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Abstract

Social media data have been increasingly used to study biomedical and
health-related phenomena. From cohort-level discussions of a condition to
population-level analyses of sentiment, social media have provided scientists
with unprecedented amounts of data to study human behavior associated
with a variety of health conditions and medical treatments. Here we review
recent work in mining social media for biomedical, epidemiological, and so-
cial phenomena information relevant to the multilevel complexity of human
health.We pay particular attention to topics where social media data analy-
sis has shown themost progress, including pharmacovigilance and sentiment
analysis, especially for mental health.We also discuss a variety of innovative
uses of social media data for health-related applications as well as important
limitations of social media data access and use.
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1. INTRODUCTION

Humanity has crossed an important threshold in its ability to construct quantitative, large-scale
characterizations of the networks of information exchanges and social interactions in human soci-
eties. Due to the widespread digitization of behavioral and medical data, the advent of social me-
dia, and the Internet’s infrastructure of large-scale knowledge storage and distribution, there has
been a breakthrough in our ability to characterize human social interactions, behavioral patterns,
and cognitive processes and their relationships with biomedicine and healthcare. For instance,
electronic health records (EHRs) of entire cities can yield valuable insights on gender and age
disparities in healthcare (1), and communication patterns on Twitter and Instagram can help us
detect the spread of �u pandemics (2), warning signals of drug interactions (3), and depression (4).

Data science, together with arti�cial intelligence and complex networks and systems theory,
has already enabled exciting developments in the social sciences, including the novel �elds of
computational social science and digital epidemiology (5, 6). Using social media and online data,
researchers in these interdisciplinary �elds are tackling human behavior and society in a large-
scale quantitative manner not previously possible to study, for example, social protests (7, 8), fake
news spread (9), and stock market prediction (10).

This approach also shows great promise in monitoring human health and disease given the
newfound ability to measure the behavior of very large populations using individual self-reports
(11). Indeed, population-level observation tools allow us to study collective human behavior (12–
14) and, given the ability to obtain large amounts of real-world behavioral data, are expected to
speed translational research in transformative ways (15) by monitoring of individual and popula-
tion health (15–19). This promise has been substantiated by many recent studies. Google searches
have been shown to correlate with dengue spread in tropical zones, for example (20). Although
the accuracy of Google trends data alone has been problematic for epidemic �u modeling (21),
such data add value in combination with other health data (22). Several studies have also shown
that social media analysis is useful for: tracking and predicting disease outbreaks such as in�uenza
(11, 23), cholera (24), Zika (25), and HIV (26); playing an important role in pharmacovigilance (3,
27–31); and measuring public sentiment and other signals associated public health issues such as
depression (4, 32–34), human reproduction (35), vaccination rates (36, 37), and mental disorder
stigma (13).

Social media data provide an increasingly detailed large-scale record of the behavior of a con-
siderable fraction (about one-seventh) of the world’s population. Since 2017, 330 million people
monthly have been active users of Twitter, making it one of the most populated global social net-
working platforms (38). Instagram currently has more than one billion monthly active users (39).
It used to be the preferred social network among teens and young adults (ages 12–24), but since
2016 Instagram was surpassed by Snapchat in this demographic (40). Facebook, however, still has
the overall majority of active users, with 2.45 billion users monthly (41) and a total of 2.8 billion
across all of the company’s core products: Facebook, WhatsApp, Instagram, and Messenger (42).

Biomedical and public health researchers now have the ability to directly measure human
behavior on social media, a promise emphasized by the National Institutes of Health, which
consider this type of big data very relevant for biomedical research (43, 44). By “social media” we
mean any user-generated content, including posts to sites such as Twitter and Facebook but also
comments on disease-speci�c or health-related sites, forums, or chats. Most social media sites
have been shown to be relevant for biomedical studies, including Twitter (15), Facebook (12),
Flickr (17), Instagram (3), Reddit (45–47), and even Youtube (48, 49). Used together with other
sources of data such as web search, mobility data, scienti�c publications, EHRs, and genome-wide
studies, social media data help researchers build population- and individual-level observation
tools that can speed translational research in fundamentally new ways.
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Leveraging these kinds of data constitutes a novel opportunity to improve personalization in
the face of multilevel complexity in human disease (50). For instance, new patient-strati�cation
principles and unknown disease correlations and comorbidities can now be revealed (51). More-
over, social media data allow for a more direct measurement of the perspective of patients on
disease, which is often different from that of physicians. Social media can help both patients and
practitioners to understand and reduce this disconnect (52), which is known to hinder treatment
adherence (53).

In summary, analysis of social media data enables more accurate “microscopes” of individual
human behavior and decision making, as well as “macroscopes” for collective phenomena (5, 54).
These micro- and macro-level observation tools can go beyond a descriptive understanding of
biomedical phenomena in human populations by enabling quantitative measurement and predic-
tion of various processes, as reviewed below. The ability to study humans as their own model or-
ganism is now amore reasonable prospect than ever before.Herewe review recent work pertaining
to the mining of social media for health-related information, that is, biomedical, epidemiological,
or any social phenomena data of relevance to the multilevel complexity of human health (55). The
review is structured as follows: Section 2 covers the use of social media for pharmacovigilance,
including adverse drug reactions (ADRs) and drug–drug interactions (DDIs); Section 3 addresses
the use of sentiment analysis tools to characterize individual and population behavior, especially
mental health; Section 4 looks at the analysis of social media data for a wide variety of health-
related applications; Section 5 considers limitations of the use of social media data; and Section 6
contains a conclusion and �nal remarks.

2. PHARMACOVIGILANCE

It is estimated that every year the United States alone spends up to $30.1 billion due to ADRs,
with each individual reaction costing on average $2,262 (56).More than 30% of ADRs are caused
by DDIs that can occur when patients take two or more drugs concurrently (polypharmacy). The
DDI phenomenon is also a worldwide threat to public health (1, 57), especially with increased
polypharmacy in aging populations.

Most ADR and DDI surveillance is still conducted by analysis of physician reports to regu-
latory agencies and by mining databases of those reports, such as the FDA (US Food and Drug
Administration) Adverse Event Reporting System (FAERS) (58). However, clinical surveillance
suffers from under reporting (59), which can be caused by clinicians failing to note adverse events
or downgrading the severity of patients’ symptoms (60). For example, it has been well documented
that depression and pain are underassessed by clinicians and underreported by patients, and there-
fore are under- or inappropriately managed, especially in speci�c cohorts such as athletes (61, 62).
Evenwhen clinicians are speci�cally trained or required to use screening tools for ADR, in practice
these are done in a reactionary fashion at the time of a healthcare visit (59).

Such problems in reporting can be improved using new ways to study ADR and DDI phe-
nomena provided by recently available large-scale online data about human behavior. Given the
number of users, social media data are likely to allow for automated proactive identi�cation of
issues as they develop rather than after they occur and potentially become severe. Thus, analy-
sis of social media data can identify underreported pathology associated with ADRs and further
contribute to improvements in population health (Figure 1 shows a sample of social media posts
containing drug and symptom mentions). For instance, it has been shown that the combination
of clinical FAERS reports and Internet search logs can improve the detection accuracy of ADRs
by 19% (63), that discussions on Twitter related to glucocorticoid therapy reveal that insomnia
and weight gain are more common adverse events than are reported in the UK regulator’s ADR
database, and thatmore serious side effects are comparatively less discussed (52).Another study has
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Figure 1

Selected sample of social media posts depicting known drug and symptom mentions. (a) Instagram photos depicting a variety of drugs.
(b, c) Captions of Instagram posts. The two captions in panel b were posted two days apart by the same user, showing in the second post
a possible side effect from a drug administration mentioned in the �rst post. (d) Twitter posts containing drugs known to be abused.
(e) Epilepsy Foundation forum post and comments from users asking questions and sharing experiences over drug dosage (Keppra). For
all examples, usernames, number of likes, and dates were omitted for privacy, and some content was modi�ed for clarity and to maintain
user anonymity. Terms of pharmacovigilance interest, including drug names, natural products, and symptoms, are highlighted in yellow
using dictionaries developed for this problem (3, 65).

compared patient reports of ADRs on social media (various discussion forums on health-related
websites) with those of clinicians on EHRs for the case of the two drugs aspirin and atorvastatin
(64). This study found that the most frequently reported ADR in EHRs matched the patients’
most frequently expressed concerns on social media. However, several less frequently reported
reactions in EHRs were more prevalent on social media, with aspirin-induced hypoglycemia be-
ing discussed in social media only. The observed discrepancies and the increased accuracy and
completeness of social media reports relative to those from regulator databases and EHRs have
revealed that physicians and patients have different priorities (53). This suggests that social me-
dia data may be used to provide a more complete measurement of impact on quality of life (52),
making it a useful complement to physician reporting.

The use of social media for pharmacovigilance is recent, but it has been receiving increasing
attention in the last few years. A review paper in 2015 found only 24 studies on the topic,
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almost evenly divided between manual and automated methods, and concluded that social media
was likely useful for postmarketing drug surveillance (66). Another review paper from 2015 (29)
found 22 studies and concluded that the utility of social media data analysis for biomedicine
was hindered by the dif�culty of comparing methods due to the scarcity of publicly available
annotated data. This has led to a shared task workshop and the session Social Media Mining for
Public Health Monitoring and Surveillance at the 2016 meeting of the Paci�c Symposium on
Biocomputing (15). Shared tasks have involved the automatic classi�cation of posts mentioning
ADRs, the extraction of related terms, and the normalization of standardized ADR lexicons (31).
The conference session also attracted studies of social media data for a variety of health-related
topics, including: tracking emotion (see Section 3) to detect disease outbreaks (67); pharmacovigi-
lance, including dietary supplement safety (18) and ADR and DDI reports (3); and using machine
learning (ML) to predict healthy behavior, such as diet success, using publicly shared �tness
data from MyFitnessPal (68), smoking cessation from Twitter data (69), and overall well-being
from volunteers’ Facebook data (70). Since this initial event, the shared task and workshop,
currently named Social Media Mining for Health Applications, has been held annually and serves
to bring together researchers interested in automatic methods for the collection, extraction,
representation, analysis, and validation of social media data for health informatics (71, 72).

Before the community was able to analyze well-known social media sites such as Twitter and
Facebook,most pharmacovigilance work on mining ADRs from social media had been focused on
social interactions in specialized health forums and message boards (73–79). Schatz’s group was
one of the �rst to pursue this angle by using network visualization, natural language processing
(NLP), and sentiment analysis (see Section 3) to provide a qualitative ADR analysis of user com-
ments on YahooHealthGroups.They have shown that it is possible to visualize andmonitor drugs
and their ADRs in postmarketing (73), as well as to track patient sentiment regarding particular
drugs over time (80).

Around the same time, Gonzalez’s group created an ADR-focused lexicon and manually an-
notated a corpus of comments in support of a rule-based, lexical matching system developed to
analyze user comments onDailyStrength (https://www.dailystrength.org/; a health-focused site
where users discuss personal experiences with drugs) and demonstrated that comments contain
useful drug safety information (74). Later the group used association rule mining to automatically
extract ADRs from user comments in the same platform (75), other supervised classi�ers to predict
if individual comments contained ADRs, and a probabilistic model to infer if the DailyStrength
footprint of such predicted ADRs for a given drug were likely to indicate a public health red �ag
(79).

Subsequently, Benton et al. (76) used co-occurence statistics of drug–adverse effect pairs
present in breast cancer message boards and compared them to drug labels of four different drugs.
They found that 75–80% of these ADRs were documented on drug labels, while the rest were pre-
viously unidenti�ed ADRs for the same drugs. Casting the extraction of (unreported) drug–event
pairs in ADRs as a sequence labeling problem, Sampathkumar et al. (77) used a hidden Markov
model on patient feedback data from Medications.com that had been automatically annotated
using dictionaries of drug names, side effects, and interaction terms.

Several text mining and ML pipelines, as well as annotated corpora and lexica, were quickly
developed for extraction and prediction of ADRs from various health forums and message boards.
C. Yang et al. (81) used association mining and proportional reporting ratios to show that ADRs
can be extracted from MedHelp (https://www.medhelp.org/) user comments; this study was
conducted for a small set of �ve known ADRs (via FDA alerts) involving ten drugs. For the
same platform, M. Yang et al. (82) used semisupervised text classi�cation to �lter comments
likely to contain ADRs in support of an early warning pharmacovigilance system that they tested
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successfully, albeit with only three drugs associated with more than 500 discussion threads. Yates
& Goharian (78) retrieved ADRs associated with breast cancer drugs by mining user reviews
from askapatient.com, drugs.com, and drugratingz.com and produced the ADRTrace medical
term synonym set.

Extraction and prediction of ADRs from social media are challenging, especially because of
inconsistency in the language used to report ADRs by different social groups, settings, andmedical
conditions (71). Indeed, various types of evidence exist in scienti�c publications (e.g., in vitro, in
vivo, clinical) and social media (e.g., short sentences on Twitter, long comments on Instagram) to
report ADRs and DDIs. To deal with this problem, data scientists in the �eld use both manual
and automatic methods. The former involve manual curation by experts for each context, leading
to the development of context-speci�c lexica and corpora, such as scienti�c literature reporting
pharmacokinetics (83, 84) or pharmacogenetics (85, 86) studies, tweets mentioning medication
intake (87), or Instagram user timelines annotated with standardized drug names and symptoms
(3). There is also a corpus for comparative pharmacovigilance comprising 1,000 tweets and 1,000
PubMed sentences, with entities such as drugs, diseases, and symptoms (88). Such corpora are very
useful for training automatic methods to identify pharmacological relevance in both social media
and scienti�c literature.

Automatic methods to deal with language inconsistency include automatic topic modeling and
word embedding techniques that cluster similar terms according to their co-occurrence patterns
with other terms (89), typically implemented with spectral methods such as singular value decom-
position (SVD) (90). More recently, word embeddings using neural networks, such as Word2vec
(91), have shown much promise in obtaining high-quality word similarity spaces for biomedical
text (92) and drug lexicons for social media analysis (93). Interestingly, SVD provides a linear ap-
proximation of, and insight into, what neural networks do in each layer (94) and a fast method to
train them (95).

An example of automatic methods to deal with language inconsistency in pharmacovigilance
for social media is ADRMine (96). It uses conditional random �elds—a supervised sequence la-
beling classi�er—to extract ADRmentions from tweets. The performance of the system is greatly
enhanced by preprocessing posts (fromTwitter and DailyStrength) for term similarity features us-
ing unsupervised word embeddings obtained via deep learning. Similarly, Word2vec embedding
has been shown to increase the performance of automatic estimation of ADR rates of ten popular
psychiatric drugs from Twitter, Reddit, and LiveJournal data (97), in comparison to the rates of
ADRs for these drugs in the SIDER database (98). Interestingly, the lexicon derived byWord2vec
leverages variants of ADR terms to deal with language inconsistency. A drawback of using deep
learning methods, however, is the need for large training corpora, which limits the applicability
to very commonly prescribed and discussed drugs and ADRs.

Most work using social media data for pharmcovigilance has focused on detecting signals
for single drugs and their ADRs, although a few groups have studied DDI phenomena as well.
Yang & Yang analyzed data from the patient discussion boards MedHelp, PatientsLikeMe, and
DailyStrength and focused on 13 drugs and three DDI pairs (28). The study used association
mining and DrugBank as a validation database (gold standard) with good results. From these
datasets, the same group later built heterogeneous networks, where nodes represented such en-
tities as “users,” “drugs,” or “ADR,” while edges signi�ed “cause” or “treatment.” They went on
to show that network motifs were effective in predicting DDIs for an expanded set of 23 drugs,
using logistic regression as a link prediction classi�er (99).

Soon after, Correia et al. (3) were the �rst to study DDI phenomena from all available posts on
the popular social media site Instagram.The group focused on seven drugs known to treat depres-
sion, collected a large dataset of more than 5 million posts, and analyzed a population of almost
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7 thousand users.Their study demonstrated the ability to analyze large cohorts of interest on pop-
ular social media sites. They also used a (heterogeneous) network science approach to produce a
network of more than 600 drug, symptom, and natural product (NP) entities to monitor—via the
web tool SyMPToM (Social Media Public healTh Monitoring; https://symptom.sice.indiana.

edu/)—individuals and groups of patients, ADRs, DDIs, and conditions of interest. The top pre-
dicted links were validated against Drugbank and showed that the network approach allows for
the identi�cation and characterization of speci�c subcohorts (e.g., psoriasis patients and eating
disorder groups) of relevance in the study of depression. Later on, the group expanded their work
to include other epilepsy and opioid drugs, as well as analysis of Twitter data (65).

Recently, due to the opioid epidemic af�icting the United States, there has been an increased
interest in using social media data to understand drug abuse (100). Several studies have analyzed
licit (101) (chie�y alcohol), illicit (102) (e.g., cocaine and marijuana), and controlled substances
(31, 103) (e.g., opioids) in diverse social media sites. Results are encouraging. For instance,
analysis of Twitter data showed that geographical activity of posts mentioning prescription opioid
misuse was strongly correlated with of�cial government estimates (104), and deep learning
methods could be used to predict opiate relapse using Reddit data (105). However, an older study
that considered both questionnaires and Facebook data on �ve behavioral categories—including
smoking, drinking, and illicit drug use—reported no signi�cant correlation between respondents’
Facebook pro�les and illicit drug use (106). Analysis of such data on Internet health forums has
also shown promise. Since these forums are often anonymous, open discussion about drug abuse
may be more forthcoming. One study about the drug buprenorphine, a semisynthetic opioid
effective in the treatment of opioid dependence, uncovered qualitative observations of public
health interest such as increased discussion over time, perspectives on its utility, and reports of
concomitant use with illicit drugs, which poses a signi�cant health risk (107).

Social media data could also be useful in the study of the use, potential interactions, and effects
of NPs and alternative medicines, including cannabis. Sales of NPs have nearly tripled over the
past 20 years since passage of the Dietary Supplement Health and Education Act (108). Based
on the general perception that “natural” means safe, the lay public often turn to NPs without
discussing them with their healthcare practitioners (109). Consequently, patients frequently take
NPs in conjunction with conventional medications, potentially triggering NP–drug interactions.
The pharmacology of such products constitutes an array of ADRs and DDIs that have been very
poorly explored by biomedical research (108). This is, thus, an arena where social media mining
could provide important novel discoveries, early warnings, and insights, particularly with the pos-
sibility of studying large cohorts longitudinally (35). A preliminary study with NP and drug name
dictionaries showed that it is possible to study their concomitant use longitudinally on Instagram
and characterize associated symptoms with heterogeneous knowledge networks (3, 65).

3. CHARACTERIZING INDIVIDUAL AND COLLECTIVE
PSYCHOLOGICAL WELL-BEING

The psychological and social well-being of individuals and populations is important, complex,
and profoundly involved in shaping overall health-related phenomena. Scalable methodologies
to gauge the changing mood of large populations from social media data—using NLP, sentiment
analysis, ML, spectral methods, etc.—can help identify early warning indicators of lowered emo-
tional resilience and potential health tipping points (e.g., the onset of mental disorders) for both
epidemiological and precision health studies.

The brain is a complex system whose dynamics and function are shaped by the interactions
of many components. Such systems can undergo critical transitions (CTs) (110), i.e., rapid and
unexpected changes from one stable state to another, that are dif�cult to reverse. CTs provide
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a powerful framework with which to understand and model mental health and its relation to the
use of pharmaceuticals and other substances. For instance, recent clinical longitudinal studies have
provided compelling evidence that psychological CTs, or tipping points, do occur in human psy-
chological mood states. In particular, they are observed in the development of clinical depression
and are preceded by measures of critical slowing down, such as increased autocorrelation and vari-
ance, as well as other common antecedents, that yield useful early-warning indicators of pending
CTs (110, 111).

Social media data are a natural source of high-resolution, large-scale, longitudinal, introspec-
tive, and behavioral data to study,monitor, and even potentially intervene before CTs occur, avoid-
ing signi�cant hysteresis to return the system to a desirable state. For each individual social media
user we can infer several important social and ethnographic factors from their online parameters
(e.g., their location, language, and sex), as well as important risk information from their statements
with respect to health-risk behavior and addiction and from their friendship and “follow” ties. In
particular, it is now possible to widely track the evolving psychological mood state of social me-
dia users over extended periods of time along several relevant psychological dimensions (35, 112,
113). Indeed, social media indicators have been shown to predict the onset of depression (4, 33,
34, 114). Putting one’s own feelings into words on Twitter—also known as affect labeling—can
sharply reverse negative emotions, demonstrating the attenuating effects of online affect labeling
on emotional dynamics and its possible use as a mood regulation strategy (14) (see Figure 2).
Measuring individual and collective sentiment from social media enables the design of actionable
intervention strategies to alert individuals and communities to prevent the onset of mental health
issues and health risk behavior [e.g., sexual activity (35)], especially in underserved or stigmatized
populations (13) (see Section 4).

The term “sentiment analysis” refers to a set of computational techniques that are used to
measure the opinions, sentiments, evaluations, appraisals, attitudes, and emotions that people
express in natural language. This sentiment can be about entities such as products, services,
organizations, individuals, issues, events, topics, and their respective attributes, but may also
include self-referential elements (117, 118). Sentiment analysis is also broadly de�ned to include
the computational treatment of opinion, mood, and subjectivity in text (119). The earliest studies
of online sentiment relied on explicit user-de�ned features such as labels, ratings, reviews, etc.
that were recorded as metadata to the text (118, 119).However, those features are not available for
most online texts, including social media posts where health-related indicators need to be inferred
from unstructured, unlabeled text. Indeed, the fundamental assumption of sentiment analysis is
that individual- and population-level emotions are observable from unstructured written text.

Different methodological approaches have therefore been developed to extract sentiment indi-
cators from text. Some methods use NLP and rely on the detection of word constructs (n-grams)
in text to extract sentiment indicators with respect to an entity (120). Other techniques classify
text into positive or negative mood classes usingML algorithms applied to annotated training sets,
such as support vector machines (119) or naïve Bayes classi�ers (112). Frequently, however, very
good results are obtained with lexicon matching (119, 121, 122), a method that uses word lists
(lexicons or dictionaries) of terms that are preannotated with sentiment values assigned by human
subjects. Lexicons of sentiment-annotated terms are obtained via a variety of methods such as ex-
pert curation and consensus, population surveys, and automatic feature construction and selection
in classi�cation tasks (115, 118, 119, 121, 123–126). This approach is particularly useful when re-
liability over individual text segments is less important than scalability over large-scale datasets,
as is the case for social media data.

Many sentiment lexicons focus on a single dimension of measured affect, such as negative or
positive valence (roughly, happiness). Such lexicons include The General Inquirer (127), ANEW
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Figure 2

(a) An example tweet with its average ANEW (115) scores for arousal, dominance, and valence dimensions. Only words found in the
ANEW dictionary were matched to their score. (b) A mood histogram time series showing the per-day distribution of ANEW valence
scores for a cohort of Twitter users who self-reported being diagnosed with depression (116). (c) A mean-centered time series of
ANEW valence scores for a cohort of Twitter users who stated that they were having a strong emotion on Twitter. Scores are shown for
1-min increments, smoothed by a 10-min rolling average, used to study (14) the effects of affect labeling on Twitter, i.e., the act of
putting one’s feeling into words, in this case by stating “I feel ” in a tweet followed by a set of words that denote a strong emotion. Time
t = 0 h (red dashed line) is the time at which the affect labeling tweet was posted for each person in the cohort. (d) Average LIWC (117)
functional word count of the Facebook posts of a subject from a cohort of patients who died of SUDEP whose behavior on Facebook
was studied after their death. This young patient, like several others in the cohort, showed an increase in functional words before
SUDEP. Functional words are pronouns, prepositions, articles, conjunctions, auxiliary verbs, and a few other categories understood to
indicate emotional states and other individual differences. Abbreviations: 50p, 50th percentile; ANEW, Affective Norms for English
Words; CI, con�dence interval; LIWC, Linguistic Inquiry and Word Count; SUDEP, sudden unexpected death in epilepsy.
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(Affective Norms for English Words) (115, 121) along with its several extensions and translations
(128), GPOMS (Google Pro�le of Mood States) (10, 126), LabMT (124), SentiWordNet (122),
LIWC (Lingustic Inquiry andWord Count) (117), VADER (Valence-Aware Dictionary and Sen-
timent Reasoner) (129), and OpinionFinder (130). See the sidebar titled Sentiment Analysis Tools
for more details about these tools and the categories or dimensions of sentiment that they aim to

SENTIMENT ANALYSIS TOOLS

The General Inquirer (127) is a tool to organize non-numerical data and to tag words in a text across various
categories. The system started as a general-purpose tool with a dictionary of categories for the 3,000 most common
English words and a few hundred words of interest to behavioral scientists. It has since grown to include theHarvard
IV-4 and Lasswell content analysis dictionaries and has 198 categories.

ANEW (Affective Norms for English Words) includes ratings from 1 to 9 for 1,034 words along three mood
dimensions: valence (unhappy to happy), arousal (calm to excited), and dominance (controlled to in control). These
ratings are based on a nine-point, Likert-like scale and were collected from surveys given to psychology under-
graduates (115). ANEW is used as a basis for several new dictionaries, including an extended version with nearly
14,000 words (128) and translations to several languages.

GPOMS (Google Pro�le of Mood States) is an extension of POMS (Pro�le of Mood States), a questionnaire of
self-reported Likert scale questions measuring six underlying dimensions of mood: tension or anxiety; depression
or dejection; anger or hostility; vigor or activity; fatigue or inertia; and confusion or bewilderment (133). GPOMS
is used to translate this questionnaire into a dictionary suitable for sentiment analysis of large-scale social media
data. Using word co-occurrences in Google’s’ n-gram corpus, GPOMS extends the original 72 POMS terms to a
dictionary of 964 terms that correspond to moods across six categories: calm, alert, sure, vital, kind, and happy (126).
LabMT is a dictionary used by Amazon’s Mechanical Turk to send out ANEW-like surveys that rank thousands of
words on a nine-point scale from sad to happy and collects at least 50 ratings per word. Initially, LabMT comprised
10,222 English words found by merging the 5,000 most used words in each of four corpora: Google Books, Twitter,
music lyrics, and The New York Times (124). This has since been extended to include 10 languages with about
10,000 words each collected across 24 corpora (123).

LIWC (Linguistic Inquiry and Word Count; pronounced “Luke”) is a text analysis tool that has been actively
supported and widely used since its �rst public release in 2001 (117, 134). LIWC was developed by several judges
through a well-documented procedure that included external validity with psychological studies. The latest ver-
sion, LIWC2015, has dictionaries containing nearly 6,400 words and produces outputs across about 90 categories
including emotion and the use of pronouns, articles, cognitive processes, time focus, personal concerns, and informal
language (117).

SentiWordNet (122) is a dictionary with word scores along three dimensions: positive, negative, and objective
(neutral). It is built by automatically annotating sets of synonymous words (synsets) from WordNet (135), with
additional steps using semisupervised classi�ers and a random walk.

VADER (Valence-Aware Dictionary and Sentiment Reasoner) is a tool for measuring positive or negative text
sentiment beyond simple lexicon matching (129). It searches for speci�c words in a sentence and modi�es the asso-
ciated dictionary-based sentiment scores based on simple rules, such as the presence of exclamations or negations.
OpinionFinder (130) is a processing pipeline that tokenizes a document and then uses a series of classi�ers trained
on different corpora to �nd subjective statements and speech events. It identi�es opinion sources and expressions
of sentiment and classi�es expressions as positive or negative.

In addition to these tools, other researchers suggest modi�cations of sentiment scores based on context by using
compositional rules to modify sentiment scores from sentence parse trees (136, 137). Extensive reviews of sentiment
analysis tools can be found in References 131 and 132.
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capture.Many more sentiment analysis tools exist, with extensive reviews found in References 131
and 132.

These text analysis approaches, combined with large-scale social media data, have enabled the
study of temporal patterns in the mood of populations at societal and global levels (35, 138). This
includes studies of the changing features of language over time and geography (121, 125).

Because collective mood estimations are derived from tweets from large and diverse pop-
ulations, the resulting distributions of sentiment values can contain distinct and informative
components. However, many analyses of collective mood rely on average or median sentiment
over time, which obscures this important information. Spectral methods such as SVD (90) have
been effective in (a) removing the base sentiment contribution attributable to regular language
use and (b) extracting sentiment components associated with speci�c phenomena of interest, e.g.,
moods correlated with increased interest in sex (35) or depression (116). These so-called eigen-
moods are components that explain a signi�cant proportion of the variation of sentiment in time
series data instead of the average distribution of sentiment values that re�ect prevailing language
use. As such, they allow for more �ne-grained assessments of individual- and population-level
emotions associated with health behaviors of interest (116).

The different emotional dimensions of each sentiment analysis tool have been used for spe-
ci�c problems relevant to health and well-being. The authors of LIWC have demonstrated how
its various indicators are useful to study the relation between language and a wide array of psy-
chological problems (134). Underlying psychological states were shown to be revealed by various
LIWC indicators, including the increased use of �rst-person singular pronouns to describe pain or
trauma, the use of verb tenses to describe the immediacy of an experience, the use of �rst-person
plural pronouns to denote higher social status, and prepositions and conjunctions used as proxies
for thought complexity, among other examples, all of which enable the measurement of individual
differences. For instance, textual features from the speech of student self-introductions measured
by LIWC and analyzed with principal component analysis, were shown to be good predictors
of overall academic performance. In particular, the use of commas, quotes, and negative affect
were positively correlated with �nal performance, while the use of the present tense, �rst-person
singular, and words from home, eating, and drinking categories were negatively correlated (139).
LIWC has also been useful in classifying positive versus negative affect of dream reports (140) and
completed versus noncompleted suicide attempts from suicide notes (141), as well as in measuring
mood shifts and trends in large populations—e.g., feelings of sadness, anxiety, and anger—during
extreme events like the September 11 World Trade Center attacks (142) or hurricanes (143). Di-
urnal and seasonal rhythms measured from Twitter data were found to be correlated with positive
and negative sentiment as measured by LIWC. These measures thus revealed a change from pos-
itive to negative sentiment in the morning, as well as increased positive sentiment in days with
more hours of daylight (125). Similarly, an analysis of more than 800 million Twitter posts for cir-
cadian mood variations further decomposed negative mood into anger, sadness, and fatigue, and
found that fatigue follows an inverse pattern to the known circadian variation of concentrations
of plasma cortisol—a hormone known to affect mood (144).

Many other sentiment analysis tools make use of lexicons. The ANEW lexicon (115, 128)
consists of thousands of English words that have been rated by human subjects on three di-
mensions: valence, arousal, and dominance. This allows text sentiment to be analyzed along
distinct emotional dimensions. ANEW has been used to show that the happiness of blogs steadily
increased from 2005 to 2009, exhibiting a surprising increase in happiness with blogger age, but
a decrease with distance from the Earth’s equator (121). Twitter happiness has also been shown to
follow a cycle that peaks on the weekend and bottoms out mid-week (121). The equally extensive
LabMT lexicon has been used to demonstrate that sentiment measurements are robust to tuning
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parameters and the removal of neutral terms (124). Indeed, a comparison of different sentiment
analysis tools and their performance on several corpora, including LabMT, ANEW, and LIWC,
found that these lexical tools tend to agree on positive and negative terms, but with notable
differences in performance (131). Some lexicons are dedicated to speci�c application areas, e.g.,
subjective states (130), whereas others are geared toward general applicability. In general, lexical
tools have been found to perform well only if the sentiment lexicon covers a large enough portion
of the word frequency in a given text and its terms are scored on a continuous scale (132).

Social media data are also useful when sentiment analysis is applied to measure and address
public health problems. Qualitative content analysis of sentiment (not using automatic sentiment
analysis tools) on websites and discussion forums such as RateMDs.com has revealed a positivity
bias in reviews of doctors (145) and that positive reviews are associated with surgeons who have
a high volume of procedures (146). Similar qualitative content analysis applied to Twitter content
has found mostly positive views of marijuana (147) with self-reports of personal use increasing
when marijuana was legalized in two states (148). Most early sentiment studies of the relevance
of social media for public health studies are based on qualitative, manual analysis, but there has
been increased interest in large-scale, automatic studies. Using a custom sentiment analysis tool
based on text classi�cation (trained on annotated samples), Salathé & Khandelwal (36) studied
dispositions toward �u vaccination on Twitter. They found that information �ows more often
between users who share the same sentiments and that most communities are dominated by either
positive or negative sentiments toward a novel vaccine (homophily) (36). Unfortunately for public
health campaigns, they also found that negative sentiment toward vaccines spreads more easily
than positive sentiment in social networks (37).

Choudhury et al. (4) have shown that sentiment analysis tools like ANEW and LIWC are use-
ful for analyzing the sentiment of tweets related to depression by building a large crowd-sourced
corpus of tweets from individuals diagnosed with clinical depression (based on a standard psycho-
metric instrument). They also introduced a social media depression index to characterize levels of
depression in populations and demonstrated that its predictions were correlated with geographic,
demographic, and seasonal patterns of depression reported by theCenters forDisease Control and
Prevention (CDC). In addition to increased negative affect, onset of depression was also found to
be correlated with a decrease in social activity, stronger clustering of social interactions, height-
ened relational and medicinal concerns, and greater expression of religious involvement (34).

Sentiment analysis of social media data was shown to help differentiate people on Twitter with
posttraumatic stress disorder, depression, bipolar disorder, and seasonal affective disorder from
control groups (149). This work also identi�ed language and sentiment variables associated with
each of the conditions. A similar study found that it is possible to identify linguistic and sentiment
markers of schizophrenia on Twitter (150). Given that CTs in mental disease are likely associated
with mood changes over time that can be captured by statistical parameters, like autocorrelation
and variance (114), the multidimensional, large-scale data that can be extracted from social media,
including sentiment, are likely to be of much use in the years to come.

ML methods such as deep learning have been used to accurately classify social media posts
according to associated mental conditions (32). This has raised the possibility of characterizing a
range of mental health conditions. The approach is still relatively new and most �ndings are pre-
liminary (151), but it has stimulated an important discussion on the ethics of generating predictions
about underlying conditions while also respecting health-related information privacy concerns.

4. OTHER PROMISING APPLICATIONS

Social media data have been used to study a wide range of other health-related problems and
have yielded promising outcomes, especially when combined with other data sources. In disaster
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and crisis informatics, when combined with physical sensor data, signals from social media have
been useful in forecasting next-day smog-related health hazards (152). When used effectively by
credible sources like emergency response teams, social media have also been used tomitigate com-
munity anxiety and the propagation ofmisinformation and rumors during and after environmental
disasters (153).

In epidemiology, social media data have been useful in predicting disease outbreaks such as
in�uenza (11, 23), cholera (24), and Zika (25). In the 2015–2016 Latin American outbreak of Zika,
McGough et al. (25) used a dataset that combined Google searches and Twitter data to produce
predictions of weekly suspected cases up to three weeks in advance of of�cial publication. Such
predictions have often been made based on correlations with the use of certain language, such as
keywords or even emojis (154), or made indirectly through the use sentiment analysis tools (118).
For instance, it has been shown that general Twitter sentiment about vaccines correlates with
CDC estimates of vaccination rates by region (36) (see Section 3). Another study has shown that
higher rates of tweets containing future-oriented language (e.g., “will,” “gonna”) are predictive
of counties with lower HIV prevalence (26), demonstrating that social media may provide an
inexpensive, real-time surveillance of disease outbreaks.

Social media research has also shown promise in efforts to combat stigma, offering a unique
means by which to improve outcomes, bene�ting healthcare providers and the public alike
(155–157). Anti-stigma advocates and government organizations already have well-developed
presences on Internet discussion boards and on social media for dozens of health conditions,
including obesity/body issues (158) and HIV (159), which help raise awareness of health-related
issues, including organ donations (160). Anti-stigma efforts around epilepsy, for example, include
TalkAboutIt.org, a collaboration between actor Greg Grunberg and the Epilepsy Foundation
(161, 162), and Out of the Shadows, a joint international project among the World Health Orga-
nization, the International League Against Epilepsy, and the International Bureau for Epilepsy.
Efforts generally center around education about the disease, increasing awareness of epilepsy as
a treatable brain disorder, and raising public acceptability of epilepsy. While these efforts do not
utilize data science per se, engagement with social media platforms allows for data collection for
future analysis of stigma in health.

There are not much data on the ef�cacy and long-term success of such anti-stigma efforts for
epilepsy (163) or mental health disorders (164), although what exists has provided important in-
sights. In their review, Patel et al. (165) have shown the bene�ts of social media anti-stigma efforts,
with 48% of studies indicating positive results, 45% reporting results that were unde�ned or neu-
tral, and 7% reporting potentially harmful effects. Researchers accessing Twitter have found 41%
of epilepsy-related tweets to be derogatory (166). An analysis of the top ten epilepsy-related videos
on YouTube has revealed that real-life or lived-experience videos garner the most hits, comments,
and empathetic scores but provide little information. Videos with important health information,
in contrast, have received only neutral or negative empathy scores (155). As contributing factors,
concerns about privacy and the reactions of others limit respondents’ willingness to access and en-
gage with content on a website (167). In one of the only network-based studies conducted so far,
Silenzio et al. (168) found by mapping social network interactions that some individuals on social
media may be more important to the spread of anti-stigma interventions. Additional research in
this area is clearly needed.

The study of health-related issues around human sexuality can also be improved by analysis
of web search, social media discourse, and health forum data, especially on those platforms that
provide anonymity such as Reddit (45). For instance, web search and Twitter data have been in-
strumental in clarifying competing hypotheses about the cyclic sexual and reproductive behavior
of human populations. Analysis of global data has suggested that rather than an evolutionary
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adaptation to the annual solar cycle, observed birth cycles are likely a cultural phenomenon, since
characteristic emotions around major cultural and religious celebrations (measured by sentiment
analysis) correlate with interest in sex [measured by Google search data and birth records
(35)].

On the medical side of human reproduction issues, pregnant women have frequently turned
to the Internet and social media for reassurance on the normalcy of their pregnancies and to
gather information on normal pregnancy symptoms, pregnancy complications, birth, and labor
(169). For �rst-time mothers in particular, social media platforms have appeared to be the pre-
ferred mechanisms for obtaining important information during the antepartum and postpartum
periods (170). Posting status updates and photos on social media appears to have provided preg-
nant women with a sense of connection with their peers, as well as with their own unborn babies
(169, 171). Considering, in addition, the numbers of legal and illegal drug users on social media,
as described above, social media platforms appear to be untapped sources of large-scale data on
underreported population-level risk for neonatal and related conditions, such as neonatal absti-
nence syndrome. Social media signals may be effective resources to model the pharmacological,
phenotypical, and psychosocial markers associated with drug use during pregnancy, and may lead
to better early-problem warnings and prevention strategies.

Other measures that are known to correlate with health outcomes have also been investigated.
For instance, social media deviations in diurnal rhythms, mobility patterns, and communication
styles across regions have been included in a model that produces an accurate reconstruction of
regional unemployment incidence (172). Additionally, the potential to use social media to predict
severe health outcomes in epilepsy is preliminary but promising. Sudden unexpected death in
epilepsy (SUDEP), for example, remains a leading cause of death in people with epilepsy. A small
study of the Facebook timelines of people who died in this way was conducted to identify potential
behavioral signs preceding SUDEP and has suggested that prior to dying amajority of the subjects
wrote more text than they had previously on social media (see Figure 2).

5. LIMITATIONS

Social media can yield useful healthcare information, but there are inherent limitations to their
use for biomedical applications.On the positive side, because analysis takes place after the data are
recorded, social media analysis in general avoids experimenter and social conformity bias. Social
media data constitute a type of real-world data (173) that allow for very large-scale population sam-
ples that surpass those of traditional social science and clinical trial approaches by several orders
of magnitude. Indeed, Twitter offers strong opportunities for academic research given its public
nature, real-time communication, and user population that approaches signi�cant pluralities of
the world’s population. This is also the case for other social media platforms such as Facebook,
Instagram, and Reddit. However, social media data frequently lack demographic indicators and
ground truth, possibly resulting in biased or poorly representative samples—particularly when
compared to the precisely de�ned inclusion and exclusion criteria of randomized controlled trials
(RCTs) (173). In this section we provide a short overview of the literature related to the challenges
of deriving valid and reliable indicators of human behavior from social media data and how these
challenges can be mitigated.

In spite of scale, social media data generally entail self-selected samples, since subjects are free
to choose when to participate and what content to submit. This bias is compounded by a mix of
access restrictions imposed by socialmedia platforms (174).As a result, researchers are prone to use
so-called convenience samples, i.e., social media datasets that are, due to standardization efforts,
more widespread, accessible, and convenient to use, although potentially not representative of the
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wider population. Combined, these biases may lead to samples that do not validly or completely
represent human behavior and diversity.

Social media content may also be subject to lexical bias (123) that could cause sentiment data
to overrepresent positive sentiment. In addition, platform-speci�c factors may alter user behavior
(174, 175) and lead to bias in subsequent data analysis. Indeed, users may be encouraged to engage
in pro�le and reputation management by establishing different online personas to highlight their
individuality and qualities that are perceived as desirable (176).

Privacy issues and algorithmic bias may also lead to mischaracterization of human factors. The
behavior of most social media users is profoundly shaped by interface designs and, increasingly, al-
gorithmic factors, e.g., the use ofML services for recommendations of social relations and relevant
content. Nonhuman participants such as bots are, furthermore, widespread in some social media
sites, e.g., Twitter. Moreover, exogenous events such as polarized elections may trigger individ-
ual and global sentiment changes, discourse polarization, and temporary deviations from baseline
social linkage dynamics. The particular social-economic-political context in which social media
data are recorded therefore plays an important role in analysis. Given these potential population
biases, mining social media for healthcare information relevant to the broader human population
requires a careful consideration of the multilevel complexity of human health (55), in which social
and behavioral contexts play a critical role (177).

Perhaps one of the most important issues with social media mining is the dif�culty of estab-
lishing sample validity and precise inclusion and exclusion criteria. Primarily, two sources of bias
impact harvested social media data: sampling bias and algorithm bias. Sampling bias means that
researchers cannot treat sampled social media data (e.g., a sample of 1% of tweets) as a truly
representative and random sampling of the human population. This affects efforts to build valid
cohorts and make generalizations from analyses (174). Samples cannot be balanced because of the
lack of ground truth with respect to user demographics. Furthermore, the demographics of social
media sites can vary broadly. In a survey of social media usage among American adults, 43% of
women said they have used Instagram at least once, while for men this number was only 31%.
Similarly, Hispanics appear underrepresented on LinkedIn—only 16% said they have used the
platform as compared to 24% of Whites and 28% of Blacks. At the same time, Hispanics appear
to be the largest demographic on WhatsApp—42% as compared to 24% of Whites and 13% of
Blacks (178).

Sampling bias can be accentuated when subcohorts of social media users are used to draw
geographical inferences, e.g.,when particular key terms are used to infer location.Such subsamples
may vary considerably in the degree to which they represent an unbiased sample. Future research
using social media data must bene�t from the large-scale nature of this real-world data, while
specifying more precise inclusion and exclusion criteria, as used in RCTs, to avoid sample biases
(173). Getting to that point requires the ability to stratify social media user cohorts using more
�ne-tuned ML, as well as via greater collaboration with and openness from social media platform
providers. It is encouraging that Twitter data have been shown to match census and mobile phone
data in geographical grids down to a square-kilometer resolution (179). Indeed, ML methods can
be used on Twitter data to automatically track the incidence of health states in a population (180).
Moreover, user demographics such as age and gender can be estimated from user content with
reasonable accuracy (14).

In addition to sample bias, it is important to be aware of algorithmic biases that result from
interface design, policies, and incentives associated with social media platforms. Since company
revenues are tied to targeted advertisement, social media algorithms are tailored for navigation
retention and pro�le building. These algorithms are highly dynamic, proprietary, and secret, all
of which have consequences for research reproducibility (175). Most researchers, like users, are
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largely unaware of how platforms �lter timelines and other user information (181). Therefore,
greater openness on the part of social media companies, perhaps encouraged or mandated by
public policy, is needed to increase the utility of social media data for biomedicine.

In addition to sample and algorithmic biases, sentiment analysis can be manipulated by third
parties through the injection of tweets (174), i.e., the deliberate insertion of tweets containing
speci�c words known to affect sentiment tools, e.g., to boost general sentiment during a political
debate. These efforts can be dif�cult to detect and mitigate since they affect the sample a priori,
before a researcher can apply efforts to unbias their sample and address sample validity. Indeed,
the extraction of emotional and social indicators from social media is fraught with dif�culty. Users
may indirectly disclose mood states, sentiment, health behavior, and diet, but rarely do so explicitly
(14). Social media users furthermore favor an idiomatic style and vernacular that are dif�cult to
analyze with traditional NLP tools and supervised ML algorithms. Applications of the latter are
hampered by the lack of vetted ground truth datasets and the highly dynamic nature of underlying
emotional processes. Additional dif�culties in analyzing social media discourse include subjective
opinion, the use of sarcasm (particularly toward the effects of speci�c drugs), and the polarity of
a sentiment-laden word or phrase in context (119, 129). For instance, social media users may use
the term “prozac” in a variety of idiosyncratic ways, but not necessarily because they are actually
administering the drug.

Users revealing sensitive personal information about others and information pertinent to their
social relationships raises serious privacy concerns. Indeed, data from eight to nine social media
relations of an individual are suf�cient to predict that individual’s characteristics just as well as
their own information (182). In other words, privacy concerns are not just a matter of what users
reveal about themselves but also a matter of what their social relations (unwittingly) reveal about
them. Some users are aware of this phenomenon, which lowers their motivation and willingness
to participate in studies using social media data (167).

Another limitation, �nally, is the danger of over�tting in subsequent analysis. Because of data
availability and privacy issues, information on speci�c cohorts is derived from indicators that are in
turn derived from the content they generate. This will favor certain content and cohorts, possibly
leading to models that over�t the data and generalize poorly (22, 183).

6. CONCLUSION

The studies reviewed in Section 2 show that social media users discuss a wide variety of personal
and medical issues on social media platforms, e.g., their medical conditions, prognoses, medi-
cations, treatments, and quality of life, including improvements and adverse effects they experi-
ence from pharmacological treatments (3, 27, 52, 184). This collective discourse in turn can be
monitored for early warnings of potential ADRs and to identify and characterize underreported,
population-level pathology associated with therapies and DDIs that are most relevant to patients
(3, 15, 27, 29). The new data-enabled modes of pharmacovigilance that social media afford are
likely to be particularly relevant for patient-centered management and prevention of chronic dis-
eases (185), such as epilepsy (186) and in�amatory diseases (52), which continue to be the chief
healthcare problem in the United States (187). The inclusion of signals from, and engagement
with, social media in patient-centered personal health library services that can store, recommend,
and display individualized content to users is expected to signi�cantly improve for chronic disease
self-management (185), which is known to signi�cantly lower disease severity and the number of
unhealthy days and improve quality of life (188).

It is clear that disease prevention is increasingly becoming a matter of mitigating disease risk
factors caused by an individual’s lifestyle and decision making, which are subject to a range of
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cognitive, emotional, and social factors that have until now been dif�cult to assess with suf�cient
accuracy and scale. An understanding of the emotional and social factors that contribute to the
emergence of public health issues is crucial for ef�cient mitigation strategies. As we describe in
Section 3, there is already a substantial body of literature characterizing psychological well-being,
especially by measuring individual and collective sentiment and other social interactions online.
These methods have been particularly effective when used in combination with other sources of
health and human behavior data, from physical sensors,mobility patterns,EHRs, andmore precise
physiological data.

The methodologies we cover also fall in the area of computational social science, which is
presently focused on establishing the methodological framework to monitor societal phenomena
from large-scale social media data—the abovementioned social macroscopes. For this method-
ology to be relevant in the prevention of disease and improvement of public health, researchers
need to move from descriptive inductive modes of analysis to explanatory models with predictions
and testable hypotheses. In particular, researchers need to establish social media not just as a tool
for observation, but also as the foundation for explanatory models of the generative factors in
health behavior and outcomes, of the type that computational and complexity sciences are already
producing, e.g., in molecular and organismal biology (189).

There is reason to be optimistic about our ability to reach such predictive explanatory models
since we know from psychological research that emotions play a signi�cant role in human decision
making (190). Behavioral �nance in particular, for example, has provided evidence that �nancial
decisions are signi�cantly driven by emotion andmood (191).Hence it is reasonable to assume that
online mood and sentiment, as well as all social media analysis we review, may be used to predict
health behaviors and can therefore be used to predict individual and societal health outcomes.

The literature reviewed also points to a newfound ability to use social media data for improved
well-being of small, speci�c cohorts and even individuals using precise characterizations and inter-
ventions. These may include pharmacological warnings, patient-centered management of chronic
disease, and mental disorder assistance. For instance, donated timelines from individuals at risk of
suicide can help ML models recognize early warning symptoms of depression and suicide (192).

Despite the proven importance to the speci�c goal of improving human health, social media
data have been increasingly dif�cult to collect. Only a few social media data sources remain open
for scientists. Many previously accessible sites are now almost entirely sealed from researchers,
which is surprising given that the data are generated by and for its users, not the platforms, which
mostly serve a mediating function. These limitations explain why most of the work reported has
focused on Twitter, which remains open for data analysis. Nonetheless, other social networks have
been shown to be useful for biomedicine, including Facebook (12), Instagram (3), Reddit (45–47),
and even YouTube (48, 49).

It is possible that government policies may be leveraged to ensure accessibility to these im-
portant data sources, which could be considered a public good to be regulated much like publicly
funded scienti�c publication data (193). This would help improve the sample and algorithmic lim-
itations discussed in Section 5 and allow these large-scale, real-world data to better identify health
factors that more expensive clinical trials cannot due to their smaller scale and cost. We intend
for our review to contribute to establishing the importance of social media data for biomedical
research and demonstrate the need to make such data more accessible in general to scienti�c
research.
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F Theis, pp. 153–64. Cham, Switz.: Springer

95. Cai C,KeD,XuY,SuK.2014.Fast learning of deep neural networks via singular value decomposition. In
PRICAI 2014: Trends in Arti�cial Intelligence, ed. DN Pham, SB Park, pp. 820–26. Cham, Switz.: Springer

96. Nikfarjam A, Sarker A, O’Connor K, Ginn R, Gonzalez G. 2015. Pharmacovigilance from social media:
mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
J. Am. Med. Inform. Assoc. 22:671–81

97. Nguyen T, LarsenME,O’Dea B, Phung D,Venkatesh S, Christensen H. 2017. Estimation of the preva-
lence of adverse drug reactions from social media. Int. J. Med. Inform. 102:130–37

98. KuhnM,Letunic I, Jensen LJ, Bork P. 2016.The SIDER database of drugs and side effects.Nucleic Acids
Res. 44:D1075–79

99. Yang H, Yang CC. 2015. Mining a weighted heterogeneous network extracted from healthcare-speci�c
social media for identifying interactions between drugs. In 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), pp. 196–203. New York: IEEE

100. Kim SJ, Marsch LA, Hancock JT, Das AK. 2017. Scaling up research on drug abuse and addiction
through social media big data. J. Med. Internet Res. 19:e353

101. West JH, Hall PC, Hanson CL, Prier K, Giraud-Carrier C, et al. 2012. Temporal variability of problem
drinking on Twitter. Open J. Prev. Med. 2:43–48

102. Yakushev A, Mityagin S. 2014. Social networks mining for analysis and modeling drugs usage. Procedia
Comput. Sci. 29:2462–71

103. Shutler L,Nelson LS, Portelli I, Blachford C,Perrone J. 2015.Drug use in the Twittersphere: qualitative
contextual analysis of tweets about prescription drugs. J. Addict. Dis. 34:303–10

104. Chary M, Genes N, Giraud-Carrier C, Hanson C, Nelson LS, Manini AF. 2017. Epidemiology from
tweets: estimatingmisuse of prescription opioids in theUSA from social media.J.Med.Toxicol.13:278–86

105. Yang Z, Nguyen L, Jin F. 2018. Predicting opioid relapse using social media data. arXiv:1811.12169
[cs.SI]

454 Correia et al.

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:4

33
-4

58
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

8.
45

.6
7.

13
3 

on
 0

8/
31

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



106. van Hoof JJ, Bekkers J, van Vuuren M. 2014. Son, you’re smoking on Facebook! College students’ dis-
closures on social networking sites as indicators of real-life risk behaviors.Comput. Hum. Behav. 34:249–
57

107. Daniulaityte R, Carlson R, Brigham G, Cameron D, Sheth A. 2015. "Sub is a weird drug:” a Web-based
study of lay attitudes about use of buprenorphine to self treat opioid withdrawal symptoms.Am. J. Addict.
24:403–9

108. Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. 2014. Herb–drug interactions: challenges and
opportunities for improved predictions.Drug Metab. Dispos. 42:301–17

109. Blendon RJ, DesRoches CM, Benson JM, Brodie M, Altman DE. 2001. Americans’ views on the use and
regulation of dietary supplements. Arch. Intern. Med. 161:805–10

110. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, et al. 2012. Anticipating critical transi-
tions. Science 338:344–48

111. van de Leemput IA, Wichers M, Cramer AOJ, Borsboom D, Tuerlinckx F, et al. 2014. Critical slowing
down as early warning for the onset and termination of depression. PNAS 111:87–92

112. Pak A, Paroubek P. 2010. Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of
the Seventh International Conference on Language Resources and Evaluation (LREC’10), pp. 1320–26. Paris:
Eur. Lang. Resour. Assoc.

113. Zimbra D,Abbasi A, Zeng D,ChenH. 2018.The state-of-the-art in Twitter sentiment analysis: a review
and benchmark evaluation. ACM Trans. Manag. Inform. Syst. 9:5

114. Reece AG, Reagan AJ, Lix KLM,Dodds PS, Danforth CM, Langer EJ. 2017. Forecasting the onset and
course of mental illness with Twitter data. Sci. Rep. 7:13006

115. Bradley MM, Lang PJ. 1999. Affective Norms for English Words (ANEW): instruction manual and affective

ratings. Instr. Man., Natl. Inst. Mental Health Cent. Stud. Emot. Atten., Univ. Florida, Gainesville, FL
116. ten Thij M, Bollen J, Rocha LM. 2019. Detecting eigenmoods in individual human emotion. In Book

of Abstracts of the 8th International Conference on Complex Networks and their Applications, ed. H Cheri�,
S Gaito, J Gonçalves-Sá, J Fernando Mendes, E Moro, et al., pp. 166–68. Lisbon, Port.: Int. Conf. Com-
plex Netw. Appl.

117. Pennebaker JW, Boyd RL, Jordan K, Blackburn K. 2015. The development and psychometric properties of
LIWC2015. Psychom. Man., Dep. Psych., Univ. Texas, Austin

118. Liu B. 2012. Sentiment Analysis and Opinion Mining. Williston, VT: Morgan & Claypool
119. Pang B, Lee L. 2008. Opinion mining and sentiment analysis. Found. Trends Inform. Retr. 2:1–135
120. Nasukawa T, Yi J. 2003. Sentiment analysis: capturing favorability using natural language processing.

In K-CAP ’03: Proceedings of the 2nd International Conference on Knowledge Capture, pp. 70–77. New York:
Assoc. Comput. Mach.

121. Dodds PS,Danforth CM. 2010.Measuring the happiness of large-scale written expression: songs, blogs,
and presidents. J. Happiness Stud. 11:441–56

122. Esuli A, Sebastiani F. 2006. SENTIWORDNET: a publicly available lexical resource for opinion min-
ing. In Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06),
pp. 417–22. Paris: Eur. Lang. Resour. Assoc.

123. Dodds PS, Clark EM, Desu S, Frank MR, Reagan AJ, et al. 2015. Human language reveals a universal
positivity bias. PNAS 112:2389–94

124. Dodds PS, Harris KD, Kloumann IM, Bliss CA, Danforth CM. 2011. Temporal patterns of happiness
and information in a global social network: hedonometrics and Twitter. PLOS ONE 6:e26752

125. Golder SA, Macy MW. 2011. Diurnal and seasonal mood vary with work, sleep, and daylength across
diverse cultures. Science 333:1878–81

126. Bollen J, Pepe A, Mao H. 2011. Modeling public mood and emotion: Twitter sentiment and socio-
economic phenomena. In Proceedings of the Fifth International AAAI Conference onWeblogs and Social Media

(ICWSM 2011), pp. 450–53. Menlo Park, CA: Assoc. Adv. Artif. Intell.
127. Stone PJ, Bales RF, Namenwirth JZ, Ogilvie DM. 1962. The General Inquirer: a computer system for

content analysis and retrieval based on the sentence as a unit of information. Behav. Sci. 7:484–98
128. Warriner AB, Kuperman V, Brysbaert M. 2013. Norms of valence, arousal, and dominance for 13,915

English lemmas. Behav. Res. Methods 45:1191–207

www.annualreviews.org • Mining Social Media Data 455

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:4

33
-4

58
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

8.
45

.6
7.

13
3 

on
 0

8/
31

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



129. Hutto C, Gilbert E. 2014. VADER: a parsimonious rule-based model for sentiment analysis of so-
cial media text. In Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media,
pp. 216–25. Menlo Park, CA: Assoc. Adv. Artif. Intell.

130. Wilson T, Hoffmann P, Somasundaran S, Kessler J, Wiebe J, et al. 2005. OpinionFinder: a system
for subjectivity analysis. In Proceedings of HLT/EMNLP 2005 on Interactive Demonstrations, pp. 34–35.
Stroudsburg, PA: Assoc. Comput. Linguist.

131. Ribeiro FN, Araújo M, Gonçalves P, Gonçalves MA, Benevenuto F. 2016. SentiBench: a benchmark
comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci. 5:23

132. Reagan AJ, Danforth CM, Tivnan B, Williams JR, Dodds PS. 2017. Benchmarking sentiment analysis
methods for large-scale texts: a case for using continuum-scored words and word shift graphs. EPJ Data
Sci. 6:28

133. Douglas M,McNair ML,Droppleman LF. 1971. POMS manual for the Pro�le of Mood States. Instr.Man.,
Educ. Indust. Test. Serv., San Diego, CA

134. Tausczik YR, Pennebaker JW. 2010. The psychological meaning of words: LIWC and computerized
text analysis methods. J. Lang. Soc. Psychol. 29:24–54

135. Miller GA. 1995.WordNet: a lexical database for English. Commun. ACM 38:39–41
136. Moilanen K, Pulman S. 2007. Sentiment composition. In Proceedings of the Fourth International Conference

on Recent Advances in Natural Language Processing (RANLP 2007), pp. 378–82. Stroudburg, PA: Assoc.
Comput. Linguist.

137. SaifH,HeY,AlaniH.2012.Semantic sentiment analysis of Twitter. InProceedings of the 11th International
Semantic Web Conference ISWC, pp. 508–24. Berlin: Springer

138. Hannak A, Anderson E, Barrett LF, Lehmann S,Mislove A,RiedewaldM. 2012.Tweetin’ in the rain: ex-
ploring societal-scale effects of weather onmood. In Proceedings of the Sixth International AAAI Conference
on Weblogs and Social Media, pp. 479–82. Menlo Park, CA: Assoc. Adv. Artif. Intell.

139. Robinson RL,Navea R, IckesW. 2013. Predicting �nal course performance from students’ written self-
introductions: a LIWC analysis. J. Lang. Soc. Psychol. 32:469–79

140. Nadeau D, Sabourin C, Koninck JD, Matwin S, Turney PD. 2006. Automatic dream sentiment analysis.
Poster presented at Workshop on Computational Aesthetics at the Twenty-First National Conference
on Arti�cial Intelligence, Boston, MA, July 16

141. Pestian JP, Matykiewicz P, Linn-Gust M, South B, Uzuner O, et al. 2012. Sentiment analysis of suicide
notes: a shared task. Biomed. Inform. Insights 5:3–16

142. Back MD, Küfner AC, Egloff B. 2011. “Automatic or the people?” Anger on September 11, 2001, and
lessons learned for the analysis of large digital data sets. Psychol. Sci. 22:837–38

143. Kryvasheyeu Y, Chen H, Moro E, Hentenryck PV, Cebrian M. 2015. Performance of social network
sensors during hurricane sandy. PLOS ONE 10:e0117288

144. Dzogang F, Lightman S, Cristianini N. 2017. Circadian mood variations in Twitter content. Brain
Neurosci. Adv. https://doi.org/10.1177/2398212817744501

145. López A, Detz A, Ratanawongsa N, Sarkar U. 2012. What patients say about their doctors online: a
qualitative content analysis. J. Gen. Intern. Med. 27:685–92

146. Segal J, Sacopulos M, Sheets V, Thurston I, Brooks K, Puccia R. 2012. Online doctor reviews: Do they
track surgeon volume, a proxy for quality of care? J. Med. Internet Res. 14:e50

147. Cavazos-Rehg PA, Krauss M, Fisher SL, Salyer P, Grucza RA, Bierut LJ. 2015. Twitter chatter about
marijuana. J. Adolesc. Health 56:139–45

148. Thompson L, Rivara FP,Whitehill JM. 2015. Prevalence of marijuana-related traf�c on Twitter, 2012–
2013: a content analysis. Cyberpsychol. Behav. Soc. Netw. 18:311–19

149. CoppersmithG,DredzeM,HarmanC.2014.Quantifyingmental health signals inTwitter. In Proceedings
of theWorkshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality,
pp. 51–60. Stroudsburg, PA: Assoc. Comput. Linguist.

150. Wang Y, Weber I, Mitra P. 2016. Quanti�ed self meets social media: sharing of weight updates on
Twitter. In Proceedings of the 6th International Conference on Digital Health Conference (DH ’16), pp. 93–97.
New York: Assoc. Comput. Mach.

151. Guntuku SC, Yaden DB, Kern ML, Ungar LH, Eichstaedt JC. 2017. Detecting depression and mental
illness on social media: an integrative review. Curr. Opin. Behav. Sci. 18:43–49

456 Correia et al.

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:4

33
-4

58
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

8.
45

.6
7.

13
3 

on
 0

8/
31

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1177/2398212817744501


152. Chen J, Chen H, Wu Z, Hu D, Pan JZ. 2017. Forecasting smog-related health hazard based on social
media and physical sensor. Inform. Syst. 64:281–91

153. OhO,KwonK,RaoH.2010.An exploration of social media in extreme events: rumor theory andTwitter
during the Haiti earthquake 2010. In Proceedings of the 31st International Conference on Information Systems
(ICIS 2010), Pap. 231. https://aisel.aisnet.org/icis2010_submissions/231/

154. McCullomR. 2018.Amurdered teen, twomillion tweets and an experiment to �ght gun violence.Nature
561:20–22

155. Lo AS, Esser MJ, Gordon KE. 2010. Youtube: a gauge of public perception and awareness surrounding
epilepsy. Epilepsy Behav. 17:541–45

156. Betton V, Borschmann R, Docherty M, Coleman S, Brown M, Henderson C. 2015. The role of social
media in reducing stigma and discrimination. Br. J. Psychiatry 206:443–44

157. LadeaM,BranM,Claudiu SM.2016.Online destigmatization of schizophrenia: a Romanian experience.
Eur. Psychiatry 33:S276

158. Lydecker JA, Cotter EW, Palmberg AA, Simpson C, Kwitowski M, et al. 2016. Does this tweet make
me look fat? A content analysis of weight stigma on Twitter. Eat. Weight Disord. 21:229–35

159. Witzel CT, Guise A, Nutland W, Bourne A. 2016. It starts with me: privacy concerns and stigma in the
evaluation of a Facebook health promotion intervention. Sex. Health 13:228–33

160. Pacheco DF, Pinheiro D,Cadeiras M,Menezes R. 2017. Characterizing organ donation awareness from
social media. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 1541–48. New
York: IEEE

161. Engel J. 2003. Bringing epilepsy out of the shadows.Neurology 60:1412–12
162. Kerson TS. 2012. Epilepsy postings on YouTube: exercising individuals’ and organizations’ right to

appear. Soc. Work Health Care 51:927–43
163. Fiest KM, Birbeck GL, Jacoby A, Jette N. 2014. Stigma in epilepsy. Curr. Neurol. Neurosci. Rep. 14:444
164. Sartorius N, Schulze H. 2005. Reducing the Stigma of Mental Illness: A Report from a Global Programme of

the World Psychiatric Association. Cambridge, UK: Cambridge Univ. Press
165. Patel R, Chang T,Greysen SR,Chopra V. 2015. Social media use in chronic disease: a systematic review

and novel taxonomy. Am. J. Med. 128:1335–50
166. McNeil K, Brna P, Gordon K. 2012. Epilepsy in the Twitter era: a need to re-tweet the way we think

about seizures. Epilepsy Behav. 23:127–30
167. Payton FC,Kvasny L. 2016.Online HIV awareness and technology affordance bene�ts for black female

collegians—maybe not: the case of stigma. J. Inform. Health Biomed. 23:1121–26
168. Silenzio VM, Duberstein PR, Tang W, Lu N, Tu X, Homan CM. 2009. Connecting the invisible dots:

reaching lesbian, gay, and bisexual adolescents and young adults at risk for suicide through online social
networks. Soc. Sci. Med. 69:469–74

169. Lupton D. 2016. The use and value of digital media for information about pregnancy and early moth-
erhood: a focus group study. BMC Pregnancy Childbirth 16(1):171

170. Harpel T. 2018. Pregnant women sharing pregnancy-related information on Facebook: Web-based sur-
vey study. J. Med. Internet Res. 20:e115

171. Bartholomew MK, Schoppe-Sullivan SJ, Glassman M, Dush CMK, Sullivan JM. 2012. New parents’
Facebook use at the transition to parenthood. Family Relations 61:455–69

172. Llorente A, Garcia-Herranz M, Cebrian M,Moro E. 2015. Social media �ngerprints of unemployment.
PLOS ONE 10:e0128692

173. Ramagopalan SV, Simpson A, Sammon C. 2020. Can real-world data really replace randomised clinical
trials? BMC Med. 18:13

174. Pfeffer J, Mayer K, Morstatter F. 2018. Tampering with Twitter’s sample API. EPJ Data Sci. 7:50
175. Ruths D, Pfeffer J. 2014. Social media for large studies of behavior. Science 346:1063–64
176. Jensen EA. 2017. Putting the methodological brakes on claims to measure national happiness through

Twitter: methodological limitations in social media analytics. PLOS ONE 12:e0180080
177. Shaban-Nejad A, Michalowski M, Buckeridge DL. 2018. Health intelligence: how arti�cial intelligence

transforms population and personalized health.NPJ Digit. Med. 1:53

www.annualreviews.org • Mining Social Media Data 457

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:4

33
-4

58
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

8.
45

.6
7.

13
3 

on
 0

8/
31

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://aisel.aisnet.org/icis2010_submissions/231/


178. Perrin A, Anderson M. 2019. Share of U.S. adults using social media, including Facebook, is mostly
unchanged since 2018. Fact Tank, Pew Res. Cent., April 10. https://www.pewresearch.org/fact-

tank/2019/04/10/share-of-u-s-adults-using-social-media-including-facebook-is-mostly-

unchanged-since-2018/

179. Lenormand M, Picornell M, Cantú-Ros OG,Tugores A, Louail T, et al. 2014. Cross-checking different
sources of mobility information. PLOS ONE 9:e105184

180. Prieto VM, Matos S, Álvarez M, Cacheda F, Oliveira JL. 2014. Twitter: a good place to detect health
conditions. PLOS ONE 9:e86191

181. Luckerson V. 2015. Here’s how Facebook’s news feed actually works. Time, July 9. https://time.com/

collection-post/3950525/facebook-news-feed-algorithm/

182. Bagrow JP, Liu X, Mitchell L. 2019. Information �ow reveals prediction limits in online social activity.
Nat. Hum. Behav. 3:122–28

183. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. 2009. Detecting in�uenza
epidemics using search engine query data.Nature 457:1012–14

184. Yang CC, Yang H, Jiang L, Zhang M. 2012. Social media mining for drug safety signal detection. In
Proceedings of the 2012 International Workshop on Smart Health and Wellbeing, pp. 33–40.New York: Assoc.
Comput. Mach.

185. Rocha LM, Börner K, Miller WR. 2019.myAURA: personalized web service or epilepsy management. Grant
Announc., Grantome Database, accessed Nov. 29. https://hsrproject.nlm.nih.gov/view_hsrproj_

record/20191123

186. Miller WR, Gesselman AN, Garcia JR, Groves D, Buelow JM. 2017. Epilepsy-related romantic and
sexual relationship problems and concerns: indications from internet message boards. Epilepsy Behav.
74:149–53

187. CDC (Cent. Dis. Control Prev.). 2019. About chronic diseases. Fact Sheet, Natl. Cent. Chron. Dis. Prev.
Health Promot., Atlanta, GA, accessed Nov. 29. https://www.cdc.gov/chronicdisease/about

188. Grady PA, Gough LL. 2014. Self-management: a comprehensive approach to management of chronic
conditions. Am. J. Public Health 104:e25–31

189. Cassidy JJ,Bernasek SM,Bakker R,Giri R,PeláezN,et al. 2019.Repressive gene regulation synchronizes
development with cellular metabolism. Cell 178:980–92

190. Dolan RJ. 2002. Emotion, cognition, and behavior. Science 298:1191–94
191. Nofsinger JR. 2005. Social mood and �nancial economics. J. Behav. Finance 6:144–60
192. Ruiz R. 2016. Why scientists think your social media posts can help prevent suicide.Mashable, June 26.

https://mashable.com/2016/06/26/suicide-prevention-social-media/

193. Margolis R, Derr L, Dunn M, Huerta M, Larkin J, et al. 2014. The National Institutes of Health’s Big
Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J. Am. Med. Inform. Assoc.

21:957–58

458 Correia et al.

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:4

33
-4

58
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

8.
45

.6
7.

13
3 

on
 0

8/
31

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://www.pewresearch.org/fact-tank/2019/04/10/share-of-u-s-adults-using-social-media-including-facebook-is-mostly-unchanged-since-2018/
https://time.com/collection-post/3950525/facebook-news-feed-algorithm/
https://hsrproject.nlm.nih.gov/view_hsrproj_record/20191123
https://www.cdc.gov/chronicdisease/about
https://mashable.com/2016/06/26/suicide-prevention-social-media/


Annual Review of

Biomedical Data

Science

Volume 3, 2020
Contents

Deciphering Cell Fate Decision by Integrated Single-Cell

Sequencing Analysis

Sagar and Dominic Grün ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 1

Knowledge-Based Biomedical Data Science

Tiffany J. Callahan, Ignacio J. Tripodi, Harrison Pielke-Lombardo,

and Lawrence E. Hunter ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣23

Infectious Disease Research in the Era of Big Data

Peter M. Kasson ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣43

Spatial Metabolomics and Imaging Mass Spectrometry in the Age

of Artificial Intelligence

Theodore Alexandrov ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣61

Protein–Protein Interaction Methods and Protein Phase Separation

Castrense Savojardo, Pier Luigi Martelli, and Rita Casadio ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣89

Data Integration for Immunology

Silvia Pineda, Daniel G. Bunis, Idit Kosti, and Marina Sirota ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 113

Computational Methods for Analysis of Large-Scale CRISPR Screens

Xueqiu Lin, Augustine Chemparathy, Marie La Russa, Timothy Daley,

and Lei S. Qi ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 137

Computational Methods for Single-Particle Electron Cryomicroscopy

Amit Singer and Fred J. Sigworth ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 163

Immunoinformatics: Predicting Peptide–MHC Binding

Morten Nielsen, Massimo Andreatta, Bjoern Peters, and Søren Buus ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 191

Analytic and Translational Genetics

Konrad J. Karczewski and Alicia R. Martin ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 217

Mobile Health Monitoring of Cardiac Status

Jeffrey W. Christle, Steven G. Hershman, Jessica Torres Soto,

and Euan A. Ashley ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 243

Statistical Methods in Genome-Wide Association Studies

Ning Sun and Hongyu Zhao ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 265

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:4

33
-4

58
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

8.
45

.6
7.

13
3 

on
 0

8/
31

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Biomedical Data Science and Informatics Challenges to Implementing

Pharmacogenomics with Electronic Health Records

James M. Hoffman, Allen J. Flynn, Justin E. Juskewitch,

and Robert R. Freimuth ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 289

Identifying Regulatory Elements via Deep Learning

Mira Barshai, Eitamar Tripto, and Yaron Orenstein ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 315

Computational Methods for Single-Cell RNA Sequencing

Brian Hie, Joshua Peters, Sarah K. Nyquist, Alex K. Shalek, Bonnie Berger,

and Bryan D. Bryson ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 339

Analysis of MRI Data in Diagnostic Neuroradiology

Saima Rathore, Ahmed Abdulkadir, and Christos Davatzikos ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 365

Supercomputing and Secure Cloud Infrastructures in Biology and

Medicine

Cathrine Jespersgaard, Ali Syed, Piotr Chmura, and Peter Løngreen ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 391

Computational Approaches for Unraveling the Effects of Variation in

the Human Genome and Microbiome

Chengsheng Zhu, Maximilian Miller, Zishuo Zeng, Yanran Wang,

Yannick Mahlich, Ariel Aptekmann, and Yana Bromberg ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 411

Mining Social Media Data for Biomedical Signals and Health-Related

Behavior

Rion Brattig Correia, Ian B. Wood, Johan Bollen, and Luis M. Rocha ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 433

Errata

An online log of corrections to Annual Review of Biomedical Data Science articles may be

found at http://www.annualreviews.org/errata/biodatasci

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:4

33
-4

58
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 6

8.
45

.6
7.

13
3 

on
 0

8/
31

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 


