedy this discrepancy, we developed a visualization

method called the rank plot that presents the ranked lists as a scatter plot. With the rank plots,

we can visualize the quality of ranked lists from both global and local perspectives. We report
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the experimental results of HyPAM and two well-known recommendation systems, Grou-

pLens (Resnick et al., 1994) and the recommender in IBM SmartPad system (Lawrence

et al., 2001). We selected to present the results of these two methods because they are

representatives of the collaborative filtering methods and data mining methods, respec-

tively. Results show that HyPAM outperforms GroupLens and the IBM method by a large

margin.

In addition to the data set from our collaborator, we obtained another data set from a

different retailer chain store to ensure that our finding is not a special case in one transaction

data set. Due to the nature of this store, the data set is even more skewed and sparse. We

repeated the experiment with this data set and obtained similar results. We will report both

results together in this paper.

This paper reports the lessons that we learned during the process. We learned that, because

the transaction data sets are extremely skewed and sparse, extending a collaborative filtering

method based on ratings to perform personalized shopping recommendation is not trivial and

that it is not appropriate to apply association-rule based methods for large scale prediction of

customers’ shopping preferences. Instead, a probabilistic graphical model is more effective

for handling skewed and sparse data. This is basically established by our experimental

results which show that HyPAM outperforms the other two recommenders by generating

much more accurate predictions of what items a customer will actually purchase in the

unseen test data. We also provide explanation on why this is the case. The remainder of this

paper reports how we learned this lesson. Section 2 illustrates the skewness and sparsity of

the data sets from two real-world retailer stores. Section 3 reviews previous recommender

systems. Section 4 presents how we cast collaborative filtering algorithms in a probabilistic

framework. Section 5 presents the derivation of the HyPAM model and how to learn such

a model from transaction data. Section 6 reports the experimental results and Section 7

summarizes and reviews the lessons learned.

2. Transaction data

The data sets used in our research are the courtesy of two large local retailer stores, Ta-

Feng and B&Q. Ta-Feng is a membership retailer warehouse that sells a wide range of

merchandise, from food and grocery to office supplies and furniture. The data set contains

shopping records collected in a time span of four months, from November, 2000 to February,

2001. Each record consists of four attributes: the shopping date, customer ID, product

ID, and the amount of purchase. Shopping records with the same customer ID and the

same shopping date are considered as a transaction. There are 119,578 transactions and

32,266 distinguishable customers in this data set. B&Q is a large international DIY home

improvement and garden retailer chain. Our data set is provided by the largest B&Q store

in Taipei. This data set contains the transaction data of the fourth quarter in 2001. The

attributes of this data set are the same as those of Ta-Feng data set. There are totally

1,120,193 transactions and 607,064 customers. Both stores adopt a common commodity

classification standard that consists of a three-level product taxonomy. Products of Ta-Feng

are classified into 201 product classes and 2012 sub-classes, while B&Q has 146 classes

and 577 subclasses. Table 1 summarizes the statistics of the data sets.
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Table 1. Statistics of the data sets for the experiment.

Data Total Total Mean/Median Class/

set transactions customers items per trn. Subclass

Ta-Feng 119,578 32,366 6.83/5 201/2012

B&Q 1,120,193 607,064 4.30/3 146/577
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Figure 1. Data skewness of Ta-Feng (left) and B&Q (right). Items are re-numbered by their order of items sold.

Figure 1 shows the skewness of the items sold in Ta-Feng and in B&Q. The sales figures

are skewed and concentrated on a very small portion of products. This is an example of

“the 80-20 rule” known in business management. The skewness of the data makes it easy

to accurately recommend a popular item but very difficult for a recommender to identify

potential customers for the items in the tail of the curve. Unfortunately, a recommender is

supposed to promote the sales of those items.

The sparsity of the data set is illustrated by the distribution of the number of different

items in each transaction (i.e., the basket size), which is skewed with a long right tail, as

shown in figure 2. The number of transactions declines exponentially with increased number

of items. Both Ta-Feng and B&Q data sets are very sparse. The median and mean of the

items in a transaction of Ta-Feng data set is 5 and 6.83, respectively. Due to the nature of the

merchandise, B&Q data set is sparser than that of Ta-Feng. The median of the number of

items in each transaction is only 3 and the mean is 4.30. In a sparse data set, a large number

of transactions involve only a small number of items, which implies that the information in

each transaction that can be used by a recommender is limited.

3. Review of previous work

Previous work in recommender systems can be classified into two categories: content-

based filtering and collaborative filtering (Goldberg et al., 1992). Content-based filtering

recommends users the items similar to those they like before, while collaborative filtering
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Figure 2. Data sparsity of Ta-Feng (left) and B&Q (right): items per transactions.

utilizes large transaction data sets to reveal the similarity that associates users and items to

predict their preference toward a given item. When product information is easy to obtain and

contains comparable features (i.e., for book stores or video rentals), content-based filtering

can achieve useful results. But in the domain of shopping recommendation, products are

usually heterogeneous and incomparable. In contrast, a large amount of transaction data is

available for shopping recommendation and hence collaborative filtering is deemed more

suitable.

Collaborative filtering can then be further classified into memory-based and model-

based (Breese, Heckerman, & Kadie, 1998). In memory-based approaches, the whole

transaction database is used in recommendation. No abstract model is derived from the

database. For example, GroupLens (Resnick et al., 1994) and Ringo (Shardanand & Maes,

1995) predict a customer’s preference for an item by calculating weighted average of other

customers’ numerical ratings for the same item. In model-based approaches, models are

learned from the database in advance and are queried subsequently for recommendations

(see e.g., Billsus & Pazzani, 1998; Breese Heckerman, & Kadie, 1998; Cadez, Smyth, &

Mannila, 2001; Hofmann, 1999; Popescul et al., 2001).

Although collaborative filtering can be generally applied to shopping recommendation,

most of previous methods are based on ratings from customers. But in shopping recommen-

dation, there is no explicit rating (Breese, Heckerman, & Kadie, 1998) in the transaction

records and we need to transform them into ratings heuristically. The resulting records are

referred to as implicit ratings (Breese, Heckerman, & Kadie, 1998). Pennock, Horvitz, and

Giles (2000) show an example of such transformation.

More recently, many data mining approaches to shopping recommendation have been

published. One prevailing method is to mine association rules (Agrawal & Srikant, 1994)

of products and then used the mined rules for recommendation (Brijs et al., 2000; Lawrence

et al., 2001). However, since retail transaction databases are usually extremely skewed and

sparse, association rule mining may not be appropriate for the problem of predicting cus-

tomer behavior at the individual level (Apte et al., 2002; Cadez, Smyth, & Mannila, 2001).

To address the limitation of association rules, Cadez, Smyth, and Mannila (2001) pro-

posed an alternative probabilistic approach called predictive profiling. Predictive profiling
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is a mixture model based on a linear combination of simple probabilistic models. Un-

like predictive profiling, HyPAM models complex relationships within and between cus-

tomers and products in a graphical model and therefore can predict heterogeneous customer

preferences.

4. Collaborative filtering in a probabilistic framework

In this section, we cast previous work in collaborative filtering in a probabilistic framework,

which allows us to understand the underlying assumptions made by different collaborative

filtering algorithms and how well these assumptions match the skew and sparse distribu-

tions of the transaction data. From a probabilistic viewpoint, we can compare different

recommenders so that we can derive a better probabilistic model for personalized shopping

recommendation. Meanwhile, we also formally define the problem of recommendation

based on ratings, the shopping recommendation problem, and the notations to be used

throughout the paper.

4.1. Recommendation based on ratings

Suppose we have a set of I customers (or users), u1, . . . , u I , and a set of J items, m1, . . . , m J .

The items could be products or product classes. In the problem of recommendation based

on ratings, we have a database of three-tuples (u, m, r ) representing that r is the rat-

ing of item m by user u. Note that usually a user only rates a very small portion of all

items.

4.1.1. The basic model. Let U , R j , and A be the random variables representing a user, a

rating to item m j , and a type of relation that associates U and R j , respectively. Then we

can model this problem as a probabilistic graphical model as shown in figure 3, where we

have two probabilistically equivalent graphs for the model. An intuitive interpretation of

the model is that the relation type A influences the distributions of user U and rating R j

(see the second graph in figure 3). If A is a latent variable, this simple model is equivalent

to the aspect model (Hofmann, 1999), which has a multinomial latent variable to model

the relationships between a customer and his/her rating of an item. The idea is that the

distributions of the customers and their ratings are governed by a small number of typical

preference patterns represented by a latent aspect class, which is the value of A. Since

the preference patterns are probabilistic, the aspect model maintains the flexibility that a

different preference pattern may apply to a customer when he/she chooses to purchase an

item in different situations. For example, shopping for daily groceries is one situation and

Figure 3. Basic model of collaborative filtering for recommendation based on ratings.
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preparing a party is another. Popescul et al. (2001) extends the aspect model to incorporate

content information (i.e., keywords) for a paper recommendation application.

To predict the rating of ui for m j , we use the model to estimate the distribution P(R j | ui ):

P(R j = k | ui ) =
∑

A

P(R j = k | A)P(A | ui ). (1)

The predictive rating pi j can be determined by:

pi j = arg max
k

P(R j = k | ui ), (2)

where R j is an integer in an interval. When R j can be a real, we use

pi j = EP(R j |ui )(R j ). (3)

By specifying how to estimate P(R j | A) and P(A | ui ), we can reformulate a collaborative

filtering method as an instance of the above basic model. In the remainder of this subsection,

we will cast two well-known collaborative filtering algorithms in a unified probabilistic

framework by reformulating them as an instance of this basic model.

4.1.2. GroupLens. In addition to the aspect model, we review two other well-known

collaborative filtering methods via our framework. Consider GroupLens (Resnick et al.,

1994), which predicts pi j by calculating the weighted average ratings from other users. In

spite of its simplicity, GroupLens is proved to perform consistently well for a wide range

of data sets in experimental studies (Breese, Heckerman, & Kadie, 1998).

Let ri j be the known absolute rating of ui to m j . In GroupLens, absolute ratings have to

be transformed into relative ratings:

r̃i j = ri j −
1

|M i |

∑

j ′∈M i

ri j ′ ,

where r̃i j denotes the relative rating that ui gives to m j , and M i the set of the indices of the

rated items.

The predictive relative rating p̃i j is calculated by the following equation:

p̃i j = κ
∑

i ′∈U j

σi i ′ r̃i ′ j

where κ is a normalizing factor and U j is the set of the indices of the users who have rated

m j and σi i ′ is the similarity between ui and ui ′ :

σi i ′ =

∑

j r̃i j r̃i ′ j
√

∑

j r̃2
i j

∑

j r̃2
i ′ j
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To cast GroupLens in the basic model, we treat R j as the predictive relative rating p̃i j ,

and A as the users in U j . Then GroupLens is an instance of the basic model with the

distributions defined by:

P(A = ui ′ | U = ui ) = κ|σi i ′ |,

and

P(R j | A = ui ′ ) =

{

1: if R j = r̃i ′ j ·
σi i ′

|σi i ′ |

0: otherwise

Since P(A = ui ′ | U = ui ) cannot be negative, we use
σi i ′

|σi i ′ |
to handle the negative correlation

in GroupLens. At last, p̃i j can be obtained by Eq. (3).

4.1.3. Personality diagnosis. Another approach considered here is personality diagnosis

(PD) by Pennock, Horvitz, and Giles (2000). They already gave a probabilistic interpretation

of PD as a Naive Bayes network. PD and GroupLens differ in the following aspects. First,

PD uses absolute ratings and Eq. (2) to make the final prediction. Second, σi i ′ is calculated

purely based on probability. Third, even if ui has rated m j , the information is assumed to

be noisy.

Figure 4 shows PD by extending the basic model. Variable U is treated as user clusters,

although every user forms a cluster in PD. To estimate P(R j | ui ), we use the ratings that

ui has given:

P(R j | ui ) =
∑

i ′

P(U = ui ′ | ui )P(R j | U = ui ′ ) (4)

=
∑

i ′

P(ui ′ | ri1, . . . , ri J )
︸ ︷︷ ︸

(A)

P(R j | ui ′ )
︸ ︷︷ ︸

(B)

. (5)

Figure 4. Extended basic model for PD.
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The basic model (i.e., (B) in Eq. (5)) is extended by adding a cluster model in (A). The

model becomes a Naive Bayes network if we intentionally make node A redundant:

P(A = ui ′ | U = ui ) =

{
1: if i ′ = i

0: otherwise
(6)

Then, the network behaves as if R j is connected with U . This completes our casting of PD

as an extension of our basic model.

4.2. Shopping recommendation

In shopping recommendation, our goal is to predict the relative preference of ui among items

m j . Let M be the random variable representing a preferred item. We can model shopping

recommendation with a model as shown in figure 5. This model is almost identical as the

basic model for recommendation based on ratings except that we need one model for each

R j , the rating for item m j , while the model in figure 5 is for all items.

To estimate the preferences of ui , we calculate P(M | ui ), the probabilities that ui likes

each item:

P(M = m j | ui ) =
∑

A

P(M = m j | A)P(A | ui ). (7)

The relative preferences are consequently determined by sorting the probabilities in descend-

ing order. Hence, a shopping recommender can be defined by P(M | A) and P(A | ui ).

Consider the recommender of IBM SmartPad system (Lawrence et al., 2001), which

will be referred to as the IBM method. We can cast the IBM method as an instance of

our basic model as follows. A three-layer product taxonomy is given as the input. For

example, products “7-up six-pack” and “Pepsi six-pack” may be classified in subclass

“soda” and “soda” is classified in class “beverage.” Suppose there are C subclasses in

the input taxonomy, denoted by g1, . . . , gC . Customer ui is described as vector ui with

C elements such that the c-th element in ui is the normalized spending of ui on product

subclass gc. Product m j is described as vector m j , also with C elements, such that the c-th

element is the degree of the association between g j and gc, where g j is the subclass to

which m j belongs. The degree of the association is then determined by a heuristic based on

whether there exists an association rule between gc and g j . The degree takes values from

1, 0.5, 0.25, and 0. Association rules between product subclasses must be mined from the

transaction data in advance.

Figure 5. Basic model of collaborative filtering for shopping recommendation.
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Given ui and m j , the relative preference si j of ui to m j can be estimated by the cosine

of the angle between ui and m j :

si j = ρ j

ui · m j

‖ui‖‖m j‖
, (8)

where ρ j is a constant indicating how much the store wants to recommend m j to its cus-

tomers. If we set ρ j to be the profit margin of m j , Eq. (8) is equivalent to recommending

products with high expected profit margins.

The probabilistic interpretation of ui and m j is as follows. Let P(gc | ui ) be the probability

that ui prefers gc. ui can be regarded as [P(g1 | ui ), . . . , P(gC | ui )]
T , and P(gc | ui ) is

estimated by the normalized spending on gc. Note that the two-step normalization process

in the IBM method does not guarantee that the elements in ui always sum to one. We can

normalize ui again to satisfy this restriction without affecting Eq. (8). Similarly, we can

also normalize m j and treat it as the vector [P(g1 | m j ), . . . , P(gC | m j )]
T , where P(gc | m j )

denotes the probability that a customer prefers gc given that he/she prefers m j .

To cast the IBM method in our basic model, let variable A stand for a subclass that takes

values from g1 to gC . Then we have:

P(m j | ui ) =
∑

c

P(A = gc | ui )P(m j | A = gc) (9)

∝
∑

c

P(A = gc | ui )P(A = gc | m j ), (10)

where P(A = gc | ui ) and P(A = gc | m j ) can be looked up in ui and m j . Rewriting (9) to

(10) is justified by assuming a uniform distribution of gc, which implies that P(gc | m j ) is

proportional to P(m j | gc). Obviously, this assumption implicitly made by the IBM method

is not valid because subclass preference is very skewed and far from uniform.

4.3. Discussion

We have reviewed four well-known collaborative filtering recommenders: the aspect model

(Hofmann, 1999), GroupLens (Resnick et al., 1994), PD (Pennock, Horvitz, and Giles,

2000) and the IBM method (Lawrence et al., 2001) from a probabilistic viewpoint.

Previously, an algorithmic framework for collaborative filtering has been proposed in

the work of Herlocker et al. (1999) for similarity-based approaches, but no probabilistic

framework has been proposed. From this review, we conclude that, regardless whether they

are based on ratings or for shopping recommendation, basically, these recommenders can all

be cast as instances of the three-node probabilistic graphical model as depicted in figures 3

and 5. An exception is PD, for which we need to extend our basic model with a naive Bayes

cluster model to model user groups.

The conclusion implies that the difference among these recommenders is how they es-

timate the parameter probabilities. How these recommenders treat the relation type, rep-

resented by node A in the middle of the model, plays an important role in differentiating

them. The aspect model treats A as a latent variable and learns the probabilities using the
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EM algorithm (Dempster, Laird, & Rubin, 1977). GroupLens uses correlation and treats A

as the group of the users who have rated a given item. PD uses a cluster model to model

user groups, but A plays no role in recommendation. The IBM method also uses correlation

and treats A as given (i.e., subclasses). Among them only the IBM method is designed for

shopping recommendation.

Different treatments of A not only affect the predictive accuracies but also the time

required to use a recommender. The more the possible states that A has, the longer the

required time. Therefore, GroupLens and the IBM methods may spend relatively longer

time to generate recommendations.

5. Hybrid Poisson Aspect Model

Based on our comparative review of collaborative filtering, we derive a new model called

HyPAM (Hybrid Poisson Aspect Model), a probabilistic model for shopping recommenda-

tion. This section describes how to provide recommendation and how to learn the parameters

from transaction data for HyPAM.

5.1. Model specification

HyPAM applies the cluster model to cluster customers and the aspect model to model

the relationships between customer clusters and products. Figure 6 shows the graphical

representation of HyPAM. In the dotted box is the cluster model and in the dashed box the

aspect model. This model is similar to the PD model of collaborative filtering in figure 4.

Unlike PD, in HyPAM, A is a latent variable as in the aspect model and M represents the

relative preference rather than the rating.

5.1.1. Cluster model. A customer is represented by a set of F random variables (X1, . . . ,

X F ) where X f represents the event that the customer has purchased X f units of the f -th

item in a given period of time T . T can be a basket, holidays, a long weekend, a quarter,

etc., depending on the recommendation application at hand. The items considered here can

be a product or a set of products. In our application in retailer stores, an item represents a

subclass in a three-layer taxonomy as in the IBM method.

Figure 6. Graphical representation of HyPAM.
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The cluster model partitions the customers into L clusters. U c represents a customer

cluster with value uc
l denoting the event that the customer is in the l-th cluster. The cluster

model provides generalization that allows HyPAM to recommend a new customer items

that he/she never purchased.

Each cluster determines the distribution P(X f | uc
l ), which is modeled by the Poisson

distribution. That is,

P
(

X f

∣
∣ uc

l

)

= P(X f | λl f ) = e−λl f
(λl f )X f

X f !
, (11)

where λl f is the only parameter for the Poisson distribution. Note that λl f is also the

expectation as well as the variance. Therefore, λl f can be interpreted as the expected number

that the f -th item has been purchased given that the customer belongs to cluster uc
l . Hence,

each cluster uc
l can be described by (λl1, . . . , λl F ). We can also regard uc

l as a typical

customer who has bought λl f units of item f .

Now we describe how to estimate P(ui | uc
l ), the probability that customer ui belongs to

cluster uc
l . Recall that (xi1, . . . , xi F ) represents a customer ui . Since the model assumes that

X1, . . . X f are conditionally independent given U c (i.e., the “naive Bayes” assumption), we

have

P
(

ui

∣
∣ uc

l

)

=

F∏

f =1

P
(

X f = xi f

∣
∣ uc

l

)

. (12)

Here, xi f = 0 if ui has never purchased item f . As a result, it may appear to the model that the

customer is uninterested in f , but this is seldom the case. More often this is simply because

the customer has not noticed this item. A good recommender is supposed to recommend

such item if there is evidence showing the potential to match the customer with the item.

This is critical for a recommender to handle skewed transaction databases. Therefore, we

treat the case xi f = 0 as if we have not observed that ui purchases item f . This is realized

by replacing Eq. (12) by:

P
(

ui

∣
∣ uc

l

)

=
∏

{ f |xi f �=0}

P
(

X f = xi f

∣
∣ uc

l

)

. (13)

5.1.2. Aspect model. The aspect model partitions the co-occurrence data over U c × M

into K aspects, denoted by a1, . . . , aK . The aspect model is similar to (Hofmann, 1999)

but we have customer clusters instead of individual customers to relate to an item to be

recommended. Section 4.1.1 describes the aspect model in details.

5.2. Training HyPAM

We apply the Expectation Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977)

to learn the parameters of HyPAM because HyPAM contains two hidden nodes, U c and A.

Figure 7 shows all the parameters for HyPAM.
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Figure 7. HyPAM and its parameters.

Let D be the training data set extracted from the transaction database, and d1, . . . , d N be

the instances in D. Each dn must have the form (xn, mn)1≤n≤N , where N is the number of

total transactions and mn is the item. xn = (xn
1 , . . . , xn

F ) indicates that customer un bought

item 1 to item F during the data collection period, and the value of xn
i represents the amount

of purchases.

To apply the EM algorithm, suppose that we have a data set Z that contains complete

training data with all the hidden values for the latent variables of HyPAM. That is, each

instance in Z is of the form zn = {dn, an, ucn}, for n = 1, . . . , N . The EM algorithm consists

of two steps: E-step computes the distributions for an and ucn and M-step re-estimate new

parameters for HyPAM. Appendix gives the detailed derivation of the EM algorithm for

training HyPAM.

5.3. Using the Hybrid Poisson Aspect Model

5.3.1. Recommendation. With the trained HyPAM model, we can solve the personalized

shopping recommendation problem by estimating the preferences of the items for a given

customer u, represented by his/her historical shopping list (x1, . . . , xF ). More precisely, we

can provide a ranked list of items m j to u, ordered by probability P(m j | u), the preference

of u toward item m j . P(m j | u) can be easily estimated from the trained HyPAM model:

P(m j | u) ∝ P(m j , u)

=

K∑

k=1

L∑

l=1

P(ak)P(m j | ak)P
(

uc
l

∣
∣ ak

)

P
(

u
∣
∣ uc

l

)

=

K∑

k=1

L∑

l=1

[

P(ak)P(m j | ak)P
(

uc
l

∣
∣ ak

)

∏

{ f | x f �=0}

P
(

X f = x f

∣
∣ uc

l

)]

. (14)
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5.3.2. Supporting marketing decision making. In addition to recommendation, we can

query the HyPAM model to forecast customers’ preference to support marketing decision

making. Here are some examples:

– What is the distribution of the user clusters?

P
(

uc
l

)

=

K∑

k=1

P
(

uc
l

∣
∣ ak

)

P(ak)

– What are the most popular items?

arg max
j

P(m j ) = arg max
j

K∑

k=1

P(m j | ak)P(ak)

– What are the most popular items in cluster uc
l ?

arg max
j

P
(

m j

∣
∣ uc

l

)

= arg max
j

P
(

m j , uc
l

)

P
(

uc
l

)

= arg max
j

∑K
k=1 P(ak)P(m j | ak)P

(

uc
l

∣
∣ ak

)

∑K
k=1 P(ak)P

(

uc
l

∣
∣ ak

)

6. Experimental evaluation

In this section, we report our experimental evaluation of HyPAM and two well-known

recommenders, GroupLens and the IBM method, with real-world large transaction data

sets from two different retailer stores described in Section 2.

6.1. Evaluation methodology

Given the historical shopping list of a customer, the recommenders are supposed to output

a ranked list of items, sorted by the predicted preference, for the customer. We apply the

Given n and All but one protocols as explained below to divide the historical shopping

lists as the input to the recommenders. We then apply two widely applied metrics, rank

score and lift index, to evaluate the performance of the recommenders in this experiment.

These two metrics measure the quality of a given ranked list against a list of items that the

customer actually purchased. Other metrics such as log-likelihood used in Cadez, Smyth,

and Mannila (2001) is not applied here because of their inability to measure the quality of

a ranked list. This subsection describes the metrics and protocols.
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6.1.1. Protocols. In our experiment, we divide the customers into a training set and a test

set. The transaction data of the customers in the training set is used to train the recommenders.

Each trained recommender then generates a ranked list for each customer in the test set

according to the customer’s shopping list.

For each target customer in the test set, we apply two types of protocols to divide his/her

shopping list into a given set and a test set of items to simulate situations with differing

numbers of purchases available to the recommenders (Breese, Heckerman, & Kadie, 1998).

In the first protocol, we withhold a randomly selected purchase for each target customer and

the remainders are treated as given. Next we can evaluate how accurate the recommender is

by how the recommender ranks the withheld item. This protocol is called All but one. We

can also randomly preserve 2, 5, or 10 purchases from the shopping list as given and see if

the recommender can accurately predict the remainder in the ranked list. These are referred

to as Given 2, Given 5, and Given 10 protocols.

The All but one protocol measures the performance of the algorithms when given as much

information as possible about a target customer. The various Given n protocols examine

the performance of the recommenders when we only know a small number of purchases

of a customer. Note that in the cases applying Given n protocol, only those customers with

more than n purchases will be selected to the test set.

6.1.2. Rank score. Breese, Heckerman, and Kadie, originally for a Web page recom-

mendation application, define the expect utility of a ranked list of items for a customer

as:

Ri =
∑

j

δ(i, j)

2( j−1)/α
,

where j is the rank of an item in the ranked list generated by the recommender, δ(i, j) is

1 if user i accessed item j in the test set and 0 otherwise, and α is the viewing half-life,

which is the rank of an item such that it has a 50% chance of being viewed or purchased.

We use a constant α = 10 in our experiment. We can normalize the utilities with Rmax
i , the

maximum possible utility obtained when all items that user i has accessed appear at the top

of the ranked list:

R′
i =

Ri

Rmax
i

.

Note that if the recommender considers that the customer has the same preference for more

than one items, then these items will have the same rank in the ranked list.

6.1.3. Lift index. Another evaluation metric is lift index (Ling & Li, 1998). After the

recommender generates the ranked list, we divide the list into ten equal deciles, and see

how the items accessed by the user in the test data set distribute in the ten deciles. Clearly,

the more items appear in the top deciles, the better this ranked list is. Note that in different

protocols, a different number of items will be withheld and the withheld items are not in the
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ranked list. As a result, the lengths of rank lists for different users or different protocols are

different and items with the same rank in different ranked list may be in different deciles.

The lift index is defined as the weighted sum of the number of accessed items that

appear in the ten deciles. In our work, an accessed item means a purchased product. Let

S1, S2, . . . , S10 be the number of the accessed items in each decile (ordered). The lift index

is defined by

Slift =
1 × S1 + 0.9 × S2 + · · · + 0.1 × S10

∑10
i=1 Si

.

6.2. Comparison

This subsection reports the experimental results of three recommenders, GroupLens, the

IBM method, and HyPAM. For each data set and each protocol, we randomly selected

15,000 customers from both data sets to train the recommenders and a disjoint set of 1,000

customers as the test set. The performance is then evaluated by the two metrics under

different protocols.

6.2.1. Preprocessing. To train the recommenders, we converted the records in the trans-

action databases into the form ((xn
1 , . . . , xn

F ), mn)1≤n≤N as specified in Section 5.2. In this

case, we have F = 2, 012 subclasses for Ta-Feng data set and 577 for B&Q, respectively

(see Table 1). This data preprocessing step can be accomplished using some simple SQL

commands to the transaction database.

HyPAM is tested with four combinations of the possible states L and K for its latent vari-

ables U c, the customer clusters, and A, the aspects. We use Ll Kk to denote a combination.

For example, L20 K10 denotes a HyPAM model using 20 clusters and 10 aspects.

Since GroupLens is originally designed for recommendation based on ratings, we assume

that the more a customer buys the products in a subclass, the more he/she likes it. However,

if the products in a subclass has never been bought, we regard the subclass as unrated. For

others, their ratings are obtained from the transaction data, ranging from 1 to 10. Our rule

is: if a customer purchases r products in the same subclass, the rating is r for 0 < r ≤ 10

and 10 if r exceeds ten. The rule is determined heuristically by observing the transaction

data where the amount of purchases in a subclass is usually less than ten. The IBM method

requires association rules mined from the data sets in advance. The support and confidence

thresholds (Agrawal & Srikant, 1994) for Ta-Feng data set are 50 and 0.2, respectively and

for B&Q data set are 25 and 0.1, respectively. The thresholds were selected empirically

such that a sufficient but not exceedingly large set of association rules can be mined from

the data sets.

We also report the results of “the default method,” which always recommends the best

selling items to all customers. More precisely, the default method always generates a ranked

list that is actually a list of items ordered by their historical records of the items sold. As

the transaction data sets are very skewed, as shown in figure 1, it is likely that a customer

will purchase many items at the top of the list. Therefore, the performance of the default

method can serve as the baseline of a personalized shopping recommender.
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Table 2. Experimental result—Ta-Feng data set.

Algorithms Given 2 Given 5 Given 10 All but 1

(a) Rank score, Training set size: 15000, Test set size: 1000

GroupLens 0.0284 0.0295 0.0302 0.0240

IBM 0.0984 0.0985 0.0802 0.0715

Default 0.2567 0.2406 0.2272 0.1937

L10 K10 0.2637 0.2467 0.2352 0.2958

L10 K20 0.2637 0.2470 0.2354 0.2939

L20 K10 0.2637 0.2467 0.2355 0.2949

L20 K20 0.2635 0.2467 0.2351 0.2981

(b) Lift index, Training set size: 15000, Test set size: 1000

GroupLens 0.8590 0.8392 0.8239 0.8726

IBM 0.5056 0.6658 0.6804 0.7297

Default 0.9353 0.9253 0.9173 0.9442

L10 K10 0.9355 0.9261 0.9177 0.9886

L10 K20 0.9355 0.9260 0.9176 0.9884

L20 K10 0.9356 0.9260 0.9178 0.9884

L20 K20 0.9356 0.9261 0.9178 0.9884

6.2.2. The results. Table 2 shows the experimental results of rank scores and lift index

scores for Ta-Feng data set. HyPAM outperforms the other two recommenders significantly

in all combinations of experimental setting by a large margin. Table 3 shows the results for

B&Q data set. HyPAM also outperforms the other two recommenders by a large margin.

The sparsity of B&Q data set affects performance especially for GroupLens and the IBM

method. It is not surprising that the default method performs well because of the skewness

of the data set. HyPAM is the only recommender in this experiment that can outperform

the default method. This shows that HyPAM not only recommends popular items but also

identifies potential customers of unpopular items.

In the results for B&Q, the rank scores of HyPAM with All but one protocol are signif-

icantly lower than that for Given n. This may be due to the fact that in the cases applying

Given n protocol, only those customers with more than n purchases are selected to the

test set. Since for B&Q the average purchasing is very low (=5.26), the test set of All but

one protocol contains many customers who purchased only two items, while the customers

in the test sets for Given n purchased at least three items. The short shopping lists also

affect the default method. Also remarkable is that the lift index scores of IBM are very

low because not many association rules between subclasses can be found in B&Q data set.

Consequently, many items are predicted as impossible to buy. We have assigned low support

and confidence thresholds for this data set but without much improvement.

Both rank scores and lift index scores are not sensitive to the number of clusters and

aspects of HyPAM, with almost identical results for all combinations. Experiments with a

wider range of combinations may be required to determine their impact.
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6.2.3. Rank plots. The IBM method achieves better rank scores but worse lift index scores

than GroupLens. Examining the ranked lists by the different methods reveals that the IBM

method can hit one or two items higher than the best hit by GroupLens but rank other items

at low deciles. To remedy this discrepancy, we proposed a new visualization method called

rank plots to visually compare the ranked lists as scatter plots. Figure 8 shows the rank

plots of the experimental results described in this section. Each actual purchase (i.e., hit) is

presented by a spot at its position in the ranked list. The x-axis represents customer ID and the

y-axis represents rank. The more the spots concentrate at the top, the better the ranked lists.

We also colored the spots at the top twenty red, the next forty orange, etc., to indicate which

intervals they are in. The colored rank plots for all experimental results are available on the

World Wide Web: http://chunnan.iis.sinica.edu.tw/hypam/visualization/.

As we can see, most of actually purchased items are ranked in top ten percent of all

items by HyPAM, but their rankings by the other two recommenders spread all over the

plots. Scatter plots for the experiments under other protocols look similar to these ones.

To sum up, the rank plots clearly reveal the superiority of HyPAM over the other two

recommenders.

6.2.4. Miscellanies. Table 4 shows the ranked lists for two randomly picked customers

of Ta-Feng and B&Q, respectively. The hit positions of the test items, that is, the actual

purchases, are provided. The first example is the ranked lists by three recommenders for a

customer in Ta-Feng data set. This customer has purchased nine items. The example shows

Table 3. Experimental result—B&Q data set.

Algorithm Given 2 Given 5 Given 10 All but 1

(a) Rank score, Training set size: 15000, Test set size: 1000

GroupLens 0.0162 0.0147 0.0150 0.0123

IBM 0.0708 0.0914 0.0905 0.1007

Default 0.2147 0.2245 0.2413 0.1840

L10 K10 0.2503 0.2551 0.2697 0.1882

L10 K20 0.2502 0.2548 0.2694 0.1882

L20 K10 0.2501 0.2545 0.2691 0.1885

L20 K20 0.2503 0.2547 0.2695 0.1881

(b) Lift index, Training set size: 15000, Test set size: 1000

GroupLens 0.7438 0.7482 0.7479 0.7220

IBM 0.1874 0.2557 0.3376 0.2843

Default 0.8804 0.8869 0.8784 0.8811

L10 K10 0.8953 0.9002 0.8916 0.8894

L10 K20 0.8954 0.9004 0.8916 0.8896

L20 K10 0.8957 0.9005 0.8920 0.8894

L20 K20 0.8956 0.9005 0.8918 0.8892
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the results of Given 5 protocol. The second example is the Given 2 results for B&Q data set.

In this case, the IBM method suffered from sparse data, and thus, failed to rank five items.

GroupLens also failed to rank one item because no other customer who has purchased this

item also purchased any withheld one in this case. In contrast, HyPAM provided better

ranked lists, even for the items not ranked by other two methods.

In terms of the computational cost, Table 5 reports the time spent for training and testing

by the recommenders for both data sets. The training time of HyPAM differs according to
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Figure 8. Rank plots of HyPAM L10 K10 (left), GroupLens (center) and IBM (right) for Ta-Feng data set (upper

two rows) and B&Q data set (bottom two rows) under protocols Given 2 (first and third rows) and All-but-one

(second and fourth rows).
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Table 4. Examples of ranked lists for individuals.

Item GroupLens IBM L10 K10

(a) Data set: Ta-Feng, Customer: 000xxxx69, Total Buy: 9, Protocol: Given 5: chewing gum, cookies,

nori(dry seaweed), candy and salad oil

Rice 105 1029 7

Soybean source 238 708 17

Sweet rice balls 47 922 26

Gourmet gift set 294 983 252

Rank Score 0.012 1.44e-22 0.32

Lift Index 0.9 0.6 0.95

(b) Data set: B&Q, Customer: A10xxxxx38, Total Buy: 8, Protocol: Given 2: exterior paint and filler/putty

Paint brushes 110 12 4

Tap/pipe repair accessory 179 n/a 11

Insect repellant 227 n/a 70

Compost 262 n/a 82

Hammer 221 n/a 130

Outdoor furniture accessory n/a n/a 401

Rank Score 0.0001 0.09 0.26

Lift Index 0.62 0.25 0.85

Table 5. Training and testing time.

Data set GroupLens IBM HyPAM

Training Ta-Feng 0 20 min 15–40 min

B&Q 0 40 min 5–10 min

Testing Ta-Feng 2.5 sec 3.0 sec 0.3 sec

B&Q 0.3 sec 0.5 sec 0.08 sec

the possible states of the latent variables. It takes less time to train a L10 K10 HyPAM but

more for L20 K20. The IBM method can be trained in about 30 minutes including the time

spent for association rule mining. GroupLens is a memory-based method that requires no

training. However, both GroupLens and the IBM method require more time to generate a

ranked list for a customer while it takes less than 0.3 second for HyPAM. This is because

implicitly, both GroupLens and the IBM method have a large number of possible states

for their latent variables, as discussed in Section 4.3. The experiment was performed on

a Pentium 600 MHz notebook PC with 192 MB of memory. We have tried our best to

optimize our implementation of these recommenders, but room for improvement is always

there.



MINING SKEWED AND SPARSE TRANSACTION DATA 55

7. Lessons learned

In this paper, we reported our experience in data mining skewed and sparse transaction data

sets to predict individual customers’ shopping preferences for two large retailer stores. We

learned from our experiments that the collaborative filtering methods such as GroupLens

and the association-rule based method such as the IBM method can generally be applied

to this problem but rarely produce satisfying results. They perform worse than the default

method that simply uses the list of best selling items as its prediction. We also learned the

lessons from the implicit assumptions made by GroupLens and the IBM method. These

assumptions are revealed when we cast them in a probabilistic framework. The lessons led

us to derive HyPAM, a probabilistic graphical model to address the issues of data skewness

and sparsity.

We summarize the lessons learned as follows.

– GroupLens:

• GroupLens recommends items based on ratings that can distinguish whether a user’s

preference toward an item is high, low or unknown. However, this is not readily

available in transaction data and translating the transactions to “implicit” ratings is

rarely fruitful.

• In the probabilistic model of GroupLens, node A represents the group of the users

who purchased or rated the item for which we intend to predict a user’s preference.

Due to data skewness, this group may not be sufficiently large for most items and

could be empty in many cases. Also, node A has as many possible states as the

number of items, slowing down the efficiency of prediction (see Section 4.3 and

6.2.4).

– IBM SmartPad:

• The IBM method depends on association rules but we can hardly mine sufficient

association rules from a sparse data set and the mined rules are mostly among a small

portion of popular items due to the skewness of the data (see Section 6.2.1).

• The IBM method divides the degree of association into four values and thus provides

limited generalization. As a result, the IBM method considers a large number of items

as impossible to buy for many customers (see Section 4.2).

• The IBM method implicitly assumes that customers’ preferences for different sub-

classes of items are uniformly distributed, which is not valid for skewed transaction

data (see Eq. (10)).

– HyPAM:

• HyPAM combines the cluster model and the aspect model to provide generalization

that allows HyPAM to recommend a new customer items that he/she never purchases

(see figure 6).

• HyPAM uses the Poisson distribution to model P(X f | uc
l ), the distribution of the

purchases for an item given a customer cluster (see Eq. (11)). The Poisson distribution
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is an appropriate choice because shopping behavior of an individual customer appears

to be governed by a Poisson process. In fact, the Poisson distribution has been applied to

model shopping behavior in marketing research for years (see, e.g., Wedel & Kamakura,

1999).

• To deal with data sparsity, instead of modelling items never purchased as uninterest,

HyPAM models those items as “unseen” (see Eq. (13)). As a result, it is less likely that

HyPAM will consider an item as impossible to buy and a small set of purchase records

can be sufficient for HyPAM to identify potential customers.

– Evaluation:

• We found that widely applied metrics for recommenders rank scores and lift index

may produce discrepant results and proposed to use rank plots to visually evaluate

performance of recommenders (see Section 6.2.3).

The ultimate metric of a recommender is whether it can boost sales. Ability to accurately

predict customers’ preference is critical for achieving the goal, but a well-crafted campaign

strategy with the recommender is also critical. It is also unknown that how accurate a

recommender must achieve is sufficient for practical use. These questions remain to be

answered by close collaboration between data mining and marketing teams.

Appendix

This appendix presents the detailed derivation of the EM algorithm for training HyPAM.

Refer to Section 5.2 and figure 7 for the notation.

– E-step: Let � be the current parameter set, and �′ the set for the next iteration. E-

step is to compute the probability P(an = ak, ucn = ul | xn, mn; �). Let P� denote the

distributions based on �. We have

P
(

an = ak, ucn = uc
l

∣
∣ xn, mn; �

)

=
P�(ak, ul , xn, mn)

P�(xn, mn)

=
P�(ak)P�

(

uc
l

∣
∣ ak

)

P�(mn | ak)P�(xn | ul)
∑K

k ′=1

∑L
l ′=1 P�(ak ′ )P�

(

uc
l ′

∣
∣ ak ′

)

P�(mn | ak ′ )P�(xn | ul ′ )
,

where P�(xn | ul) can be estimated by Eq. (13).

For the sake of conciseness, in the following derivation, we use pn
kl to abbreviate P(an =

ak, ucn = ul | xn, mn; �), pn
k for P(an = ak, | xn, mn; �) =

∑L
l=1 pn

kl , and pn
l for P(ucn =

ul | xn, mn; �) =
∑K

k=1 pn
kl .
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– M-step: M-step maximizes Q(�′; �) to obtain the new parameters. Q(�′; �) can be

derived as follows:

Q(�′; �) = E[log P(Z ; �′) | D; �]

=

N∑

n=1

E[log P(zn; �′) | dn; �]

=

N∑

n=1

K∑

k=1

L∑

l=1

pn
kg log P�′

(

xn
∣
∣ uc

l

)

P�′

(

uc
l

∣
∣ ak

)

P(ak)P(mn | ak)

=

N∑

n=1

K∑

k=1

L∑

l=1

pn
kg

[

log P�′

(

xn | uc
l

)

+ log P�′

(

uc
l | ak

)

+ log P(ak) + log P(mn | ak)
]

.

To obtain �′, we compute the derivatives of every parameter. In the following equations,

�′ is omitted because all the distributions are based on it.

– λl f : recall that P(X f | U c
l ) = e−λl f

λ
X f

l f

X f !
, and we substitute P�′ (xn | uc

l ) with Eq. (13):

∂ Q(�′; �)

∂λl f

=
∑

{n | xn
f >0}

K∑

k=1

pn
kl

(

− 1 +
xn

f

λl f

)

= 0

=⇒ λl f =

∑

{n|xn
f >0} pn

l xn
f

∑

{n|xn
f >0} pn

l

. (15)

– P(ak): add a Lagrange multiplier α in the derivative:

∂

∂ P(ak)

[

Q(�′; �) + α

(
K∑

k ′=1

P(ak ′ ) − 1

)]

= 0

=⇒ P(ak) =
1

N

N∑

n=1

q̃n
k . (16)

– P(uc
l | ak): add a Lagrange multiplier β:

∂

∂ P
(

uc
l | ak

)

[

Q(�′; �) + β

(
L∑

l ′=1

P
(

uc
l ′

∣
∣ ak

)

− 1

)]

= 0

=⇒ P
(

uc
l

∣
∣ ak

)

=

∑N
n=1 pn

kl
∑N

n=1 pn
k

. (17)
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– P(m j | ak): add a Lagrange multiplier γ :

∂

∂ P(m j | ak)

[

Q(�′; �) + γ

(

∑

j ′

P(m j ′ | ak) − 1

)]

= 0

=⇒ P(m j ′ | ak) =

∑

{n | mn=m j }
pn

k
∑N

n=1 pn
k

. (18)
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