
Mining Software Repositories to Assist
Developers and Support Managers

by

Ahmed E. Hassan

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2004

c©Ahmed E. Hassan 2004

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by

my examiners.

I understand that my thesis may be made electronically available to the

public.

ii

Abstract

This thesis explores mining the evolutionary history of a software system

to support software developers and managers in their endeavors to build

and maintain complex software systems.

We introduce the idea of evolutionary extractors which are special-

ized extractors that can recover the history of software projects from soft-

ware repositories, such as source control systems. The challenges faced

in building C-REX, an evolutionary extractor for the C programming lan-

guage, are discussed. We examine the use of source control systems in

industry and the quality of the recovered C-REX data through a survey

of several software practitioners.

Using the data recovered by C-REX, we develop several approaches and

techniques to assist developers and managers in their activities.

We propose Source Sticky Notes to assist developers in understanding

legacy software systems by attaching historical information to the depen-

dency graph. We present the Development Replay approach to estimate

the benefits of adopting new software maintenance tools by reenacting

the development history.

We propose the Top Ten List which assists managers in allocating test-

ing resources to the subsystems that are most susceptible to have faults.

To assist managers in improving the quality of their projects, we present

a complexity metric which quantifies the complexity of the changes to the

code instead of quantifying the complexity of the source code itself.

All presented approaches are validated empirically using data from

several large open source systems.

The presented work highlights the benefits of transforming software

repositories from static record keeping repositories to active repositories

used by researchers to gain empirically based understanding of software

development, and by software practitioners to predict, plan and under-

stand various aspects of their project.

iii

Acknowledgements

This thesis would not have been possible without the support of many

exceptional people to whom I am grateful.

I am greatly indebted to my supervisor Prof. Richard C. Holt for his

support and guidance throughout the years. Ric gave me the freedom to

pursue research on many interesting topics while providing encouraging

words and advice when needed.

Ric has taught me many valuable lessons about being a good researcher

and a caring teacher. I sincerely appreciate his advice concerning my

presentations and writings. His counsel has been invaluable in making

my work readable and my presentations entertaining. Through out my

research, Ric has continued to challenge my findings and question my

results as we traveled the world presenting the work in this thesis at

several international venues. Thanks Ric for making this a very enjoyable

and educational experience! It saddens me that the journey has come to

an end. Thanks for being a great teacher, a friendly proponent and a

challenging opponent.

I appreciate the time and effort that Prof. Jo Atlee, Prof. Charlie Clark,

and Prof. Kostas Kontogiannis put into reading my thesis and their valu-

able comments. I am grateful to Prof. Dewayne Perry for taking time out

of his busy schedule to act as the external for my thesis. His insight and

knowledge about prior research has been extremely valuable in strength-

ening my work, especially in spots where I lacked the hard evidence to

support my intuition.

I would like to thank Prof. Michael W. Godfrey for always being like a

big brother in offering his views and advice on several aspects of academic

life. I also would like to thank Mary McColl for her assistance with vari-

ous administrative details throughout my degree. I appreciate the lively

and engaging discussions with many current and previous students of Ric

and members of SWAG, in particular, Prof. Susan Sim, Prof. Bil Tzerpos,

and Jingwei Wu (with whom I collaborated on many research papers).

The work in this thesis uses several open source repositories. I grate-

fully acknowledge the significant contributions of members of the Open

v

Source community who have given freely of their time to produce large

software systems with rich and detailed source code repositories; and who

assisted me in understanding and acquiring these valuable repositories.

I am very fortunate to work with many great people at Research In

Motion. I would like to thank them for their friendship and their will-

ingness to listen to a crazy scientist who disturbed them with his ideas

and thoughts during their peaceful breaks. In particular, I would like

to thank Vi Thuan Banh, Denny Chiu, James Godfrey, and Sean (J. F.)

Wilson. Many of the ideas in this thesis, were developed by monitoring

some of their work habits (e.g. the source sticky notes approach). I am

also grateful for Vi Thuan for proofreading parts of this thesis.

Throughout this journey, I was lucky to have many good friends who

have always been willing to discuss my research ideas and to disagree

with me. Thankfully, they still remain my friends at the end of the jour-

ney even though sometimes I was too busy to show my appreciation. I

would like to thank Mohammed Abouzour, Andrew Hunter, Prof. Karim

Karim and Stephen Sheeler. Thanks guys for always telling me when

things just did not make sense, you guys made this journey fun and en-

durable!

Special thanks to my uncle (Mamdouh Bekhit) for his continuous and

caring support. I am also grateful to my family for providing an environ-

ment where I could escape in order to relax and regain my strength and

sanity.

The work in this thesis would not have been possible if it were not for

a truly great and extremely patient person:

My mom, to whom I dedicate this thesis.

Thanks Mom!

Ahmed E. Hassan

on February 2005

vi

To My Mom

vii

Related Publications

The following is a list of our publications that are on the topic of mining

software repositories:

1. Exploring Software Evolution Using Spectrographs, Jingwei Wu,

Ahmed E. Hassan and Richard C. Holt, Proceedings of WCRE 2004:

Working Conference on Reverse Engineering, Delft, 2004

2. Predicting Change Propagation in Software Systems, Ahmed E.

Hassan and Richard C. Holt, Proceedings of ICSM 2004: Interna-

tional Conference on Software Maintenance, Chicago, Illinois, USA,

September 11-17, 2004.

3. Evolution Spectrographs: Visualizing Punctuated Change in Soft-

ware Evolution, Jingwei Wu, Claus W. Spitzer, Ahmed E. Has-

san and Richard C. Holt, Proceedings of IWPSE 2004: Interna-

tional Workshop on Principles of Software Evolution, Kyoto, Japan,

September 6-7, 2004.

4. Studying The Evolution of Software Systems Using Evolutionary

Code Extractors, Ahmed E. Hassan and Richard C. Holt, Draft, Pro-

ceedings of IWPSE 2004: International Workshop on Principles of

Software Evolution, Kyoto, Japan, September 6-7, 2004.

5. Using Development History Sticky Notes to Understand Software

Architecture, Ahmed E. Hassan and Richard C. Holt, Proceedings of

IWPC 2004: International Workshop on Program Comprehension,

Bari, Italy, June 24-26, 2004.

6. MSR 2004: The International Workshop on Mining Software Repos-

itories, Ahmed E. Hassan, Richard C. Holt and Audris Mockus,

Proceedings of ICSE 2004: International Conference on Software

Engineering, Scotland, UK, May 23-28, 2004.Workshop Website:

http://msr.uwaterloo.ca

ix

http://msr.uwaterloo.ca

7. Studying The Chaos of Code Development, Ahmed E. Hassan and

Richard C. Holt, Proceedings of WCRE 2003: Working Conference on

Reverse Engineering, Victoria, British Columbia, Canada, Novem-

ber 13-16, 2003.

8. The Chaos of Software Development, Ahmed E. Hassan and Richard

C. Holt, Proceedings of IWPSE 2003: International Workshop on

Principles of Software Evolution, Helsinki, Finland, September 1-2,

2003.

x

Contents

1 Introduction 1

1.0.1 Prior Research . 2

1.0.2 Personal Experience 3

1.0.3 The Open Source Phenomena 4

1.1 Research Hypothesis . 5

1.2 Thesis Organization . 6

1.3 Thesis Overview . 7

1.3.1 Part I: Extracting Information From Software Repos-

itories . 7

1.3.2 Part II: Using Software Repositories to Support De-

velopers . 10

1.3.3 Part II: Using Software Repositories to Support Man-

agers . 11

1.4 Thesis Contributions . 13

Part I: Extracting Information From Software Repositories 17

2 Studying The Evolution of Software Systems Using Evo-

lutionary Code Extractors 21

2.1 Introduction . 22

2.1.1 Organization Of Chapter 23

2.2 Describing Source Code Evolution 24

2.3 The Dimensions Of Source Code Evolution 26

xi

CONTENTS

2.3.1 Frequency of Snapshots 27

2.3.2 Data Source . 28

2.3.3 The Characteristics of the Source Code 29

2.3.4 Level of Detail . 31

2.4 Challenges And Complexity 33

2.4.1 Robustness and Scalability 33

2.4.2 Accuracy . 34

2.4.3 The Changing and Unstable Nature of Source Code . 35

2.4.4 Development Time . 35

2.5 Previous Work . 36

2.6 Conclusion . 37

3 C-REX: An Evolutionary Code Extractor for C 39

3.1 Introduction . 39

3.1.1 Organization of Chapter 42

3.2 Evolutionary Code Extractors 42

3.2.1 Frequency of Snapshots 44

3.2.2 Data Source . 45

3.2.3 The Characteristics of Code 45

3.2.4 Level of Detail . 46

3.3 Challenges In Developing C-REX 47

3.3.1 Robustness and Scalability of the Extractor 48

3.3.2 Accuracy of the Extracted Information 48

3.3.3 The Changing and Unstable Nature of Source Code . 48

3.3.4 Time Required to Develop the Extractor 49

3.3.5 Additional Challenges 49

3.4 Schema For The C-Rex Evolutionary Change Data 53

3.5 The Implementation Of C-REX 55

3.5.1 Performance . 61

3.6 Limitations Of The C-REX Approach 62

3.6.1 Dependency Analysis 62

3.6.2 Beyond C . 63

3.6.3 Beyond CVS . 64

xii

3.6.4 More Detailed Change Tracking 64

3.6.5 The Use of Heuristics 64

3.7 Using C-REX In Practice . 65

3.7.1 Acquiring Our Guinea Pigs 66

3.8 Related Work . 67

3.9 Conclusion . 68

4 Source Control Change Messages: How Are They Used

And What Do They Mean? 71

4.1 Introduction . 72

4.1.1 Organization of Chapter 74

4.2 Study Logistics . 74

4.2.1 Study Goals . 75

4.2.2 Study Participants . 76

4.2.3 Study Design . 77

4.2.4 Survey Design . 80

4.3 Results For Part 1: Usage and Content of Change Messages 80

4.4 Results For Part 2: Classification of Changes 84

4.4.1 Analysis 1A and 1B of Developers’ Classifications . . 87

4.4.2 Analysis 2 of Developers’ Classifications 89

4.5 Results For Part 3: Comparing Open Source and Commer-

cial Change Messages . 92

4.6 Conclusion . 93

Part II: Using Software Repositories to Assist Developers 99

5 Using Development History Sticky Notes to Understand

Software Architecture 103

5.1 Introduction . 104

5.1.1 Organization of Chapter 105

5.2 The Architecture Understanding Process 106

5.2.1 Propose . 108

5.2.2 Compare . 109

xiii

CONTENTS

5.2.3 Investigate . 109

5.3 The Software Reflexion Framework 110

5.3.1 A Clarifying Example 112

5.4 Investigating Dependencies - The W4 Approach 114

5.4.1 Three Types of Dependencies 115

5.4.2 Questions Posed During Investigation 116

5.4.3 Source Sticky Notes . 117

5.5 Source Control Systems . 119

5.5.1 Attaching Sticky Notes to Static Dependencies 120

5.6 Case Study . 122

5.6.1 Investigating Removed Dependencies 126

5.6.2 Discussion of Results 127

5.7 Related Work . 128

5.8 Conclusion . 130

6 Replaying Development History to Assess the Claimed Ben-

efits of Code Maintenance Tools and Strategies 133

6.1 Introduction . 134

6.1.1 Organization of Chapter 137

6.2 The Change Propagation Process 137

6.2.1 Information Sources Used to Propagate Changes . . . 140

6.3 Measuring The Performance Of a Tool in Propagating Changes142

6.3.1 A Simple Example . 143

6.3.2 Performance Measures for a Single Change Set . . . 143

6.3.3 Performance Measures for Multiple Change Sets Over

Time . 147

6.3.4 Relative Performance of a Tool Over Time 149

6.3.5 Relative Stability/Volatility of the Performance of a

Tool . 150

6.4 The Development Replay (DR) Approach 151

6.4.1 Threats to Validity and Limitations of Results De-

rived Through the DR Approach 156

6.5 Case Study . 161

xiv

6.5.1 Enhancing the Performance of FREQ(A) tools 163

6.6 Related Work . 166

6.6.1 Change Propagation 166

6.6.2 The use of historical data 170

6.7 Conclusion . 173

Part III: Using Software Repositories to Support Managers 177

7 The Top Ten List: Dynamic Fault Prediction 181

7.1 Introduction . 182

7.1.1 Organization of Chapter 184

7.2 Motivation . 185

7.3 Heuristics For The Top Ten List 188

7.3.1 Most Frequently Modified (MFM) 189

7.3.2 Most Recently Modified (MRM) 189

7.3.3 Most Frequently Fixed (MFF) 190

7.3.4 Most Recently Fixed (MRF) 190

7.4 Studied Systems . 191

7.5 Measuring The Performance Of The Top Ten List 193

7.6 The Effects Of a Larger List 197

7.7 Discussion . 199

7.7.1 An Accurate Measure of the Performance of a Heuristic199

7.7.2 Performance of Fault Based Heuristics 199

7.7.3 Determining a Practical Average Prediction Age . . . 200

7.8 Related Work . 202

7.9 Conclusion . 202

8 Code Development Chaos: a New Perspective on Software

Complexity 205

8.1 Introduction . 206

8.1.1 Overview Of Chapter 209

8.2 The Code Development Process 210

8.3 Information Theory . 213

xv

CONTENTS

8.4 The Basic Code Development Model 214

8.4.1 Basic Model . 214

8.4.2 Intuition . 216

8.4.3 Files As a Unit of Measurement 217

8.4.4 Evolution of Entropy 218

8.5 Extended Code Development Model 219

8.5.1 Evolution Periods . 220

8.5.2 Adaptive System Sizing 221

8.6 The File Code Development Model (FCD) 223

8.7 Case Study . 226

8.7.1 Building the Statistical Linear Regression Models . . 227

8.7.2 Measuring and Comparing the Prediction Error for

the SLR Models . 229

8.7.3 Determining the Statistical Significance for The Dif-

ference in Prediction Error between Models 230

8.7.4 Comparing Models . 231

8.7.5 Threats to Validity . 235

8.8 Related Work . 239

8.9 Conclusion . 241

Part IV: Conclusion 243

9 Contributions and Future Work 245

9.1 Thesis Contributions and Findings 247

9.2 Suggestions for Extending this Research 248

9.2.1 Evolutionary Extractors for C++ or Java 248

9.2.2 Integrating Source Notes into Graphical Browsers . . 249

9.2.3 Better Change Propagation Techniques and More Re-

alistic Evaluations . 249

9.2.4 Commercial Software Systems 250

9.3 Opportunities for Future Research 250

9.3.1 Grokking Through Time 250

xvi

9.3.2 Visualizing the Recovered Data from Software Repos-

itories . 251

9.3.3 Recovery Of Aspects and Validation of Recovered As-

pects . 251

9.3.4 Change Distance and Design Quality 252

9.3.5 Discovery of Short Term and Long Term Evolution

Patterns . 252

9.3.6 Evolution of Clones . 253

9.3.7 Standardization of Output 253

9.3.8 Development Decision Support (DDS) Appliances . . 253

9.3.9 Mining Other Repositories and Creating New Repos-

itories . 254

9.3.10 Migrating Source Control Repositories 255

9.4 Closing Remarks . 255

Bibliography 257

xvii

List of Tables

2.1 Classifying Developer’s Replies About a Code Change 26

2.2 Summary of Evolutionary Extractors Design Choices 37

3.1 Size of Source Control Repository vs. Size of C-REX XML file . 52

3.2 Characteristics of the Guinea Pigs 65

4.1 Characteristics of the Participants of the Study 77

4.2 Summary of the Studied Systems 79

4.3 Classification Results for the Intermediate Developers Group

vs. the Classifier Program(Analysis 1A) 87

4.4 Classification Results for the Senior Developers Group vs. the

Automated Classifier . 88

4.5 Kappa Values and Strength of Agreement 89

4.6 Classification Results for the Senior Developers Group vs. the

Intermediate Developers Group 89

4.7 Classification Results for the Common Classifications between

Both Developers Group vs. the Automated Classifier 90

4.8 Results of the Stuart-Maxwell Test 91

6.1 Classification of the Modification Records for the Studied Sys-

tems . 156

6.2 Characteristics of the Studied Systems 161

6.3 Performance of FREQ(A) tools for the Five Studied Software

Systems . 164

6.4 Performance of RECN(M) tools for the Five Studied Software

Systems . 164

xviii

List of Tables

6.5 Summary of Work by Briand, Shirabad, Ying, and Zimmer-

mann et al. in relation to our work. 175

7.1 Summary of the Studied Systems 193

7.2 HR, AHR, and APA for the Studied Systems During the 3 Years 196

7.3 AHR and APA for the Exponential Decay Heuristic 201

8.1 Summary of the Studied Systems 226

8.2 The R2 statistic for all the SLR Models for the Studied Systems 229

8.3 The Difference of Error Prediction and T -Test Results for the

SLR Modelm and SLR Modelf for the Studied Systems 231

8.4 The Difference of Error Prediction and T -Test Results for the

SLR Modelm, SLR ModelHCM3s, and SLR ModelHCM1d for the

Studied Systems . 232

8.5 The Difference of Error Prediction and T -Test Results for the

SLR Modelf , SLR ModelHCM3s, and SLR ModelHCM1d for the

Studied Systems . 234

xix

List of Figures

2.1 Recovering the Evolution of Source Code 26

3.1 Conceptual View of the C-REX Extractors 43

3.2 Source Code Snapshot Frequency Choices 45

3.3 Level of Detail for Evolutionary Analysis 46

3.4 Schema for the Change Data Extracted By C-REX 54

3.5 Schema for the ChangeUnit . 55

3.6 Example of a Simple Software System 56

3.7 Steps Needed to Generate the RDE 57

3.8 Contents of the Buckets for Entity main in the Simple Software

System . 58

3.9 Steps Needed to Generate the Evolutionary Change Data 60

3.10 Complexity Ratio Evolution . 69

4.1 Analysis of the Classification of Changes by the Senior and In-

termediate Developer Groups . 86

5.1 Overview of the Architecture Understanding Process 107

5.2 Architecture Understanding Process Using The Software Re-

flexion Framework . 111

5.3 Conceptual View of an Operating System [BHB99a] 112

5.4 Reflexion Diagram for an Operating System 113

5.5 Classification of Dependencies . 116

5.6 Conceptual View of the NetBSD Virtual Memory Component . 123

5.7 Reflexion Diagram for the NetBSD Virtual Memory Component 124

xx

List of Figures

5.8 Source Sticky Note for Dependency from Virtual Address Main-

tenance to Pager . 125

5.9 Source Sticky Note for Dependency from Pager to Hardware

Translation . 126

5.10 Source Sticky Note for Dependency from File System to Virtual

Address Maintenance . 127

6.1 Model of the Change Propagation Process 139

6.2 Change Propagation Graph for the Simple Example - An edge

between two entities indicates that a tool suggested one when

informed about changes to the other one. 144

6.3 The Development Replay Infrastructure 152

6.4 Maintaining the Project State Incrementally 154

7.1 Hit Rate For The 4 Proposed Heuristics 194

7.2 Hit Rate Growth As a Function of The Top List Size Using

MRM Heuristic . 197

7.3 Hit Rate Growth As a Function of The Top List Size Using

MFM Heuristic . 198

8.1 Flow Of Complexity Between the Facets of a Software Project . 207

8.2 The Entropy of a Period of Development 215

8.3 The Evolution of the Entropy of Development 219

xxi

CHAPTER 1
Introduction

Software repositories (such as source control repositories) contain a

wealth of valuable information regarding the evolutionary history of

a software project. In this research we develop tools to recover such his-

torical data. We present several techniques and approaches that make

use of the recovered data to support managers and assist developers

working on large software systems. We validate our work empirically

using data based on over 60 years of development history for several

open source projects.

SOFTWARE systems are continuously evolving and changing. Under-

standing these complex systems to maintain and enhance them is a

challenging task. Managing projects building and maintaining such sys-

tems to produce highly reliable software on time and within budget is a

difficult goal to accomplish.

In the last decade, software researchers have developed tools, pre-

sented methods, and proposed theories to support managers and guide de-

velopers as they evolve large software systems. Unfortunately, industrial

adoption of such research has been limited. In many cases researchers

are not aware of industrial practices and practitioners are often too busy

1

Chapter 1. Introduction

with their day to day problems to express their concerns to researchers

[Gla03b]. Industrial case studies attempt to overcome this quandary, by

involving researchers more with industrial problems [BKT03, KPJ+02,

PPV00]. Unfortunately, case studies require the commitment of the in-

dustrial organization whose practitioners are usually busy trying to meet

tight deadlines and are reluctant to participate in such studies. More-

over, the academic experimenter’s intervention and monitoring is likely

to affect the practitioners’ attitude and performance [MWZ03].

Historical information stored in software repositories provides a mid-

dle ground that permits researchers to study industrial development pro-

cesses and products while not interfering with development deadlines.

Such repositories contain a wealth of valuable information for empirical

studies in software engineering: source control systems store changes to

the source code as development progresses, defect tracking systems follow

the resolution of software defects, and archived communications between

project personnel record rationale for decisions throughout the life of a

project. Such data is available for most software projects and represents

a detailed and rich record of the historical development of a software sys-

tem. Moreover, current software engineering research approaches and

techniques can benefit from using such historical information. For ex-

ample, historical information can assist developers in understanding the

rationale for the current structure of a software system and its evolution-

ary history.

1.0.1 Prior Research

Software repositories have primarily been used for historical record keep-

ing activities such as retrieving old versions of the source code or tracking

the status of a defect. Several studies have emerged that use this data to

study various aspects of software development such as software design or

its architecture, development process, software reuse, product reliability,

and developer motivation.

2

Introduction

Basili and Perricone used historical change data to study the types

of software faults, the effort needed to correct them, and the risks of

code reuse [BP84]. Perry and Evangelist explored the change data of a

large long lived telephony system to determine the root cause of faults

[PE85, PE87]. Perry et al. used change data along with surveys of devel-

opers to gain a better understanding of the type of faults in large software

systems and the efforts associated with fixing them [PS93, LPS02]. Re-

search by Gall et al. has shown that software repositories can support

developers changing legacy systems by pointing out hidden dependencies

in a software system [GHJ98, GJK03]. Eick et al. studied the concept

of code decay and used the modification history to predict the incidence

of faults [ELL+92, EGK+01]. Graves et al. showed that the number of

modifications to a file is a good predictor of the fault potential of the

file [GKMS00]. In other words, the more a subsystem is changed the

higher the probability it will contain faults. Mockus et al. demonstrated

that historical change information can support management in predict-

ing bugs and fixing effort to ease the evolution of reliable software system

[MWZ03]. Similarly, Khoshgoftaar et al. explored using process history to

predict software reliability [HAK+96, KAH+98]. Chen et al. have shown

that historical information can assist developers in understanding large

systems [CCW+01]. Eick et al. presented visualization techniques to ex-

plore change data [ESEES92, SGEMGK02]. These early studies have

highlighted some of the benefits of analyzing historical data.

1.0.2 Personal Experience

Working as part of several industrial organizations, such as IBM Re-

search, Nortel, and Research In Motion, the author found himself and

other developers examining software repositories (such as source control

systems), in an ad-hoc fashion, to clarify many of our concerns and under-

standing of software systems or to gauge the state of a software project,

for example:

3

Chapter 1. Introduction

1. In the role of a head developer of a project, we were frequently asked

for estimates on when a project is ready for release or about the

project’s expected reliability or concerning the need for testing re-

sources – we adopted very coarse estimates by examining the change

history of the software system as stored in the source control repos-

itory.

2. In the role of a developer, we faced the daunting task of understand-

ing large complex software systems which were developed by others,

enhanced by many and patched frequently to meet tight deadlines

or critical emergencies – we found ourselves along with other devel-

opers falling back to the initial version of a complex piece of code

to understand it. In many cases, the initial cut of a piece of code,

which is stored in the source control system, was easier to under-

stand and was cleaner than the current code. In addition, we often

investigated prior changes to code segments to gain a better under-

standing of the rationale for their current complexity or to clarify

the design choices.

1.0.3 The Open Source Phenomena

The promising results obtained from prior studies along with our personal

industrial experience highlighted to us the potential of software repos-

itories in supporting developers and managers working on large soft-

ware systems. We recognized the value of transforming such reposito-

ries from static record keeping repositories to active repositories used by

researchers to gain empirically based understanding of software devel-

opment, and by software practitioners to predict, plan and understand

various aspects of their project. To pursue such research, we needed a

large number of projects (Guinea Pigs) for which we could analyze the

historical development records. With the explosive growth of open source

projects, we were able to acquire the source control repositories for several

open source projects.

4

Section 1.1. Research Hypothesis

Open source projects keep their repositories accessible online to per-

mit developers around the world to contribute to their project. Further-

more, most of their communication and development documentation is

archived online. The large number of available projects and the ease of

access to their history permitted us to empirically verify our proposed

techniques and approaches, and to interpret our findings.

1.1 Research Hypothesis

Prior research and our informal industrial experience lead us to the for-

mation of our research hypothesis. We believe that:

✬

✫

✩

✪

Software repositories contain a wealth of valuable information

about the evolution of a software project. By mining such his-

torical information, we can develop techniques and approaches

to support software developers and managers in their endeav-

ors to build and maintain complex software systems.

The goal of this thesis is to show the validity of this hypothesis through

studying historical repositories for several open source projects. In par-

ticular, we develop several approaches and techniques that make use of

the evolutionary history of software project to assist:

• Developers:

– in understanding legacy code and discovering the rationale be-

hind the current structure of the software system.

– in ensuring that changes are propagated to the appropriate

parts of the code.

• Managers:

– in predicting faults in a software system.

5

Chapter 1. Introduction

– in allocating their limited testing resources to the most appro-

priate parts of the software system.

This thesis shows that the mining process can be automated to ro-

bustly process the historical records from the source control repositories of

several large software systems. By automating this process, we can study

a large number of systems. By documenting and presenting this process,

interested researchers and practitioners can easily apply our proposed

techniques. Interested researchers and practitioners can also investigate

other possible uses of the recovered data, or they can augment the recov-

ered data using the described techniques to perform additional studies.

1.2 Thesis Organization

Throughout this thesis we demonstrate the value of mining software repos-

itories by studying and formalizing ad-hoc techniques and approaches

adopted by practitioners who use historical records as part of their day

to day job.

The thesis has three main parts. Each part is geared towards a spe-

cific type of reader. Interested readers can focus on the particular parts

that would satisfy their interests based on their specific role:

• Part I: This part presents the techniques and approaches that we

developed to automate the mining of large historical repositories.

Readers of this part are likely to be other researchers interested in

the field of mining software repositories.

• Part II: This part presents the techniques and approaches that we

developed to assist developers in understanding and changing legacy

source code.

• Part III: This part presents the techniques and approaches that

we developed to support the management of software systems by

6

Section 1.3. Thesis Overview

mining the development history. Readers of this part are likely to

be software managers who are responsible for allocating resources

(such as testing resources) and who must ensure the reliability of a

released software system.

To make each part self contained, some repetition may exist between

the various parts to permit their reading independently. Nevertheless,

repetition is minimized and readers are directed to the appropriate re-

search if they are interested in more details. Related and prior work to

each part are examined and studied in the corresponding parts of the the-

sis.

1.3 Thesis Overview

We now give an overview of the work presented in this thesis.

1.3.1 Part I: Extracting Information From Software

Repositories

Researchers interested in mining software repositories need to automate

the mining process and to have a good understanding of the quality of the

recovered data. In this part we tackle the complexities associated with

recovering the historical data and we study the quality of the recovered

data.

1.3.1.1 Chapter 2: Studying The Evolution of Software Systems

Using Evolutionary Code Extractors

Software systems are continuously changing and adapting to meet the

needs of their users. Empirical studies are needed to better understand

the evolutionary process followed by software systems. In this thesis we

explore the potential of mining software repositories to assist software

7

Chapter 1. Introduction

practitioners. To perform such studies, we need tools that can analyze

and report various details about the software system’s history.

We propose evolutionary code extractors as a type of tool to assist in

empirical source code evolution research. We present the design dimen-

sions for such an extractor and discuss several of the challenges associ-

ated with automatically recovering the evolution of source code.

1.3.1.2 Chapter 3: C-REX: An Evolutionary Code Extractor for C

In this thesis, we focus on mining the data stored by a source control

system as an example of a software repository. We discuss C-REX, an

evolutionary code extractor for the C programming language. We present

our design choices for C-REX, explain the reasoning for these choices, and

give an overview of our extraction approach. We also discuss a number of

limitations to our approach and show results of using C-REX to recover

the evolution of several software systems.

Whereas, most source control systems record changes to the code at

the file level, C-REX traces changes to specific source code entities, such

as functions, variables, or data type definitions. Then we can track details

such as:

• Addition, removal, or modification of a source code entity such as

adding or removing a function.

• Changes to dependencies between the modified entities and other

source code entities. For example, we can determine that a function

no longer uses a specific variable or that a function now calls another

function.

Furthermore, C-REX lexically analyzes the content of the change mes-

sage attached to a modification to automatically classify modifications

into three types: Fault Repairing modifications (FR), Feature Introduc-

tion modifications (FI), and General Maintenance modifications (GM).

8

Section 1.3. Thesis Overview

1.3.1.3 Chapter 4: Source Control Change Messages: How Are

They Used And What Do They Mean?

Source control systems permit developers to attach a free form message

to each committed change. The content of these change messages is rarely

investigated and little is known about their use by developers while they

maintain their code.

We conducted a survey with professional software developers to inves-

tigate how developers make use of these messages and what type of in-

formation exists in them.We investigated the quality of the classifications

done by C-REX. We also asked developers to compare change messages

from the repositories of open source software systems to the messages

from the repositories of commercial systems.

In particular, we sought to answer questions such as:

• Do developers usually enter meaningful and descriptive change mes-

sages? Are they likely to leave the messages empty?

• Do developers monitor such messages and react to their content?

• Do developers make use of these message as they maintain and en-

hance their software system, or are they ignored?

• Can we automatically determine the type of a change as being a bug

fix or a feature?

The findings of our survey suggest that change messages are a valu-

able resource which practitioners use to maintain and manage software

projects. For example, practitioners use change messages to understand

the code when they are fixing a bug. Moreover, change messages in open

source projects are similar to messages that developers encounter in large

commercial projects. An automated approach to determine the purpose of

a change using the change message is likely to produce results similar to

a manual analysis performed by professional developers. The results of

9

Chapter 1. Introduction

this survey along with our ability to automate the mining process of soft-

ware repositories encourage us to investigate techniques and approaches

to study and formalize the ad-hoc uses of repositories by practitioners.

The following two parts of this thesis study the use of historical data de-

rived from software repositories to support developers and managers.

1.3.2 Part II: Using Software Repositories to Support

Developers

Developers maintaining large software projects need tools to assist them

in changing the software system and understanding it. The cost of per-

forming incorrect changes to legacy system is very high as it will likely

introduce bugs into the software system. In this part, we tackle these is-

sues by using data derived from the source control repositories to assist

developers in propagating changes and in understanding the architecture

of legacy software systems.

1.3.2.1 Chapter 5: Using Development History Sticky Notes to

Understand Software Architecture

Dependency graphs have been proposed and used in many studies and

maintenance activities to assist developers in understanding large soft-

ware systems before they embark on modifying them to meet new re-

quirements or to repair faults. Call graphs and data usage graphs are the

most commonly used dependency graphs. These graphs show the present

structure of the software system (e.g. In a compiler, an Optimizer function

calling a Parser function). They fail to reveal details about the structure

of the system that are needed to gain a better understanding. For exam-

ple, traditional call graphs cannot give the rationale behind an Optimizer

function calling a Parser function.

We present an approach which recovers valuable information from

source control systems and attaches this information to the static depen-

dency graph of a software system. We call this recovered information

10

Section 1.3. Thesis Overview

– Source Sticky Notes. We show how to use these notes along with the

software reflexion framework [MNS95] to assist in understanding the ar-

chitecture of large software systems. To demonstrate the viability of our

approach, we apply it to understand the architecture of NetBSD – a large

open source operating system.

1.3.2.2 Chapter 6: Replaying Development History to Assess The

Benefits of Code Maintenance Tools and Strategies

Practitioners are faced with many tools and methodologies promising to

ease their maintenance tasks. Code restructuring methodologies claim

to ease software evolution by localizing changes. Development environ-

ment tools assert their ability to assist developers in propagating changes.

Static source analysis tools (such as lint) promise to point out error prone

code. Unfortunately, such claims and promises are rarely substantiated

or tested although the cost of adopting such tools and approaches is high

and the risks of failures are even higher.

We propose to use the historical information stored in software repos-

itories (such as source control systems) to assess such claimed benefits.

We present the Development Replay (DR) approach which reenacts the

changes stored in the source control repositories using a proposed tool or

strategy. We present a case study where the DR approach is used to em-

pirically assess and compare the effectiveness of several not-yet-existing

tools which promise to assist developers in propagating code changes. The

approach is illustrated through a case study for 5 large open source sys-

tems with over 40 years of development history.

1.3.3 Part II: Using Software Repositories to Support

Managers

Managers of large software projects are always in search for techniques

and approaches to determine the quality of their software system and to

11

Chapter 1. Introduction

allocate their limited resources wisely. In this part we tackle these issues

by using data derived from source control repositories.

1.3.3.1 Chapter 7: The Top Ten List

To assist managers in coping with the challenges of allocating their lim-

ited resources effectively, we present an approach (The Top Ten List) which

highlights to them the ten most susceptible subsystems to have a fault.

The list is updated dynamically as the development of the system pro-

gresses. Managers can focus testing resources to the subsystems sug-

gested by the list. In contrast to count based techniques which focus on

predicting an absolute count of faults in a system over time, or classifi-

cation based techniques which focus on predicting if a subsystem is fault

prone or not, we focus on predicting the subsystem that are most likely

to have a fault in them in the near future. For example, even though a

subsystem may not be fault prone and may only have a few number of

predicted faults, it may be the case that a fault will be discovered in it

within the next few days or weeks. Or in another case, even though a

fault counting based technique may predict that a subsystem has a large

number of faults, they may be dormant faults that are not likely to cause

concerns in the near future.

If we were to draw an analogy to our work and rain prediction, our

prediction model focuses on predicting the areas that are most likely to

rain in the next few days. The predicted rain areas may be areas that are

known to be dry areas (i.e. not fault prone) or may be areas which aren’t

known to have large precipitation values (i.e. low predicted faults).

We believe that the Top list approach holds a lot of promise and value

for software practitioners, it provides a simple and accurate technique to

assist them in managing their resources as they maintain large evolving

software systems.

12

Section 1.4. Thesis Contributions

1.3.3.2 Chapter 8: Code Development Chaos – a New Perspective

on Software Complexity

Using sound mathematical concepts from information theory such as Shan-

non’s Entropy [Sha48], we present a novel view of complexity in software.

We propose a complexity metric that is based on the process followed by

software developers to produce the code (the code development process)

instead of on the code or the requirements. We conjecture that:

A chaotic code development process negatively affects its out-

come, the software system, such as the occurrence of faults.

We validate our hypothesis empirically through case studies using data

derived from the development process history of six large open source

projects. Our entropy measurements have statistically significant better

accuracy in predicting the occurrence of faults than simply using the num-

ber of prior modifications to a subsystem or prior faults in it as predictors

of faults. If our complexity metric is used it is likely to assist managers

avoid delays and faults in a project over time.

1.4 Thesis Contributions

The conceptual contributions of this thesis center around the develop-

ment of techniques and approaches to demonstrate the value of mining

software repositories in assisting managers and developers in perform-

ing a variety of software development, maintenance, and management

activities. The technical contributions of this thesis focus on the devel-

opment of tools and the invention of techniques to robustly automate the

mining process for large long lived software systems written in industrial

languages such as C. The empirical contributions of this thesis are the ap-

plication of all proposed techniques and approaches on several long lived

large open source projects.

The main contributions of this thesis are as follows:

13

Chapter 1. Introduction

• The proposal of evolutionary extractors as a central and critical tool

for recovering the evolutionary history of software systems. Such a

tool enables software engineering researchers to perform empirical

studies of software evolution and software repositories mining. Fur-

thermore, the design dimensions for such an extractor and the chal-

lenges associated with building them are discussed to assist others

interested in building or using such extractors.

• The development of an evolutionary extractor (C-REX) for the C pro-

gramming language. This extractor can process large long lived

projects robustly and within reasonable time. The recovered data

forms the empirical basis of the research presented in this thesis.

• The first survey of its kind to examine the usage of source control

systems by practitioners. The results of the survey highlight the

value of source control repositories in assisting practitioners. The

presented results are likely to encourage other researchers to inves-

tigate approaches and build better tools which make use of source

control data.

• The development of Source Sticky Notes, which attach historical in-

formation to traditional dependency relations, such as call relations.

These sticky notes assist developers in program understanding.

• The development of the Development Replay approach which reen-

acts the development history of a software project using the changes

stored in the source control repositories. This approach permits us

to empirically asses the effectiveness of not-yet-adopted or not-yet-

existing code maintenance tools and strategies.

• The proposal of a new view of software complexity (Code Develop-

ment Chaos) which focuses on the change patterns stored in the

source control repositories instead of focusing on the code itself.

• The proposal of a novel technique (The Top Ten List) to measure

the benefits of a bug predictor in allocating testing resources. The

14

Section 1.4. Thesis Contributions

approach measures the applicability of the predictors results along

with the limited resources assigned for testing an application in in-

dustry.

15

Part I

Extracting Information

From Software Repositories

17

Software repositories are available for most large software projects.

Yet the data stored in these repositories has rarely been the focus of soft-

ware engineering research. We believe that this is mainly owing to the

following reasons:

• The limited access to such repositories prevented researchers from

using them in their work. Until recently researchers could not eas-

ily gain access to historical development repositories. Companies

in many cases were not willing to give researchers access to such

detailed information about their software systems and their evolu-

tion history. Another possible source for software repositories and

software systems to study is academic systems. Unfortunately, soft-

ware systems developed in academia tend to have a small number

of developers, a short life span, and their development history is

not as rich nor as interesting as the history of long lived industrial

software systems. The earliest research work in the area of mining

software systems were based on the repositories of commercial soft-

ware systems and were done in cooperation with a few commercial

organizations [BP84, PE85, ELL+92, HAK+96, GHJ98, GKMS00,

MWZ03, Shi03].

• The complexity of processing large repositories in an automated fash-

ion hindered the adoption and integration of software repositories

in other software engineering research. In many cases, software

engineering researchers do not have the expertise required nor do

they have the interest to recover data from software repositories.

Recovering such data requires a great deal of effort and time from

researchers, instead they are more interested in gaining convenient

access to the recovered data in an easy to process format.

With the advent of open source systems, the accessibility to reposito-

ries of large software systems became possible. Researchers now have ac-

cess to rich repositories for large projects developed by hundreds of devel-

opers over extended periods of time. This lead to early research in mining

software repositories which was based on open source projects [CCW+01].

19

This part discusses the challenges and complexities associated with

recovering the data stored in software repositories. The part starts off

by proposing the need for evolutionary extractors which can recover the

evolutionary history of software systems. By recovering the data and rep-

resenting it in a simple and easy to access format, the data becomes more

accessible for researchers to study and investigate. As an example of an

evolutionary extractor, we present C-REX an evolutionary extractor for

the C language. C-REX recovers the evolutionary history of a software

project from the repository of its source control system. We end this part

with a survey we conducted with professional software developers to in-

vestigate how developers make use of source control systems in practice.

We investigated the quality of some of the data produced by the C-REX

extractor. We also asked developers to compare change messages in open

source software systems to change messages in commercial systems.

This part is likely to be of interest to software engineering researchers,

in particular researchers interested in mining software repositions. This

part shows that the mining process can be automated through a number

of techniques. It also presents an analysis of the quality of the recovered

data. Researchers throughout the different areas of software engineering

can now focus on analyzing the recovered data from software repositories,

instead of spending a large amount of time building tools to recover the

data first.

20

CHAPTER 2
Studying The Evolution of

Software Systems Using

Evolutionary Code

Extractors

Software systems are continuously changing and adapting to meet the

needs of their users. Empirical studies are needed to better understand

the evolutionary process followed by software systems. These studies

need tools that can analyze and report various details about the soft-

ware system’s history.

We propose evolutionary code extractors as a type of tool to assist

in empirical source code evolution research. We present the design di-

mensions for such an extractor and discuss several of the challenges

associated with automatically recovering the evolution of source code.

21

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

2.1 Introduction

SOFTWARE systems are continuously changing and adapting to meet

the needs of their users. A good understanding of the evolution

process followed by a software system is essential. This would permit

researchers to build better tools to assist developers as they maintain

and enhance these systems. Furthermore, it will pave the way for the

investigation of techniques and approaches to monitor, plan and predict

successful evolutionary paths for long lived software projects.

We could study the evolution of a number of facets of a software project

such as its requirements, its architecture, its source code, its bugs reports,

or the interactions and communications among its developers. Each facet

offers insight on a variety of issues surrounding the evolution of a soft-

ware system. For example, studying the complexity of the source code or

the number of reported bugs over time may give us a better understand-

ing of how bugs are introduced in software systems. It may also assist

us in building models to predict bugs and models to guide managers in

allocating testing resources where they are needed the most [HH].

To perform such studies a good record of these facets throughout the

lifetime of a project is essential. For example, a record of the requirements

of a software system since its inception till the current day is needed to

study the evolution of its requirements. For some facets such as the re-

quirements of a software system, such records rarely exist and if they do

exist they tend to be incomplete or too high level. For other facets such as

the features of a software system, they may be well documented in release

notes, but it may be challenging and time consuming to recover them. For

example, Anton and Potts have manually traced the evolution of features

for telephony services [AP01]. Their study focused on telephony services

in a single city due to the long time and resources required to manually

distill and describe the evolution of features from the phone books.

We should focus on facets for which most projects have good historical

records and which can be automatically analyzed with minimal effort. An

22

Section 2.1. Introduction

empirical approach permits us to generalize our findings instead of asso-

ciating them to peculiarities of specific systems. Luckily, a large number

of software projects store artifacts generated throughout their lifetime in

software repositories. For example, the source code and changes to it are

recorded in a source control repository. The released versions are usually

stored in release archives. Other repositories archive the mailing lists

and emails among the project’s developers. Bug tracking systems record

various details regarding reported bugs and their fixes. These reposito-

ries provide a great opportunity for researchers to acquire empirical data

to assist them in studying evolution.

To ensure that we can perform our studies on several software sys-

tems, we need tools that automatically recover data from these reposito-

ries and present the data in a standard format that is easier to process.

This would permit researchers to focus on analyzing the recovered data

instead of spending a large amount of time building tools to recover the

data first.

The source code of a software project can be thought of conceptually

as the DNA of the software. The source code encodes the software sys-

tem’s functionality. Studying changes to the various characteristics of the

source code will help us understand the evolution of the software sys-

tem. Moreover, there is a large body of research which demonstrates ap-

proaches to recover characteristics of the source code using automated

techniques. Hence the source code is a very attractive facet of a software

project to study its evolution using automated techniques. In this chapter,

we argue the need for tools that could process the source code history of

a software project and generate useful data automatically. We call such

software tools evolutionary code extractors, as they extract the evolution

of source code.

2.1.1 Organization Of Chapter

This chapter is organized as follows. Section 2.2 tackles the issue of de-

scribing the evolution of source code. We discuss several ways to describe

23

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

the same change to the source code. We argue the need to choose de-

scriptions which can be recovered automatically. Section 2.3 overviews

the dimensions associated with studying and recovering the evolution of

source code. The choices made by researchers along these dimensions

influence the techniques used to build evolutionary code extractors. Sec-

tion 2.4 highlights the challenges and complications that arise based on

the choices along the dimensions presented in Section 2.3. Section 2.5 de-

scribes prior work which dealt with studying source code evolution. The

prior work is presented and the design choices used by their extractors

are explored using the dimensions presented in this chapter. Section 2.6

concludes the chapter with parting thoughts about evolutionary extrac-

tors and their benefits for studying software systems and validating our

understanding of the evolution process followed by software systems.

2.2 Describing Source Code Evolution

Describing the evolution of the source code amounts to describing the

changes that occur to it. The simplest way to describe source code changes

is by describing their effect on the code size (the addition and removal of

lines of code).

We are interested in means to describe source code changes that can

be automatically recovered and which are richer than simply describing

the addition and removal of lines. For example, even though terms such as

perfective, corrective, and adaptive are usually used to describe changes

to the code; it is not possible to confidently and accurately describe the

evolution of a software system in an automated fashion using these terms.

We would require a large number of heuristics, human intervention, and

intuition to rank changes to source code accordingly. In short, we seek

approaches that provide a balance between the richness of the recovered

descriptions and the ease of automating the recovery process.

Consider a developer who is asked about her/his activities in the last

few days, a number of replies are possible. Each reply describes the ac-

24

Section 2.2. Describing Source Code Evolution

tivities performed at a specific level of detail and in respect to particular

characteristics of the software system. For example, the developer work-

ing on a text editor software system may say: “I added support for saving

a text file, I also fixed a bug in the layout engine used by the editor.” This

reply describes change at the feature level.

Instead if we were to ask the developer to elaborate more on her/his

changes and their effect on the source code (i.e. to describe her/his changes

to the source code), we are bound to get an even larger and more diverse

number of replies which describe the same exact change work from differ-

ent perspectives. The following is a list of possible replies:

1. I changed 5 lines in the source code.

2. I added 3 lines in file main.c. I also commented out 2 lines from file

layout.c.

3. I added 1 line in the main() function, 2 lines in the init() function,

and removed 2 lines from the refreshLayout() function.

4. I got the main() function to call function init() and I added a check

in the init() function to make sure the filename is set before I call re-

freshLayout(). Also in the refreshLayout() function, I no longer check

if the filename is set.

The first reply deals with changes to the size of the overall system.

The second reply is more specific, it specifies the location (files) of these

changes. The third reply is even more specific than the second reply as

it maps the changes to the exact function (source code entity) where they

occurred. Finally, the fourth reply describes the change using its effect

on the call dependencies between the code entities. Table 2.1 summarizes

the developer’s replies.

25

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

Reply # Characteristic Level Of Detail

1 Size (LOC) System

2 Size (LOC) File

3 Size (LOC) Function

4 Structural (Call Dep.) Function

Table 2.1: Classifying Developer’s Replies About a Code Change

2.3 The Dimensions Of Source Code Evolution

In the previous section, we showed that a simple change could be de-

scribed in a number of ways. Each way focuses on a particular character-

istic of the source code at varying levels of details. Researchers studying

the evolution of source code need to build tools (evolutionary code extrac-

tors) to recover and describe this evolutionary process. We believe that

there are a number of design dimensions which they should address be-

fore they embark on building these tools. In this section we focus on these

design dimensions and list the choices associated with each dimension.

✬

✫

✩

✪

Snapshot Extractor

Snapshots

Difference Analysis

S
0

S
1

S
t

S
t+1

Evolutionary

Extraction Results

Figure 2.1: Recovering the Evolution of Source Code

26

Section 2.3. The Dimensions Of Source Code Evolution

2.3.1 Frequency of Snapshots

The source code of a software is continuously changing. We need to deter-

mine the frequency at which we should observe the code. Consider Fig-

ure 2.1, conceptually to monitor the evolution of the source code we need

to decide on a number of historical snapshots of the system’s source code.

We then need to define some characteristics of these snapshots and study

the differences between consecutive snapshots along these characteris-

tics. The frequency of observations/snapshots determines the number of

snapshots and their moment in time. Several methods exist to define

snapshots:

• Event based: Source code progresses through different events dur-

ing the lifetime of a project. For event based snapshots, we would

use project events to determine the snapshots. Examples of these

events are:

– Change: A code change is simply the addition, removal or mod-

ification of a single line to a software system. Using a change

frequency would produce the largest number of snapshots, due

to the large number of changes that occur throughout the life-

time of a software system.

– ChangeList: A changelist is the grouping of several code

changes to represent a more complete view of a change. For

example, a changelist may contain two changes – one change is

the addition of a function f2() and the other change is the addi-

tion of a call of function f2() in function f1(). These two changes

might be required to implement a specific feature or fix a par-

ticular bug.

– Build: A build represents the grouping of several features.

Builds are usually done to merge the various features that have

been developed by the team members. Builds may be requested

by the project lead as an indication of achieving development

milestones or to track the progress of a project towards the final

27

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

release. Nightly builds, release candidate builds, and feature-

complete builds are examples of builds.

– Release: A release represents the grouping of a large number of

features. The release is sent to customers and users.

• Time based: Time based snapshots are independent of the project

and source code state. Instead they are done based on calendar time,

such as weekly, monthly, and quarterly snapshots.

If we were to build an evolutionary extractor, we would conceptually

have to process each snapshot using a snapshot extractor. The snapshot

extractor would determine the characteristics of each snapshot. Then

we would perform a snapshots difference analysis. This analysis would

determine changes in the studied characteristics between each pair of

consecutive snapshots (see Figure 2.1).

The choice of which snapshot frequency to use is dependant on the

type of analysis that will be performed on the recovered data. If we were

to study the average number of functions that must be changed to imple-

ment a feature then a changelist frequency may be the most appropriate

choice.

The choice of the frequency of snapshots determines the number of

snapshots which will be studied. If release snapshots are used then we

will have a smaller number of snapshots in comparison to using change

snapshots. The number of snapshots affects the performance of an evolu-

tionary extractor. The larger the number of snapshots, the more time is

required to perform the analysis.

2.3.2 Data Source

When studying the evolution of living creatures throughout time, we are

usually limited by the availability of fossils of these creatures. Or if we

are able to monitor the creatures as they evolve we are limited by the

monitoring frequency. Whereas for studying the evolution of source code,

28

Section 2.3. The Dimensions Of Source Code Evolution

we have a much richer fossil history. Source code control systems, which

are available for many long-lived software systems, store each change to

the source code. Hence, we can track the evolution of the source code at a

very high frequency (change frequency). If we were to draw a parallel to

monitoring the evolution of a living creature, the data stored in the source

control repository is equivalent to the creature informing the researcher

monitoring it each time it is about to evolve/change. This is clearly impos-

sible in living creatures but fortunately possible in source code thanks to

the detailed records kept by source control systems.

Alternatively, we can deploy tools to monitor and record the developer

activities during code development as done by Sayyad Shirabad [Shi03]

and Schneider [SGPP04]. This later approach may be used when source

control repositories are not accessible. Or it can be used when additional

details, not available in the source control repository, are needed. Fur-

thermore, project release archives which store a copy of released software

may be used to study the evolution at the release frequency. km

2.3.3 The Characteristics of the Source Code

As we seek to describe the evolution of source code, we need to define a

set of characteristics and techniques to measure these characteristics. We

can then describe the evolution of the source code in terms of these char-

acteristics and changes to them. For example, the size of the source code

(i.e. the lines of source code) is a characteristic which can be measured

easily. We can then compare the evolution of the software system from

one snapshot to the next.

In this subsection we cover a number of possible characteristics. The

choice of characteristics to monitor is dependant on the research per-

formed and the ease of recovering such characteristics from the source

code. For example, recovering the number of lines of the source code is

easier and less resource intensive than recovering the current dependency

structure of the source code. We chose to focus on the static aspect of the

29

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

source code instead of its dynamic and behavioral aspects due to the com-

plexity associated with recovering and describing behavioral and dynamic

changes to the source code.

We can describe the characteristics of source code using two general

approaches:

• Metric: Metric approaches define measures to describe the current

state of the source code. The simplest measures are metrics such as

the Lines Of Code (LOC) or the number of defined functions. Other

elaborate metrics such as complexity metrics could be used as well.

Using metric approaches we can track changes in the value of the

metrics (characteristics) over time.

• Structural: Structural approaches describe the current structure

of the code. They could describe the dependency structure of the

code such as ‘function 1 depends on function 2’, or they could de-

scribe the include dependencies such as ‘file 1 includes file 2’. Using

structural approaches, we could track changes in the structure of

the source code, such as the addition of new functionality and its

effect on the dependencies among the various parts of the source

code. For example, we would expect once a function is added, other

functions will be changed to call (depend on) it.

Some characteristics are cumulative, such as the number of functions,

in the sense that characteristic measures derived based on a high fre-

quency snapshots (such as change frequency) could be combined to study

the same characteristic at the release level (i.e. the number of functions

that exist per release). This is usually not possible for a large number of

characteristics such as complexity metrics. It may be beneficial to recover

the evolution of source code using the most number of snapshots (change

level) then to abstract the data for less frequent snapshots (release level).

Using this approach the recovered evolutionary data could be used for a

variety of studies based on the desired level of frequency.

30

Section 2.3. The Dimensions Of Source Code Evolution

2.3.4 Level of Detail

The level of the detail of the characteristics for a snapshot varies. Some

snapshot extractors recover information at the system level such as the

number of lines of the whole system, whereas other extractors can recover

details at the function level such as the number of lines of each function.

Or for structural characteristics some extractors recover the interaction

between source code files, such as ‘file x.c calls file x.h’. Whereas other

extractors report information at a lower and more detailed level, such as

‘function f1 calls function f2’. Also some extractors detail information

about the internals of a function, such as ‘func1 for loop 1 calls function

f2’.

The level of details for a snapshot defines the level at which the evolu-

tion of the source code can be described. It also limits the type of analysis

that could be performed on the recovered data. The more detailed the

extracted data, the more complex it becomes to develop a snapshot and

an evolutionary extractor to generate this type of information, we believe

there are a number of detail levels:

• System Level: At the system level a single value is generated for

each snapshot of the studied system such as the total number of

lines or the total number of files in the software system. Develop-

ing snapshot extractor for this level is usually easier than the other

more detailed levels.

• Subsystem Level: At the subsystem level, the source code is di-

vided into a small number of subsystems. Metric values for each

subsystem or structural information about the interaction between

these subsystems are generated by the snapshot extractor. For ex-

ample, the source code of an operating system may contain four sub-

systems: a Network Interface, Memory Manager, Scheduler, and

File System subsystems. A metric approach may track the size of

each of these four subsystems. A structural approach may track the

dependencies between these four subsystems.

31

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

• File Level: At this level, the extractor reports changes at the file

level, such as the number of functions in a file or the number of lines

in it. For example, an evolutionary extractor would detail informa-

tion such as on Feb 2, 2004 file x.c had 10 lines changed in it: 5 lines

added and another 5 removed.

• Code Entity Level: At the code entity level, the snapshot extrac-

tor describes the snapshot based on code entities such as functions,

classes, macros, or data types. For example, it could report the num-

ber of lines in a function, or the dependencies between the functions

in the source code. This data could be used during the snapshots

difference analysis to report the addition of a new call to a function

or the removal of a data dependency from another function. At this

level of detail, the concepts of a function and data type renaming

are possible. For example, it may be expected from an evolutionary

extractor to report that a function was renamed. We believe that

the detection of renaming of a source code entity versus the addition

and removal operation of two sperate entities should be done as a

post extraction step using techniques such as the ones described in

[TG02].

• Abstract Syntax Tree (AST) Level: The AST level represents the

lowest level of detail for information produced by an extractor. At

this level, the snapshot extractor produces the AST of the source

code. The AST is studied during the snapshots difference analysis

(see Figure 2.1) to report changes to the internals of entities such as

the addition/removal of new fields in a data structure, or if-branches

and case statements inside functions.

The level of detail in the extracted information limits the type of anal-

ysis possible. It may also complicate the development of the extractor, for

example AST level evolutionary extractors are much harder to develop as

they require the development of snapshot extractors which can parse the

source code and produce very low level details about its characteristics.

32

Section 2.4. Challenges And Complexity

In contrast, a system level evolutionary extractor is much simpler to de-

velop as it does not need to perform detailed analysis of the source code

snapshots.

2.4 Challenges And Complexity

In an ideal situation, we would develop extractors that would describe

the evolution of the source code at the most detailed level, the AST level,

and at the highest frequency (change frequency). Unfortunately this is

a rather difficult problem and developing such an extractor would be too

complex and time consuming.

As researchers approach the problem of building an evolutionary ex-

tractor, they must decide on the choices along the dimensions, discussed

in the previous section. The benefits and limitations of each decision are

weighted using many criteria. The most important criteria we found in

our work are the needs of the research for which the extractor is being de-

veloped, the time allocated for the project, and the available funding. We

have developed several source code extractors for many programming lan-

guages in the last few years and we found that this engineering approach

is paramount for the success of such projects due to the unsurmountable

effort and challenges surrounding the development of the most suitable

and practical extractor [HH02]. We cover a few of the challenges associ-

ated with developing evolutionary code extractors.

2.4.1 Robustness and Scalability

When studying the structural evolution of source code, we need to develop

an extractor that can analyze the source code to determine structural de-

pendencies among source code entities. An approach which is based on a

text book grammar will fail to parse legacy systems, due to the disparate

dialects of programming languages and the multitude of proprietary com-

pilers extensions. This variety complicates building an extractor. The

33

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

developers of snapshot extractors could adopt various approaches to deal

with the complexity of parsing legacy software systems. Some developers

may choose to have their extractors recover gracefully when such exten-

sions are processed, others may choose to specialize their parsers for such

peculiarities using a variety of parsing techniques such as island gram-

mars, robust parsing, and precise parsing [Ste03]. The choice of tech-

niques to use is dependent on the peculiarities of the studied software

systems. An evolutionary extractors should be robust and recover grace-

fully without user intervention to permit the analysis of several snapshots

in an automated fashion.

Furthermore, the scalability of an extractor is another difficult chal-

lenge, as extractors are expected to analyze large software systems which

may contain several million lines of code. This is complicated more by the

fact that this analysis must be performed for each snapshot of the code

and there could be thousands of snapshots. For example, examining a

million line of source code at the change frequency would conceptually re-

quire the extraction of the characteristics associated with the source code

after each change. This may require that the analysis of a million lines

of code is repeated thousands of times, such an approach becomes infea-

sible and impractical. Instead developers of evolutionary extractors must

develop more elaborate techniques to overcome this challenge.

An ideal goal for a snapshot extractor is to confine the length of extrac-

tion time to be less than the compilation time of the analyzed software

system. In contrast to evolutionary extractors, even meeting this goal

would require too much time and would make using an evolutionary ex-

tractor infeasible and impractical to study long lived software projects. In-

cremental extraction techniques similar to incremental compilations may

assist in speeding up evolutionary extractors.

2.4.2 Accuracy

Ensuring the high accuracy of the extractor output is another challenging

task. Given the size of the software systems extracted and the techniques

34

Section 2.4. Challenges And Complexity

used to recover from different system peculiarities, extractors have the

tendency to miss some relations (false negatives), or in some cases add su-

perfluous ones (false positives). Accurate extractors require rather com-

plex language grammars and adopt several elaborate techniques to re-

cover from errors and correctly identify information. Studies have shown

empirically the difficulty faced by already well established extractors in

ensuring this accuracy [AT98, MNGL98]. Evolutionary extractors would

use similar techniques, therefore we expect that they would have to face

similar challenges.

To make matters worse, when dealing with extraction over an ex-

tended period of time, the adopted approaches have to deal with unre-

lated entities having similar names appearing and disappearing through-

out time.

2.4.3 The Changing and Unstable Nature of Source Code

An evolutionary extractor conceptually performs its work by analyzing

each snapshot then comparing the generated information for each snap-

shot. As pointed out, this may be too time consuming. Furthermore, this

would require the source code to be in some compilable stable state to

permit the snapshot extractor to process it. This is not possible for ex-

ample, when studying source code evolution at the change frequency – a

developer may add a call to a function before she/he defines the function.

Therefore, intelligent approaches are needed to analyze un-compilable

and incomplete source code. Alternatively, we may choose to use less

frequent snapshots that are more likely to be complete such as nightly

builds or code-complete builds. These builds are less likely to cause the

snapshot extractors to fail.

2.4.4 Development Time

Another challenge associated with evolutionary extractors is the time

needed to develop them. An ideal solution would be to adopt a regular

35

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

source code extractor and modify it. In particular, for each change in the

project we can rerun the extractor and compare the output of the extractor

run before and after the change. Unfortunately, as highlighted in the pre-

vious subsection this may not be the optimal solution as the source code

may not be compilable. Therefore evolutionary extractors must either be

built from scratch or built by adopting regular extractors and enhancing

them to deal with many of the aforementioned challenges. Clearly reusing

already developed extractors would speed up the development time but

may limit the type of analysis and may negatively affect the performance

of the evolutionary extractor. On the other hand, building an extractor

from scratch may provide the most flexible approach but would require a

longer development time.

2.5 Previous Work

In this chapter we advocate the need for evolutionary extractors. We

present several critical dimensions based on which such extractors should

be designed. A number of evolutionary extractors have been built by

many researchers studying the evolution of software systems. Although

the term evolutionary extractor was not used by these researchers, the

type of analysis performed by them fit well into our definition of an evolu-

tionary extractor. In this section, we overview their work and present it

using the design dimensions for evolutionary extractors presented in this

chapter.

Work by Lehman et al. [LRW+97] tracked the evolution of the size

of the source code, to perform such analysis evolutionary extractors that

used code metrics at the system level monitored changes to the size of

each release. Godfrey and Tu [Mic00] developed evolutionary extractors

that use metrics at the system and subsystem level to monitor the evo-

lution for each release of Linux. In addition, Tu and Godrefy [TG02]

developed evolutionary extractors that track the structural dependency

changes at the file level for each release of the GCC compiler.

36

Section 2.6. Conclusion

Reference Snapshot Data Characteristics Level

Frequency Source of Code of Detail

[LRW+97] Release Release Archives Metric System

(LOC)

[Mic00] Release Release Archives Metric System/

(LOC) Subsystem

[TG02] Release Release Archives Structural File

(Call/Data Depend.)

[GHJ98] Changelist Source Control Structural File

(Co-Change)

[ZDZ03] Changelist Source Control Metric File

(Change)

[ZWDZ04] Changelist Source Control Metric Function,

(Co-Change) File

[Ger04a] Changelist Source Control Metric Function, File,

(Change) Subsystem

Table 2.2: Summary of Evolutionary Extractors Design Choices

Gall et al. [GHJ98, GJK03] have developed evolutionary extractors

that track the co-change of files for each changelist in CVS. Zimmermann

et al. [ZDZ03] present an extractor which determines the changed func-

tions for each changelist. Table 2.2 summarizes the design choices for

each of the extractors developed by other researchers.

Draheim and Lukasz present a software infrastructure to study and

visualize the output of evolutionary extractors, in particular they focus on

visualizing metric evolutionary extractors using graphs [DP03].

2.6 Conclusion

Software practitioners and researchers have recognized the need to study

the evolutionary process of software projects. The source code is an ideal

facet of a software project to monitor and analyze as we can easily acquire

various snapshots of it as it evolves. Furthermore, we can build tools –

evolutionary code extractors – to automatically recover this evolutionary

process. This recovered process could improve our understanding of soft-

37

Chapter 2. Studying The Evolution of Software Systems Using Evolutionary Code Extractors

ware development and assist developers who are maintaining large long

lived software systems.

In this chapter, we advocated the need for such evolutionary extrac-

tors. We presented the various dimensions along which such extractors

could be built. We discussed the challenges and complexities associated

with the choices taken along these dimensions. These challenges compli-

cate the development of such extractors, nevertheless we believe that a

number of common extractors could be developed and reused within the

research community to further empirical based understanding of software

evolutionary processes. We also presented previous work which studies

the evolution of code and attempted to classify these published extractors

using the dimensions and choices we presented herein.

In the following chapter, we give a more concrete example of an evo-

lutionary extractor. We present the implementation of an evolutionary

extractor for the C programming language.

38

CHAPTER 3
C-REX: An Evolutionary

Code Extractor for C

We discuss C-REX, an evolutionary code extractor, which we developed

to recover information from source control repositories. We present our

design choices for C-REX, explain the reasoning for these choices, and

give an overview of our extraction approach. We also discuss a num-

ber of limitations of our approach and show results for using C-REX

to recover the evolution of several software systems. We believe that the

discussion presented here is beneficial for others interested in recover-

ing and studying data stored in source control repositories.

3.1 Introduction

SOURCE code encodes the functionality of the software system in terms

of modules and source code entities (such as functions and objects)

which interact to implement the various features of a software system.

Throughout the lifetime of a software system, its source code evolves to

39

Chapter 3. C-REX: An Evolutionary Code Extractor for C

implement various features and satisfy the needs of its users. Source con-

trol systems, such as CVS, track changes to the source code over time.

They attach to each change additional information concerning the change

such as the name of the developer performing the change, the date the

change was performed, and a detailed message describing the change.

To overcome the lack of documentation and the pressing need to un-

derstand large systems as developers evolve them, developers can use the

information attached to changes to understand the current structure of

the software system [HH04e, CM03].

The history of changes could be used to determine the benefits of

adopting different development techniques and approaches [ABGM99].

It can also be used to measure the effectiveness of development tools and

to build better tools more suited to the types of challenges and difficul-

ties faced by developers working on large software systems. For example,

we can use the history of source code changes to study change propaga-

tion in software systems. As developers change software entities such as

functions or variables to introduce new features or fix bugs, they must

propagate the effects of these changes to other entities in the software

system. Many difficult to find bugs are introduced by developers who did

not notice dependencies between entities, and failed to propagate changes

correctly.

To investigate if there are good indicators such as call graph relations

that could assist a developer in determining other entities to change, we

could propose several change propagation heuristics and study the per-

formance of each heuristic using historical code changes to software sys-

tems [HH04c, Yin03, ZWDZ04, Shi03]. Such a study would require a good

record of the dependency structure of the software system throughout its

lifetime. Furthermore, we would need to track changes that occur to the

entities of the source code and the dependencies among them. Using this

information we would know the dependencies in the software system at

any given moment in time. We could thereby determine if these depen-

dencies or other factors can explain the propagation of changes.

40

Section 3.1. Introduction

Unfortunately, source control systems usually treat source code as

simple text instead of tracking changes to the code at the level of func-

tions, data types, and dependencies among them. Source control sys-

tems track changes at the level of lines changed. For example, the source

control system would record that line number four of file filename.c was

deleted, instead of recording that a line was removed from function main(),

or that function main() no longer calls function printf() to be more specific.

To use the change information stored in source control systems, we

need to recover this information from the source control systems and

transform it. Whereas, source control systems record changes at the file

level, our goal is to record changes at the source code entity level (func-

tion, macro, variable, or data type definition). Then we can track details

such as:

• Addition, removal, or modification of a source code entity. For exam-

ple, adding or removing a function.

• Changes to dependencies between modified entities and other source

code entities. For example, we can determine that a function no

longer uses a specific variable or that a function now calls another

function.

Using this derived information we associate with each source code

change other changes that occurred in other files. We also know the static

dependencies between source code entities at the moment in time when

a particular change occurred. Furthermore, we have a record of previous

entities that changed with the changed entity.

This chapter presents the C-REX extractor and the rationale for its

design along with various issues and limitations that we faced during

its implementation. C-REX 1 is an extractor which we developed to re-

cover evolutionary information from source control repositories for soft-

ware systems written in the C programming language. We also demon-

1Recovering the Evolution of Code Structure – RECS (REX).

41

Chapter 3. C-REX: An Evolutionary Code Extractor for C

strate some results based on running C-REX to recover the evolution of

eleven open source systems.

3.1.1 Organization of Chapter

The chapter is organized as follows. In Section 3.2, we give an overview of

evolutionary code extractors and discuss the decision choices we settled

on as we built C-REX. In Section 3.3 we explain the complexities and chal-

lenges associated with building C-REX. In Section 3.4 we document the

schema of the data recovered by C-REX. Section 3.5 gives an overview of

the implementation of C-REX and highlights a number of techniques used

to speed up the extraction process. Then in Section 3.6 we overview some

of the limitations and possible improvements to our approach. Section 3.8

discusses related work. Section 3.7 presents results for using C-REX in

practice to demonstrate the feasibility of our approach. In Section 3.9 we

conclude the chapter with comments about evolutionary extractors and

their benefits for studying software systems and validating our under-

standing of the development process of large software systems. We also

present possible extensions and future directions for C-REX.

3.2 Evolutionary Code Extractors

In the previous chapter, we introduced the concept of an evolutionary code

extractor. We showed that a change to source code can be described in a

number of ways. Each one focuses on a particular characteristic of the

source code at varying levels of details. For example, a change to a file

can be recorded as a change to the lines of the file, to certain functions

that reside in the file, or to dependencies between these functions.

For our purposes we call traditional extractors snapshot extractors.

rigiparse [Hau88], CIA [CNR90], and CPPX [CPP] are examples of snap-

shot extractors. A snapshot extractor retrieves information about a

42

Section 3.2. Evolutionary Code Extractors

single version of the software system. It would produce facts such as

function 1 calls function 2, or function 1 uses variable 1.

On the other hand an evolutionary extractor retrieves information

about the history or evolution of a software system over the periods of

its development. An evolutionary extractor determines the difference be-

tween consecutive snapshots of the software system and produces infor-

mation such as function 1 no longer calls function 2, function 1 now uses

variable 1.

C-REX is an evolutionary extractor which tracks the evolution of source

code using the data stored in source control system.✬

✫

✩

✪Evolutionary Change

Data

Snapshot Extractor

Compare Snapshot

Facts

S
0

S
1

S
t

S
t+1

Snapshot

Facts for S
0

Snapshot

Facts for S
1

Snapshot

Facts for S
t

Snapshot

Facts for S
t+1

...

...

Figure 3.1: Conceptual View of the C-REX Extractors

The C-REX extractor can be thought of as the application of a tradi-

tional snapshot extractor on each snapshot of the source code. The tradi-

tional (non-evolutionary) code extractor generates information about the

defined entities in the source code and the dependencies between them.

For example, a snapshot extractor might report that in snapshot S1 func-

tions main(), print(), and help() are defined. It might also report that

43

Chapter 3. C-REX: An Evolutionary Code Extractor for C

function main() calls function help() which calls function print(). The

same snapshot extractor applied on snapshot S2 might report that func-

tions main() and help() are defined. It might also report that main() calls

help(). The details for each snapshot are stored in the corresponding

snapshot facts database. Once the snapshot extractor processes every

snapshot, we compare every two consecutive snapshots (as shown in Fig-

ure 3.1) to generate the evolutionary change data. Continuing our pre-

vious example, this snapshot extraction analysis would generate the fol-

lowing information when comparing snapshots S1 and S2: function print()

was removed and function help() no longer calls function print().

In the previous chapter, we discussed a number of design dimensions

that must be examined before one proceeds to build an evolutionary ex-

tractor. Choices along these dimensions influence the type of information

generated by an evolutionary extractor and influence the design of such

an extractor. We now elaborate on our choices along these dimensions,

and discuss the C-REX implementation challenges associated with these

choices:

3.2.1 Frequency of Snapshots

This dimension deals with how frequently should the evolutionary extrac-

tor recover changes from the source code. Figure 3.2 shows the various

possibility for the frequency of snapshots. The evolutionary extractor can

compare and report differences between consecutive releases or builds.

The extractor could report differences between consecutive code changes

done by a developer. It can also track changes between a list of changes

(changelist) that a developer performed to implement a particular feature,

enhance it, or fix a bug.

For C-REX, we chose to track the source code at the changelist level.

The choice to use the changelist level is due to the type of analysis we

plan on performing on the extracted data, such as studying the change

propagation phenomena.

44

Section 3.2. Evolutionary Code Extractors

★

✧

✥

✦Change ChangeList Build Release

Most

Frequent

Less

Frequent

Compilable

Code

InComplete

Code

Figure 3.2: Source Code Snapshot Frequency Choices

Due to the large number of changes (hundreds of thousands of changes)

that occur to the source code throughout its lifetime we had to develop

several techniques to perform the extraction at this frequency level in a

reasonable time. These techniques are presented in more detail in Sec-

tion 3.5. For example, the conceptualization which assumes that each

snapshot of the source code is analyzed fully then the facts for each snap-

shot are compared is not a practical one. Such a technique would take a

long time to recover the evolution of a large long lived software system.

3.2.2 Data Source

This dimension deals with the data source used to acquire the snapshots.

Modification records stored by source control systems are a good source

of changelist information. As a software system evolves, there are many

periods throughout its lifetime when the code stored in the source control

repository is incomplete, i.e. not compilable or parsable. For example, a

developer may add calls to a function that is not yet defined or remove the

definition of a function without modifying all the functions which called it.

Figure 3.2 illustrates that more frequent snapshots (such as changelists)

are likely not to be compilable.

3.2.3 The Characteristics of Code

This dimension deals with the characteristics that are monitored for each

snapshot of the code and are compared between consecutive snapshots.

These characteristics can be metrics such as the size of the source code

45

Chapter 3. C-REX: An Evolutionary Code Extractor for C

or structural characteristics such as dependencies between source code

entities.

C-REX monitors and outputs details about the structural changes to

the source code. In particular, it tracks the addition, removal, and modi-

fication of source code entities, such as functions, macros, and variables.

It also tracks the addition and removal of dependencies among these code

entities. Using such recovered information, we can study the evolution

of source code dependencies and reason about different types of mainte-

nance changes such as refactoring and renaming. For example, if C-REX

reports that in one changelist function f() is removed, function newF() has

been added, and all callers to function f() have been updated to call func-

tion newF(), we can conclude that it is very likely that function f() has

been renamed to newF() or replaced by newF().

3.2.4 Level of Detail

This dimension deals with the level of detail for the information recovered

by C-REX. The level of detail defines the granularity of code characteris-

tics which are tracked and studied in the analysis of snapshots. Figure 3.3

shows the various levels of detail and points out that the complexity of

analysis rises with increased details in the output.★

✧

✥

✦Code Entity File/Class Subsystem System

Most

Detailed

Least

Detailed

Easiest to

Analyze

Hardest to

Analyze
AST

Figure 3.3: Level of Detail for Evolutionary Analysis

For example, an evolutionary extractor could track changes at the

level of the whole system (such as changes to the size of the whole sys-

tem), or it could instead pinpoint changes to the software system enti-

ties (changes to particular functions). To obtain the maximum amount

of information about the evolution of a software system, we would prefer

46

Section 3.3. Challenges In Developing C-REX

that an evolutionary extractor recovers highly detailed information. This

could entail tracking changes to the source code at the Abstract Syntax

Tree (AST) level. Unfortunately, such an approach is complex to imple-

ment. An AST evolutionary analysis done per changelist snapshot needs

to deal with extracting incomplete code. This requires many advanced

techniques and heuristics to recover from potential errors in such code.

Therefore to avoid dealing with such complexities, we chose to have C-

REX generate data at the Code Entity level (see Section 3.4). This level

of detail permits us to develop snapshot extractors which are more robust

and which use simpler error recovery techniques than ones needed for

AST level analysis.

With our choices along the design dimensions of an evolutionary ex-

tractor presented, we now deal with some of the challenges and complex-

ities associated with building such an extractor.

3.3 Challenges In Developing C-REX

Analyzing source code, in particular the source code for legacy systems, is

a difficult task. Performing the analysis using tools that are based on text

book grammars is susceptible to failure as text book grammars fail to ad-

dress the variety of dialects of programming languages and the multitude

of proprietary compiler extensions. These tools are not capable of reliably

processing the legacy source code. They require user intervention to mod-

ify the offending source code and restart the tool. For an evolutionary

extractor such as C-REX, we need to parse hundreds of thousands of vari-

ants of the source code. Therefore C-REX should be able to parse legacy

source code without failing, and it should recover in a graceful manner

when it processes incomplete source code containing errors.

In the previous chapter, we listed challenges associated with develop-

ing evolutionary extractors. We now explain how C-REX deals with these

challenges.

47

Chapter 3. C-REX: An Evolutionary Code Extractor for C

3.3.1 Robustness and Scalability of the Extractor

As we started to develop C-REX we decided that the robustness and scal-

ability of C-REX are paramount for our research purposes, as we planned

to analyze the evolutionary history of several large long lived software

projects. Therefore, we needed an extractor which can process large

amount of data and is able to recover gracefully from errors.

3.3.2 Accuracy of the Extracted Information

We acknowledged that ensuring the robustness of C-REX will affect our

accuracy and we sought to minimize this negative outcome by focusing on

the code entity detail level instead of focusing on the AST detail level.

3.3.3 The Changing and Unstable Nature of Source Code

As for the changing and unstable nature of source code over time, we de-

cided to search for techniques that can parse incomplete source code. A

number of approaches exist to analyze source code such as lexical analy-

sis, robust parsing and island grammars [Ste03].

C-REX uses a lightweight extraction technique to robustly analyze

incomplete source code for several snapshots. The used technique aims

to only locate the start and end of each entity (such as functions, macros,

and types) in the source code. By only focusing on the start and end of

an entity, we can recover from non compilable code gracefully and still

be able to analyze the rest of the file. Once we locate the start and end

of each entity we can perform simple string matching to determine if a

particular source code entity depends on another entity. For example, if a

file contained two functions (main and help) and we located the start and

end of each functions, we can determine the tokens which reside in both

functions. Then we can easily determine if function main has a token in

it named ‘help’ or if function help has a token in it named ‘main’. Several

enhancements are required to ensure that the results of this approach are

48

Section 3.3. Challenges In Developing C-REX

reasonably reliable. For example, we ignore tokens inside of strings and

comment blocks.

3.3.4 Time Required to Develop the Extractor

To speed up the time required to develop C-REX, we adopted an open

source program called ctags [CTA]. ctags is a source code tagger which

is used by source code editors to parse the source code being edited. Us-

ing ctags, editors can offer rudimentary source code highlighting and

can provide some navigational support for developers (such as moving

between function definitions). We believe that the challenges associated

with parsing source code while it is being modified by a developer inside

an editor are similar to the challenges we have to tackle to parse source

code which may not be compilable.

By adopting ctags we do not need to consider a large number of pe-

culiarities of legacy source code. For example, we do not need to worry

about ANSI and K&R C differences in the source code. ctags uses sev-

eral heuristics to reliably parse source code containing #if preprocessor

conditional constructs. ctags uses a conditional path selection heuristic

to resolve complicated choices. It also employs a fall-back strategy when

all heuristics fail.

ctags has been highly optimized and can parse and tag source code

very quickly and efficiently. This is an important consideration given the

amount of source code that we need to analyze. In addition, ctags offers

support for over thirty languages. We hope in the future to use ctags

multi-lingual support to extend C-REX to deal with repositories which

contain source code written in programming languages other than C.

3.3.5 Additional Challenges

More challenges became clear to us as we started working on C-REX.

These challenges are mainly due to the design choices we picked for C-

49

Chapter 3. C-REX: An Evolutionary Code Extractor for C

REX. In this subsection we present these additional challenges and dis-

cuss the techniques we used to overcome them.

3.3.5.1 Creation of ChangeLists

As C-REX uses changelist snapshots, we needed to get a record of all the

changelists in source control modification records. A changelist groups

several consecutive changes to a software system as part of a bigger fo-

cused change to implement or enhance a particular feature in the system,

or fix a bug in it. For example, a developer might change four files to im-

plement a specific feature. Then the changelist would contain details for

changes in each of these four files, as the developer will submit all four

changes simultaneously (or at least within a few minutes apart of each

other) to the source control system. Some source control systems such as

Perforce [Per] store the fact that these four changes are related whereas

other source control systems such as CVS do not keep track of such in-

formation. Therefore for CVS we needed to develop heuristics to recre-

ate this grouping from CVS modification records. An effective heuristic

used by C-REX and others [GM03, ZW04] is to group changes in the same

changelist if they occur within a short window of time by the same devel-

oper.

3.3.5.2 Enriching the Recovered Change Data

Source control systems store in each modification record important infor-

mation other than just the changes to the source code. For each modifica-

tion, the system stores:

1. The name of the developer who performed the change.

2. The time the change was performed.

3. An explanation message entered by the developer giving the reason

for the change.

50

Section 3.3. Challenges In Developing C-REX

We decided to enrich our extracted data and attach this additional

information to it. This additional information could be helpful in under-

standing legacy systems, as we have shown in our previous work (e.g.

[HH03a, HH04e] – see Chapter 5).

To attach the additional information to the extracted data, we first

perform heuristic analysis to determine the developer of a change. Al-

though source control systems store the name of the developer who sub-

mitted a change to the repository, this name may not be the developer who

actually performed the change. Instead in some cases, a limited number

of developers are given access to submit changes to the source control

system on behalf of other developers. This ensures that code changes are

thoroughly reviewed and approved by senior developers before they are

integrated into the software system. Luckily in many cases, the name of

the actual author(s) is recorded in the explanation message attached to

the change. Therefore, we analyzed these messages using several heuris-

tics to locate all possible authors. For example, our heuristics searched

for tokens such as the ‘@’ symbol or words such “Thanks to” and “Sub-

mitted By” to locate possible acknowledgement fields and email addresses

in the detailed messages. If all our heuristics fail to locate a possible de-

veloper then we simply attach to a change the name of the developer as

recorded by the source control repository. We also employ heuristics, sim-

ilar to [GM03], to deal with developers changing their email addresses

over time. These heuristics permit us to map a seemingly new developer

showing up in the change information to another developer that may have

existed previously.

In addition to attaching the explanation message entered by the de-

veloper, we performed lexical analysis, similar to [MV00], in order to auto-

matically classify changelists into three types based on the content of the

explanation message – Fault Repairing, General Maintenance, and Fea-

ture Addition and Enhancement changelists. Such information is used in

studying the reliability of a software system [HH03b] (see Chapter 8).

51

Chapter 3. C-REX: An Evolutionary Code Extractor for C

3.3.5.3 Performance

Conceptually (as shown in Figure 3.1), we would have to parse the source

code of each snapshot. Thus for each change to the software system, we

would need to re-parse the source code. This is not a reasonable approach

as we would have to parse the source code for the software system a large

number of times. Although we use ctags to perform a large part of our

analysis, the analysis still requires some time and in a long lived software

project we may have hundreds of thousands of changes that are stored in

the software control repository. To enable the extraction to be done in rea-

sonable time, we use an incremental technique which analyzes only the

changed files. We then integrate the analysis results to produce evolu-

tionary change data for the whole software system.

By adopting a mature source code tagger (ctags), avoiding the use of

complex source code extractors, and focusing our extraction on changed

files, we are able to drastically improve our performance. For a large

system, such as NetBSD with around ten years of development, C-REX

takes over sixteen hours to perform its extraction. This is due to the long

history of the project, and the large size of its code base. For smaller

systems such as Postgres, C-REX can perform its analysis in just over

three hours. We believe this performance is acceptable given the amount

of analysis required. Section 3.5 presents the implementation of C-REX

and discusses several optimizations that we developed to robustly process

large software systems in such a timely fashion.

NetBSD FreeBSD OpenBSD Postgres

CVS Repository 533MB 367MB 220MB 314MB

C-REX Ouput 96MB 67MB 45MB 11MB

Table 3.1: Size of Source Control Repository vs. Size of C-REX XML file

The evolutionary change data produced by C-REX is represented as an

XML file. Table 3.1 summarizes a few of the analyzed systems. It shows

that the XML output file is small in comparison to the size of the analyzed

52

Section 3.4. Schema For The C-Rex Evolutionary Change Data

CVS repository. This small size allows the output file to be loaded in

memory for fast processing by other tools.

3.4 Schema For The C-Rex Evolutionary Change

Data

In the preceding two sections, we outlined the need for an evolutionary

extractor, proposed the development of C-REX, specified the type of infor-

mation C-REX should record about source code changes, and presented

additional information which C-REX attaches to the recovered change

data.

As we stated above, we store the output of C-REX in XML format.

Others may choose to store such output in a database and provide devel-

oper APIs to access the output. We decided that the overheard of using

SQL in the extraction and analysis steps is too high. We found that a

large amount of our analysis involves loading all the data into memory

and processing it. Such operation is equivalent to a full table scan, which

is inefficient in modern database systems. Furthermore storing the out-

put in a database would require the users of C-REX to perform additional

setup work to install a database and configure it. The XML file can be

easily processed by any tool without relying on specialized APIs.

The rest of this section presents the structure of the recovered change

data stored in the XML file.

Figures 3.4 and 3.5 give the schema for the C-REX output. The schema

is divided over two figures to make it easier to read. Figure 3.4 illustrates

that each Change to the source code has a Change Type. The Change Type

indicates if a ChangeUnit was modified, added, or removed. A ChangeU-

nit, as illustrated in Figure 3.5 could be a source code Entity, such as a

Function, a Data Type, a Global Var, or a Macro. A ChangeUnit could also

be a Dependency between source code Entities, a Comment, or a Control

Structure. C-REX records the addition or removal of an if/else clause, a

53

Chapter 3. C-REX: An Evolutionary Code Extractor for C

✬

✫

✩

✪

ChangeListDeveloper

Time

ChangeChangeUnit

Modify

Add

Remove

Change

Type

* .. *

ChangeList

Message

FI

FR

GM

ChangeList

Type

Figure 3.4: Schema for the Change Data Extracted By C-REX

case clause, a while statement, or a for statement inside of a function. In

contrast to an AST level schema, this schema simply records the addi-

tion and removal of these control structures, it does not record changes to

dependencies inside of these structures. Changes to source code depen-

dencies are tracked only for source entities such as functions.

Each ChangeUnit has a ChangeUnit Location. For example, a Depen-

dency and a Comment is located in an Entity, whereas an Entity is located

in a File.

Figure 3.4 shows that each ChangeList has a number of Changes in it.

A ChangeList has a Developer who performed the changes. A ChangeList

has a ChangeList Type which could be a FI, FR, or GM changelist as

explained in the previous section. Also for each ChangeList we record the

Time it occurred and the ChangeList Message – a message explaining the

reason for the change.

54

Section 3.5. The Implementation Of C-REX

✬

✫

✩

✪
Control

Structure

Comment

ChangeUnit

File

Dependency

Entity

Macro

Function

Data Type

Global Var

Entity

ChangeUnit

Location

Figure 3.5: Schema for the ChangeUnit

3.5 The Implementation Of C-REX

We now present the implementation of the C-REX extractor. This imple-

mentation was influenced by the requirements and challenges outlined in

the previous sections.

Our presentation uses an example of a simple software system (shown

in Figure 3.6). The software system contains only one file (main.c). File

main.c has been modified only once. Therefore we have three versions of

main.c (rev 0 – initial empty revision, rev 1, and rev 2 – after the modifi-

cation).

To recover data in the format described in Section 3.4, C-REX per-

forms six steps of iterative analysis for the data and source code stored

in the source control repository. In the following subsections, we describe

each of these steps.

55

Chapter 3. C-REX: An Evolutionary Code Extractor for C

✬

✫

✩

✪

1 :void helpInfo2()

2 :{

3 : /* Output help

4 : information */

5 :}

6 :

7 :main()

8 :{

9 : int b;

10 : /* Call new help */

11 : helpInfo2();

12 :}

1 :void helpInfo()

2 :{

3 : /* Output help

4 : information */

5 :}

6 :

7 :main()

8 :{

9 : int a;

10 : /* Call help */

11 : helpInfo();

12 :}

main.c

rev 1
main.c

rev 2

Figure 3.6: Example of a Simple Software System

3.5.0.4 Step 1 – Revision Data Extraction

In the first step, C-REX determines the number of revisions of each file

in the software system. For our simple example, C-REX would determine

that file main.c has three revisions. CREX stores additional information

associated with a revision such as the name of the developer who per-

formed the change and the time the change was done into the Revision

Data Database.

3.5.0.5 Step 2 – Entity Extraction

In the second step, C-REX identifies all entities, such as functions and

data types for each revision of each file. This is done using ctags to

identify the beginning of a code entity. Then a Perl script is used to locate

the end of the entity. At the end of this step:

a. We have a record of each entity ever defined in the lifetime of a

project. The record of these entities is analogous to the symbol table

used by a compiler when it builds a software system. In contrast to a

traditional compiler symbol table, this Historical Symbol Table has

56

Section 3.5. The Implementation Of C-REX

all the symbols (entities) that were ever defined in the project’s life-

time, not just the symbols defined in a particular compilation. For

our simple example, C-REX would produce a historical symbol table

that contains the following symbols: helpInfo, main, and helpInfo2.

b. For each revision of an entity in each file, we record its contents (its

contained tokens) along with the entity’s beginning and ending line.

We call this the Entity Revision Map (ERM). For instance in our

simple example (see in Figure 3.6), C-REX would determine that

the first revision of function main starts at line 8 and ends at line 12

in the first revision of file main.c. C-REX also records the contents

of main (the tokens from line 8 to 12).

✬

✫

✩

✪Revision

Data

2. Entity

Extraction

3. Entity

Analysis

File

Revision - R

Control

Bucket

Comment

Bucket{ }
E

R1

E
Rn

.

.
Code

Bucket

Historical

Symbol Table

RDE
1. Revision

Data

Extraction

ERM

Figure 3.7: Steps Needed to Generate the RDE

3.5.0.6 Step 3 – Entity Analysis

In the third step, we analyze the ERM. For each revision (R) of an entity

(E) – ER, we divide its content into three token buckets. Each bucket

contains the tokens and the number of occurrences of each token:

57

Chapter 3. C-REX: An Evolutionary Code Extractor for C

a. The code bucket contains all code tokens (i.e. non-commented to-

kens) in ER.

b. The comment bucket contains all tokens that reside inside of com-

ments in ER.

c. The C control bucket contains all the C-control keywords that are in

ER, such as for, if, else, while, and do.

We store the results of this step in a Revisions Database for Entities

(RDE). The RDE contains three buckets for each revision of an entity: con-

trol, code, and comment. These last three steps are shown in Figure 3.7.

Figure 3.8 illustrates the contents of the buckets for the revisions 1 and 2

of function main at the end of the third step.✬

✫

✩

✪

int 1

a 1

helpInfo 1

Code Bucket

empty

Control Bucket

Call 1

new 1

help 1

Comment Bucket

Call 1

help 1

Comment Bucket

empty

Control Bucket

main - rev 1 main - rev 2

int 1

b 1

helpInfo2 1

Code Bucket

Figure 3.8: Contents of the Buckets for Entity main in the Simple Soft-

ware System

3.5.0.7 Step 4 – Token Change Analysis

The following three steps are used to generate the Evolutionary Change

Data and are illustrated in Figure 3.9. In this step, we study the content

58

Section 3.5. The Implementation Of C-REX

of the code, comment and control buckets stored in the RDE. We compare

the content of these buckets for each two consecutive revisions of an entity

in a file, i.e. RT and RT+1. The differences are recorded and written to the

Difference RDE (D-RDE) database. For each pair of consecutive revisions

of a file, we have three buckets that store the differences between the

pair’s code, comment, and control buckets.

For our simple example, looking at the main entity we would have the

following information in each bucket, when comparing revisions 1 and 2:

1. Control Bucket: empty.

2. Code Bucket: helpInfo -1, helpInfo2 1, a -1, b 1. This indicates

that code tokens helpInfo and a no longer exist and that code tokens

helpInfo2 and b have been added in revision two.

3. Comment Bucket: new 1. This indicates that the comment token

new has been added in revision two.

3.5.0.8 Step 5 – Dependency Change Analysis

In this step, we examine the code buckets of the D-RDE to recover code

dependency relations between entities. We compare the tokens in the code

buckets for each pair of consecutive revisions of a file to the contents of

the Historical Symbol Table generated in second step (see Figure 3.7). We

remove all tokens from the code buckets that do not exist in the Historical

Symbol Table. We call the code buckets after this step Dependency Buck-

ets. For our simple example, we would remove tokens a and b as they do

not exist in the Historical Symbol Table, which contains the tokens main,

helpInfo and helpInfo2. We now know that from revision 1 to revision 2,

entity main no longer depends on entity helpInfo, instead it now depends

on entity helpInfo2.

The technique used in this step ensures that we do not miss dependen-

cies where an entity is used before it was defined in a later change. For

59

Chapter 3. C-REX: An Evolutionary Code Extractor for C

✬

✫

✩

✪

Code

Bucket

Comment

Bucket

Control

Bucket

RDE

4. Token

Change

Analysis

6. Attaching

Revision

Data

D-RDE

Evolurionary Change

Data

5.Dependency

Change

Analysis

Historical

Symbol Table

Revision Data

Figure 3.9: Steps Needed to Generate the Evolutionary Change Data

example, if version 1 of main called helpInfo2, our approach would recog-

nize that helpInfo2 is a function that will later be defined, as helpInfo2

would exist in the Historical Symbol Table. The technique also tracks the

number of times a dependency exists between entities as it uses the token

occurrence counts stored in the code buckets.

3.5.0.9 Step 6 – Attaching Revision Data

The output of the previous step contains a record of changes throughout

the lifetime of a project and their effects on the source code dependencies,

the comments, and the control keywords. It is still missing additional

information stored in the source control system such as the name of the

developer who performed the change, the changelist each change is part

of, and other important information.

60

Section 3.5. The Implementation Of C-REX

In this final step, we combine the D-RDE with the Revision Data

Database created in the first step of the extraction. The output of this

extraction process is stored in the XML Evolutionary Change Data file.

3.5.1 Performance

The sequence of steps described above are a simplification of the actual

technique used. In particular, disk access is minimized. The different

steps try to pass data through memory and preprocess data for later steps,

instead of writing data to disk then rereading it again. The approach still

takes as much as 16 hours for large projects with over 10 years of devel-

opment. To further speed up this extraction process, three optimizations

are possible.

First, the disk of the system on which the extraction is being done can

use a RAID configuration to speed up the reading of the data considerably,

as data is striped across different drives. We have used this technique in

some of our extractions and the improvements in speed were substantial

around 20-30% reduction in extraction time for large systems.

Second, the extraction process as described is done sequentially file

by file. This does not need to be the case. Instead files can be analyzed

concurrently on different machines. Each machine can populate the code,

comment, and control buckets for its entities in parallel. The results could

be combined later for further processing. The bucket generation (RDE

building in step 3) is the most time consuming step in the extraction pro-

cess.

Finally, the C-REX system described in this paper has been used to

study software systems stored in CVS. To gain access to each revision of

a file, we use APIs provided by CVS. By using these APIs we are able

to later extend the C-REX extractor to other source control systems, for

example we are currently working on adding support for ClearCase to in-

vestigate some commercial software systems. Unfortunately, these APIs

require many disk I/O operations. Alternatively, we could load up the

61

Chapter 3. C-REX: An Evolutionary Code Extractor for C

CVS database for a file in memory and operate on its content in mem-

ory. This is a much faster alternative but it limits the extensibility of the

extractor to other source control systems and requires good knowledge of

the internals of the source control repository.

We believe that performance of our current C-REX implementation

is reasonable for recovering evolutionary change information about large

software systems. Nevertheless we believe that the implementation could

be optimized further to permit us to perform more detailed tracking of

changes throughout the lifetime of long lived software projects.

3.6 Limitations Of The C-REX Approach

Based on our use of the approach as described in Section 3.5 to recover

the historical evolution of several large software systems, we discovered

a number of limitations to our approach. In this section, we discuss these

limitations and propose techniques to overcome them.

3.6.1 Dependency Analysis

The dependency analysis technique used by the C-REX extractor assumes

that all files in the source control are part of the same executable. This

is not the case for many software systems, such as multi-platform operat-

ing systems, which may support several hardware platforms and provide

several implementations for the same function for each supported plat-

form. The determination of which function to use is done using makefiles

at compile time by setting some flags and using C preprocessor directives.

Our approach does not analyze makefiles to determine the values of these

flags and may analyze code blocks that are never executed or code blocks

that are executed in some configurations but not in others. This is a lim-

itation of our approach but this limitation exists for a large number of

traditional code extractors which do not track the build process as part

62

Section 3.6. Limitations Of The C-REX Approach

of the extraction steps [TG01]. It may be possible to reduce this limita-

tion by getting the user to assign specific files/directories to analyze their

history instead of analyzing all source code stored in the source control

repository. Also the user can define flags to determine if blocks of code

should be analyzed or if they should be ignored.

Furthermore, the use of the historical symbol table may cause the cre-

ation of incorrect dependencies. For example, suppose a function uses a

local variable then several years later in the future a global variable with

the same name is defined. This will create an incorrect dependency. To

help overcome this limitation we can ensure that dependencies are cre-

ated only to entities which have already been defined before the source

code of an entity is changed. Unfortunately, this will prevent us from

detecting situations where an entity is used before it was defined as the

developer has not written the code for it yet. To solve this problem, we

could adopt a time window approach. A dependency to another entity is

created only if that entity has been defined before the entity being ana-

lyzed or after its definition within some time-period – a day or two seem to

be a reasonable time windows. Currently C-REX does not use a time win-

dow approach but an analysis of the output of C-REX to detect the usage

of entities before their declaration by two days shows that such situations

are luckily almost non existent.

3.6.2 Beyond C

We believe the technique used by C-REX, in particular the dependency

change analysis algorithm, can be extended to any procedural program-

ming language. Unfortunately, this technique does not scale directly to

object oriented languages and would require more elaborate analysis to

deal with object oriented language peculiarities such as polymorphism.

63

Chapter 3. C-REX: An Evolutionary Code Extractor for C

3.6.3 Beyond CVS

Currently C-REX only supports the analysis of data stored in CVS source

control repositories. We would like to extend it to support other source

control systems as well.

3.6.4 More Detailed Change Tracking

Using the extracted data in our analysis, we discovered that we lacked

a piece of useful information about the evolutionary changes in a soft-

ware system. In many cases, we needed to determine if the signature

of a function was changed. For example, it would be useful to know if a

new parameter was added or the return type was changed. The current

C-REX output does not offer such information. We have extended the C-

REX output to support tracking of function signature changes. We expect

to add tracking for additional change information as we try to understand

the evolutionary process followed by software systems. Moreover, C-REX

supports analysis for only one branch in the source control repository at

a time instead of analyzing all branches simultaneously.

3.6.5 The Use of Heuristics

C-REX uses heuristics to create changelists as some source control sys-

tems (e.g. CVS) do not store changelists. Other source control systems,

that record the content of each changelist, such as Perforce or ClearCase

will not require such heuristics. The technique used to create changelists

is similar to techniques used by others [ZW04, Ger04b]. We have manu-

ally investigated the quality of our changelist recovery technique by in-

specting by hand a random number of changelists and the corresponding

code change from the Postgres CVS repository. The performance is very

good, none of the inspected changelists had incorrect or missed changed

entities. Nevertheless we are considering adding a confidence rating to

64

Section 3.7. Using C-REX In Practice

each created changelist to assist users of the extracted data in determin-

ing the quality of our extraction.

We have as well investigated manually the quality of our heuristics

to determine the authors of a change and found it to be able to perform

extremely well (over 95% of authors determined by the C-REX heuristics

were the correct authors for the Postgres repository). Furthermore, we

conducted a study with commercial developers to determine the quality

of our lexical based classification of changes. The study showed that our

automated classifications match closely the classifications done manually

by developers [HH04d] (see Chapter 4).

3.7 Using C-REX In Practice

Application Application Start End ChangeLists

Name Type Date Date

NetBSD Operating System Mar 93 Jan 03 38,391

FreeBSD Operating System Jun 93 Dec 02 26,178

OpenBSD Operating System Oct 95 Jan 03 14,147

Postgres DBMS Jul 96 Nov 02 6,199

GCC C/C++ Compiler May 91 Apr 99 8,602

Apache 2.0 Web Server Jun 99 Dec 03 5,696

APR Cross Platform Library Aug 99 Dec 03 3,230

Ruby Language Interpreter Jan 98 Jan 04 2,494

GSL Scientific Library Jul 96 Sep 03 1,955

XCONQ X Windows Game Apr 99 Dec 03 935

Sylpheed Mail Client Jul 00 Dec 03 1,197

Table 3.2: Characteristics of the Guinea Pigs

C-REX is built to analyze large long lived projects in a timely fashion

without manual intervention. We acquired local copies of the CVS repos-

itories for several open source project (Guinea Pigs) to verify the scala-

bility and feasibility of the C-REX approach. Using C-REX, we recovered

the evolutionary history of the main CVS development branch of these

65

Chapter 3. C-REX: An Evolutionary Code Extractor for C

projects. These repositories permitted us to detect and fix a number of

limitations in C-REX and improve it. Table 8.1 shows descriptive statis-

tics for our Guinea Pigs. C-REX is able to analyze the largest repository

(NetBSD) in around sixteen hours and produces a small size output as

shown in Table 3.1. The output of C-REX has been used by us in previous

studies to examine the change propagation phenomena [HH04c] and to

assist developers in understanding large legacy systems [HH04e].

3.7.1 Acquiring Our Guinea Pigs

To acquire these guinea pigs for our studies, we used four different tech-

niques:

1. We asked the developers of some projects for access to their source

control repositories. We acquired local copies of the repositories to

avoid taxing the project’s servers during our analysis and develop-

ment.

2. Several projects offered support for CVSup [CVSb] – a tool used to

mirror source control repositories. For these projects, we used a CV-

Sup client to acquire our own copy of the source code repository.

3. Other projects offered support for rsync [rsy] – a protocol used

to mirror data repositories. We used an rsync client to mirror the

source control repositories for these projects.

4. Finally for projects that offered none of the aforementioned options

and their development team was inaccessible, we used CVSsuck –

a tool which uses the CVS protocol itself to mirror the CVS reposi-

tory. The CVS protocol which is not designed for mirroring, there-

fore CVSsuck is not efficient. We used CVSsuck as a last resort to

acquire a repository due to its inefficiency.

66

Section 3.8. Related Work

3.8 Related Work

Other researchers have recovered data from source code repositories to

explain and validate their ideas. In contrast to prior approaches which re-

cover information at the line or file level, the C-REX approach performs a

more detailed analysis by mapping changes to source code entities and de-

pendencies between them. Furthermore C-REX performs its analysis for

each change/changelist in the repository instead of performing the analy-

sis for each build/release as done by most approaches. To ensure that such

a detailed analysis can be done, we could not use traditional source code

extractors and we had to develop techniques to analyze code that may not

be compilable. We now review some of the prior recovery approaches.

In [GHJ98, GJK03], visualization techniques are used to show the

historical logical coupling between files in a software system. To perform

such studies, an evolutionary extractor that produced high level change

data (i.e. at the file level) was used. A similar extractor was used by

Graves et al. to show that the number of modifications to a file is a good

predictor of the fault potential of the file [GKMS00]. German [Ger04b]

and Liu [LS03] use a similar extractor to visualize changes at the file

level for open source and student projects.

Chen et al. presented a case study for a source code searching tool

that makes use of the explanation message associated with each change

to the code [CCW+01]. The extractor associates the messages entered by

developers to particular lines of code. These comments are used to index

the source code and provide more accurate search results, when develop-

ers search for the location where specific features are implemented in the

code.

Zimmermann et al. present an extractor which maps changed lines

to their containing entity (such as functions) in the code [ZW04]. Their

extractor is similar to our extractor in being able to map changes to a

particular entity but it does not track other types of changes, such as

changes to dependencies and comments. Maletic et al. present a system

67

Chapter 3. C-REX: An Evolutionary Code Extractor for C

which uses island grammars to analyze differences between non compil-

able code [MC04].

3.9 Conclusion

In this chapter, we presented a new type of source code extractor, namely,

a source code extractor that goes beyond extracting facts from a single ver-

sion of a software system and instead extracts facts and compares them

across the whole evolutionary history of a project. We believe that such

evolutionary extractors are important in advancing research in software

engineering and empirical software evolution in particular by facilitating

access to such evolutionary data buried inside source control systems.

This chapter gave an overview of evolutionary code extractors and

presented C-REX, our implementation of such an extractor for the C pro-

gramming language. We presented the schema for the data generated

by C-REX and discussed the challenges and rationale associated with its

implementation. We then explained the implementation of the extractor.

Finally, we highlighted limitations of the extractor and proposed tech-

niques to overcome them. C-REX and evolutionary extractors form the

empirical basis for the research presented in this thesis.

In the following chapter, we examine the use of source control systems

by professional software developers. We also examine the accuracy of the

automated classification technique used by C-REX.

Appendix

We show brief results to demonstrate the usefulness of C-REX. Whereas

previous evolution studies typically focused on monitoring either the LOC

[Mic00] or the number of modules (files) [LRW+97], we can, thanks to C-

REX, monitor evolution at the function or dependency level. For example,

we can measure the degree of connectivity of the dependency graph in

68

Section 3.9. Conclusion

comparison to the maximum possible connectivity on a quarterly basis.

Such a metric acts as a better indicator of the evolution in complexity in

the dependency graph than LOC or module counts [LRS01]. To measure

the degree of connectivity, we divide the number of dependencies in a

software system by the maximum number of possible dependencies 2.✬

✫

✩

✪
Figure 3.10: Complexity Ratio Evolution

We present graphs for only two systems (see Figure 3.10). Both graphs

show the ratio3 dropping over time while remaining stable over short pe-

riods of time with rare rises. The same pattern holds for all our guinea

pigs. Investigating anomalies (e.g. rare rises) in these graphs reveal inter-

esting events in the project’s history. For example, the seesaw (between

quarters 5 and 7) in the APR data corresponds to the period between an

initial alpha release and the first beta release of the project. During this

period, a large amount of refactoring and clean-up changes occurred, as

determined from reading the change messages in CVS. Using an extrac-

tor which performs its analysis at the release level, such variations to the

2The square of the number of entities in the software system
3The shown ratio is standardized between the values 0 and 1 by dividing by

the maximum ratio value for the studied periods.

69

Chapter 3. C-REX: An Evolutionary Code Extractor for C

value of the metric would not have been as visible, as the variations oc-

curred between two releases. Furthermore, determining the reasons for

variations would have required us to manually search through the source

control system and other historical information from the project. Such

manual search is not needed as C-REX already extracts and attaches to

the dependency graph the messages describing changes within each quar-

ter. For example, using C-REX we can investigate if refactoring changes

are more likely to be done at the beginning of a release development cy-

cle or if such changes are evenly distributed throughout the release cycle.

The following parts of this thesis will investigate uses of the data recov-

ered by C-REX.

70

CHAPTER 4
Source Control Change

Messages: How Are They

Used And What Do They

Mean?

Source control systems permit developers to attach a free form message

to every committed change. The content of these change messages is

rarely investigated and little is known about their use by developers

while they maintain their code.

We present the results of a survey we conducted with professional

developers. The purpose of this survey was to investigate how devel-

opers make use of these messages and what type of information exists

in them. We also investigated the possibility of using automated tech-

niques which examine change messages and determine their purpose,

for example that a change was done to fix a bug or to indent the code.

We also asked developers to compare change messages in open source

software systems to change messages in commercial systems.

71

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

The findings of our survey suggest that change messages are a valu-

able resource used by practitioners to maintain and manage software

projects, for example to understand the code when they are fixing a

bug. Moreover, change messages in open source projects are similar to

messages that developers encounter in large projects. An automated ap-

proach to determine the purpose of a change using the change message

is likely to produce results similar to a manual analysis performed by

professional developers. Researchers should investigate techniques and

approaches to improve the quality of the change messages and to make

them more accessible for developers as they evolve software systems.

4.1 Introduction

SOURCE control systems such as CVS [CVSa], ClearCase [Cle], and

Perforce [Per] are used nowadays by most large software projects

to control and manage their source code [Roc75, Tic85]. As a software

system evolves, changes to its code are stored in the source control repos-

itory. The repository of a source control system contains detailed infor-

mation about the development history of a project. The repository stores

the creation date of every file, its initial content and a record of every

modification done to a file. A modification record stores the date of the

modification, the name of the developer who performed the changes, the

numbers of lines that were changed, the actual lines of code that were

added or removed, and a change message entered by the developer usu-

ally explaining the reasons for the change.

In this chapter, we focus on these change messages which are attached

to every modification record. Such messages have been rarely used by re-

searchers to build tools or study approaches to assist developers in main-

taining long lived software systems. Chen et al. presented a case study

of a source code searching tool that makes use of these change messages

[CCW+01]. The tool uses the messages to index the source code to pro-

vide more accurate search results, when developers search for the location

72

Section 4.1. Introduction

where specific features are implemented in the code. Mockus and Votta

presented a lexical analysis technique to classify the type of a change

based on the content of the change message [MV00]. This classification is

then used to monitor the evolution of a software product and to gauge its

reliability. A similar approach has been used by us in [HH03b] (see Chap-

ter 8). We also mined change messages and attached them to the software

architecture to assist developers in investigating the gaps between the ac-

tual architecture of the software system and the documented architecture

that is rarely up to date [HH04e] (see Chapter 5). Perry et al. used change

messages along with surveys of developers to gain a better understanding

of the type of faults in large software systems and the efforts associated

with fixing them [PS93, LPS02].

The aforementioned approaches have demonstrated the value of change

messages in assisting developers. Yet, the quality of the change messages

and the current use of change message by developers in industry have

never been investigated. This chapter addresses these issues through a

survey conducted in participation with six professional software develop-

ers. The responses to the survey were analyzed and studied thoroughly

to arrive to our results.

We are interested in answering questions such as:

• Do developers usually enter meaningful and descriptive change mes-

sages? Are they likely to leave the messages empty?

• Do developers monitor such messages and react to their content?

• Do developers make use of these message as they maintain and en-

hance their software system, or are they ignored?

• Can we automatically determine the type of a change as being a bug

fix or a feature?

With the widespread of open source software systems, their repositories

have been used by researchers instead of relying on the repositories of

73

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

commercial software systems which are usually harder to acquire. For

example, work by Chen et al. [CCW+01] and us [HH03b, HH04e] was

conducted on open source systems; whereas work by Mockus and Votta

[MV00] was conducted on industrial telephony systems. We investigated

the differences between change messages entered by open source devel-

opers and change messages entered by developers of commercial software

systems. By studying the differences between change messages in both

types of systems, we can understand better the applicability of research

findings to commercial software systems when the research is done using

open source change messages.

4.1.1 Organization of Chapter

This chapter is organized as follows. In Section 4.2, we discuss our study

design and explain the motivation behind its design and the approach

used to develop our survey. Our study consisted of three main parts. A

separate survey part was done for every part. In Section 4.3, we present

the results of the first part of our survey and address the issues pertain-

ing to change messages and their usage by software developers. Then in

Section 4.4, we discuss the results for the second part of our survey, which

focuses on the ability of an automated technique to accurately determine

the purpose of a change by lexically examining the change message. In

Section 4.5, we examine the results for the final part of our study which

focuses on the differences between the change messages in open source

systems and large industrial software systems. Finally in Section 4.6, we

summarize our results, propose future research directions, and examine

challenges based on our survey findings.

4.2 Study Logistics

In this section, we introduce the goals of our study. We then present our

study participants and elaborate on the design of our study.

74

Section 4.2. Study Logistics

4.2.1 Study Goals

We would like to understand how developers use change messages in mod-

ification records as they maintain and enhance a software system. Given

that such a message is optional, we want first to determine if developers

are likely to enter meaningful and descriptive information in that mes-

sage. Moreover, we want to examine the type of information that develop-

ers are likely to record in a change message. For example, are developers

likely to specify the rationale for the change, alternative designs, or limi-

tations of the current change.

Furthermore, we would like to determine if an automatic classifica-

tion of a change message would agree with a manual classification per-

formed by industrial developers. For many software projects, source code

repositories are the only source of historical records about the project.

Bug reports are commonly not archived. To perform studies to gauge the

reliability of a software system, we can use the source code repositories

(e.g. [HH03b]). We can use a lexical based approach, similar to [MV00],

to classify modification records into three types based on the content of

the change message. The classification approach would determine if a

modification was done to fix a bug, to add features, or to perform general

maintenance activities such as updating copyright notices or indenting

the source code.

We would like to compare change messages in open source systems to

change messages in commercial software systems. Due to the accessibility

of open source code repositories, researchers are more likely to use such

repositories in their studies. By comparing the difference between open

source and commercial change messages, we can determine the suitability

of using open source change messages in case studies and the applicability

of any findings to commercial systems.

75

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

4.2.2 Study Participants

To perform our study, we used a survey technique. We surveyed expe-

rienced software developers to gain better insight into how professional

software developers working on large industrial software systems are

likely to write and use change messages. We picked a small number of

participants which are accessible to us so we can easily interview them

to clarify their survey replies if needed. We asked six software develop-

ers to participate in the survey. The developers worked in companies in

the following software domains: security, telecommunication, graphics,

and databases. The developers were chosen so they would represent two

groups: an intermediate and a senior group. We hoped that this group-

ing would uncover if there are any noticeable variations in the survey

responses that may be attributed to experience or managerial differences

between both groups of developers:

• The first group consists of 3 intermediate software developers with

at least 7 years of software development with no experience of man-

aging other software developers.

• The second group consists of 3 experienced software developers with

at least 9 years of experience developing industrial software systems

and who have previously managed or are currently managing other

software developers.

Table 4.1 gives background information about the developers partici-

pating in our study. At the time of the study, the developers worked at a

number of different companies. All the developers had used source con-

trol systems for most of their professional career, this is likely due to the

fact that source control systems are widely used and adopted in indus-

try. The participants, where source control was not used for part of their

professional career, were asked to elaborate on the reasons. Their replies

indicated that this occurred in their earliest jobs and it was usually be-

cause they worked as part of a small group (“we were a 2 man shop”),

76

Section 4.2. Study Logistics

Dev. Development Source Control Avg. Team Team

Experience (years) Experience (years) Size Lead

I1 7 5 5 No

I2 7 7 5 No

I3 7 7 30 No

S1 9 5 5 Yes

S2 15 12 8 Yes

S3 9 9 5 Yes

Table 4.1: Characteristics of the Participants of the Study

or because they had a strict gatekeeper person who reviewed each every

change (“we had a dictatorship”). Participants added that looking back

they regret not using a source control system even though they were part

of a small group. They recounted cases where they lost work due to eras-

ing their source code by mistake and not using source control systems – “I

accidently erased all my stuff once at ... because I was trying out UNIX’s

recursive file removing feature :) My supervisor was not impressed.”. In

short, even though the size of the development group size may be small

and using source control systems may not be needed to coordinate de-

velopment, professional developers think it is still beneficial to adopt a

source control system as it offers a safety net that can protect developers

from losing their work.

4.2.3 Study Design

Since the developers participating in the survey were easily accessible

to us, we broke our survey into 3 major parts. Every part was given to

the developers independently of the other parts. We hope that this tech-

nique encouraged the developers to focus on answering the questions in

the current part of the survey without being influenced by other parts of

the survey. The parts of the survey were given to the developers over a

period of two months. Once a part was completed, the following part was

given to the developers within 2-3 weeks.

77

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

The survey consisted of the following three parts (see this chapter’s

appendix for the full survey):

Part 1 - Usage and Content of Change Messages: In this part, the de-

velopers’ background was assessed and they were asked to answer

a number of questions about source control change messages. Every

question in this part was formulated in such a way that its answer

was a number from 0 (rarely) to 10 (most of the time). For example,

one question asked the following: “Q1. When you commit a change to

a source control system, how often do you enter a change message?”.

Developers were encouraged to add remarks of interest for every

question. Also, for questions where several alternatives were listed

an additional “other” alternative was listed to encourage developers

to add additional reasons that may have been missed by us. For

example, when asked “How often do you use/read previous change

messages when you are: (a) Doing Design, (b)Writing new Code,”

a final item was “(k) Other, Specify”. We chose to use a scale of 0 to

10 instead of a smaller scale such as a 5 or 7 point scale, which are

usually used in opinion surveys (e.g. like vs. dislike), since questions

in our survey ask developers for time frequency estimates. A time

frequency is easier to map to our chosen scale. In a 0 to 10 scale, a

100% of the time maps well to 10 and 80% of the time maps well to

8, that is not the case for smaller scales.

Part 2 - Classification of Changes: In this part, a list of 18 change mes-

sages from several open source projects were presented to every de-

veloper. Every developer was asked to allocate 10 points to four

categories. Three categories represented the possible purpose of a

change: bug fixing, feature introduction, and general maintenance.

A fourth category was “Not Sure” – Developers were asked to use

this category when the change message did not have sufficient in-

formation for them to confidently classify the change into one of the

other three categories. We limited the number of change messages

in the survey to 18 messages so that the professional software de-

78

Section 4.2. Study Logistics

velopers would finish the survey and classification in a timely and

accurate fashion without interfering with their busy schedules.

Application Application Start Programming

Name Type Date Language

NetBSD OS March 1993 C

FreeBSD OS June 1993 C

OpenBSD OS Oct 1995 C

Postgres DBMS July 1996 C

KDE Windowing April 1997 C++

System

Koffice Productivity April 1998 C++

Suite

Table 4.2: Summary of the Studied Systems

The 18 change messages were selected from the repositories of six

large open source systems (NetBSD, FreeBSD, OpenBSD, Postgres,

KDE, Koffice - Table 8.1 lists details of these projects). Every change

message in these repositories is already classified as either a bug fix-

ing, feature introduction or general maintenance change using an

automated classifier described in Section 4.4. We randomly picked

18 modifications from the repository of every project: 6 bug fixing, 6

feature introduction, and 6 general maintenance modifications (for

a total of 108 changes). We then randomly chose half of these mod-

ifications (54 changes) and broke them into three disjoint sets of

18 modifications. We followed this selection procedure for modifica-

tion to guarantee that the mathematical analysis performed later

does not suffer from any bias resulting from the type of the change

messages or their sources. Every set was classified by a member

of the intermediate group and a member of the senior group. Each

group classified the three modifications sets. No two developers in

the same group classified the same set of modifications.

Part 3 - Comparing Change Messages: In this part, developers were

asked to compare the change messages from open source projects

79

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

that they had classified in part 2 to the change messages that they

usually encounter at work. They were asked to point out main differ-

ences between open source change messages and commercial ones.

4.2.4 Survey Design

To ensure that the survey questions were meaningful and not confusing to

developers, we used the following technique in creating the survey ques-

tions:

• Questions were formulated and successively refined by us into a pre-

liminary versions of the questions.

• This preliminary version of the questions was then presented to an

intermediate professional developer who was asked to answer the

survey. This developer is not one of the six developers and his replies

were not used in our analysis. This developer’s replies were exam-

ined and the developer was interviewed to determine if the ques-

tions were clear. Comments by this developer were incorporated into

the final version of the survey which was given to the participating

developers.

In the following sections, we analyze the results of the three parts of

the survey. Our analysis focuses on finding if there are major trends in

the developers’ replies that would indicate with high confidence that a

particular property is true. Furthermore, we examine if there are varia-

tions between the replies of the intermediate developers group versus the

replies of the senior developers group.

4.3 Results For Part 1: Usage and Content of

Change Messages

The first part of the survey focused on the content of change messages

and how developers make use of such information as they maintain a

80

Section 4.3. Results For Part 1: Usage and Content of Change Messages

software system. In the following paragraphs, we give the purpose of

every question and discuss the replies of the participating developers. All

questions in this part were to be answered by giving a reply from 0 to

10 with a scale of 0 (rarely) to 10 (most of the time). We present the

average of the replies of the participants. We expand on the cases when

the average for the senior group differs from the intermediate group or

when the reply of a particular developer differs a lot from the rest of the

replies.

Q1. Purpose: To determine how often developers are likely to enter

a change message when submitting a change to the source control sys-

tem. Results: All developers, except one senior developer, indicated that

they enter a change message most of the time (9 out of 10 is the average

reply). When that senior developer was asked about the reason for not

always entering a change message, he indicated that he does not enter

change messages during the early parts of a project when he is develop-

ing new code in his own private code branch as the code is not yet stable

and he is mainly using the source control system for backup. Yet, when

maintaining source code, he always enters a change message. This reply

highlighted two styles for using source control systems: one for backup

and another for coordinating development in a large team.

Q2. Purpose: To determine how often developers monitor changes

to the code base they are working on. Results: Results indicate that

intermediate developers rarely (1.7 out of 10) monitor changes by others.

In contrast, senior developers monitor changes most of the time (7.6 out of

10). We believe this is due to the managerial role of senior developers who

use source control changes to keep up with the progress of the project.

This hypothesis is supported by the replies to the third question of our

survey as discussed in the following paragraph.

Q3. Purpose: To determine the main reasons for which developers

monitor the changes. Results: The replies by the intermediate develop-

ers showed that they rarely monitored changes. These findings match the

replies in the previous question where intermediate developers indicate

81

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

that they rarely monitor changes. As for senior developers, we found that

they mainly use source control messages to keep abreast of the project

progress and of changes to the APIs. They also use change messages to

monitor the validity of changes. A senior developer pointed out that he

monitors changes to the source code to ensure that no one is changing

code that he/she should not be changing, indicating that source control

systems are in some cases used as guards to enforce code ownership poli-

cies.

Q4. Purpose: To determine the suitability and clarity of the change

messages. In particular, we were interested to know if developers felt

that change messages were meaningful and useful in assisting them un-

derstand changes to the code and design of a software system. Results:

The intermediate developers indicated that change messages tend to be

useful most of the time (7 out of 10). In contrast, senior developers did not

feel that these messages were that useful (2.6 out of 10). We believe the

variation may be due to the fact that senior developers are more likely to

monitor a larger number of changes to source code for which they are not

as familiar. Moreover, the change message may rarely describe effects of

a change at the high level big picture (the focus of a manager), but usually

provide detailed low level explanations (the focus of a developer).

Q5. Purpose: To gauge the likelihood of developers reading the code

associated with a change. Results: The replies indicate that both senior

and intermediate developers sometimes (6.3 out of 10) read the code.

Q6. Purpose: To investigate the reaction of developers when an empty

change message is attached to a code change. Results: The results of the

survey indicate that senior developers (8.6 out of 10) are likely to examine

the code. In contrast, intermediate developers would sometimes (5.2 out

of 10) examine the code when the change message is empty. We believe

this variation is due to the tendency of senior developers to use source

control systems to monitor the progress of a project and enforce code own-

ership and quality policies.

Q7. Purpose: To examine the circumstances associated with a change

82

Section 4.3. Results For Part 1: Usage and Content of Change Messages

that cause a developer to investigate the code associated with a change.

Results: The results of the survey indicate that both intermediate and

senior developers will most of the time (10 out of 10) examine the changed

code when the change prevents their code from compiling. Both groups

are likely (8 out of 10) to examine the changed code if it was in a sub-

system that they recently worked on, or if the changed code was in a

subsystem they depend on. The survey results show that developers are

likely (7 out of 10) to examine code changes close to a release date. This

results indicates that changes to the source code performed close to a re-

lease date are more likely to be examined than other changes. This may

be due to the criticality of such last minute changes and the fact that

developers would like to ensure that these last minute changes do not

introduce bugs to their code which may depend on the recently changed

code. Another interesting finding was that senior developer examine most

of the time (9 out of 10) the changed code when a change was done by

particular developers. This is due to the knowledge acquired by senior

developers about the quality of the code produced by specific team mem-

bers. This could be considered as a very primitive and intuitive quality

monitoring technique. We were surprised to find that developers are not

as concerned (2.8 out of 10) with examining changes when a large number

of files are changed together as part of the same modification record. This

may be due to the fact that such changes are usually simple changes that

are well documented in the change message such as updating the copy-

right information in all files. Also it may be due to the unwillingness for

developers to spend a large amount of the time investigating such large

changes. The tendency of developers to voluntarily review small changes

is encouraging as it shows that code is being peer reviewed. On the other

hand the unwillingness of developers to voluntarily review large changes

(as they may be too time consuming) is alarming, as large changes are

likely to introduce bugs [GKMS00]. Formal change review process must

be instilled in a development organization instead of simply relying on

voluntary reviews.

Q8. Purpose: To determine the type of information most likely to ex-

83

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

ist in a change message. Results: The participating developers indicated

that the rationale for the change is usually the most (6 out of 10) found

type of information in a change message. Indication of the limitations of

the change or alternatives are rarely found in the change message.

Q9. Purpose: To understand when developers are likely to use old

change messages. Results: The results of the survey indicate that change

messages are used most of the time (7.8 out of 10) during code reviews and

code integration between different source control branches. They are also

used (6 out of 10) to understand old code and during bug fixing.

We can summarize the results of the first part of the survey as fol-

lows. Developers will most of the time enter a change message. Whereas

intermediate developers are not concerned about empty messages, senior

developers tend to examine the code associated with such changes closely.

Change messages are used by senior developers to enforce code owner-

ship, and to gauge the quality of a change. Change messages are used

by all developers during software maintenance and integration as the

change messages are likely to specify the rationale for the changes.

4.4 Results For Part 2: Classification of Changes

In the second part of the survey, we were concerned with the feasibility

of automatically classifying changes using the content of the change mes-

sage attached to modification records in open source software systems.

Results by Mockus and Votta show that 61% of the time, their automatic

classifier and the developer who performed the change agree on the clas-

sification of changes to a large commercial telephony systems [MV00].

For our study, we developed an automated classifier program that

reads every change message and classifies its modification record as one

of the following three types:

Fault Repairing modifications (FR): These are the modifications

which are done to fix a bug. Our automated classifier labels all

84

Section 4.4. Results For Part 2: Classification of Changes

modifications which contain terms such as bug, fix, or repair in the

change message as FR modifications.

General Maintenance modifications (GM): These are modifications

that are mainly bookkeeping modifications and do not reflect the

implementation of a particular feature. Examples of such modi-

fications are updates to the copyright notice at the top of source

files, re-indentation of the source code by means of a code beauti-

fier (pretty-printer). Our automated classifier labels all modifica-

tions which contain terms such as copyright/update, pretty/print,

or indent/code in the change message as GM modifications.

Feature Introduction modifications (FI): These are the modifica-

tions that are done to add or to enhance features. Our automated

classifier labels all modifications that are not FR or GM modifica-

tions as FI modifications.

Every participating developer was shown the message associated with

a modification and asked to allocate a total of 10 points to four categories.

Three of the categories mirrored the automated classification categories

(FR, GM, and FI). A fourth category was “Not Sure” (NS). Developers

were asked to use the NS category when the modification message did not

have sufficient information for them to confidently classify the modifica-

tion into one of the other three categories. For the senior developer group

only one out of 54 modifications was ranked as NS. For the intermediate

developer group, out of 54 modifications three modifications were ranked

as such. For our analysis, we considered modifications classified as NS to

be FI modifications. The automated classifier uses FI as the default clas-

sification when it cannot determine the type of a modification; therefore,

we chose to use the same default rule for the manual classification done

by developers.

Developers had the option to allocate points between different cate-

gories but our automated classifier only assigns a single category to a

modification. We chose to classify modifications based on the highest

85

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

ranked category, to permit us to compare manual classifications to the

automated ones. When there were ties, we used the following tie break-

ing priority order: FR, GM, then FI. For example, if a developer allocated

5 points to the FR category and 5 points to the FI category, we would

consider this modifications to a be an FR modification. This tie breaking

priority order was used for only two ranked modifications. This order rule

was followed as it is the same rule followed by the automated classifier.

The automated classifier tends to be more pessimistic through counting

modifications by ensuring that modifications that may be a combinations

of fault repairing and feature introduction are counted as fault repair-

ing modifications to get a more complete count of repaired faults in the

software system.✬

✫

✩

✪
Figure 4.1: Analysis of the Classification of Changes by the Senior and

Intermediate Developer Groups

The two groups of developers were given the same 54 change mes-

86

Section 4.4. Results For Part 2: Classification of Changes

sages to classify. Every developer in a group was given a disjoint set of

18 messages to classify. We then combined the classification by every de-

veloper to arrive to a classification for the whole group (Intermediate and

Senior classifications). The same 54 change messages were classified us-

ing our classifier program. Figure 4.1 summarizes the types of analysis

we performed on the data. We performed two types of analysis:

• In the first analysis we compared the intermediate group classifica-

tion to the automatic classifier (Analysis 1A) and the senior group

classification to the automated classifier (Analysis 1B).

• In the second analysis (Analysis 2), we combined the classification

done by the senior and intermediate groups to create a common clas-

sification. We then compared this common classification to the clas-

sification done by the automated classifier.

We now present the results of the two types of analysis.

4.4.1 Analysis 1A and 1B of Developers’ Classifications

Automated Classifier

Manual Classifier GM FR FI Total

GM 15 2 3 20

FR 4 14 7 25

FI 0 0 9 9

Total 19 16 19 54

Table 4.3: Classification Results for the Intermediate Developers Group

vs. the Classifier Program(Analysis 1A)

Table 4.3 and 4.4 summarize the results for analysis 1A and 1B. The

last row in both tables shows the distribution of modification types as

classified by the automated classifier. The automated classifier catego-

rized the 54 modifications into 19 GM, 16 FR, and 19 FI modifications.

87

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

The last column of both tables shows the results of the manual classifi-

cation which differs between the two groups of software developers. Ta-

ble 4.4 shows that our automated classifier has classified 16 changes as

FR changes. By comparison column 2 of Table 4.4 shows that the senior

developers have classified 15 out of these 16 modifications as FI and one

of the modifications as GM.

Automated Classifier

Manual Classifier GM FR FI Total

GM 15 1 4 20

FR 3 15 4 22

FI 1 0 11 12

Total 19 16 19 54

Table 4.4: Classification Results for the Senior Developers Group vs. the

Automated Classifier

The diagonal of both tables lists the number of times the developers

and the automated classifier agreed on their classifications. Summing the

diagonal values in both tables shows that:

• For Table 4.3 the intermediate developers agreed 38 (15 + 14 + 9)

times with the automated classifier. The intermediate group agreed

(38
54 = 70% of the time with the automated classifier.

• For Table 4.4, the senior developers agreed 41 (15 + 15 + 11) times

with the automated classifier. The senior group agreed (41
54) = 76%

of the time with the automated classifier.

We calculated Cohen’s Kappa (κ) coefficient for both groups of devel-

opers [Coh60]. The Kappa coefficient is a widely adopted technique to

measure the degree of agreement between two raters, in our case: the au-

tomated classification technique and the developers participating in our

experiment. The Kappa for the senior group and the automated classifier

is 0.64. The Kappa for the intermediate group and the automated clas-

sifier is 0.56. According to the Kappa thresholds values proposed by El

88

Section 4.4. Results For Part 2: Classification of Changes

Emam [Ema99] (see Table 4.5), the agreement between the automated

classifier and the group of senior developers is substantial. The agree-

ment between the automated classification and the group of intermediate

developers is high moderate. These results are similar to the ones deter-

mined by Mockus and Votta who found moderate agreement between an

automated classification and a manual classification using the El Emam

classification. In brief, the results indicate that automated classification

techniques are likely to achieve similar classifications to ones done man-

ually by professional software developers.

Kappa Value Strength of Agreement

< 0.45 Poor

0.45 − 0.62 Moderate

0.63 − 0.78 Substantial

> 0.78 Excellent

Table 4.5: Kappa Values and Strength of Agreement

4.4.2 Analysis 2 of Developers’ Classifications

Intermediate Classifier

Senior Classifier GM FR FI Total

GM 17 2 1 20

FR 2 19 1 22

FI 1 4 7 12

Total 20 25 9 54

Table 4.6: Classification Results for the Senior Developers Group vs. the

Intermediate Developers Group

For the second analysis, we combined the classifications done by both

the senior and intermediate developer groups to create a common clas-

sification. We removed from the common classification change messages

which both intermediate and senior developers disagreed in classifying.

We felt that since both human classifiers could not agree on the classifica-

tion of a message, then we should not expect an automated classifier to de-

89

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

termine the correct classification of that message. Table 4.6 summarizes

the classification results for the senior and intermediate developers. Out

of 54 change messages, the senior and intermediate developers disagreed

on the classification of 11 change messages. The Table indicates an 80%

overall agreement between both developer groups and a Kappa of 0.68,

corresponding to a substantial agreement. A closer look at the degree of

agreement between classifiers for each change type reveals that there is

an 85% agreement for GM changes, 81% agreement for FR changes, and

68% agreement for FI changes. In short, developers are likely to agree

more on classifying GM or FR changes, than on classifying FI changes.

This is likely due to developers using specific keywords to classify GM

and FR messages such as “bug” or “fix”.

We used the agreed on classifications to create a common classifica-

tion for the remaining 43 change messages. We compared the common

and the automatic classification (see Table 4.7). The Kappa for the com-

mon classification is 0.71. Using the Kappa thresholds values shown in

Table 4.5, we note that the agreement between the automated classifica-

tion and the common classification is substantial. The table indicates that

the automated classification and the common classification agree 81% of

the time.

Automated Classifier

Manual Classifier GM FR FI Total

GM 14 1 2 17

FR 2 14 3 16

FI 0 0 7 7

Total 14 15 12 43

Table 4.7: Classification Results for the Common Classifications between

Both Developers Group vs. the Automated Classifier

In addition to performing the Kappa analysis on the classifications,

we used the Stuart-Maxwell Test. Whereas Kappa examines the agree-

ment between classifiers, the Stuart-Maxwell Test examines the disagree-

ment between classifiers. In particular, the Stuart-Maxwell Test tests

90

Section 4.4. Results For Part 2: Classification of Changes

the marginal homogeneity for all classification categories [BS77, AE70,

AA55, MH]. One reason classifiers disagree is because of different ten-

dencies to use classification categories. The Stuart-Maxwell Test deter-

mines if classifiers have biases towards specific classification categories

or if they do not. A small probability value P implies that there is an

association between both classifiers and that no bias exists. Table 4.8

summarizes the results for the Stuart-Maxwell Test for the classification

tables. The Stuart-Maxwell Test holds for all classification tables at above

90%. These Stuart-Maxwell Test results agree with the Kappa analysis

performed above.

Maxwell Test

Classification Table Chi-Squared P

Intermediate vs. Automated 10.494 0.0053

Senior vs. Automated 6.786 0.0336

Common vs. Automated 5.238 0.0729

Table 4.8: Results of the Stuart-Maxwell Test

The results of analysis 1A, 1B, and 2 indicate that an automated clas-

sification technique for modification records for open source systems, us-

ing the change message attached to the records, is likely to produce re-

sults that are substantially similar to classifications done manually by

professional developers. These results are encouraging as they permit us

to recover automatically from open source system a historical overview of

the bug fixes applied to the system. These bug fix modifications could be

used, for example, to study the quality of open source systems and to an-

alyze the benefit of adopting different techniques to improve the quality

of software systems in general [HH03b, HH] (see Part III).

91

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

4.5 Results For Part 3: Comparing Open Source

and Commercial Change Messages

In the last part of the survey, we asked the participants to compare the

change messages they had classified in part 2 to the change messages

they usually find at work. The participants indicated that the change

messages they ranked are as descriptive as (5 out of 10) change messages

they find in industrial software systems. Nevertheless developers com-

mented on differences between the classified changes and the ones they

find at work. A number of participants indicated that as the size of the de-

velopment group increases, they are more likely to write longer and more

descriptive change messages to avoid other developers asking them for

clarifications for their changes. They indicated that open source change

messages are as descriptive as the ones they usually encounter in large

projects. They also indicated that whereas open source change messages

list details concerning a change (such as a bug description), there is a ten-

dency for change messages in commercial systems to have less text and

to reference a bug or a feature request number. The details for such a bug

or feature request are usually stored in a separate database (by means of

a bug database or feature tracking system). Some of the intermediate de-

velopers preferred the fact that such information was stored in a separate

system and not repeated; whereas all the senior developers preferred hav-

ing the details of the bug/feature request attached to the change message

instead of having to access another system to retrieve such information.

These results suggest that bug or feature tracking systems need to be

tightly integrated with source control systems to offer developers easy ac-

cess to all information related to a change while avoiding duplicating this

information in multiple systems.

92

Section 4.6. Conclusion

4.6 Conclusion

In this chapter, we investigated an artifact of software development that

is rarely studied; namely, the change messages attached to every mod-

ification committed to a source control system. We used a survey tech-

nique in which intermediate and senior developers were asked a number

of questions about these messages. Although we surveyed a small number

of developers, we believe that their replies are representative of industrial

software developers, since they worked at different companies spanning

various domains and they have several years of industrial experience.

Nevertheless, it is desirable to investigate that our survey findings hold

using a larger number of participants.

We focused on understanding the type of information that exists in

change messages. We found that developers are more likely to record the

rationale for a change than to list alternative implementations or limita-

tions. We discovered that developers make use of information in change

messages to help understand legacy code and to fix bugs. Our survey re-

sults indicate that senior developers use source control systems to keep

abreast of the progress of a software project and use the change messages

as a quality monitoring facility to detect potential bug prone changes or

to ensure that their code is not touched by others who do not own it (code

ownership). Moreover, our results indicate that change messages in open

source projects are as descriptive as change messages in industrial sys-

tems. We as well investigated the possibility of classifying changes auto-

matically into bug fixing, bookkeeping and feature introduction changes.

Our results indicate that automated classifications agree over 70% of the

time with classifications done manually by software developers.

The findings of our survey suggest that change messages are a valu-

able resource that is used by practitioners to maintain and manage soft-

ware projects. We conclude that researchers should investigate techniques

and approaches to improve the quality of the change messages and to

make them more accessible for developers as they evolve software sys-

tems. In the following parts of this thesis, we present techniques and

93

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

approaches which attempt to formalize some of the intuition of practi-

tioners about monitoring changes to source code, and the ad-hoc uses of

software repositories by practitioners.

Appendix

In this appendix we show the three parts of the survey given to the par-

ticipants in our study.

Survey About: Messages Entered into Source Control Sys-

tems

Thank you for participating in this survey. The purpose of this survey

is to gain a better understanding of how professional software developers

use source control systems such as Perforce and CVS. In particular, we are

interested in the message (the Source Control Change Message), entered

when a developer commits a change to the source control. The survey

should take you under 20-25 minutes in total. In any question, feel free

to add remarks of interest.

Part 1. General

Your Background

i. How many years of development experience do you have? ___

ii. How many years have you used a source control system for? ___

iii. What is the average team size for the projects where you used a

source control system? ___

iv. Have you ever lead a team of developers? ___

Source Control Change Messages

In the following questions please give a number from 0 to 10, accord-

ing to this scale: (0 – Rarely, 5 – Sometimes, 10 – Most of the time).

Q1.When you commit a change to a source control system, how often

do you enter a change message? (0 to 10) ___

94

Section 4.6. Conclusion

Q2. How often do you monitor other developer’s submissions to source

control? (0 to 10) ___

Q3. How often do you monitor other’s submissions to source control (0

to 10)

a. To keep abreast of the project’s progress (recent features, recent bug

fixes) ___

b. To check the correctness of their submission ___

c. To know the effects of their submission on the code and APIs ___

d. Other ___

Specify _____________________

Q4. When you read the change message entered by other developers,

how often do you find them meaningful and sufficient to get an idea of

what changed? (0 to 10) ___

Q5. After reading a change message, how often do you examine the

changed code? (0 to 10) ___

Q6. If a change message is not meaningful or empty, how often do you

examine the source code? (0 to 10) ___

Q7. How often do you examine the changed code when (0 to 10):

a. The change is done by a junior developer ___

b. The change is done by a particular developer ___

c. The change is done to a file/subsystem you worked recently on ___

d. The change is done to a file/subsystem that your code depends ___

e. The change is done to a file/subsystem that depends on your code

f. The change is done in off working hours (weekend/night) ___

95

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

g. The change is done close to a release date ___

h. The change message indicates it is a bug fix ___

i. The change affects a large number of files (how many on average?):

j. The change prevents your code from compiling ___

k. Other ___

Specify _____________________

Q8.When reading a change message, how often do you find (0 to 10):

a. The reason/rationale for the change: ___

b. A detailed description of the change and its effect on other parts of

the system: ___

c. A description of alternative designs/implementations: ___

d. Warnings about limitations: ___

e. Indication of possible future enhancements of the changed code (todo

list): ___

f. Un-meaningful or empty descriptions: ___

g. Other ___

Specify _____________________

Q9. How often do you use/read previous change messages when you

are

a. Doing design: ___

b. Writing new code: ___

c. Testing: ___

96

Section 4.6. Conclusion

d. Understanding old code: ___

e. Fixing bugs: ___

f. Adding new features to old software: ___

g. Improving performance: ___

h. Reviewing and inspecting code: ___

i. Enhancing an old feature: ___

j. Monitoring the progress of the project: ___

k. Other ___

Specify _____________________

Part 2. Classifying Changes

The following are 18 actual change messages, which have been ran-

domly picked from several large software projects. For every change,

please classify the change message as

BF: A bug fix.

FE: A feature enhancement/addition

BK: A bookkeeping change such as merging of source control branches,

updating copyright dates, indentations, spelling corrections, etc.

NS: Not sure. The change message does not give enough details to clas-

sify the change.

Please allocate 10 points among the 4 classes (BE, FE, BK and NS).

For example, if you feel confident that a change is a bug fix then assign

all 10 points to BF. If you feel a change is likely a bug fix and a feature

enhancement then you could assign 5 points for BF and 5 points for FE.

If you are not sure how to classify the message then assign all 10 points

to NS. For example:

97

Chapter 4. Source Control Change Messages: How Are They Used And What Do They Mean?

0. “fix error in hyperzont.c”

BF. _10_ FE.____ BK.____ NS.____

Here are the change messages that you are to classify.

[Personalized Generated List of Change Messages for Every Partici-

pant]

Using the Data from this survey

Can we acknowledge you when we report these results? (yes/no, I

would like to remain anonymous) ___

Part 3. Comparing Change Messages

1. From 0 (less descriptive) to 10 (more descriptive): Would you con-

sider the change messages you saw in that survey to be more or less de-

scriptive than the ones you see in your daily work? ___

2. What are the main differences you see between the change mes-

sages in this survey and the ones you see at work? Any things that strike

you as different? ___

98

Part II

Using Software Repositories

to Assist Developers

99

Developers working on large software systems are usually faced with

many challenges as they work on evolving the source code to meet the

changing needs of the customers. Developers require tools and approaches

to understand the current structure of a software system and to accu-

rately propagate changes throughout the software system.

This part deals with both of these issues by presenting two pieces of

research work:

• Source Sticky Notes: We present an approach which recovers

valuable information from source control systems and attaches this

information to the static dependency graph of a software system. We

call this recovered information – Source Sticky Notes. These notes

along with the software reflexion framework [MNS95] could assist

developers in understanding the architecture of large software sys-

tems. [Chapter 5]

• Development Replay Approach: We present the Development

Replay (DR) approach which reenacts the changes stored in the

source control repositories using proposed tools or strategy. The

proposed tool benefit is measured using changes done to the source

code by professional software developers over an extended period of

time. This approach permits us to empirically asses the effective-

ness of not-yet-adopted or not-yet-existing code maintenance tools

and strategies. [Chapter 6]

This part is likely to be of interest to developers working on large soft-

ware systems. This part shows that historical changes stored in source

control repositories could assist in understanding large software systems,

and could be used to get rough estimates on the benefits of adopting tools

and approaches.

101

CHAPTER 5
Using Development History

Sticky Notes to Understand

Software Architecture

Maintenance of evolving software systems has become the most fre-

quently performed activity by software developers. A good understand-

ing of the software system is needed to reduce the cost and length of this

activity. Various approaches and tools have been proposed to assist in

this process such as code browsers, slicing techniques, etc. These tech-

niques neglect to use a central and vital piece of data available – the

historical modification records stored in source control systems. These

records offer a rich and detailed account of the evolution of the software

system to its current state.

We present an approach which recovers valuable information from

source control systems and attaches this information to the static de-

pendency graph of a software system. We call this recovered informa-

tion – Source Sticky Notes. We show how to use these notes along with

the software reflexion framework to assist in understanding the archi-

tecture of large software systems. To demonstrate the viability of our

103

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

approach, we apply it to understand the architecture of NetBSD – a

large open source operating system.

5.1 Introduction

THE primary business of software is no longer new development; in-

stead it is maintenance [LS81, Gla92] and a good understanding of

the software system is needed to reduce the cost of maintaining it. Soft-

ware understanding tasks represent fifty to ninety percent of the mainte-

nance efforts [Sta84].

Good documentation can significantly assist in software understand-

ing tasks. Unfortunately software developers commonly do not document

their work. Documentation rarely exists and if it does it is usually incom-

plete, inaccurate, and out of date.

Faced with the lack of sufficient documentation, developers choose

alternative understanding strategies such as searching or browsing the

source code. The source code in many cases represents the only source of

accurate information about the implemented system [Sim98]. Developers

search the code using tools such as grep. They browse the code using text

editors or cross-reference code browsers such as LXR, which permit them

to navigate the static dependencies of the software system. For example,

developer can track variable/function usage and locate their declarations.

The usefulness of this code browsing technique is limited by the size of the

software system and the amount of information a person can keep track

of while jumping around the source code [vMV95, SCH98].

To overcome the lack of documentation and the pressing need to un-

derstand large systems as developers evolve them, we propose to speedup

the understanding process by using knowledge acquired from mining the

historical modification records stored in source control systems. Source

control systems track the evolution of source code. Throughout the life-

time of a projects, source code is changed to add new features, enhance

104

Section 5.1. Introduction

old ones, or fix bugs. All these code changes are stored in the source con-

trol system. Along with the code changes other valuable information are

kept by the source control system. For example, the source control sys-

tem stores a message for each change. This message is entered by the

developer performing the change. This message offers us an opportunity

to gain some insight about the change rationale. For example, a developer

may indicate that a change was done to fix a recently discovered bug in

the field or to add a new feature.

This rationale message along with other change details stored by the

source control system provide a valuable source of information about the

software system and the complex interaction between its components, the

same way that history can guide us to understand the current state of the

world, as noted eloquently by David C. McCullough, a president of the

Society of American Historians:

“History is a guide to navigation in perilous times. History is

who we are and why we are the way we are.”

In this chapter we propose to attach these valuable change details

(such as the rationale message) to the dependencies between the entities

of a software system. Specifically for each change we determine its affect

on the software’s dependency graph, such as the addition of a call to a

function. Then we attach these change details to the corresponding edges

in the graph. We call this recovered change details – Source Sticky Notes,

as they are attached to the dependency edges to remind developers of

valuable information which may assist them in understanding the system

at hand.

5.1.1 Organization of Chapter

The chapter is organized as follows. Section 5.2 presents a process for un-

derstanding the architecture of a software system and breaks the process

into three major steps. These steps are repeated by developers until they

105

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

have a sufficient (good enough) understanding of the part of the system

they are interested in. Then in Section 5.3, we overview the software re-

flexion framework which has been proposed by Murphy et al. to assist in

understanding the structure of software systems. In Section 5.4 we out-

line the key questions that developers pose during their investigation of

the results of the reflexion framework. Furthermore, we demonstrate the

benefit of using the source control data to address these questions. We

introduce the idea of Source Sticky Notes – which augment static depen-

dencies between source code entities and permit us to attach information

derived from the source control data. In Section 5.5, we describe the data

stored in source control repositories and present the techniques we use to

recover such data to build Source Sticky Notes. Then we demonstrate the

viability of our proposed approach through a case study on the NetBSD

operating system in Section 5.6. In Section 5.7, we describe related works

and compare them to our approach. In Section 5.8, we summarize our

findings and draw conclusions.

5.2 The Architecture Understanding Process

The architecture of a software system describes the structure of the sys-

tem at a high level of abstraction. Individual functions and even mod-

ules are not described in detail; instead, they are abstracted into higher

level constructs such as subsystems. Subsystems and interactions be-

tween them are shown in an architecture document. A well documented

architecture provides a good understanding of the entire software system

and eases the understanding of the design decisions involving interac-

tions among its subsystems. Unfortunately, software architectures are

rarely documented. Therefore developers attempt to understand the ar-

chitecture using the source code as the definitive guide.

The architecture understanding process followed by developers can be

broken into three major steps: Propose, Compare, and Investigate (see

Figure 5.1). These steps are repeated in an iterative manner by develop-

106

Section 5.2. The Architecture Understanding Process

ers At first the developer proposes a conceptual breakdown of the software

system – conceptual architecture. The conceptual breakdown defines the

major components of the system and the interactions between them. This

proposed conceptual breakdown is based on the developer’s assumptions

and intuition. In the following step, the developer compares her/his pro-

posed conceptual breakdown with the actual source code.The developer

investigates the results of the comparison. New knowledge is acquired

from the source code and the developer updates her/his understanding of

the software system. The developer would then propose an updated con-

ceptual breakdown based on the newly acquired knowledge. This process

is repeated till the developer has acquired sufficient understanding of the

architecture of the software system. The developer now moves on to tack-

ling other challenges such as adding functionality or fixing bugs. This

process is a simplification and abstraction of software understanding pro-

cesses that were derived from our experience studying and working with

large software systems [BHB99a, HH00] and research by others based on

observing the process performed by developers in industry to understand

complex software systems [vMV94].

✬

✫

✩

✪

Propose InvestigateCompare

Better Understanding

Figure 5.1: Overview of the Architecture Understanding Process

We now discuss each of the steps in the architecture understanding

process in detail.

107

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

5.2.1 Propose

In the propose step, the developer approaches a software system with

a set of assumptions and preconceived ideas about its architecture and

the interaction between its various subsystems. These assumptions are

usually based on any available documentation for that system and the de-

velopers’ previous interactions with that system or other similar systems.

Unfortunately, the documentation for software systems rarely exists and

if it does it is rarely up-to-date. Instead a developer relies on her/his cur-

rent knowledge about the internals of the system, the knowledge she/he

acquired from interviewing other developers (in particular senior ones)

on the team, and her/his knowledge of the architecture of similar systems

(i.e. the reference architecture) to form his assumptions. Influenced by

these assumptions, the developer proposes an initial conceptual break-

down of the software system.

For example, a developer working on enhancing features in an operat-

ing system, might begin by proposing a conceptual breakdown of the op-

eration system which consists of five conceptual subsystems: File System,

Memory Manager, Network Interface, Process Scheduler, and an Inter-

Process Communication. The developer might also assume that these

subsystems interact in a particular fashion to implement specific features.

For example, the File System would depend on the Network Interface to

support networked file systems such as NFS. Or the Memory Manager

would depends on the File System to support swapping of processes to

disk when the system runs out of physical memory. These assumptions

form the conceptual view of the software system and are influenced by

the reference architecture of an operating system, descriptions of operat-

ing systems in text books, and available documentation about the system

[BHB99a].

108

Section 5.2. The Architecture Understanding Process

5.2.2 Compare

The proposed conceptual breakdown of the software system is influenced

by many assumptions. These assumptions must be verified. In the Com-

pare step, these assumptions are compared against the actual implemen-

tation to either refute or support them. Several approaches and tools have

been proposed to assist developers in the compare step. The software re-

flexion framework is an example of such approaches [MNS95].

Once the developer has compared her/his conceptual breakdown with

the actual implementation, she/he gains a more accurate view of the struc-

ture of the software system. Unfortunately, she/he are left with many

unanswered questions about the interactions between the software’s sub-

system. The developer may find unexpected dependencies that indicate,

for example, that the Network Interface uses the Memory Manager. The

developer may find unexpected dependencies or may realize that expected

dependencies are missing. These dependencies form the gaps between the

conceptual understanding and the actual implementation. The developer

needs to investigate the reasons for such gaps.

5.2.3 Investigate

The Investigate step of the understanding process is the most time and

resource intensive step. The developer needs to determine the rationale

behind the dependencies that caused the gaps. For example, given an

unexpected dependency, the developer may need to determine if there are

any good reasons for such a dependency to exists, or if the dependency is

due to the misunderstanding of the developer who introduced it.

Research in recovering the software architecture has focused primar-

ily on assisting developers in creating conceptual views of software sys-

tems and comparing them to the source code. Yet the process of investi-

gating the results of the comparison has been neglected and it depends on

ad-hoc methods such as reading source code, browsing documentation and

newsgroup postings; and asking senior developers for clarifications about

109

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

the current state of the system. For example puzzled by the unexpected

dependency between the Network Interface and the Memory Manager, a

developer may contact a senior developer to uncover the rationale behind

such dependency.

Unfortunately uncovering this rationale may be difficult, as the senior

developer may be too busy or may not recall the rationale for such depen-

dency, the developer who introduced the dependency may no longer work

on the software system, or the software may have been bought from an-

other company or its maintenance out-sourced. Therefore the developer

may need to spend hours/days trying to uncover the rationale behind such

unexpected dependency. In some cases the rationale for an unexpected

dependency may be justified due to, for example, optimizations or code

reuse; or not justified due to developer ignorance or pressure to market.

The goal of our work is to support developers in the time consum-

ing Investigate step. In the following section, we present the software

reflexion framework which can be used to guide developers as they to un-

derstand the structure of large complex software systems. We then show

how to integrate our approach (Source Sticky Notes) with the software re-

flexion framework to reduce the time needed by developers to understand

a software system.

5.3 The Software Reflexion Framework

The software reflexion framework assists developers in understanding

the structure of their software system. In particular, it provides support

for the Propose and Compare steps of the architecture understanding pro-

cess described in the previous section. Figure 5.2 illustrates the architec-

ture understanding process based on the software reflexion framework:

1. Developers use their acquired knowledge about the software system

to:

110

Section 5.3. The Software Reflexion Framework

a) propose several conceptual subsystems and dependencies be-

tween these subsystems. (conceptual subsystems and depen-

dencies between subsystems)

b) propose a mapping from the implementation the system (i.e. the

source code in files/directories) to these conceptual subsystems.

(mapping source entities to subsystems)

2. Developers compare their proposed conceptual system breakdown

and the extracted concrete dependencies from the source code. Gaps

such as missing expected dependencies or unexpected dependencies

are noted.

3. Developers investigate the discovered gaps.

✬

✫

✩

✪

Conceptual

subsystems

Mapping

source entities

to subsystems

Dependencies

between

subsystems

Extracted

source

dependencies

Conceptual

architecture
Concrete

architecture

Compare

GapsInvestigate

Propose

Figure 5.2: Architecture Understanding Process Using The Software

Reflexion Framework

Once the gaps are investigated, the developers have a better under-

standing of the software system. They may choose to update their pro-

111

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

posed conceptual breakdown.✬

✫

✩

✪

File System

Memory

Manager

Network

Interface

Process

Scheduler

Inter-Process

Communication

Legend: subsystem depends on

Figure 5.3: Conceptual View of an Operating System [BHB99a]

5.3.1 A Clarifying Example

In this subsection, we give an example of using the software reflexion

framework to understand the architecture of an operation system. For

the first step in the reflexion framework, the developer proposes concep-

tual subsystems and dependencies between these subsystems. This pro-

posal constitutes the conceptual architecture of the software system. Fig-

ure 5.3 shows a proposed conceptual architecture of an operating system,

which a developer may derive based on her/his knowledge of the reference

architecture of traditional operating systems and other documentation

[BHB99a]. Next, the source code files are mapped to the conceptual sub-

systems. For example, all files in the “src\sched” directory may be mapped

to the Process Scheduler subsystem, similarly all files in the “src\ipc” di-

rectory may be mapped to the Inter-Process Communication subsystem.

In the second step, dependencies between these conceptual subsys-

tems are derived using a source extractor which parses the source code

112

Section 5.3. The Software Reflexion Framework

to recover concrete dependencies. For example if a file in “src\ipc“ calls a

function defined in another file in “src\sched“ then this is considered to

be a dependency relation between the Inter-Process Communication and

Process Scheduler subsystems. These extracted dependencies along with

the proposed mapping between files and conceptual subsystems form the

concrete architecture of the software system. Now the concrete archi-

tecture is compared against the proposed conceptual architecture. Fig-

ure 5.4 shows a reflexion diagram which highlights the differences (gaps)

between the proposed and the actual extracted dependencies among the

subsystems. In this case all expected dependencies existed in the software

system. There are two unexpected dependencies; these are the dashed

lines in Figure 5.4.✬

✫

✩

✪

File System

Memory

Manager

Network

Interface

Process

Scheduler

Inter-Process

Communication

Legend: subsystem depends on unexpected

dependency

Figure 5.4: Reflexion Diagram for an Operating System

In the third step, the developer investigates the discovered gaps be-

tween her/his conceptual view and the concrete (as implemented) view of

the system. In particular for the example shown in Figure 5.4, she/he

needs to uncover the reasons for:

• The Process Scheduler to depend on the Inter-Process Communica-

113

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

tion and for

• the Inter-Process Communication to depend on the Network Inter-

face.

Investigating such gaps is a challenging and time consuming task

with no support provided by the reflexion framework. Ad-hoc methods

such as interviewing senior developers, reading through project docu-

mentation or archived project communications are used to assist in the

investigation. In the following section, we focus on the Investigate step

(the grey oval in Figure 5.2). We categorize the types of dependencies

highlighted by the reflexion diagram. Then we outline several types of

questions posed by developers as they investigate the gaps. By carefully

studying what is being investigated – the gaps – and how it is being in-

vestigated – the questions – we hope to understand better the needs of

developers throughout this step. This should assist us in developing tech-

niques to assist them.

5.4 Investigating Dependencies - The W4

Approach

As pointed out in the previous sections, the Investigate step is the most

time consuming step in the architecture understanding process, with lit-

tle support by software engineering research. In this section, we intro-

duce the concept of Source Sticky Notes. These notes are derived from

the source control system and can be used to assist developers in this

step. Using these notes developers can gain insight about the rationale

for gaps between their conceptual understanding of the software system

and the actual implementation. But before we introduce these notes, we

present two important aspects of the investigate step: the type of depen-

dencies and the questions posed during investigations. These aspects will

help us define the contents of the Source Sticky Notes proposed at the end

of this section.

114

Section 5.4. Investigating Dependencies - The W4 Approach

5.4.1 Three Types of Dependencies

The software reflexion framework focuses on identifying gaps between

the conceptual understanding of the software system and its actual im-

plementation. As developers investigate these gaps, they can classify the

dependencies that appear in the reflexion diagram into the three types

illustrated in Figure 5.5:

• Convergences: These are dependencies that exist in the software

system as expected by the developer. It is possible that the reason

for the existence of such dependencies does not match the rationale

the developer had in mind. Yet, they are rarely investigated. In-

stead most of the focus of the investigation step is on the Absences

and Divergences. These two latter types represent the gaps between

the conceptual understanding and the actual implementation.

• Absences: These are missing dependencies that the developer ex-

pected to find in the software system but the concrete architecture

revealed that they do not exist. Absences could be due to lack of

knowledge of the developer investigating the system, changes in the

architecture of the system, or removal of features. For example an

operating system may no longer provide network support, therefore

the Network Interface subsystem may not exist. Based on our ex-

perience of studying several large software systems, absences occur

rarely.

• Divergences: These are unexpected dependencies that exist in the

implemented software system. Divergences may be due to undocu-

mented features, pressure to market, developer laziness, etc. For ex-

ample, the operating system may have undocumented features such

as supporting special hardware devices, or the source code may have

been optimized by means of unusual or messy dependencies. Or

during a tight release cycle a developer may have decided to bypass

clean design principles to fix a bug or add a feature in a short time.

Based on our experience, there are many divergences in software

115

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

systems. In some extreme cases, we found systems in which almost

every subsystem depends on every other subsystem. This poses a

great challenge for developers as they would have to investigate a

large number of divergences. Any tool support to assist them in the

investigation would be appreciated and valuable.

✬

✫

✩

✪DivergencesConvergencesAbsences

Concrete

View

Conceptual

View

Figure 5.5: Classification of Dependencies

5.4.2 Questions Posed During Investigation

As developers investigate these dependencies, they pose various ques-

tions. The goal of these questions is to uncover the rationale for the miss-

ing and unexpected dependencies which in turn represent the gaps in

understanding. We can classify these types of questions into four types.

We call them the W4 questions – Which? Who? When? Why? We discuss

these questions in detail.

• Which? Which concrete source code entities are responsible for these

unexpected dependency in the concrete view? Based on the names

of the entities involved in the dependency or their source code, the

developer may be able to deduce the reason for the existence of such

dependency. Unfortunately, this is not usually the case. Thus devel-

opers find themselves asking several other questions.

116

Section 5.4. Investigating Dependencies - The W4 Approach

• Who? Who introduced an unexpected dependency or removed a miss-

ing dependency? A knowledge of this person gives developers hints

and assists them in understanding the reasons for such gaps. A gap

due to a change made by a novice developer may suggest that the de-

veloper is at fault and the change must be fixed. On the other hand,

the change may have been performed by a senior developer with a

well established record for producing high quality code. In that case,

the investigating developer should have a good reason to believe

that the senior developer introduced it for good reasons. Therefore,

the investigating developer may consider adjusting her/his concep-

tual view of the system.

• When? When was the unexpected dependency added or the miss-

ing dependency removed? Even though a dependency being investi-

gated had been introduced by a senior developer, one may want to

ensure that this dependency was not introduced just to fix a criti-

cal bug under a tight release schedule and should be reworked. In

that case, one may need to determine if the dependency was modi-

fied in the few days/hours before a release, hence suggesting it may

be a hack just to get the product out of the door or if it is a justified

dependency that the investigating developer should expect.

• Why? Why was this unexpected dependency added or why was an

expected dependency missing? A knowledge of the rationale for

the investigated dependency may be key in explaining the gap and

would improve the developer’s conceptual understanding of the sys-

tem.

5.4.3 Source Sticky Notes

In the previous two subsections, we gave an overview of the types of

dependency gaps highlighted by the reflexion diagram and the types of

questions posed by developers investigating these gaps. We noted that

in large software systems, divergences are the most common type of gap

117

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

highlighted by the reflexion diagram. We also noted that developers seek

answers to several questions regarding these gaps. Since the reflexion

diagram is based on static dependencies, it provides little support for de-

velopers who are searching for clues to uncover the rationale for the high-

lighted gaps.

Static dependencies are only capable of giving us a current static view

of the software system without details about the rationale, the history,

or the people behind the dependency relations. Such details are vital in

assisting developers through the understanding process.

To overcome the shortcomings of static dependencies, we propose to

augment dependencies by attaching Source Sticky Notes to them. These

notes specify various attributes for each dependency – such as the name

of the developer, the rationale behind the addition or removal of a de-

pendency, and the date the dependency was modified. These notes would

make the job of the developer easier as they could help answer the W4

questions (Which? Who? When? Why?) posed by developers while inves-

tigating dependencies. In the fast paced world of software development

with tight schedules and short time to market, manually recording such

attributes for each dependency is neither possible nor practical, for the

following reasons:

1. For established software projects, it would be a time consuming and

error prone task for developers to go through each dependency in the

software system and attach notes to it. In many cases the developer

may no longer recall the reasons for the dependencies and in most

cases won’t recall the details for the other attributes such as the

date it was modified.

2. For new projects, we would have to ensure that developers anno-

tate each created dependency. Again this is extra work which most

developers would not be interested in doing.

We conclude that attaching Source Sticky Notes to static dependencies

would assist developers in improving their understanding of software sys-

118

Section 5.5. Source Control Systems

tems, yet developing such sticky notes manually is a rather cumbersome

and impractical option. To overcome this quandary, we propose using the

historical modification information stored by source control systems. In

the following section we give an overview of source control systems and

present an approach to recover information from source control system to

create Source Sticky Notes and to attach them to static dependencies.

5.5 Source Control Systems

As a software system evolves to implement the various functionality re-

quired to fulfill customers requirements and stay competitive in the mar-

ket, changes to its source code occurs. These changes are done incre-

mentally over the lifetime of a project by its various developers. Source

control systems as CVS or Perforce record the history of changes to the

source code of the software system.

The source code of the system is stored in a source repository. For

each file in the software, the repository records details such as the cre-

ation date of the file, modifications to the file over time along with the

size and a description of the lines affected by the modification. Further-

more, the repository associates for each modification the exact date of its

occurrence, a comment typed by the developer to indicate the rationale

for the change, and in some cases a list of other files that were part of the

change described by the developer’s comment.

This detailed description of the history of code modification permits

us to automatically build Source Sticky Notes for each dependency. Luck-

ily, such data is already being entered by developers as part of their rou-

tine development process, thus generating these notes doesn’t require any

more time commitment by the developers.

Source control systems store the details of the modification at the line

level of a file, which is not at the right level of detail for generating Source

Sticky Notes. Therefore, we need to map source code changes to appro-

priate source code entities (i.e. functions, macros or data types). Once

119

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

mapped we can determine if a change caused the addition or removal of

a dependency. We can then associate modification attributes (developer,

rationale, and date) to the modified dependencies between these mapped

source code entities.

5.5.1 Attaching Sticky Notes to Static Dependencies

To automate the attachment of sticky notes to static dependencies, we use

a two pass approach to analyze the source control repository data:

1. In the first pass, each revision of a file is parsed and all defined en-

tities (i.e. functions, macros or data types) are identified. In particu-

lar, we record their name, and their content. For example, file A may

have two revisions: an initial revision containing four functions, and

a second revision in which one of these functions is removed and an-

other one added. By parsing each revision and identifying all the

entities that were defined for all files throughout the development

history of a project, we can generate the equivalent of a symbol ta-

ble for a software system. In contrast to a traditional symbol table,

this historical symbol table has all symbols (entities) that were ever

defined in the project’s lifetime.

2. Using this historical symbol table, we re-analyze each revision of

each file. We locate for each entity in a revision which other entities

it depends on in the historical symbol table. This produces a snap-

shot of the dependencies between all the entities of a software sys-

tem at the exact moment in time of each revision of a file. Since the

source control system stores a modification record for each revision

of a file, we are able to attach a Source Sticky Note to new or re-

moved dependencies for a revision. The Source Sticky Note contains

the data recorded by the source control system for the corresponding

modification record. Each Source Sticky Note has four subsections

which can be used to answer the four types of questions posed in the

W4 approach for investigating gaps: Which? Who? When? Why?

120

Section 5.5. Source Control Systems

As a results of parsing each revision for each file, we have a his-

torical dependency graph. This historical dependency graph is com-

posed by successively combining snapshots of dependency graphs for

all revisions of all files throughout the lifetime of a software project.

A detailed description of the approach used to recover the historical

dependency graph is available in Chapter 3.

The historical dependency graph is then used to assist developers to

investigate dependency gaps. Each dependency in the software system

has attached to it Source Sticky Notes for each change that has affected

that dependency. Thus a developer can read all the Source Sticky Notes

attached to any dependency.

We observe that the order of the Source Sticky Note can speed up the

understanding process. For an unexpected dependency, the first attached

Source Stick Note to that dependency has usually enough information

to uncover the rationale for such a dependency. This note corresponds

to the first change that introduced this dependency in the software sys-

tem. As for a missing but expected dependency that may have existed in

the past, we found that the last Source Sticky Note attached to that de-

pendency usually has enough details to uncover the rationale for such a

dependency. To summarize for unexpected dependencies, we recommend

reading the Source Sticky Notes in chronological order. As for expected

but missing dependencies, we suggest reading the Source Sticky Notes in

reverse chronological order.

The method of attaching Source Sticky Notes to static dependencies

described in this subsection is a simplification of our actual implemen-

tation. A more detailed explanation is presented in [HH04a] (see Chap-

ter 3). Several optimizations are done to avoid re-parsing the revisions of

files and to speed up the identification of dependencies. For a large sys-

tem, such as NetBSD with around ten years of development, building the

historical dependency graph takes over twelve hours. This is due to the

long history of the project, the large size of its code base and the I/O in-

tensive nature of our sticky notes recovery approach. Luckily, this process

121

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

needs to be done only once with the results stored in an XML file which

is reused throughout the investigation process. As the software system

evolves, only the new revisions in the source control system need to be

analyzed to attach sticky notes corresponding to new changes to modified

dependencies. The new sticky notes are appended to the previously gen-

erated XML file. By keeping the Source Sticky Notes up to date developer

can use them during the development to understand the rationale behind

the interactions among the various entities in a software system.

5.6 Case Study

To validate the usefulness of our approach we carried out a case study on

NetBSD. We chose NetBSD as our case study for two reasons:

• NetBSD is a large long lived complex software system. It is being

developed by a large number of developers and runs on over thirty

hardware platforms.

• In addition, NetBSD (in particular the virtual memory component)

was used by Murphy et al. as a case study in [MNS95] to demon-

strate the usefulness of the reflexion framework. By using the same

case study system, we can reuse the published conceptual view with

its same mapping of source file to conceptual subsystems. This al-

lows us to focus on showing the benefits of our approach in speeding

up the investigation of gaps and improving the understanding of

large software systems.

Figure 5.6 shows the conceptual view of the virtual memory compo-

nent in the NetBSD operating system. In contrast to the figure shown in

[MNS95], we focus only on the six main subsystems and we show a depen-

dency between two subsystems if they use a function, macro, data type or

a variable defined in another subsystem. Following the steps described

by reflexion framework (see Figure 5.2, we create the reflexion diagram

shown in Figure 5.7

122

Section 5.6. Case Study

✬

✫

✩

✪

Hardware

Trans.

Kernel Fault

Handler

Pager

FileSystem
Virtual Addr.

Maint.
VM Policy

Subsystem

Depend

Figure 5.6: Conceptual View of the NetBSD Virtual Memory Component

We begin by observing that there are no absence dependencies, which

is a common situation in most systems we have studied. It is a very rare

case to find missing expected dependencies, instead the more common

case is to find a large number of divergences - such is the case for NetBSD.

We find that we have eight unexpected dependencies - the dotted arrows

in Figure 5.7.

To understand the rationale for each of these dependencies, it would

seem that we need to study the source code and consult members of the

development team. This would be a time consuming task, due to the size

of the source code and the size of the development team which is scattered

throughout the world. Instead we use the historical dependency data with

its sticky notes to speed up the process and to focus on the most trouble-

some dependencies. We start by investigating when did these dependen-

cies appear in the source code. To our surprise, all of the dependencies

except two have been in the source code since day one. Thus, we consider

123

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

✬

✫

✩

✪

Divergence
Hardware

Trans.

Kernel Fault

Handler

Pager

FileSystem
Virtual Addr.

Maint.
VM Policy

Convergence

Subsystem

Figure 5.7: Reflexion Diagram for the NetBSD Virtual Memory Compo-

nent

these seven dependencies not to be as critical, as they have apparently

been part of the original code and have not been introduced due to decays

in the design. It may be the original implementation had weaknesses but

for now we focus on the two unexpected dependencies that were added

after the start of the project, they are:

• The dependency from Virtual Address Maintenance to Pager.

• The dependency from Pager to Hardware Translation.

Investigating the dependency from the Virtual Address Maintenance

to Pager, we ask what is the reason for the creation of such dependency.

Given this is an unexpected dependency we look at the attached Source

Sticky Notes in chronological order. We look at the first Source Sticky

124

Section 5.6. Case Study

Note (shown in Figure 5.8). The note shows the source code dependency

which caused the dependency between these two subsystems. The note

also records the name of the developer who introduced the dependency

and when it was introduced. Furthermore, the note displays the comment

entered by the developer when the change was performed. This comment

gives the rationale (why?) for this dependency.

Which?
vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)

depends on pager_map (in /src/sys/uvm/uvm_pager.c)

Who? cgd

When?
1993/04/09 15:54:59

Revision 1.2 of src/sys/vm/Attic/vm_map.c

Why?

from sean eric fagan:
it seems to keep the vm system from deadlocking the

system when it runs out of swap + physical memory.
prevents the system from giving the last page(s) to

anything but the referenced "processes" (especially
important is the pager process, which should never
have to wait for a free page).

Figure 5.8: Source Sticky Note for Dependency from Virtual Address

Maintenance to Pager

We conclude that this dependency was added to prevent the system

from deadlocking under special circumstances. We can investigate other

Source Sticky Notes attached to the dependency between these two sub-

systems if needed.

We now focus on the other unexpected dependency – the dependency

from the Pager to Hardware Translation subsystem. Since this is another

unexpected dependency, we read the Source Sticky Notes attached to the

dependency in chronological order. The first Source Sticky Note (shown in

Figure 5.9 uncovers the rationale for such dependency. The dependency

was introduced to fix a bug on multiple process (MP) systems.

In this subsection, we have shown how we can easily and rapidly in-

vestigate unexpected dependencies. A large number of unexpected depen-

125

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

Which?
uvm_pagermapin (in src/sys/uvm/uvm_pager.c) depends on

pmap_kenter_pgs (in src/sys/arch/arm26/arm26/Attic/pmap.c)

Who? thorpej

When?
1999/05/24 23:30:44;

Revision 1.17 of src/sys/uvm/uvm_pager.c

Why?

Don't use pmap_kenter_pgs() for entering pager_map
mappings. The pages are still owned by the object which is

paging, and so the test for a kernel object in
uvm_unmap_remove() will cause pmap_remove() to be used

insteadof pmap_kremove().

This was a MAJOR source of pmap_remove() vs

pmap_kremove() inconsistency (which caused the busted
kernel pmap statistics, and a cause of much locking hair on MP

systems).

Figure 5.9: Source Sticky Note for Dependency from Pager to Hardware

Translation

dencies have been in the source since the start of the project. For these

initial dependencies, we can use the same approach presented in this sub-

section. For example, investigating the reason for the unexpected depen-

dency from the Hardware Translation to the VM Policy subsystem, the

first Source Sticky Note does not reveal much about the rationale for the

dependency other than saying that the project has commenced. We exam-

ine subsequent Source Sticky Notes to discover that this dependency is

due to the same reasons as the investigated unexpected dependency from

the Pager to the Hardware Translation subsystems.

5.6.1 Investigating Removed Dependencies

In the NetBSD case study, we did not find any expected dependencies that

were missing in the implementation of the system. A study of the history

of NetBSD shows that some dependencies existed at some point in time

but are no longer there. Examples of such dependencies are:

• Filesystem to Virtual Address Maintenance.

126

Section 5.6. Case Study

• Hardware Translation to VM Policy.

Examining the Source Sticky Notes attached to the missing depen-

dencies, we can discover the rationale for the removal of a dependency.

We read the last Source Sticky Note attached to a removed dependency

as it corresponds to the change that removed the dependency and would

ideally give us the rationale for removing the dependency. For the first

case, we see that, the dependency was removed as it was the result of a

fix to a previous incorrect change (see Figure 5.10).

Which?
mfs_strategy (in.src/sys/ufs/mfs/mfs_vnops.c)

depends on vm_map (in src/sys/vm/Attic/vm_map.h)

Who? thorpej

When?
2000/05/19 20:42:21;

Revision 1.23 of src/sys/ufs/mfs/mfs_vnops.c

Why?
Back out previous change; there is something
Seriously Wrong.

Figure 5.10: Source Sticky Note for Dependency from File System to

Virtual Address Maintenance

As for the Hardware Translation to VM Policy dependency, the last

sticky note attached to that dependency indicates it was removed as part

of a clean up and re-organization of the include files in the software sys-

tem.

5.6.2 Discussion of Results

In this case study, we have shown the benefits of using historical data

stored in source control systems to understand the dependencies between

the subsystems of a large software system. The approach is highly depen-

dent on the quality of comments and notes entered by developers when

they perform changes to the source code. Luckily for many large software

systems (in particular open source systems [CCW+01]), these comments

are considered as a means for communicating the addition of new fea-

tures and narrating the progress of the project to the other developers.

127

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

Hence developers are willing to put effort into entering correct and useful

comments. This may not be the case for other systems. For these other

systems where developers do not enter useful comments in the source

control system, the source code remains the definitive and only option for

investigating dependencies.

Throughout the investigation, we found ourselves performing three

types of operations. Given a particular dependency, we wanted to retrieve

the initial, last or all Source Sticky Notes attached to it. These operation

are performed very fast (interactively) in contrast to building the histor-

ical dependency graph which requires many hours to generate. In the

current implementation the system is text based but integrating such a

system with a graphical interface would be beneficial. It would permit de-

velopers to simply right click on an unexpected dependency and a number

of relevant Source Sticky Notes could pop up in a floating window.

This chapter and case study focused on using Source Sticky Notes

to enhance the understanding of the architecture of software systems.

Throughout the architecture understanding process the source code of the

software system does not change, instead the main emphasis is on im-

proving and enhancing the conceptual understanding of the developer so

the conceptual understanding and the concrete implementation no longer

have gaps between them. Another possible application for Source Sticky

Notes is for architecture repair. The architecture repair process focuses on

understanding the architecture of a software system, and on performing

changes to either the conceptual understanding or to the system imple-

mentation to bridge the gap [TGLH00]. Source Sticky Notes can assist

the developer in performing the changes to the source code during the

architecture repair process as well.

5.7 Related Work

Several researchers have proposed the use of historical data related to

a software system to assist developers in understanding their software

128

Section 5.7. Related Work

system and its evolution. Chen et al. have shown that comments associ-

ated with source code modifications provide a rich and accurate indexing

for source code when developers need to locate source code lines associ-

ated with a particular feature [CCW+01]. We extend their approach by

mapping changes at the source line level to changes in source code enti-

ties, such as functions and data structures, and the dependencies between

them. Furthermore, we map the changes to dependencies between source

code entities.

Murphy et al. argued the need to attach design rationale and concerns

to the source code [BMS03, RM02]. They presented approaches and tools

to specify and attach rationale to the appropriate source code entities. The

processes specified in their work are manual and labor intensive, whereas

our approach uses the source code comments and source control modifica-

tion comments to automatically build a structure to assist developers in

maintaining large code bases. Since our approach is automated, we avoid

the problem of trying to get developers to specify, attach, and maintain

this rationale.

Bratthall et al. have shown the significance of design rationale in

assisting developers perform code changes for some software systems

[BJR00]. Our approach provides a tool to recover some of the rationale

automatically. Keller et al. suggested the recovery of patterns from the

source code as a good indicator of decision rationale [KSRP99].

Design rationale includes: the issues addressed, the alternatives con-

sidered, the decision made, the criteria used to guide the decision, and

the debate developers went through to reach such decision [BD00]. Our

approach assumes that the text entered by the developer performing a

change will cover some of these points, hence it will be useful in recover-

ing part of the rationale. Richter et al. offer support to recover the full

design rationale [RSA99]. They propose a tool to capture discussions and

drawings during architectural meetings. These captured meetings should

ideally contain enough information to assist in recovering the rationale of

a system. Their system provides no benefit for legacy systems where such

129

Chapter 5. Using Development History Sticky Notes to Understand Software Architecture

meetings have not been captured.

Lastly, Cubranic and Murphy presented a tool which uses other types

of captured project discussions such as bug reports, news articles, and

mailing list posting to suggest pertinent software development artifacts

[CM03]. The suggestions by their tool could be used to uncover the ra-

tionale for various architecture decisions. Compared to our approach, the

information returned by their tool are numerous and are not as detailed

as ours. Their tool may be beneficial when our approach is not able to

return sufficient results, or if developers would like to gain more details

about particular decisions. For example if an unexpected dependency has

always existed since the beginning of the project our approach won’t be

able to provide the rationale for its existence as there won’t be any mod-

ification records in the source control for it. Hence, using other types of

captured project discussions may assist the developer in recovering the

rationale for that unexpected dependency.

5.8 Conclusion

Much of the knowledge about the design of a system, its major changes

over the years and its troublesome subsystems lives only in the brains of

its developers. Such live knowledge is sometimes called wet-ware. When

new developers join a team, mentoring by senior members and informal

interviews are used to give them a better understanding of the system.

Such basic understanding is rarely enough to maintain a software sys-

tem. Therefore developer spend long periods of time hypothesizing about

the state of the software system, comparing their hypotheses/assumptions

with the actual implementation, and investigating any gaps they discover

between their understanding and the actual implementation.

Static dependencies give us a current fixed view of the software system

without details about the rationale, the history, or the people behind the

dependency relations. Data stored in source control repositories provides

a rich resource to assist developers in understanding large and complex

130

Section 5.8. Conclusion

software systems. Using this data, we are able to automatically attach

Source Sticky Notes to static dependencies. These notes record various

properties concerning a dependency such as the time it was introduced,

the name of the developer who introduced it, and the rationale for adding

it.

Source Sticky Notes assist developers as they investigate dependen-

cies in large software systems, by annotating the current structure of the

software system with valuable information. This information links im-

plementation entities to higher level constructs and provides a historical

record of the evolution of the system and its rationale.

Although our concentration in this chapter has been on using Source

Sticky Notes to understand software architecture, the benefits of these

notes are abound. They can assist in other tasks such componentization,

repairing decaying structures, or large scale refactoring. By distilling the

pearls of wisdoms stored deep inside source control systems, we can assist

developers understand the state of their project and plan confidently for

its future.

In the following chapter, we continue on studying the use of the his-

torical information stored in source control systems to support software

developers. We use such historical information to gauge the benefits of

adopting new maintenance tools or strategies.

131

CHAPTER 6
Replaying Development

History to Assess the

Claimed Benefits of Code

Maintenance Tools and

Strategies

Nowadays practitioners are faced with many tools and methodologies

promising to ease their maintenance tasks. Code restructuring method-

ologies claim to ease software evolution by localizing changes. Develop-

ment environment tools assert their ability to assist developers in prop-

agating changes. Static source analysis tools (such as lint) promise to

point out error prone code. Unfortunately, such claims and promises

are rarely substantiated or tested although the cost of adopting such

tools and approaches is high and the risks of failures are even higher.

We propose to use the historical information stored in software repos-

itories (such as source control systems) to assess such claimed benefits.

133

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

We present the Development Replay (DR) approach which reenacts the

changes stored in the source control repositories using a proposed tool

or strategy. We present a case study where the DR approach is used

to empirically assess and compare the effectiveness of several not-yet-

existing tools which promise to assist developers in propagating code

changes. The approach is illustrated by a case study of five large open

source systems with a total of over 40 years of development history.

6.1 Introduction

NEW tools, languages, strategies and approaches are being continu-

ously proposed by researchers and industry. Software developers

need to determine if status quo is the best option or if they should con-

sider adopting such novel ideas. Such tools and approaches need to be

investigated using careful, rigorous software engineering experimenta-

tion before they can be adopted by practitioners [FPG94, PPV00, KPJ+02,

Gla03a].

Laboratory experiments are usually not able to simulate real life in-

dustrial settings and tend to be run for a short period of time, while indus-

trial studies usually require a long and costly commitment by the practi-

tioners. An ideal approach should strike a balance between the low cost,

short duration, fast results of laboratory experiments which permit the

analysis of a variety of tools or approaches; while limiting the costs and

time needed for industrial studies. Such an ideal approach would expedite

studying the effectiveness of specific tools or strategies over an extended

period of time. In this chapter, we propose an empirical approach that

attempts to strike such a balance.

Consider the release of a new programming language which promises

to get rid of memory leaks by performing automatic garbage collection.

Software developers would like to determine the potential benefits of mi-

grating their code to such a language. Clearly there may be other benefits

134

Section 6.1. Introduction

but if the promise of getting rid of memory leaks is the main driver to

adopt such a language, then developers should gauge the potential ben-

efits. One thought is to consider prior faults during the lifetime of the

project, if none of the prior faults were memory leaks then the poten-

tial benefits of adopting such a programming language are likely to be

minimal. It may be the case that the tools, processes, techniques, and

expertise in place already at their organization are able to deal success-

fully with memory tracking issues. For instance techniques such as code

reviews, or specialized memory tracking libraries may be able to prevent

memory leaks and no new programming languages are needed.

Software repositories such as source control repositories, bug tracking

repositories, and archived email communications track the evolutionary

history of a software project. We could use the information stored in these

repositories to assess the claimed benefits of new tools and approaches. A

number of claims and approaches cannot be studied through the historical

information of a project such as the ability of a tool to reduce developer’s

stress or the ability of a tool to assist developers in gaining a better un-

derstanding of the source code. Nevertheless, several types of claims and

approaches can be easily examined, for example:

• The benefits of code restructuring strategies on localizing

changes to the source code: Refactoring strategies, object ori-

ented technologies, and aspect oriented techniques aim to restruc-

ture the source code to assist developers in understanding the code

better and to ease future changes by localizing changes. Using his-

torical information, we could study the potential benefits of adopt-

ing such restructurings on localizing changes. Prior changes to the

source code could be used to study the locality of changes using

the newly proposed restructuring. For example, if all or most prior

changes occurred within a small number of files, then the benefits of

a restructuring on localizing changes will be minimal.

• The benefits of static source code analysis tools on pointing

out error prone code: Static source code analysis tools such as lint

135

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

perform static analysis on the source code and mark areas that are

likely to have faults in them. Using historical information, one could

study the potential benefits of adopting such tools. For example, we

could run the tool on prior versions of the source code then examine

the project’s history to determine if warnings issued by the tools

correlated with actual faults in the source code or if they did not.

• The benefits of development environments in assisting de-

velopers to propagate changes: It is essential that changes are

propagated correctly to the appropriate locations in the code, oth-

erwise bugs are likely to occur due to inconsistencies in the source

code. There exists different heuristics and tools to propagate changes.

Using historical information, one could study the potential benefits

of adopting such tools. We could compare the performance of several

tools which use various techniques to propagate changes by study-

ing their performance using old changes. In this chapter, we give an

example for this particular case.

In this chapter, we present the Development Replay (DR) which per-

mits us to replay the history of a software project since its inception till

any moment in its history using information recovered from its source

control repository. We can determine at any moment the state of the soft-

ware project, such as the current developers that worked on or are cur-

rently working on the project, the cooperation history between these de-

velopers, and the structure of the dependencies between the source code

entities (such as functions and variables). We can also recover change

sets from the source control system. These change sets track the source

code entities that were modified together to implement or enhance fea-

tures, or to fix bugs. Using this historical information (the change sets

and the state of the software project), we present an example of compar-

ing the benefits of several enhanced dependency browsers in assisting de-

velopers as they propagate changes. Such dependency browsers could be

integrated in development environments to support developers who are

maintaining and evolving large software systems.

136

Section 6.2. The Change Propagation Process

6.1.1 Organization of Chapter

The chapter is organized as follows. In Section 6.2, we discuss the change

propagation process and explain how it could be used to measure the ben-

efit of adopting new tools. Then in Section 6.3, we present several metrics

to assess some of the claimed benefits of adopting new change propaga-

tion tools. In Section 6.4, we give an overview of the DR approach and the

software infrastructure we developed to permit the assessment of soft-

ware maintenance tools and strategies. We present a critical analysis of

the limitations of the results derived through the DR Approach. In Sec-

tion 6.5, we present a case study which applies the DR approach to mea-

sure the effectiveness of several tools that assist developers to propagate

changes in large software systems. Section 6.6 discusses related work.

Section 6.7 concludes the chapter with comments about the benefits and

limitations of the DR approach.

6.2 The Change Propagation Process

The dangers associated with not fully propagating changes have been

noted and elaborated by many researchers. Parnas tackled the issue of

software aging and warned of the ill-effects of Ignorant Surgery, modifica-

tions done to the source code by developers who are not sufficiently knowl-

edgeable of the code [Par94]. Brooks cautioned of the risk associated with

developers losing grasp of the system as it ages and evolves [Bro74]. Mis-

understanding, lack of experience and unexpected dependencies are some

of the reasons for failing to propagate changes throughout the develop-

ment and maintenance of source code. Mis-propagated changes have a

high tendency to introduce difficult to find bugs in software systems, as

inconsistencies between entities (such as functions) increase.

Work by Atkins et al. [ABGM99] and surveys by Sim et al. [SCH98]

indicate that software developer would like to have tools to assist them

in performing changes to the source code. These tools could guide devel-

opers by either informing them about code entities (such as functions) to

137

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

change, or assisting developers in performing the actual change (such as

tools that automate the code refactoring process). For our work, we focus

on the tool’s ability to inform developers which entities to change. A de-

sired software development tool is one that would ensure that a developer

changing a particular source code entity (such as a function) is informed

of all relevant code entities to which the change should be propagated.

We now examine the process of change propagation and give a break-

down of the various steps it involves. In the following section, we present

metrics to measure the performance of a tool in propagating changes.

We define change propagation as the changes required to other enti-

ties of the software system to ensure the consistency of assumptions in

a software system after a particular entity is changed. For example, a

change to a function that writes data to a file may require a change to

propagate to the function that reads data from file. This would ensure

that both functions have a consistent set of assumptions. In some cases

no change propagation may be required; for example when a comment

is updated, the indentation of the function text is changed, the internal

logic of a function is reworked, a locally scoped variable is renamed to

clarify its use, or local optimizations are performed. Though developers

have to tackle the problem of change propagation and locate entities to

change in a software system to ensure its consistency on a daily basis,

this problem and its surrounding challenges are not clearly understood.

Nevertheless several development tools have been proposed to assist de-

velopers in propagating changes.

In Figure 6.1, we propose a model of the change propagation process.

Guided by a request for a new feature, a feature enhancement, or the

need to fix a bug, a developer determines the initial entity in the software

system that must change. Once the initial entity is changed, the devel-

oper then analyzes the source code to determine if there are other entities

to which the change must be propagated. Then she/he proceeds to change

these other entities. For each entity to which the change is propagated

the propagation process is repeated. When the developer cannot locate

138

Section 6.2. The Change Propagation Process

✬

✫

✩

✪

Determine

Initial Entity

to Change

New Requirement,

Enhancement,

or Bug Fix

Change

Entity

Determine

Other

Entities

to Change

For Each Entity

Consult

Guru for

Advice

Suggested Entity

No

Entities

No More

Changes

Figure 6.1: Model of the Change Propagation Process

other entities to change, she/he consults a Guru. If the Guru points out

that an entity was missed, then it is changed and the change propagation

process is repeated with that entity. This continues until all appropri-

ate entities have been changed. At the end of this process, the developer

has determined the change set for the new requirement at hand. Ideally

all appropriate entities should have been updated to ensure consistent

assumptions throughout the software system.

The Guru could be a senior developer, a test suite, or even a com-

piler. Usually consulting the senior developer is not a practical option,

as the senior developer has limited time to assist each developer. Nor is

it a feasible option for long lived projects where such knowledgable de-

veloper rarely exists. Moreover, complete and extensive test suites rarely

exist. Therefore, developers find themselves forced to use other forms of

advice/information such as the advice reported by a development tool to

perform the activities in the grey highlighted box in Figure 6.1. Ideally

developers would like to minimize their dependence on a Guru. They need

software development tools that enable them to confidently determine the

need to propagate changes without having to seek the assistance of gurus

which are not as accessible and may not even exist.

139

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

6.2.1 Information Sources Used to Propagate Changes

Program dependency relations, such as call and use have been proposed

and used as indicators for change propagation. For example, if function A

calls function B, and B was changed then function A is likely to change

as well. If function A were to change then all other functions that call A

may need to change as well. This ripple effect of change progresses until

no more changes are required to the source code [YNTL88].

In search of other entities to propagate a change, developers depend

on a number of information sources to assist them in locating other enti-

ties that should change. Builders of development tools depend on these

information sources as well to suggest entities to which a change may

propagate. We now describe some of the possible sources of information:

6.2.1.1 Entity Information

The change propagation process may depend on the particular changed

entity. For example, a change may propagate to other entities interde-

pendent on the changed entity according to relations such as:

• A Historical Co-change records that one entity changed at the same

time as another entity. If entity A and B changed together in the

past, then they are related via a Historical co-change relation and

are likely to change together in the future.

• A Code Structure relation records static dependencies between enti-

ties. Call, Use, and Define relations are some possible sub-relations:

– The Call relation records that a function calls another function

or macro.

– The Use relation records that a function uses a variable.

– The Define relation records that a function defines a variable or

has a parameter of a particular type. For example F Define T ,

means F defines a variable of type T .

140

Section 6.2. The Change Propagation Process

• A Code Layout relation records the location of entities relative to

classes or files or subsystems in the source code. Containers such as

files and classes are good indicators of a relation between entities,

and related entities tend to change together.

6.2.1.2 Developer Information

The change propagation process may be dependent on the fact that the

same developer changed other entities recently or frequently. This is

based on the observation that over time developers gain expertise in spe-

cific areas of the source code and tend over time to modify a limited set of

entities in their acquired areas of expertise [BH99].

6.2.1.3 Process Information

The change propagation process may be dependent on the process em-

ployed in the development. For example a change to a particular entity

may propagate changes to other frequently or more recently changed en-

tities independent of the specific entity that changed, as these recently

changed entities may be responsible for a specific feature being modified.

6.2.1.4 Textual Information

The change propagation process may be dependent on the fact that change

propagates to entities with similar names, as the similarity in naming in-

dicates similarities in the role of the entities and their usage, as suggested

by [AL98] who used such information to improve automatic clustering of

files. It may be also dependent on the fact that entities have similar to-

kens in common in their comments [Shi03].

Other sources of information may exist. Also the aforementioned in-

formation sources can be combined and extended in various ways. For ex-

ample, another possible source is the co-call information, where A and B

both call C. A and B may implement similar functionality and a change to

141

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

A may propagate to B. Developers use such information sources to assist

them propagate changes to the appropriate part of the code. Development

tools use this information as the basis of heuristics that are used to sug-

gest entities to the developers to assist them in the change propagation

process.

Developers spend a considerable amount of time to correctly propa-

gate a change to other entities. This is a labor intensive task that is

error prone. Change propagation is a central aspect of software devel-

opment and developers are always in search for tools to assist them in

this process. In the following section, we investigate a number of met-

rics that could be used to measure the performance of tools such as de-

pendency browsers that are provided by modern software development

environments.

6.3 Measuring The Performance Of a Tool in

Propagating Changes

Developers seek tools that can assist them to perform changes quickly and

accurately. By quickly, we mean tools that would reduce the time needed

to perform the change. By accurately, we mean tools that would ensure

that a change to a source code entity is propagated to all relevant code

entities. In the ideal case, a development tool would correctly suggest

all the entities that should be changed without the developer resorting

to asking the Guru for advice. The worst case occurs when the Guru is

consulted to determine each entity that should be changed. Referring

back to the change propagation model shown in Figure 6.1, we would like

to minimize the number of times the Guru suggests an entity to change.

The metrics discussed in this section will focus on the accuracy of the

tool instead of the time required to perform the change itself. The time

required to perform a change is likely to be highly dependent on the devel-

oper performing the change and the type of tool support (e.g. code editor)

provided to the developer. Moreover, the time required may be difficult

142

Section 6.3. Measuring The Performance Of a Tool in Propagating Changes

to track since most practitioners rarely record the time spent on each

change.

6.3.1 A Simple Example

Consider the following example, Dave is asked to introduce a new feature

into a large legacy system. He starts off by changing initial entity A. After

entity A is changed, a tool suggests that entities B and X should change

as well as. Dave changes B, but then examines X and realizes that it does

not need to be changed. So Dave does not need to perform any change

propagation for X. He then asks the tool to suggest another entity that

should change if B were changed. The tool suggests Y and W, neither

of which need to change – therefore Dave will not perform any change

propagation for Y or W. Dave now consults Jenny, the head architect of

the project (the Guru). Jenny suggests that Dave should change C as

well. Dave changes C and asks the tool for a suggestion for an entity to

change given that C was changed. The tool proposes D. Dave changes

D and asks the tool for new suggestions. The tool does not return any

entities. Dave asks Jenny who suggests no entities as well. Dave is done

propagating the change throughout the software system.

6.3.2 Performance Measures for a Single Change Set

There exists a variety of metrics that could be used to measure the perfor-

mance of a tool in assisting developers perform changes. As highlighted

earlier, we will focus on the ability of the tool to locate the relevant en-

tities that should be changed instead of focusing on the time required to

perform the changes themselves.

6.3.2.1 Defining Recall and Precision

To measure the performance of a tool in propagating changes, we use tra-

ditional information retrieval concepts: recall and precision. For our sim-

143

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

ple example, Figure 6.2 shows the entities and their interrelationships.

Edges are drawn from A to B and from A to X because the tool suggested

that, given that the change set contains A, it should contain B and X as

well. For similar reasons, edges are drawn from B to Y and W, and from C

to D. We will make the simplifying assumption that a tool provides sym-

metric suggestions, meaning that if it suggests entity F when given entity

E, it will suggest entity E when given entity F. We have illustrated this

symmetry in Figure 6.2 by drawing the edges as undirected edges.

✬

✫

✩

✪

A

B D

X

Y W

Change

Set

C

Figure 6.2: Change Propagation Graph for the Simple Example - An

edge between two entities indicates that a tool suggested one when in-

formed about changes to the other one.

The total set of suggested entities will be called the Predicted set; Pre-

dicted = {B, X, Y, W, D}. The set of entities that needed to be predicted

will be called the Occurred set; Occurred = {B, C, D}. Note that this does

not include the initially selected entity (A), which was selected by the de-

veloper (Dave) and thus does not need to be predicted. In other words,

Occurred = ChangeSet - {InitialEntity}.

We define the number of elements in Predicted as P (P = 5), and the

number of elements in Occurred as O (O = 3). We define the number of

elements in the intersection of Predicted and Occurred (this intersection

144

Section 6.3. Measuring The Performance Of a Tool in Propagating Changes

is {B, D}) as PO (PO = 2). Based on these definitions, we define:

Recall =
PO

O

Precision =
PO

P

In our example, Recall = 2
3 = 66% and Precision = 2

5 = 40%. The rest of

this chapter will use these definitions of Recall and Precision.

We will make another simplifying assumption, which is that each pre-

diction by a tool is based on a single entity known to be in the change

set. For example, a heuristic may base a prediction on a single element

C known to be in the change set, and not on a set of entities such as {A,

C} known to be in the change set. A further assumption is that the devel-

oper (Dave) will query the tool for suggestions based on every so far sug-

gested entity (which is determined to be in the change set) before querying

the Guru (Jenny). An implication of our simplifying assumptions is that

the tool may not do as well in making predictions as they would without

these assumptions. Nevertheless, this limitation is not a concern as we

are more interested in comparing the relative difference between several

development tools using the same precision and recall model.

Our simplifying assumptions imply that the ordering of selections and

queries to a heuristic are immaterial. For example, Dave might initially

select entity B or C or D instead of A. Further, if Dave had a choice of

queries to the tool (say, to get suggestions based on either entity M or N),

either query could be given first. Regardless of the selections and order-

ing, the values determined for Precision and Recall would not be affected.

The Development Replay approach depends on change sets that are recov-

ered from the source control system to measure the performance of a tool.

These recovered change sets do not record the ordering of selections. So,

not only do our assumptions simplify our analysis, they avoid the need for

information that is not available in source control systems.

There is an interesting implication of our assumptions, as we will now

explain. In Figure 6.2, within the change set, there are two connected

145

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

components, namely {A, B} and {C, D}. With an ideal tool, which could

be used to predict all entities in a change set without recourse to a Guru,

there would necessarily be exactly one connected component. If there

is more than one connected component, each of these, beyond the initial

one, implies a query to a Guru. In other words, if CC is the number of

connected components and G is the number of queries to the Guru, then

G = CC - 1. With an ideal tool, CC = 1 and G = 0, while with the worst tool,

CC = N and G = N - 1, where N is the number of entities in the change

set. Based on our previous definition of Recall, it can be proven that

Recall = 1 −
(CC − 1)

(N − 1)

This is the Recall formula actually used in our analysis.

The F -measure which is a weighted harmonic mean of recall and pre-

cision metrics could be used [vR79]:

Fβ =
(β2 + 1) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall

Here β ranges between 0 and infinity. β values give varying weights

to recall and precision. For example to indicate that recall is half as im-

portant as precision, β would have a value of 0.5. A value of 1.0 indicates

equal weight for recall and precision. A value of 2.0 indicates that re-

call is twice as important as precision. F0 is the same as precision, F∞

is recall. Higher values for F correspond to higher effectiveness. Due

to the dangers of missing to propagate a change to a source code entity,

it may be desirable to assign β a value of 2.0 to indicate the importance

of recall. Alternatively a senior developer may prefer not to waste a lot

of time investigating irrelevant entities, therefore she/he would prefer a

tool with high precision. She/he would use a β value of 0.5. For the re-

sults presented in this chapter, we show the precision and recall values as

they are more intuitive to reason about their meaning. We then use the

146

Section 6.3. Measuring The Performance Of a Tool in Propagating Changes

F -measure (F1) to combine the precision and recall values into a single

value to subjectively compare the performance of development tools. The

maximum possible value for the F -measure is 1.0 when both recall and

precision are 1.0. The lowest possible value for F -measure is 0 when both

recall and precision are zero. An information retrieval practical range

for the F -measure is between 0.44-0.48 where precision usually lies in the

35%-40% range and recall is around 60% [Bel77].

6.3.2.2 Other Performance Metrics

Another possible performance metric is a utility function which assigns a

value or cost to each suggested entity. Such a measure is commonly used

in the TREC filtering task which focuses on sorting through large vol-

umes of dynamically generated information and presenting to the users

the information details which are likely to satisfy their current informa-

tion requirements [Hul98]. The larger the utility score, the better the

filtering or, in our case, the more effective the development tool is in as-

sisting developers perform the change. For example,

U = 6 ∗ PO − 5 ∗ (P − PO)

The utility of the tool for each change set is added up and a final total

utility is used to measure the performance of the tool for all the change

sets. To prevent a large change set from negatively affecting the overall

outcome, a minimum utility is defined (Umin) that would be used if the

utility for a particular change set is less than Umin. The results presented

in this chapter do not use the utility function technique to study a tool’s

performance.

6.3.3 Performance Measures for Multiple Change Sets

Over Time

In the previous subsection, we presented metrics to measure the effective-

ness of a tool in assisting a developer performing a single change (single

147

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

change performance metrics). We are more interested in measuring the

performance of a tool when used to perform a large number of changes

over an extended period of time. In this section we present metrics to

assess the long term effectiveness of a tool.

6.3.3.1 Average Performance of a Tool

To measure the performance over time for multiple change sets, the sim-

plest measure is the average performance of a single change performance

metric such as the average of the recall or precision for all change sets.

To calculate the average we sum up each change set and divide by the

number of studied change sets (M):

Average Recall =
1

M
∗

M∑

i=1

(
Recalli

)

Average Precision =
1

M
∗

M∑

i=1

(
Precisioni

)

6.3.3.2 Stability/Volatility of the Performance of a Tool

The use of an average to measure the performance has its limitations in

particular, it does not take into account the fact that the performance of

a tool may vary widely from one usage to the next. For example, a tool

may perform remarkably well for a change set but its performance may

be very disappointing for the following change set.

Developers are interested in not only the average performance of a tool

but in the stability of its performance as well. Developers would like tools

that consistently deliver reasonable performance instead of tools whose

performance varies considerably. This is particularly a concern when the

performance of a tool is studied over a long period of time. For example,

a tool may be beneficial at the beginning of a project but as the project

148

Section 6.3. Measuring The Performance Of a Tool in Propagating Changes

ages and its design decays the tool may not be as helpful in propagating

changes.

We use the standard deviation (σ) of the tool’s performance over a

large number of change sets to assess the stability of the tool’s perfor-

mance.

6.3.4 Relative Performance of a Tool Over Time

When studying the performance of a tool, practitioners are more inter-

ested in the relative performance of the tool. In other words, they investi-

gate whether they should adopt tool A, or tool B, or whether they should

stick with their current tools. In the previous subsection, we proposed

the use of the average and the standard deviation to measure the perfor-

mance of a single tool. We now focus on metrics to subjectively compare

the performance of multiple tools over time.

Simply comparing the average tool performance for two tools is not

sufficient. Instead we should ensure that the difference in average is sta-

tistically significant. We therefore need to perform a statistical test of

significance. We use a statistical paired T -test and formulate the follow-

ing test hypotheses:

H0 : µ(PerfA − PerfB) = 0

HA : µ(PerfA − PerfB) 6= 0,

where µ(PerfA−PerfB) is the population mean of the difference between

the performance of each tool for the same change sets. When the tools

have been used to assist in propagating changes for a large number of

change sets, we can use a T -test. Alternatively, a non-parameterized test

such as a U -test can be used when we have a smaller number of change

sets [MW47].

If the null hypothesis H0 holds then the difference in average is not

significant. If H0 is rejected with a high probability then we can be con-

149

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

fident about the performance improvements a tool is likely to offer devel-

opers performing changes to the source code and we could recommend the

adoption of the tool by developers.

6.3.5 Relative Stability/Volatility of the Performance of a

Tool

Whereas standard deviation is used to measure the stability of the per-

formance of a tool, it has its limitations. For example if the development

process itself is not stable with the team varying their focus or if the qual-

ity of the design of the software system is varying over time, then the

standard deviation measure is likely to show high volatility. This volatil-

ity may be attributed to the development process itself instead of being

solely due to the tool’s performance. Therefore, we must compare the sta-

bility of a tool against other tools as well. A tool with high performance

may be too volatile and may hinder its adoption by developers who seek a

tool which they can depend on and trust for its consistency.

In this section, we discussed a number of performance metrics. We

first focused on metrics that measure the performance of a tool in assist-

ing a developer propagating a single change set throughout a software

system. We then discussed the issues surrounding applying such perfor-

mance metrics to measure the performance of a tool for a large number

of changes over time. We highlighted the need to study the performance

of an adopted tool and the stability of its performance as well. We also

discussed the risks associated with the volatile performance of tools and

asserted the need for tools with stable performance so developers would

trust their suggestions.

Traditionally, researchers would need to conduct long term studies to

perform such performance analysis for each studied tool. Using our def-

initions of recall and precision, they could measure the performance of

tools by monitoring the change process and making developers use the

tool to suggest entities to change. This is a time consuming process and

150

Section 6.4. The Development Replay (DR) Approach

would require developers to adopt the tools in their development process.

Also it would prevent the researchers from experimenting with several

tools as they could only test one tool at a time. To overcome these lim-

itations, we use the Development Replay (DR) approach to measure the

effectiveness of several tools by replaying back the development history

of a software system. The following section details the DR approach.

6.4 The Development Replay (DR) Approach

In this section, we present a software infrastructure and framework which

permits researchers to write a description of a not-yet-existing or not-yet-

adopted software development tool that would assist developers in prop-

agating changes. The description is written in a programming language

(Perl) and has access to a number of information sources that have tra-

ditionally been used to build tools that assist in change propagation such

as the sources discussed in section 6.2.1. Using the tool’s description, the

framework uses actual change sets that have previously occurred dur-

ing the development of a software system to measure the effectiveness of

a tool in assisting developers performing the change propagations. The

effectiveness is measured using the precision and recall metrics defined

in the previous section. We end this section with a critical analysis of

the limitations and applicability of the results derived using the DR ap-

proach.

The usage of the studied development tool is simulated to assist a

developer perform a change set. The performance of the tool is measured

for each change set in the history of a project and the overall effectiveness

of the tool is reported. The reported results can be used to subjectively

compare several software development tools.

To ensure the accuracy of the replay process, the state of the software

project is tracked throughout the lifetime of a project. Hence when a

particular change occurs to the software system, we can determine the

state of the project at that exact moment in its history.

151

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies✬

✫

✩

✪

Tool

Description

Development Replay

Engine
API

Timed Change Sets (CS)

C-REX

Tool

Performance

Report

Timed Project State (PS):

 Dependency Graph

 Co-Change Graph

 Work Graph

 Team Graph

CVS
Evolutionary Change

Data

uses

provides

access to
Evaluates CS against

Tool Description

produces produces

simulates Tool usage

Incrementally builds

Figure 6.3: The Development Replay Infrastructure

The DR framework provides an API to access timed information con-

cerning the entities, developers, change history, and naming information

of the project. The information is timed in the sense that the API is given

the exact time of the change that is being investigated and is able to report

details about the project at that exact moment in time instead of report-

ing details for example about the most recent dependency structure of the

software system. The simulated tool description can use the DR API to

determine the project state information at any moment in time such as:

1. The dependencies among the source code entities in the software

system such as function call, data usage, and type definition.

2. The co-change history between source code entities such as the fact

that a change to function writeToFile is always associated with a

152

Section 6.4. The Development Replay (DR) Approach

change to function readFromFile.

3. The name of the developers who modified each code entities.

4. The developers who worked on the same entities as a particular de-

veloper.

This information contains details up to the current replayed change.

An overview of the DR infrastructure is shown in Figure 6.4. The DR

permits tool adopters to encode the results produced by a not-yet-existing

or a studied tool when told that a specific entity has changed. The tool

description can use a rich API to gain access to a variety of information

about the current state of the software project during the replay process.

The timed project state and the timed change sets data are derived from

source control systems using a specialized evolutionary extractor, called

C-REX [HH04b] (see Chapter 3).

For each file in the software system, the source control system tracks

its creation, and its initial content. In addition, it maintains a record of

each change done to a file. For each change, a modification record stores

the date of the change, the name of the developer who performed it, the

specific lines that were changed (added or deleted), a detailed explanation

message entered by the developer giving the reason for the change, and

other files that were changed with it. To build a project state, the level at

which the modification record stores change information (at the file level)

is too high. C-REX preprocess and transforms the content of the source

control system into an optimized and more appropriate representation.

Instead of changes being recorded at the file level we record them at the

source code entity level (function, variable, or data type definition). Then

we can track details such as:

• Addition, removal, or modification of a source code entity. For exam-

ple, adding or removing a function.

• Changes to dependencies between the modified entities and other

source code entities. For example, we can determine that a function

153

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

no longer uses a specific variable or that a function now calls another

function.

The C-REX extractor attaches additional information to each change

set about the developer performing the change and the purpose of the

change as well.✬

✫

✩

✪

Change

Set
(CS)

Project
State

(PS)

CS
1

CS
2

CS
n

..CS
t

CS
3

Integrate effects

of CS to PS

PS
CS1

PS
CS2

PS
CS3

PS
CSt

PS
CSn

time

time

Figure 6.4: Maintaining the Project State Incrementally

Using the information produced by C-REX, the Development Replay

engine (shown in Figure 6.3) can incrementally build a timed project

state. Figure 6.4 gives an overview of how the DR engine reads the time

encoded change sets, simulates the usage of a software development tool

to perform the associated changes, then integrates the results back into

project state. The project state contains all relevant information up to but

not included the currently examined change set.

To measure the performance of a particular tool we simulate its usage

to perform changes that are represented in the timed change sets recov-

ered from the source control system. We examine sequentially through

time all modification records that are not General Maintenance (GM)

record and where no entities were added. For each modification record,

the tool had to predict the change propagation process outlined in sec-

tion 6.3. Then the performance of the tool is measured.

We note that we did not study all the change sets accessible through

the DR infrastructure. Instead using a lexical technique, similar to [MV00],

the DR infrastructure examines the content of the detailed message at-

tached to each modification record and marks all General Maintenance

154

Section 6.4. The Development Replay (DR) Approach

(GM) modifications which are mainly bookkeeping changes. These mod-

ifications do not reflect the implementation of a particular feature. For

example, modifications to update the copyright notice at the top of each

source file are ignored. Modifications that are re-indentation of the source

code after being processed by a code beautifier pretty-printer are ignored

as well. We do not consider these GM modifications as they are rather

general and we do not expect any tool to predict the propagation of changes

in these modifications.

We classified the remaining modification records into two types:

• Records where entities are added, such as the addition of a function,

and

• Records where no new entities are added.

We chose to study the change propagation process using only modifi-

cation records where no entities were added. This choice enables us to

compare different change propagation tools fairly, as it is not feasible for

any tool to predict propagation to or from newly created entities. We note

that we still use the records where entities are added to build the histori-

cal co-change information but we do not measure the performance of any

tool using these records. Furthermore, to avoid penalizing tools which

make use of historical information as they work on building a historical

record of changes to give useful suggestions, we do not measure the per-

formance of the tool for the first 250 modification records for a software

system.

Table 6.1 gives a breakdown of the different types of modification

records in the software systems we studied. The studied modification

records represent on average 60% of all the available records in the his-

tory of a project, after removing GM modifications and modifications where

entities are added. We believe that the studied modification records are a

representative sample of changes done to large software projects through-

out their lifetime.

155

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

Application All GM New Entities Studied

Name Records Records Records Records

NetBSD 25,839 6,204 4,086 15,567

(100%) (24%) (16%) (60%)

FreeBSD 36,635 7,703 8070 20,862

(100%) (21%) (22%) (57%)

OpenBSD 13,653 2,741 2,743 8,169

(100%) (20%) (20%) (60%)

Postgres 6,199 1,461 1,514 3,224

(100%) (23%) (24%) (52%)

GCC 7,697 901 1114 5682

(100%) (12%) (14%) (74%)

Table 6.1: Classification of the Modification Records for the Studied Sys-

tems

6.4.1 Threats to Validity and Limitations of Results

Derived Through the DR Approach

The DR approach has a number of limitations. We now discuss these lim-

itations. We also discuss the purpose of the DR approach and focus on the

applicability of the results derived through it. The DR approach permits

the empirical evaluation of some of the benefits of adopting particular

software maintenance tools or strategies. All empirical research stud-

ies should be evaluated to determine whether they were able to measure

what they were designed to assess. In particular, we need to determine if

our findings that a particular tool is more effective than another tool are

valid and applicable or are they due to flaws in our experimental design.

Four types of tests are used [Yin94]: construct validity, internal validity,

external validity, and reliability.

6.4.1.1 Construct Validity

Construct validity is concerned to the meaningfulness of the measure-

ments – Do the measurements quantify what we want them to? The main

156

Section 6.4. The Development Replay (DR) Approach

conjecture of our work is that developers desire the tool that permits them

to perform changes quickly and accurately. We focus on the accuracy of

the tool instead of the time required to perform the change itself. The

time required to perform a change is likely to be highly dependent on

the developer performing the change. Moreover, the time needed for each

change is difficult to track since most practitioners rarely keep detailed

records of their time.

The DR approach assumes that the accuracy of a tool in propagating

changes is a sufficient reason to encourage the adoption of a particular

tool. The approach does not tackle the issues of the tool’s user interface

and the developers interaction with the tool as well. For example a tool

with a complex user interface may be abandoned by its users. Also some

developers may be more proficient users of the tool than others. The ap-

proach also assumes that the training costs for adopting a tool is negligi-

ble and should not be a major concern. That last point may not be a major

concern given we are interested in the long term benefits of adopting a

particular tool. Nevertheless, it is a limitation of the approach.

6.4.1.2 Internal Validity

Internal validity deals with the concern that there may be other plau-

sible rival hypotheses to explain our findings – Can we show that there

is a cause and effect relation between the usage of a specific tool and

the developers ability to propagate changes accurately throughout a soft-

ware system, or are there other possible explanations?. The DR approach

measures and compares the performance of software development tools

by simulating their usage using actual change sets which are recovered

from source control repositories. By keeping all other project variables

constant and simulating the usage of a tool through play back we have a

clear cause and effect relation between the simulated tool usage and the

effectiveness of the tool. That said the introduction of a tool as part of

the development process may affect the type of changes that developers

are likely to perform. For example, a tool that reduces the time needed

157

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

to perform rather complex changes may encourage developers to perform

more complex changes instead of opting for workarounds for these com-

plex changes [BMSK02]. Moreover the performance of the tool may be

dependant on other factors that are not modeled by the DR approach.

Software development is a complex process with a number of factors and

facets interacting together and affecting its outcome. The DR approach

uses source control systems to recover and recreate the historical state

of a software project, unfortunately a large number of issues and fac-

tors surrounding a software system are not present in the source con-

trol data (such as personal communications and knowledge that resides

in the heads of the software developers). The DR approach can integrate

additional knowledge present in other software development repositories

such as mailing list repositories to assist in improving the accuracy of

the development replay process. Unfortunately, automated integration of

mailing list information is not an easy task as the data is not as struc-

tured as source code and change data which are stored in source control

systems.

In our case study (presented later in this chapter), we make use of

change sets recovered from source control systems of large open source

projects to measure the performance of specific tools. We make the as-

sumption that each change set contains only change that are related,

i.e., that involve a change propagation. In principle, it is possible that

a developer may check in several unrelated entities as part of the same

modification record. For our purposes, we assume that this occurs rarely.

We believe that this is a reasonable assumption based on the develop-

ment process employed by the studied open source projects and discus-

sions with open source developers [BP03, Mit00, Wei03]. In most open

source projects, access to the source code repository is limited. Only a

few selected developers have permission to submit code changes to the

repository. Changes are analyzed and discussed over newsgroups, email,

and mail lists before they are submitted [CM03, MFH00, YK03]. We be-

lieve that this review process reduces the possibility of unrelated changes

being submitted together in a modification record. Moreover, the review

158

Section 6.4. The Development Replay (DR) Approach

process helps ensure that changes have been propagated accurately in

most cases. Thus most change sets would contain a complete propagation

of the changes to all appropriate entities in the software system. Recent

work by [CSY+04] cautioned of the reliability of open source change logs.

Change logs are summarizations of the purpose of changes that occurred

to a software system as it evolves and are usually stored in a single file

called the ChangeLog file. They are used to provide a high level overview

of changes. The quality of these change logs is not a concern for the DR

approach. The DR approach builds the change sets using the source con-

trol database instead of relying on change logs which omit a large number

of details about the project’s evolution.

6.4.1.3 External Validity

External validity tackles the issue of the generalization of the results of

our study – Can we generalize our results to other software systems and

projects? We believe that the external validity of our results is reasonably

high.

The DR approach uses detailed historical records stored in source con-

trol systems. This ensures that the studied code development process is a

realistic process which involves experienced developers working on large

software systems over long periods of time. Alternatively, we could have

performed controlled experiments which would run for limited time. We

would not be able to confidently simulate realistic change patterns. In

that case we would not have individuals with such experience and knowl-

edge performing simulated modifications to the source code.

Concerning the results in our case study, we used several types of

software systems. Nevertheless, they are all open source infrastructure

software systems with no graphical user interface. Other systems such as

those with graphical interface and which may implement business logic

such as banking and online purchasing systems may produce different re-

sults. Also commercial software systems may exhibit different character-

istics than open source systems. Fortunately, the DR approach permits us

159

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

to easily assess the benefits of adopting a tool to specific project. Instead

of depending on prior results, the DR approach can be used to quickly

measure the effectiveness of a variety of tools to the particular project at

hand as long as the project uses a source control system to store changes

to its code as it evolves.

6.4.1.4 Reliability

Reliability refers to the degree to which someone analyzing the data would

reach the same conclusions/results. We believe that the reliability of our

study is very high. The data used in our study is derived from source

control systems. Such systems are used by most large software systems

which makes it possible for others to easily run the same experiments on

other data sets to reproduce our findings and tailor them to their specific

project as well.

6.4.1.5 Summary of Limitations

Although the DR approach has its limitations, we believe it can greatly

assist in assessing the effectiveness of software development tools. The

DR approach gives us “back-of-the-envelope” calculations. We do not advo-

cate fully depending on the results reported by the DR approach, instead

the results should be used to evaluate the worthiness of performing more

costly analysis such as pilot studies over extended periods of time to gain

more concrete and validated results.

The DR approach gives us a gut feeling about the possible benefits and

shortcoming of tools. The approach also gives us the flexibility of experi-

menting with a large number of alternative tool designs and ideas with no

associated costs or risks as we are using historical data that has already

been collected for other purposes. Moreover, the DR approach derives re-

sults that are project specific as it performs its specialized analysis using

data from the project for which the tool adoption is being examined in-

stead of relying on results reported for other software projects.

160

Section 6.5. Case Study

6.5 Case Study

In this section, we show how the DR approach can be used to determine

the benefits of adopting different change propagation tools.

In [HH04c], we presented a study of the change propagation process in

large software systems. The study focused on studying which of the infor-

mation sources (presented in Section 6.2.1) are good indicators of change

propagation. The study used five open software systems. The studied

systems have been developed for the last 10 years and in total have over

40 years of historical modification records stored in their source control

system. Table 8.1 lists the type of the software system, the date of initial

modification processed in the source control data, and the programming

language used. We chose to study systems with a variety of development

processes, features, project goals, personnel, and domain of the studied

software systems to help ensure the generality of our results and their

applicability to different software systems.

Application Application Start Files Prog.

Name Type Date Lang.

NetBSD OS March 1993 15,986 C

FreeBSD OS June 1993 5,914 C

OpenBSD OS Oct 1995 7,509 C

Postgres DBMS July 1996 1,657 C

GCC C/C++ Compiler May 1991 1,550 C

Table 6.2: Characteristics of the Studied Systems

The main results of the study are:

• Developer information in the studied software systems is not a good

indicator of change propagation. The concept of code ownership is

not strictly adhered to in these systems [BH99].

• Code structure dependency relations, such as Call, Use, and Define

(CUD), are not a good indicators of change propagation in compar-

161

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

ison to historical co-change or code layout (same file) information.

On average only 42% of entities to which a change should propagate

are due to CUD relations.

• Code layout (same file) information is a better indicator of change

propagation in comparison to the historical co-change information.

Unfortunately, building a tool which uses only the code layout in-

formation is not sufficient as it will only guide developers to exam-

ine entities in the current file. Thus entities in other files to which

changes have to be propagated will never be suggested using such a

tool.

• Historical co-change information is the best practical indicator of

change propagation. Although its performance is not as good as the

code layout information, it is still capable of assisting developers in

propagating changes across layout boundaries (i.e. changes to enti-

ties that are not in the same file).

These results have led us to investigate the benefits of adopting a tool

which uses historical co-change information to assist developers perform-

ing changes to software systems.

At first, we sought to improve the precision results of historical co-

change information. We investigated several techniques to reduce the set

of suggested entities to ensure that only the relevant entities to a change

are suggested. Some of the possible pruning techniques are:

• Frequency techniques return the most frequently related entities

up to some threshold. For example, the distribution of change fre-

quency seems to follow a zipf distribution which indicates that a

limited number of entities tend to change frequently and a large

number of entities change very infrequently [Zip49].

• Recency techniques return entities that were related in the recent

past. These techniques support the intuition that development tends

162

Section 6.5. Case Study

to focus on related functionality during particular time periods (pro-

cess information sources).

• Hybrid techniques combine Frequency and Recency techniques us-

ing counting or some type of exponential decay function as done by

[GKMS00, HH] to predict faults in software systems and assist man-

agers in allocating testing resources.

• Random techniques randomly pick a set of entities to return up to

some threshold such as a count. This technique might be used when

there is no frequency or recency data to prune the results.

We investigated a family of hypothetical tools – FREQ(A) and

RECN(M). Both tool families prune entities from the historical co-change

information using recency and frequency techniques:

• Given a changed entity E, the FREQ(A) tools would suggest all en-

tities that have changed with E in the past at least twice together

and more that A% of the time.

• Given a changed entity E, the RECN(M) tools would suggest all en-

tities that have changed with E in the past M months.

We used the DR approach to measure the performance of such tools.

We experimented with values A = {40, 60, 80} for the FREQ tools and M =

{2, 4, 6} for the RECN tools. The performance results for the five studied

systems are summarized in Table 6.3 for FREQ tools and Table 6.4 for

RECN tools. The F -measures shown in Table 6.3 and Table 6.4 show that

FREQ(A) tools perform better than the RECN(M) tools.

6.5.1 Enhancing the Performance of FREQ(A) tools

We sought to improve the performance of the FREQ(A) tools by increas-

ing the number of suggested entities that are relevant to the change while

maintaining a high precision. We adopted an approach which relaxed the

163

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

Application FREQ(60) FREQ(70) FREQ(80)

Recall Precision Recall Precision Recall Precision

NetBSD 0.43 0.49 0.35 0.60 0.30 0.66

FreeBSD 0.40 0.49 0.32 0.60 0.27 0.66

OpenBSD 0.38 0.54 0.31 0.63 0.27 0.68

Postgres 0.43 0.45 0.34 0.56 0.29 0.63

GCC 0.41 0.51 0.32 0.61 0.27 0.68

Average 0.41 0.50 0.33 0.60 0.28 0.66

F -measure .45 .43 .39

Table 6.3: Performance of FREQ(A) tools for the Five Studied Software

Systems

Application RECN(2) RECN(4) RECN(6)

Recall Precision Recall Precision Recall Precision

NetBSD 0.42 0.41 0.52 0.30 0.58 0.24

FreeBSD 0.43 0.39 0.53 0.27 0.61 0.21

OpenBSD 0.39 0.45 0.48 0.35 0.55 0.28

Postgres 0.42 0.33 0.54 0.22 0.62 0.17

GCC 0.31 0.49 0.42 0.37 0.49 0.30

Average 0.39 0.41 0.50 0.30 0.57 0.24

F -measure .40 .37 .34

Table 6.4: Performance of RECN(M) tools for the Five Studied Software

Systems

FREQ(A) rule by incorporating other information source to suggest addi-

tional entities. In particular we defined two extensions to the FREQ(A)

tools:

• FREQFIL(A, B): For a changed entity E, FREQFIL(A, B) returns

the same entities as FREQ(A). In addition, it returns all entities

defined in the same file as E that have changed with E in the past

at least twice together and more that (A-B)% of the time.

• FREQCUD(A, B): For a changed entity E, FREQCUD(A, B) returns

the same entities as FREQ(A). In addition, it returns all entities

164

Section 6.5. Case Study

related to E through a CUD relation that have changed with E in

the past at least twice together and more that (A-B)% of the time.

We re-ran our experiments using the DR infrastructure on the five

studied systems using values for A = {60, 70, 80}, and B = {10, 20, 30}.

We produced nine results for each extension – eighteen results in total.

The best performing (highest F -measure) FREQFIL extension was for A

= 80 and B = 10, with precision = .49, recall = .51 and F -measure = .50. The

results indicate that the FREQFIL(80,10) tool can on average suggest to

a developer half of all entities to which a change must be propagated and

that half of its suggestions are correct. Whereas the best performing FRE-

QCUD extension was for A = 70 and B = 10, with precision = .42, recall

= .46, and F -measure = .44. In addition, we find that a T -test on paired

F -measure was significant at less than 2.2e−16 for all systems. Therefore,

we are over 99% confident that the improvement in performance of FRE-

QFIL over FREQCUD tool is statistically significant for all the studied

systems1.

We then analyzed the standard deviation of the F -measure to ensure

that the performance results are stable over a long period of time. We

found that for the F -measure variance for FREQFIL is 0.171, and for the

FREQCUD it is 0.169. Therefore the performance of the FREQCUD tool

may be more stable nevertheless the difference in standard deviation is

not substantial. The good performance of the FREQFIL tool encourage us

to adopt such a tool.

In summary, the DR approach permitted us to investigate the effec-

tiveness of a large number (over 20) of not yet developed software tools

with no cost associated with conducting long term case studies or even

building such tools. The results show that a tool that uses historical co-

change information combined with code layout (same file) information is

1The T -test is performed on the square root of the F -measure for each change

set to ensure that the data has a normal distribution, a requirement for the T -

test. Due to the large number of change sets used in our analysis, the normality

of the data is not a major concern as the T -test is a robust test. Nevertheless we

ensure the normality to guarantee the validity of our results.

165

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

likely to outperform tools that are based solely on either historical co-

change information, code layout, or code structure information. Using

these findings, we are more confident in building such a tool and conduct-

ing more costly long term case studies to validate the effectiveness of such

a tool.

In our current analysis, we associated an equal importance to pre-

cision and recall. Examining Table 6.3 for FREQ tools and Table 6.4

for RECN tools, we note that FREQ tools always have better precision

than RECN tools and that RECN tools usually have better recall than

FREQ tools. If we were to consider recall twice as important as precision

(β = 2.0), then the F -measures for FREQ tools would be (0.43, 0.36, and

0.32), whereas the F -measures for RECN tools would be (0.39, 0.44, and

0.45). In this case, the performance of the RECN tools is better. We would

then explore improving the RECN tools instead of the FREQ tools.

6.6 Related Work

The work presented in this chapter focuses on two main research themes:

change propagation and the use of historical data to assist in software

development tasks. In this section, we discuss our work in light of prior

results in both areas of research.

6.6.1 Change Propagation

We have presented a technique that measures the effectiveness of soft-

ware development tools in assisting developers in propagating changes to

other relevant entities in the source code.

Arnold and Bohner give an overview of several formal models of change

propagation [AB93, BA96]. The models propose several tools and tech-

niques that are based on code dependencies and algorithms such as slic-

ing and transitive closure to assist in code propagation. Rajlich proposes

166

Section 6.6. Related Work

to model the change process as a sequence of snapshots, where each snap-

shot represents one particular moment in the process, with some software

dependencies being consistent and others being inconsistent [Raj97]. The

model uses graph rewriting techniques to express its formalism. Our

change propagation model (presented in Section 6.2) builds on top of the

intuition and ideas proposed in these models. It simplifies the change

propagation process and uses it as a benchmark to measure the effective-

ness of software development tools.

Assessing the effectiveness of an approach or a tool in assisting a de-

veloper propagate changes can be done through a number of metrics. In

this chapter we used precision and recall at the change set level. We

also introduced the idea of using a utility function which has been tra-

ditionally used in the information retrieval community to measure the

effectiveness of search techniques. At first glance our definition of preci-

sion and recall may seem the most intuitive one, nevertheless there are

a number of other several possible definitions of precision and recall used

by others. In particular, given a software system with N change sets and

each change set having Nj changed entities, precision and recall could be

defined relative to the changes performed to the software system or for

each entity in the software system. For example, a technique may be able

to suggest 50% of all entities that should change given any changed en-

tity, and 50% of its suggestions are correct. Or a technique performance

may be measured for each entity, for example if entity A is changed, then

the technique can predict correctly 50% of all entities that should change

with A and 50% of its suggestions may be correct. But for another entity

B it can only predict 10% of the entities that should change and 100%

of its suggestions are correct. Both metrics measure the performance of

a technique/tool, the first metric gives a measure that is based on the

change (change based metric), whereas the second metric gives a metric

that is based on each entity (class/function) in a software system (entity

based metric). We chose to use change based metrics that focus on the

overall performance for all change sets. For example, a tool may perform

well for a particular change to a specific class but it may perform badly

167

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

in assisting in propagation changes for other classes which occur in the

same change set. Therefore, if a change set contains one changed en-

tity for which a tool has good performance and many entities for a which

a tool has bad performance then the overall performance of the tool for

that change would be average. An entity based metric may report excel-

lent results for a few entities. Such measurements may give an incorrect

impression of the quality of a tool given that these few entities with good

performance may rarely change instead most of the changes could be done

to entities with bad performance.

For change based metrics, we can define precision and recall at differ-

ent level of details:

• At the query level: For each changed entity (eji) in a change set (Oj),

the developer queries the tool for suggestions (Pji), the (Precisionji)

and (Recallji) for the suggestions for each entity (eji) is measured

against the changed entities in the change set as follows:

Recallji =
Pji ∩ Oj

Oj

Precisionji =
Pji ∩ Oj

Pji

To measure the precision and recall for a number of change sets, the

average of the precision and recall is taken for all the queries, i.e.:

Average Recall =
1

M
∗

N,Nj∑

j=1,i=1

(
Recallji

)

Average Precision =
1

M
∗

N,Nj∑

j=1,i=1

(
Precisionji

)

One of the limitation of this metric is that for many changed entities

a tool may not be able to give a suggestion (Pji = {}) implying a

precision of 1 and recall of 0, therefore we may inflate the precision

of a tool.

168

Section 6.6. Related Work

• At the change set level: This is the metric adopted by us and it

focuses on measuring precision and recall at the change set level.

We choose this metric as it gives us a good measure of the perceived

benefit of using a tool by a developer to implement a new feature,

enhance a specific feature, or fix a particular bug. In addition, we

can use the results of such a metric to monitor the evolution of a

software system, for example we can detect the decay of the design of

a software system when the recall of a tool that is based on the CUD

relations drops. This is an indication that changes to a software

system are being scattered throughout the code.

• For a period: This metric combines all the query result sets and

all the changed sets for a period of time and measures their overall

precision and recall as follows:

Overall Recall =

∑N
j=1(Pji ∩ Oj)
∑N

j=1 Oj

Overall Precision =

∑N
j=1(Pji ∩ Oj)
∑N

j=1 Pji

This metric does not have to worry about queries where a tool re-

turns no suggestions (i.e. Pji = {}), as it combines the results for all

the queries over a period of time. This metric is similar to the query

level metric but it aggregates the results using a different technique

instead of using an averaging technique.

For the DR approach any of the aforementioned metrics could be used

since the main purpose of the DR approach is to compare a number of

tools using a common effectiveness metric.

The work in the area of change propagation closest to our work is by

Briand et al. [Lio99]. Briand et al. study the likelihood of two classes being

part of the same change due to an aggregate value that is derived from

object oriented coupling measures. The results of the analysis are done at

169

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

the class level whereas we perform our analysis at the entity level (such as

function), in other words the suggestions by their approach are too coarse.

Second, they use an entity based metric for each class in the software

system. Briand et al. performed their study on a single academic object

oriented small software system with at most 3 developers working on the

system at any time and with 6 developers working on it throughout its

lifetime. Our analysis was done on a number of large open source software

system with hundreds of developers working on them. Furthermore, the

dependency structure of the software system studied by Briand remained

constant. This fact has permitted them to calculate their cohesion metrics

at the beginning of the study period and use this data in their analysis

instead of re-calculating the data throughout the lifetime of a project. The

DR approach permits the analysis to be performed on an up-to-date and

accurate view of the software system instead of depending on stale data

and assuming it does not vary considerably. Such an assumption does not

hold for most large projects with an active developer and user base.

6.6.2 The use of historical data

Several researchers have proposed the use of historical data related to a

software system to assist developers gain a better understanding of their

software system and its evolution. Cubranic and Murphy presented a

tool that uses bug reports, news articles, and mailing list postings to sug-

gest pertinent software development artifacts [CM03]. These information

sources (i.e. bug reports and mailing list postings) could be used as infor-

mation sources by developers and tools to assist in propagating changes.

Once these sources of information are integrated into the DR framework,

tool adopters can empirically study the effectiveness of this data in assist-

ing developers. Other possible sources of information are design rationale

graphs such as presented in [BMS03, RM02]. Yet these later approaches

require a substantial amount of human intervention to build the data re-

quired to assist developers in conducting changes.

170

Section 6.6. Related Work

Chen et al. have shown that comments associated with source code

modifications provide rich indexing for source code when developers need

to locate source code lines associated with a particular feature [CCW+01].

We extend their approach and map changes at the source line level to

changes in the source code entities, such as functions and data structures.

Furthermore, we map changes to the dependencies between the source

code entities. We then provide time tagged access to this data through

the DR framework. This timed data can be used by others to study the

benefits of building tools that make use of such data.

Eick et al. presented visualization techniques to explore change data

[ESEES92, SGEMGK02]. Gall et al. propose the use of visualization

techniques to show the historical logical coupling between entities in the

source code [GHJ98].

Three works are most similar to our motivation to evaluate the effec-

tiveness of software development tools. These are work by Zimmermann

et al. [ZWDZ04], work by Shirabad [Shi03] and work by Ying [Yin03].

These works along with our work focus on studying the effectiveness of

tools and heuristics in supporting developers during the change propa-

gation process. Work by Zimmermann and Ying uses prior co-changes

to suggest other items to change; the suggestions are evaluated against

actual co-changes. They do not study the relative performance against

other tools (heuristics). In particular, they do not examine other sources

of information such as process or entity information. Their results show

that historical information is valuable in assisting developer propagate

changes throughout the source code for many large open source software

systems. Work by Shirabad uses code structure and layout information

as well as textual tokens derived from problem reports to suggest other

items to change; the suggestions are evaluated against actual co-changes.

Shirabad’s results show that textual tokens derived from problem re-

ports are more effective in suggesting entities to propagate changes to,

than simply using code structure and layout information. Shirabad’s re-

sults agree with our findings that show that historical co-change infor-

171

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

mation are more effective than simple static dependencies in propagating

changes.

Works by Shirabad, Zimmermann and Ying perform their analysis us-

ing a batch process where the historical information stored in the source

control system is divided into a training and testing periods. The training

data set is used to train the system, then the effectiveness of the tool is

measured using the testing data. Whereas work by us uses an adaptive

approach where each suggestion done by a tool uses information from all

prior changes up to the current change. We believe a batch process has

its limitations as the tool’s performance will not react in a timely fashion

to changes and shifts in interest during the development of a software

system. Zimmermann et al. recent work uses an adaptive process and is

similar to our approach in that context.

Work by Zimmermann uses a change based period metric, whereas

work by Ying uses a change based query metric. Work by Shirabad defines

a relevance metric which considers a suggestion to be relevant if both

entities changed together in any change set in the testing period. Fur-

thermore, work by Zimmermann proposes a metric similar to the likeli-

hood metric proposed by Briand. Work by Ying defines an interestingness

metric that measures the value of a tool’s suggestion against the current

dependency structure of a software system but the suggested evaluation

approach is rather manual. For example a change is not considered inter-

esting if a tool proposes that if a .h file changes then its corresponding .c

file should change as well. The DR approach permits the automation of

such analysis and is able to statistically show the benefit of a tool against

other types of tools.

Ying and Shirabad focus their prediction at the file level whereas Zim-

mermann et al. and our work focus our prediction at the entity level (and

can easily lift such predictions to the file level).

All three approaches use a variety of data mining techniques to per-

form their analysis such as association rule mining for Zimmermann et al.,

machine learning algorithms for Shirabad, and market basket analysis

172

Section 6.7. Conclusion

for Ying. All data needed for the three approaches are easily available

through the DR software infrastructure. Table 6.5 summarizes these

three approaches along with our work and Briand’s work.

6.7 Conclusion

Practitioners are always in search of silver bullets – software develop-

ment tools or strategies – that could assist them in maintaining large

software systems. The effectiveness of such silver bullets are unfortu-

nately rarely assessed in realistic settings. Ideally, the effectiveness of

these tools should be based on (1) using the tools by practitioners (2) over

an extended period of time (3) to perform real changes (4) on large soft-

ware systems. This is a costly approach and is usually not possible due

to many process and cost reasons. We presented an approach to auto-

matically measure some of the claims of software maintenance tools and

strategies.

The Development Replay (DR) approach analyzes source control repos-

itories to derive a detailed project state and change sets. The project state

tracks the evolution of a variety of project entities such as the interactions

between source code entities (e.g. functions and variables), or the inter-

action between developers and source code entities (e.g. File Y is always

changed by developer A). The change sets represent changes to the source

code to implement or enhance features, or to fix bugs.

Using this data, researchers can confidently gauge some of their claims

about proposed maintenance strategies and tools as early as possible.

The approach as well permits researchers to experiment with a variety of

ideas and rerun their experiments. The DR approach offers researchers

this flexibility while ensuring that the effectiveness of their alternate

tools are measured using actual changes performed by practitioners over

a long period of time working on large software systems.

We presented an example of using the DR approach to investigate

tools assisting developers to propagate changes in the source code. Change

173

Chapter 6. Replaying Development History to Assess the Claimed Benefits of Code Maintenance
Tools and Strategies

propagation is a central aspect of software development. As developers

modify software entities such as functions or variables to introduce new

features or fix bugs, they must ensure that other entities in the software

system are updated to be consistent with these new changes. The DR

approach permitted us to easily investigate the performance of a large

number of tools to assist developers without performing costly long term

studies.

Nevertheless, the approach has its limitations. We acknowledge that

the approach is not sufficient to measure the full effectiveness of develop-

ment tools. Traditional case studies are still needed. The main value

of the approach is that it permits researchers to experiment ahead of

time with a variety of techniques to determine the most promising tool to

build and empirically study its effectiveness. This analysis is done ahead

of time instead of recognizing limitations or possible improvements of a

studied tool in the middle of a study.

Unless researchers gain a better understanding of the specific factors

which cause tools and methods to be more or less cost-effective, the cre-

ation of new tools or technology will essentially be a random act. The

Development Replay approach along with empirical studies support re-

searchers in arriving to well-founded decisions which are more likely to

be adopted by practitioners in the field.

We believe that the approach and results presented herein should en-

courage researchers and tool developers to search for different and more

sophisticated tools with better performance. These new heuristic and

ideas can be validated easily using the DR approach and data derived

from the development history of large software projects.

174

Section 6.7. Conclusion

W
o
rk

b
y

L
e
v
e
l

o
f

In
fo

rm
a

ti
o
n

P
e
rf

o
rm

a
n

ce
M

e
tr

ic
A

n
a

ly
si

s
S

y
st

e
m

A
n

a
ly

si
s

S
o
u

rc
e
s

M
e
tr

ic
s

T
y
p

e
T

e
ch

n
iq

u
e

T
y
p

e
s

B
ri

a
n

d
e
t
a
l.

C
la

ss
E

n
ti

ty
(C

U
D

)
L

ik
e
li

h
o
o
d

E
n

ti
ty

B
a

tc
h

C
+

+

(A
ca

d
e
m

ic
)

S
h

ir
a

b
a

d
F

il
e

E
n

ti
ty

(L
a
y
o
u

t,
R

e
le

v
a

n
ce

E
n

ti
ty

B
a

tc
h

P
a

sc
a

l-
li

k
e

N
a

m
in

g
)

(C
o
m

m
e
rc

ia
l)

Y
in

g
F

il
e

E
n

ti
ty

(C
o
-C

h
a

n
g
e
)

P
re

ci
si

o
n

,
R

e
ca

ll
,

C
h

a
n

g
e

b
a

se
d

B
a

tc
h

C
+

+
,
J
a
v
a

In
te

re
st

in
g
n

e
ss

Q
u

e
ry

(O
p

e
n

S
o
u

rc
e
)

Z
im

m
e
rm

a
n

n
e
t
a
l.

E
n

ti
ty

,
F

il
e

E
n

ti
ty

(C
o
-C

h
a

n
g
e
)

P
re

ci
si

o
n

,
R

e
ca

ll
,

C
h

a
n

g
e

b
a

se
d

B
a

tc
h

,
C

,
C

+
+

,
J
a
v
a

L
ik

e
li

h
o
o
d

P
e
ri

o
d

A
d

a
p

ti
v
e

P
y
th

o
n

,
L

a
te

x

(O
p

e
n

S
o
u

rc
e
)

H
a

ss
a

n
a

n
d

H
o
lt

E
n

ti
ty

,
F

il
e

E
n

ti
ty

(a
ll

so
u

rc
e
s)

P
re

ci
si

o
n

,
R

e
ca

ll
,

S
td

.
C

h
a

n
g
e

b
a

se
d

A
d

a
p

ti
v
e

C

D
e
v
e
lo

p
e
r,

P
ro

ce
ss

D
e
v
ia

ti
o
n

,
F

-m
e
a

su
re

C
h

a
n

g
e

S
e
t

(O
p

e
n

S
o
u

rc
e
)

T
a

b
le

6
.5

:
S

u
m

m
a

ry
o
f

W
o
rk

b
y

B
ri

a
n

d
,

S
h

ir
a

b
a

d
,

Y
in

g
,

a
n

d
Z

im
m

e
rm

a
n

n
e
t
a
l.

in
re

la
ti

o
n

to
o
u

r
w

o
rk

.

175

Part III

Using Software

Repositories to Support

Managers

177

Managers of large projects need to prevent the introduction of faults,

assure their quick discovery, and their immediate repair while ensuring

that the software can evolve gracefully to handle new requirements by

customers. Moreover, they endeavor with varying degrees of success to

wisely allocate their limited testing and development resources to the

most appropriate parts of the code. Unfortunately, in many cases such at-

tempts are based on ad-hoc techniques and rough approximations. Their

success depends on their intuition, experience and chance. Bug predic-

tion and resource allocation issues become non-trivial challenges which

managers must face and resolve successfully.

This part deals with both of these issues by presenting two pieces of

research work:

• The Top Ten List: We propose (The Top Ten List) which highlights

to managers the ten most susceptible subsystems to have a fault.

The list is updated dynamically as the development of a software

system progresses. Managers can use the Top Ten list to optimize

the usage of their limited resources to deliver quality products on

time and within budget by focusing testing resources to the subsys-

tems suggested by the list.

• The Development Process Chaos: We define the modifications

done to the source code as the Development Process Chaos. We pro-

pose a complexity metric that is based on the development process

followed by practitioners to produce the code instead of on the code

or the requirements. Through a case study using six large open

source software systems, we show that the number of prior faults is

a better predictor of future faults than the number of prior modifi-

cations. Also the case study indicates that fault predictors based on

our development process chaos models are better predictors of faults

in large software systems when compared against predictors based

on prior modifications or prior faults.

179

This part is likely to be of interest to managers of large software sys-

tems. This part shows that historical changes stored in source control

repositories could be used to predict bugs and assist managers in allocat-

ing resources. The historical records for several open source projects are

used to verify the benefits of our proposed research ideas.

180

CHAPTER 7
The Top Ten List: Dynamic

Fault Prediction

To remain competitive in the fast paced world of software development,

managers must optimize the usage of their limited resources to deliver

quality products on time and within budget. We present an approach

(The Top Ten List) which highlights to managers the ten most suscep-

tible subsystems to have a fault. The list is updated dynamically as

the development of the system progresses. Manager can focus testing

resources to the subsystems suggested by the list.

We present heuristics to create the Top Ten List and develop tech-

niques to measure the performance of these heuristics. To validate

our work, we apply our presented approach to six large open source

projects (three operating systems: NetBSD, FreeBSD, OpenBSD; a win-

dow manager: KDE; an office productivity suite: KOffice; and a database

management system: Postgres). Furthermore, we examine the benefits

of increasing the size of the Top Ten list and study its performance.

181

Chapter 7. The Top Ten List: Dynamic Fault Prediction

7.1 Introduction

MANAGERS of large projects need to ensure that the project is deliv-

ered within budget with minimal schedule slippage. They have

to prevent the introduction of faults, ensure their quick discovery and

immediate repair, and make sure the software can evolve gracefully to

handle new customer demands. Unfortunately, all of these demands need

to be done with restricted personnel resources within limited time. Re-

source allocation becomes a non-trivial challenge which managers must

face and resolve successfully.

Managers would like to optimize their resources usage. They would

like to allocate resources to areas that are in need of these resources and

reassign them as soon as interest and focus shifts. In this chapter, we

focus on the challenges surrounding fault detection and repair in large

software systems. We would like to give managers a Top Ten List of sub-

systems that are most susceptible to faults. We need the list to be up-

dated dynamically to reflect future risks based on the current status of

the project. By limiting the number of files in the list, we hope to give

managers an easy and clear way to allocate their limited resources. By

updating the list as the software system evolves and the risks associated

with components change, we hope to give mangers a dynamic tool which is

always able to give informed and up-to-date warnings. Finally, we would

like to build a tool that is not intrusive and requires as little details and

setup as possible to permit managers to get a high return on their invest-

ment.

Previous research in software faults has focused on two areas:

1. Count based techniques which focus on predicting the number of

faults in subsystems of a software system. Managers can use these

predictions to determine if the software is ready for release or it

has many lurking bugs. They can use the predictions to guide their

resource allocations as they wind up the project towards release.

182

Section 7.1. Introduction

These models are validated by dividing the data into equal size pe-

riods and predicting the faults in one period using data from all the

previous period. For example,the fault data from one release can be

used to predict faults in following releases. Examples of such work

are [GKMS00, OA96, Sch99].

2. Classification based techniques which focus on predicting which

subsystems in a software system are fault-prone. Fault-prone is de-

fined by the manager, for example a fault prone subsystem may be

any subsystem with more than two faults in a release. These pre-

dictions can be used to assist managers in focusing their resources

allocation in a release, by allocating more testing resources and at-

tention to fault-prone subsystems. Again these models are validated

by testing if the data from one release can be used to predict if a sub-

system is fault prone in following releases. An example of such work

is [MK92].

These approach focus on long term planning. They are designed for

long term prediction and are validated by using data from one software

release to predict values in following releases by building some types of

statistical models. In this chapter we focus on short term dynamic pre-

diction. We present an approach to validate short term predictions and

we show an analysis of this framework using several heuristics for fault

predictions. This focus on short term planning would permit managers

to monitor more closely the development and testing processes instead of

only depending on long term planning which tends to be harder to react

to varying competitive market pressures over the lifetime of a software

system.

We focus on predicting the subsystem that are most likely to have a

fault in them in the near future, in contrast to count based techniques

which focus on predicting an absolute count of faults in a system over

time, or classification based techniques which focus on predicting if a sub-

system is fault prone or not. For example, even though a subsystem may

not be fault prone and may only have a few number of predicted faults,

183

Chapter 7. The Top Ten List: Dynamic Fault Prediction

it may be the case that a fault will be discovered in the next few days or

weeks. Or in another case, even though a fault counting based technique

may predict that a subsystem has a large number of faults, they may be

dormant faults that are not likely to cause concerns in the near future. If

we were to draw an analogy to our work and rain prediction, our predic-

tion model focuses on predicting the areas that are most likely to rain in

the next few days. The predicted rain areas may be areas that are known

to be dry areas (i.e. not fault prone) and may be areas which aren’t known

to have large precipitation values (i.e low predicted faults).

The prediction are presented to managers as a list of the Top Ten

most likely subsystems to have faults. That list is modified over time

as new files are modified or as new faults are discovered and fixed. To

validate the quality of our predictions, we borrow concepts from the vast

literature of caching – file system and web proxy caching. In particular,

we use the idea of Hit Rate which is traditionally used to determine the

performance of caching systems. A high Hit Rate indicates that the Top

Ten list is performing well and fault that were discovered recently had

been already present in the list. Moreover, we present a new metrics –

Average Prediction Age – to measure the practical benefits of predictions

in the Top Ten list. A prediction that warns of a fault occurring within a

couple of hours is not as valuable as a prediction that warns of a fault a

couple of weeks before its occurrence.

7.1.1 Organization of Chapter

This chapter is organized as follows. Section 7.2 introduces the motiva-

tion behind our work and explains the concepts of Hit Rate and Average

Prediction Age. We use both concepts to evaluate and compare differ-

ent fault prediction heuristics presented in this chapter. In Section 7.3,

we present several heuristics to build the Top Ten List based on vari-

ous characteristics. Then in Section 7.4, we present the six open source

systems used in our case study and the data used in our analysis. In Sec-

tion 7.5, we measure the performance of the proposed heuristics by ana-

184

Section 7.2. Motivation

lyzing the development history of the studied software systems using the

Hit Rate and Average Prediction Age concepts introduced earlier. Later

in Section 7.6 we analyze the performance benefits of increasing the size

of the proposed Top Ten list. In Section 7.7, we discuss our results and

address shortcomings and challenges we uncovered in our approach. Sec-

tion 7.8 showcases related work in the fault prediction literature. Finally,

section 7.9 summarizes our results.

7.2 Motivation

To cope with a large number of tasks at hand, managers are always in

search of a silver bullet that would give them a list of issues to focus their

limited resources on. Hence, the idea of the Top Ten list. The Top Ten

list is a list of the top ten subsystems which are most susceptible to have

a fault appear in them in the near future. Managers can use this list to

focus their limited resources and maximize their resource usage.

The inspiration of the idea of Top Ten list comes from the idea of a

resource cache. Previously, caching has been proposed to solve many

problems associated with limited resources and latency associated with

acquiring them. In the file system domain, caching is used to store pre-

viously used files in memory so future requests to these files would be

fulfilled from memory instead of accessing the hard drive which is much

slower than memory. The same ideas and concepts have been applied to

database and web systems.

Conceptually, a cache is used to store a limited number of resources for

cheap access. Heuristics employed by the cache system determine which

resources to store, usually based on the probability that the resource will

be accessed in the near future. For example, in a file system cache it

is expected that a file that was accessed recently will be accessed again

within the next few minutes. By storing this file in the cache, consecutive

accesses will be much faster as they won’t require slow disk access. Un-

fortunately, a cache is usually a limited resource. For example memory

185

Chapter 7. The Top Ten List: Dynamic Fault Prediction

is much smaller than hard disk, or a web proxy server is much smaller

than the whole Internet. Thus cache replacement heuristics are used to

decide which resources should stay in the cache and which ones need to

be evicted to store new cacheable resources.

We believe the same idea can be adopted for deciding which subsys-

tems are most susceptible to having a fault in the near future. A manager

of a project can only focus on a limited number of resources. These limited

resources can be thought off as the cache system size. Cache heuristics

can be developed to determine which subsystems are no longer suscepti-

ble to a fault and which are still susceptible to a fault. For example, re-

search has shown that previous faults in a subsystem are good indicator

of future faults [FN99]. One heuristic would build the Top Ten list based

on the number of previously discovered faults in a subsystem. Thus the

Top Ten list would contain the ten most faulty subsystems. Other heuris-

tics based on the number of developers that worked on the subsystem, the

recency of the latest fault or modification, the size of the subsystem, the

number of modifications, or a metric that is based on fusion of a subset of

these ideas are a few of the possible heuristics.

The huge literature in fault analysis and prediction can be used to

develop such heuristics and many of previous fault prediction findings

can be validated using our presented approach. Fenton and Neil orga-

nize defect prediction models based on the source of the data used for the

prediction into three main areas [FN99]:

1. Models based on size and complexity metrics

2. Models based on testing metrics

3. Models based on process quality metrics.

In addition, work by Graves et al. [GKMS00] and Khoshgoftaar et al.

[KA98] suggest using code change metrics such as code churn [EGK+01]

to build quality prediction models. Any of these aforementioned model

data can be used to build the Top Ten list. In particular, models based on

186

Section 7.2. Motivation

size and complexity and models based on the code change process are the

most promising ones to build the Top Ten list, as the value of their metrics

tends to change over the short term as source code is modified to enhance

the software system. In contrast models based on process quality metrics

such as CMM ratings tend to be more stable and would be more useful for

long term predictions.

By basing the idea of Top Ten list on caching systems, we can bor-

row many of the well developed concepts used to study the performance

of caching systems in our analysis. In particular, the concept of Hit Rate

(HR). Hit Rate is the most popular measure of the performance of a caching

system. It is the number of times a referenced resource is in the cache.

For example a Hit Rate of 60% indicates that six out of every ten requests

to the cache found the resource being requested in the cache. For the

analysis of the Top Ten list this would mean that six out of the ten sub-

systems that were in the Top Ten list had faults in them as predicted by

the heuristic used to build the list. Thus, the higher the Hit Rate the

better the prediction power of the heuristic and the usefulness of the Top

Ten list, as managers aren’t wasting resources on subsystems that are not

susceptible to faults while missing other subsystems that are susceptible.

Unfortunately, using Hit Rate is not sufficient to measure the prac-

tical efficiency of the Top Ten list algorithms. Hit Rate only tells us if a

subsystem that had a fault was in the Top Ten list or not. We hope to give

managers enough advance warning time to react to the fault prediction.

For example, if we have a 90% Hit Rate yet the subsystems that have

faults are put in the Top Ten list just seconds or minutes before the fault

is discovered in them then such predictions although from a theoretical

stand point are valid they are not practically useful. We would like to

have a measure that is more practical, as managers require enough time

to react to the proposed predictions. Hence, the time of adding a subsys-

tem to the Top Ten list is important to obtain a more accurate measure of

the performance of the Top Ten list. In contrast for web or file systems,

the time of entry of a resource in the cache does not matter as long as

187

Chapter 7. The Top Ten List: Dynamic Fault Prediction

the resource was found in the cache when requested. To overcome this

limitation of the Hit Rate, we adopted two new metrics:

1. Adjusted Hit Rate (AHR): The adjusted Hit Rate is a modified Hit

Rate calculation which counts a hit only if the subsystem had been

in the cache/Top Ten list for over 24 hours (other time limits are pos-

sible). For example we do not count a hit if the subsystem has been

in the Top Ten list for just a couple of minutes. This will prevent us

from over inflating the performance of the heuristics used to build

the list. In the rest of this chapter we use the term Hit Rate to refer

to AHR, unless otherwise noted.

2. Average Prediction Age (APA): The Average Prediction Age calcu-

lates on average for each hit how long a subsystem has been in the

cache/Top Ten list. Although HR has been adjusted to account for

prediction with a very short warning, we measure the APA to get a

better idea of the age of the prediction. For example, two heuristic

may have similar HR but one heuristic predicts on average faults a

week a head of time whereas the other predicts them a full month a

head of time. A longer APA indicates a better performing heuristic

for building the Top Ten list.

Using the HR and APA metrics, we proceed to evaluate various heuris-

tics proposed in the following section.

7.3 Heuristics For The Top Ten List

As noted earlier previous findings and observations from published litera-

ture in fault prediction can be used as heuristics to build the Top Ten list.

For the purpose of this chapter, we chose to use the following heuristics

for their simplicity and intuitiveness. They are by no mean a full listing

of all possible heuristics instead they are some examples to validate our

proposed Top Ten list approach:

188

Section 7.3. Heuristics For The Top Ten List

7.3.1 Most Frequently Modified (MFM)

The Top Ten list contains the subsystems that were modified the most

since the start of the project. The intuition behind this heuristic is that

subsystems that are modified frequently tend over time to become dis-

organized. Also, many of the assumptions that were valid at one time

have the tendency to no longer be valid as more features and modifica-

tions are performed on these subsystems. Eick et al. studied the concept

of code decay and used the modification history to predict the incidence

of faults [EGK+01, ELL+92]. Graves et al. showed that the number of

modifications to a file is a good predictor of the fault potential of the file

[GKMS00]. In other words, the more a subsystem is changed the higher

the probability that it will contain faults.

This heuristic will tend to have a high APA as frequently modified

subsystems will remain in the Toplist for a long time. This may degrade

the HR of this heuristic as it won’t adapt to changes in the modification

of files. For example, if in one release of an operating system all the work

has concentrated on improving the memory manager and in the following

release all the work focused on improving the file system, then the MFM

heuristic will still be affected by the modification counts of the previous

release and will give out bad predictions. This limitation is a concern for

any frequency based approach and is commonly refereed to in the liter-

ature of caching as the cache pollution problem [CMCmWH91]. To over-

come this problem, heuristics that update the list based on a combination

of the frequency and recency of a modification could be used.

7.3.2 Most Recently Modified (MRM)

The Top Ten list contains the subsystems that were recently modified.

In contrast to the Top Ten list built using the MFM heuristic, the MRM

Top Ten list is changing at a much higher rate as new files are modified

continuously and are inserted in the Top Ten list. The intuition behind

this heuristic is that subsystems that are modified recently are the ones

189

Chapter 7. The Top Ten List: Dynamic Fault Prediction

most likely to have a fault in them. Finding faults in subsystems that

were not modified for a long time is highly unlikely. In [GKMS00], Graves

et al. showed that more recent changes contribute more to fault potential

than older changes over time.

7.3.3 Most Frequently Fixed (MFF)

The Top Ten list contains the subsystems that have had the most faults in

them since the beginning of the project. The intuition behind this heuris-

tic is that subsystems that have had faults in them in the past will always

tend to have faults in them in the future. Again this heuristic, like MFM

suffers from the cache pollution problem.

7.3.4 Most Recently Fixed (MRF)

The Top Ten list contains the subsystems that had faults in them recently.

The intuition behind this heuristic is that subsystems that had faults in

them recently will tend to have more faults showing up in the future till

most of the faults are found and fixed. In contrast, a Top Ten list built

using the MFF will be a lot more stable than a list built using the MRF,

as the subsystems in the list won’t be changed as often.

The aforementioned heuristics represent a small sample of a huge va-

riety of heuristics that can be used to build a Top Ten list. Conceptually,

each heuristic can depend on one or a combination of the following char-

acteristics of a software system.

1. Recency: The recency of modifications or fault fixes applied to the

source code, such as MRM and MRF.

2. Frequency: The frequency of modifications or fault fixes applied to

the source code, such as MFM and MFF.

3. Size: The size of subsystems, the size of modifications.

190

Section 7.4. Studied Systems

4. Code Metrics: The fault density, the cyclomatic complexity [McC76],

or simply the LOC.

5. Co-Modification: Subsystems modified together will tend to have

faults during similar times, for example.

We note that the problem of fault prediction has some characteristics

that are different from classical caching literature, in particular:

• Whereas for file and web systems the number of possible resources

to be cached is rather large, the number of subsystems that are an-

alyzed for inclusion in the Top Ten list is limited, as managers have

a limited number of resources to allocate to investigate the sugges-

tions of the Top Ten list.

• Furthermore, CPU usage, algorithm complexity, and responsiveness

of the caching heuristics are not a major issue due to the small num-

ber of subsystems that need to be analyzed. Also we expect the Top

Ten list to be generated daily thus more complex and elaborate al-

gorithms could be used to build the list overnight, if needed. This is

not possible in web and file system caching where the user expects

an immediate and quick response.

• Finally, as pointed out earlier, a simple HR metric is not sufficient

to measure the practical benefits of a heuristic, as managers require

enough advance warning time to react to suggestions.

7.4 Studied Systems

To study the benefits of using the Top Ten list in the development of

large software systems, we evaluated our proposed approach using six

large open source software systems. Table 8.1 summarizes the details for

these software systems. The oldest system is over ten years old and the

youngest system is five years old. For each system, we list the number

191

Chapter 7. The Top Ten List: Dynamic Fault Prediction

of subsystems it has and the number of faults that were discovered in it

according to our fault discovery process described below. For example, the

Postgres database systems contains 104 subsystems and over its lifetime

has had 1401 faults. Furthermore, it is written in C.

To measure the performance of the Top Ten list, we used the devel-

opment history of these six software systems. The development history

is stored in a source control system, such as CVS [CVSa, Fog99] or Per-

force [Per]. The source control system stores all modifications that occur

to each subsystem in the software system as it evolves. Each modification

records the changed lines in the subsystem, the reason for the change,

and the exact date of the change. Using a lexical technique, similar to

[MV00], we automatically classify modifications into three types based on

the content of the detailed message attached to a modification:

Fault Repairing modifications (FR): These are all modifications

which contain terms such as bug, fix, or repair in the detailed

message attached to the modification. The Top list attempts to

predict ahead of time which subsystems are most susceptible to

have such a modification applied to them in the near future.

General Maintenance modifications (GM): These are modifications

that are mainly bookkeeping ones and do not reflect the implemen-

tation of a particular feature. These modifications are removed from

our analysis and are never considered. For example, modifications

to update the copyright notice at the top of each source file are ig-

nored. Modifications that are re-indentation of the source code after

being processed by a code beautifier pretty-printer are ignored as

well.

Feature Introduction modifications (FI): These are modifications

that are not FR or GM modifications.

The detailed description of the history of code development provides

a rich opportunity to replay the history of the development of a software

192

Section 7.5. Measuring The Performance Of The Top Ten List

system and measure the benefits that the developers would have got if

ideas such as the Top Ten list were accessible to them.

Application Application Start Subsys. Faults Prog.

Name Type Date Count Lang.

NetBSD OS 21 March 1993 393 2451 C

FreeBSD OS 12 June 1993 182 3264 C

OpenBSD OS 18 Oct 1995 401 1015 C

Postgres DBMS 9 July 1996 104 1401 C

KDE Windowing 13 April 1997 167 6665 C++

System

Koffice Productivity 18 April 1998 259 5223 C++

Suite

Table 7.1: Summary of the Studied Systems

We believe that the variety of development processes used, implemen-

tation programming languages, features, domain of the studied software

systems ensures the generality of our results and their applicability to

different software systems. In the following section, we present the per-

formance of the heuristics presented in Section 7.3 against each of the

studied software systems.

7.5 Measuring The Performance Of The Top Ten

List

In this section, we measure the performance of the heuristics proposed

in Section 7.3, to build the Top Ten list. For each of the software sys-

tems we analyzed the source control repository automatically without any

user intervention. We chose to ignore the first year in the source control

repository, due to the special startup nature of code development during

that year as each project initializes its development process and the corre-

sponding effect on its source code repository. We then used the following

three years to measure the performance. For each heuristic, we plot the

193

Chapter 7. The Top Ten List: Dynamic Fault Prediction

NetBSD

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

Faults

Hit Rate (%)

MFF

MFM

MRF

MRM

FreeBSD

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500

Faults

Hit Rate (%)

MFF

MFM

MRF

MRM

OpenBSD

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

Faults

Hit Rate (%)

MFF

MFM

MRF

MRM

Postgres

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600

Faults

Hit Rate (%)

MFF

MFM

MRF

MRM

KDE

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000

Faults

Hit Rate (%)

MFF

MFM

MRF

MRM

KOffice

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000

Faults

Hit Rate (%)

MFF

MFM

MRF

MRM

Figure 7.1: Hit Rate For The 4 Proposed Heuristics
194

Section 7.5. Measuring The Performance Of The Top Ten List

Hit Rate (HR) versus the fixed faults over the three year period. Fur-

thermore, we calculate the total Hit Rate and the Average Prediction Age

(APA) over the studied three years for each of the six open source systems

we studied.

Figure 7.1 shows the performance for the four proposed heuristics. In

the figure we show the Hit Rate of the Top Ten list using each heuristic for

each fault that occurs. For example for NetBSD once there are 1000 faults,

the Hit Rate for the heuristics are as follow: MFF (29%) MFM (30%) MRF

(20%) and MRM (15%). We note that we do not show the Hit Rate for the

first 100 faults, as we choose to use the first 100 faults to calibrate our

Top Ten list with some historical data to gain a more realistic and fair

comparison of the different heuristics as the Top Ten list fills up slowly

over time.

Examining the figure, we note that the two heuristics (MFM and

MFF) that are based on a count of modifications or faults have the best

performance. In contrast, the other two heuristics (MRM and MRF) which

are are based on the recency of modifications and detection of faults in a

subsystem have a much worse performance.

Furthermore, the performance of MFF at the beginning is always

worse than the performance of MFM, this is due to the fact that at the

beginning there are not as many faults thus the MFF heuristic perfor-

mance is negatively affected. The need of MFF for a large number faults

to calibrate itself suggests the need for a heuristic based on the modifi-

cations count at the beginning of the development of the project. Later

on we may switch to a heuristic that is based on the fault counts if it is

performing better. In our analysis, we see that around 400 - 500 faults,

the MFF has enough faults to calibrate well.

Over time, the performance of the proposed heuristics either decline

or stay constant except for the Koffice system where it improves. The

decline in the prediction quality may suggest that the Top Ten list has

been polluted by subsystems that were very highly modified/fixed in the

past but are no longer being modified in the later years. An enhanced

195

Chapter 7. The Top Ten List: Dynamic Fault Prediction

heuristic that overcomes this problem may be very beneficial in improving

the performance of the list.

Table 7.2 summarizes the performance metrics over the three years

of data used in the study. In particular, we notice that the unadjusted

Hit Rate for the recency based heuristics such as MRM and MRF drops

significantly once the Adjusted Hit Rate is calculated. By examining the

Average Prediction Age we see that it is less than a day in many of the

cases where the recency based heuristic is used.

Application Heuristic HR AHR APA

(%) (%) (in days)

NetBSD MRM 22.4 9 0.3

MRF 20.6 15 0.8

MFM 24.4 24.4 133.8

MFF 25.3 25.3 138.7

FreeBSD MRM 32.6 22.2 0.98

MRF 32.6 27.2 1.7

MFM 44.9 44.9 252.7

MFF 45.1 45.1 245.1

OpenBSD MRM 28.5 17.6 0.71

MRF 24.5 21.8 3.11

MFM 32.1 32.1 182.22

MFF 28.8 28.8 168.5

Postgres MRM 42.1 36.2 3.3

MRF 35.4 31.4 4.4

MFM 48.4 48.4 287.8

MFF 46.6 46.6 288.6

KDE MRM 46.6 21.7 1.4

MRF 49.3 31.7 3.9

MFM 54.3 54.3 375.4

MFF 56.1 56.1 394.1

Koffice MRM 53.6 38.3 2.4

MRF 56 46.6 4.6

MFM 53.4 53.4 133.8

MFF 54.1 54.1 341.3

Table 7.2: HR, AHR, and APA for the Studied Systems During the 3

Years

196

Section 7.6. The Effects Of a Larger List

7.6 The Effects Of a Larger List

In the previous section, we presented the performance of the Top Ten list

approach using various heuristics. In this section, we examine if increas-

ing the size of the list would improve the performance of the heuristics.

We focus on only two of the four proposed heuristics, we chose MFM to

represent the frequency based heuristics as its performance is very simi-

lar to MFF and we chose MRM to represent the recency based heuristics

as its performance is similar to MRF.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Size (%)

Hit Rate (%)

NetBSD FreeBSD

OpenBSD Postgres

KDE Koffice

Figure 7.2: Hit Rate Growth As a Function of The Top List Size Using

MRM Heuristic

For both MFM and MFF, we re-ran the same experiments done in the

previous section while varying the size of the Top Ten list. We chose to

make the size of the list a function of the number of subsystems in the

software system. Thus we chose to have the size of the list vary between

2%, 10%, 20%, 50%, 80%, and 100% of the number of subsystems. In the

case of 100%, we are able to see the best possible HR but unfortunately

this is not practical as managers would have to focus their attention to

all the subsystems in the software system which defeats the purpose of a

197

Chapter 7. The Top Ten List: Dynamic Fault Prediction

Top list.

Figures 7.2 and 7.3 show the growth of the Hit Rate as we vary the

size of the Top list. We notice that when the Top list size is under 50% of

subsystems in the software system then MFM (frequency based heuristic)

outperforms the MRM (recency based heuristic). Once we are above 50%

both types of heuristics have the same performance. Also we can never

reach a Hit Rate of 100% as we always have misses in our predictions

as we populate the list initially. For example, for the MFF heuristic a

subsystem would have to have at least one fault that was not predicted at

the beginning to be considered for inclusion in the predicted Top list.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Size (%)

Hit Rate (%)

NetBSD FreeBSD

OpenBSD Postgres

KDE Koffice

Figure 7.3: Hit Rate Growth As a Function of The Top List Size Using

MFM Heuristic

Examining the growth of the Hit Rate in Figures 7.2 and 7.3, we no-

tice that the Hit Rate exhibits a logarithm growth as we increase the size

of the Top list. This indicates that the benefit of increasing the size of the

Top list diminishes exponentially. From both figures, we see that a Top list

which is around 20% the number of subsystems in the software achieves

the best return on investment for managers. The 20% value supports

previous findings by Munson and Khoshgoftaar [MK92] and by Adams

198

Section 7.7. Discussion

[Ada84] which showed that faults tend to occur in a subset of the subsys-

tems of large software systems. It also showcases the value of using the

Top Ten list as managers will expend less effort on fault free subsystems

and can allocate more resources to troublesome ones.

7.7 Discussion

In this section, we elaborate on issues relating to the performance of the

heuristics used to build the Top list.

7.7.1 An Accurate Measure of the Performance of a

Heuristic

The Top Ten list assists managers in allocating testing resources by fo-

cusing on the subsystems that are likely to have a fault appear in them

in the near future. In our analysis, we used the change history to mea-

sure the performance of heuristics. In particular, we used the fact that a

fix was applied to a subsystem as an indication that a fault was detected

in that subsystem. A record of all reported bugs throughout the lifetime

of a software system could have been used to evaluate the performance

of the different heuristics. Unfortunately, for most open source systems

detailed bug tracking systems do not exist. Furthermore, reported bugs

are not an indication of the occurrence of faults or their severity, since

the reported bugs may be due to misunderstandings of the functionality

of the software system by the reporter of the bug. We believe that the use

of fixes instead of bug reports is a reasonable measure since bug reports

do not exist for the systems we studied, and managers tend to focus their

resources on the most critical faults.

7.7.2 Performance of Fault Based Heuristics

In our analysis we used two heuristics (MFF and MRF) that are based on

fault counts. Unfortunately even though these two heuristics have good

199

Chapter 7. The Top Ten List: Dynamic Fault Prediction

performance as presented in the previous section, it may be challenging

to measure their performance if a Top list did actually exist for the de-

velopment team. The Top list biases the effort and work performed by a

development team. There is a high tendency for developers to focus their

testing resources to subsystems that are in the Top list. Thus over time,

the fault discovery may be influenced by the Top list and using the fault

counts becomes an inaccurate measure. Instead using heuristics based

on the modification counts are likely to be more stable and un-affected by

the Top list suggestions. This poses an interesting challenge for software

engineering research where introducing new techniques to a process may

invalidate the validation of benefits of the new techniques. Thus, even

though historical data show the benefits of a research idea, validating the

idea in a practical setting may reveal interesting challenges and issues.

7.7.3 Determining a Practical Average Prediction Age

Throughout the chapter we emphasized the need for heuristics that are

able to provide high HR. To ensure that our results are useful and prac-

tical we measured the Prediction Age (PA) for each hit and chose not to

count hits with low PA. As a manager is not given enough warning to

react when the PA is low. We then chose to measure the APA which is

the sum of the PA’s for all the Hits divided by the number of hits. Look-

ing at Table 7.2, we list the APA for all heuristics for each of the studied

software systems. As pointed out earlier, recency based heuristics have

a rather low APA. Unfortunately, frequency based heuristics have a high

APA. This is mainly due to the cache pollution problem. The need for a

heuristic that can combine a low APA with a high HR is justified. It would

be very useful and practical for managers to get advance warnings that

are not too early and are not too late. We now briefly discuss and present

some measurements for such a heuristic.

Based on the results shown in Table 7.2, we would like a heuristic

which keeps track of the recency and measures the frequency of events

as well. We propose the use of an exponential decay function to build our

200

Section 7.7. Discussion

heuristic. The decay function would reduce exponentially the effect of a

modification or a fault on the probability that a fault will be discovered,

based on how long ago a fault/modification to the subsystem has occurred.

Then to measure the frequency, instead of adding up the number of times

a modification/fault occurred, we add up the exponentially decayed val-

ues. Consequently, given two subsystems who both have had 3 modifi-

cations to them, the subsystem with the 3 more recent modifications will

have a higher heuristic value and would be considered more likely to have

a fault discovered in the near future. More formally, we define a heuristic

function (HF) and the Top list is created by choosing subsystems with the

highest HF value. The HF for a modification based heuristic is defined

as:

HF (S) =
∑

m∈M(S)

eTm−Current T ime

where M(S) is the set of modifications to a subsystem S and Tm is the

time of modification m.

Application AHR APA

(%) (in days)

NetBSD 25.3 26.1

FreeBSD 42 129

OpenBSD 33.1 38.6

Postgres 49 33.8

Table 7.3: AHR and APA for the Exponential Decay Heuristic

We reran our results on four of the software systems in our system.

Table 7.3 shows the performance results for using an exponential decay

heuristic. We note that the APA values are much more moderate com-

pared to the corresponding values shown in Table 7.2. The APA suggests

that the new heuristic provides enough early warning and is still capable

of dynamically updating as the development in the project changes over

time.

201

Chapter 7. The Top Ten List: Dynamic Fault Prediction

7.8 Related Work

The work most closely related to the work presented in this chapter is

done by Khoshgoftaar et al. In [KA98], they present a technique to predict

the order of the subsystems that are most likely to have a large number

of faults. The main similarity between our work is the recognition that

managers have a limited number of resources and need to focus their re-

sources on a selected few subsystems in a large software project. Whereas,

Khoshgoftaar orders subsystems based on their degree of fault proneness,

we order subsystems based on their likelihood of containing a fault in the

near future. Thus, our technique may choose to rank highly subsystems

that may not be considered fault prone, yet they may have just a few

faults appearing very soon in them.

7.9 Conclusion

We presented a new approach to assist managers in determining which

subsystems to focus their limited resources on. By using this approach

managers should be able to allocate testing resources wisely, locate faults

in a timely manner and fix them as soon as possible. The approach uses

ideas that have been extensively researched in the literature of web and

file systems. The idea of caching as a limited resource is extended to the

idea of limited testing resources. We show that the problem of determin-

ing which entities to cache is similar to the problem of determining which

subsystems to focus testing resources on. We present the concept of Hit

Rate which is widely used to measure the performance of various caching

heuristics. Then we extend it to measure the performance of our heuris-

tics that are used to build the Top Ten list.

We studied our proposed approach and heuristics using the develop-

ment history of six large open source project. We saw that we can achieve

a Hit Rate that is higher than 60% for some of the systems. We then

examined the possibility of increasing the size of the Top Ten list and

202

Section 7.9. Conclusion

noticed that a list that contains 20% to 30% of the subsystems in a soft-

ware system provides very good results even when using rather simple

heuristics. We then presented a more elaborate heuristic based on an

exponential decay function. We showed that the results using the new

heuristics combine the benefits of early warnings for faults and the abil-

ity to dynamically adjust as new development data is available.

We believe that the Top list approach holds a lot of promise and value

for software practitioners, it provides a simple and accurate technique

to assist them in allocating resources as they maintain large evolving

software systems.

203

CHAPTER 8
Code Development Chaos: a

New Perspective on

Software Complexity

We offer a novel view on the problem of complexity in software. We

propose a complexity metric that is based on the process followed by

software developers to produce the code instead of on the code or the

requirements.

We conjecture that a chaotic or complex development process nega-

tively affects its outcome, the software system. We validate our hypothe-

sis empirically through a case study using data derived from the devel-

opment process history of six large open source projects (three operating

systems: NetBSD, FreeBSD, OpenBSD; a window manager: KDE; an

office productivity suite: KOffice; and a database management system:

Postgres).

205

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

8.1 Introduction

COMPLEXITY must be monitored and controlled at all times to ensure

the successful evolution of a software system. The natural convic-

tion is that unnecessary or excessive complexity has many negative ef-

fects on a project. Yet, complexity is needed to introduce new features and

satisfy more demanding customers otherwise the software system will be

abandoned [LRW+97]. Managing the complexity of the software system

becomes a paramount goal while striving to meet users’ needs. Brooks’

words, describing software development, mirrors this sentiment well:

“Complexity is the business we are in and complexity is what

limits us.” Fred Brooks, The Mythical Man-Month [Bro74].

The literature on software metrics contains a wealth of studies that

measure the complexity of source code. These measures are correlated

to faults or associated with difficulties in understanding and maintaining

software systems. For example, Halsted metrics measure the lexical and

textual complexity of the source code [Hal77]. McCabe metrics focus on

measuring the logic flow and structural complexity of the source code. A

source code with complex logic is expected to be difficult to understand

and maintain. This complexity may eventually lead to the introduction

of bugs in the software system and is likely to cause the dissatisfaction of

its users.

Complexity lurks throughout a software project and does not solely

reside in the source code. Other facets of a software project such as its

design, the customer’s requirements, the team structure and size, the de-

velopment process, market pressure, and problem domain are all suscep-

tible to complexity as well. Moreover, all these facets interact in a feed-

back loop – an increase in complexity in one facet is likely to affect other

facets. Figure 8.1 shows a simplistic view of complexity flowing from one

facet of a project to the next. For example a complex set of requirements,

206

Section 8.1. Introduction

✬

✫

✩

✪

Development
Process

Code/Design

Requirements

Team

(size/structure)

Problem

Domain

Market/
Schedule
Pressure

Figure 8.1: Flow Of Complexity Between the Facets of a Software Project

or a large software development team will increase the complexity of the

development process. This will eventually have ill-effects on the source

code of the project. Also the code and the design of the project can as well

affect the development process, for example a complex design or spaghetti

code will complicate the code development process.

Somewhat distant from the source code, researchers have demon-

strated techniques and approaches to measure and control the complexity

of the design and architecture [KBWA94, Par72, VN96, WB99]. Other re-

searchers developed of approaches to deal with the complexity of require-

ments [BG02]. Furthermore, researchers have shown the effect of the

team’s structure and the interaction between its members on the struc-

ture of the software system and its complexity [BHB99b, HG99].

Though many of the previous approaches to study complexity have

provided promising results, we believe they have certain limitations. For

example, the requirements for a projects may not be well documented

and may be changing throughout the lifetime of the project. In many

cases, these measurements may not reflect the actual complexity that the

project and software developers will have to deal with when implement-

ing these requirements [Nor02]. For example, even though the require-

ments might be simple, the source code may be overly complicated and

implementing these requirements may not be an easy task. Complexity

metrics based on the source code have their limitations as well, since they

207

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

do not consider the development process and requirements at hand. For

example, a complex piece of code that has not changed since the start of a

project is not likely to have faults appear in it. Furthermore, studies have

shown that most complexity metrics are correlated to simple measures

such as the LOC of the application [GKMS00, OA96, LPS02].

A promising approach is to consider historical information about the

software system. Results by Yu et al. [YSD98] indicate that prior faults

are good predictors of future faults in a software system. Results by

Graves et al. [GKMS00], Khoshgoftaar et al. [KAJH99], and Leszak et al.

[LPS02] indicate that the number of prior modifications to a file is a good

predictor of its fault potential. In other words, the more a file is changed

the higher the likelihood it will contain faults.

In this chapter, we expand on such approaches, which make use of

historical information about a software system to gauge its reliability. We

examine the complexity of the modifications done to the source code. We

refer to this complexity as the complexity or chaos of the code de-

velopment process. The code development process plays a central role

in a software project. The process is responsible for producing the code

needed to satisfy the requirements of the customers, while dealing with

the complexity and challenges associated with the current code and the

other facets of the project. A software system with a chaotic code devel-

opment process is undesirable. It will likely produce a system with has

many faults and the project is likely to face delays. We conjecture that:

A chaotic code development process negatively affects its out-

come, the software system, such as the occurrence of faults.

Using concepts from information theory, we defined models which cap-

ture our intuition about the complexity of modifications and the chaos of

the code development process. We found that events such as large refac-

torings or delays in releases were accompanied with increases in our pro-

posed model measurements [HH03c]. Furthermore, we demonstrated us-

ing mathematical regression analysis that our proposed model measure-

ments correlate with faults [HH03b]. In this chapter, we are interested

208

Section 8.1. Introduction

in the ability of our proposed model measurements in predicting the fault

potential of a software system. In particular, we compare the performance

of predictors based on our complexity models with the performance of pre-

dictors based on the number of prior modifications and prior faults. Based

on a case study using six large open source projects, our results indicate

that our development process chaos models are good predictors of fault

potential when compared with other historical approaches (such as prior

modifications and prior faults) to predict faults.

8.1.1 Overview Of Chapter

This chapter is organized as follows. Section 8.2 gives our view of the

code development process. Instead of monitoring code changes as they are

performed by developers, we turn our attention to source control systems

used by software projects. Source control systems provide a convenient

repository of data to study the code development process. Section 8.3

presents the mathematical concepts needed to measure the chaotic nature

of the code development process. In particular, we introduce information

theory and Shannon’s entropy.

Section 8.4, 8.5, and 8.6 present the complexity models we use in our

work. Section 8.4 introduces our first and simplest model for code de-

velopment process complexity – The Basic Code Development (BCD)

Model. We then proceed to give a more elaborate and complete model in

Section 8.5 – The Extended Code Development (ECD) Model. Both

these models calculate a single value that measures the overall chaotic

nature of a project within some time period. Then in Section 8.6, we re-

formulate the ECD model to introduce a finer grained model – The File

Code Development (FCD) Model. The FCD Model measures the ef-

fects of the chaotic nature of development process on individual source

code files or subsystems.

In Section 8.7, we empirically compare the performance of predictors

based on the FCD model with the performance of predictors based on the

209

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

number of prior modifications and prior faults using data from six large

open source projects. We end Section 8.7 with a critical review of our

findings and their applicability to other software systems.

Section 8.8 presents related work in the field of software evolution,

entropy, and open source systems. Section 8.9 summarizes our findings.

8.2 The Code Development Process

We use the term code development process to mean the pattern of

modifications to the source code of a project. The modifications are done

by developers to implement new features and repair faults. By studying

these patterns of modifications and quantifying their degree of complexity

over time (using defined models), we hope to achieve a better understand-

ing of the evolution of complexity facing developers working on a project.

Source control systems are used extensively by large software projects

to control and manage their source code [Roc75, Tic85]. Data stored in

these repository presents a great opportunity to study the code develop-

ment process and validate our ideas. The data collection costs are min-

imal since it is collected automatically as modifications are done to the

source code.

The repository of a source control system contains various details about

the development history of every file in a project. It contains the creation

date of a file, its initial content and a record of every modification done to

the file. A modification record stores the date of the modification, the

name of the developer who performed the changes, the number of lines

that were changed, the actual lines of code that were added or removed,

and a detailed message entered by the developer explaining the reasons

for the change.

Using a lexical technique, similar to [MV00], we automatically divide

modifications into three types based on the content of the detailed mes-

sage attached to a modification:

210

Section 8.2. The Code Development Process

Fault Repairing modifications (FR): These are all the modifications

which are done to fix a bug. In our analysis, we labeled all modi-

fications which contain terms such as bug, fix, or repair in the de-

tailed message as FR modifications. Fault repairing modifications

represent the fault repair process which likely differs from the code

development process. We expect repairs to be spread out through

the source code. These modifications are not used in the calculation

of the development process complexity. But they are used in the

validation process in our case study presented in Section 8.7.

General Maintenance modifications (GM): These are modifications

that are mainly bookkeeping modifications and do not reflect the

implementation of a particular feature. These modifications are re-

moved from our analysis and are never considered. For example,

modifications to update the copyright notice at the top of each source

file are ignored. Modifications that are re-indentation of the source

code after being processed by a code beautifier pretty-printer are ig-

nored as well.

Feature Introduction modifications (FI): These are the modifications

that are done to add or enhance features. Using our lexical analysis,

we labeled all modifications that are not FR or GM modifications as

FI modifications. These modifications are used in the calculation of

the development process complexity.

A software system which has to endure highly scattered modifications

to its code base as it implements the requirements of its customers, will

have a high tendency of becoming a complex project. In contrast, a project

where modifications are limited to specific spots in the code will have less

complexity associated with it. A complex code base, the addition of a

large number of features within a short period of time, or a large num-

ber of developers simultaneously changing the source code of a project

are some of the many reasons that could cause the code modifications to

be highly scattered. This scatter of modifications throughout the source

211

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

code, within a short time, makes it difficult for developers working on the

project to track of its progress and the changes. For instance in [LPR98],

Lehman et al. noted that the portion of a software system changed during

a release tends to remain constant in relation to the rest of the software

system over time, and that a sudden increase in the scatter of the changes

during a release is likely to have adverse affect on the software system as

noted in their OS/360 case study.

Various observations by Brooks support our intuition and our model

[Bro74]. In particular, Brooks warned of the decay of grasp of what is

going in a complex system. A complex modification pattern will cause de-

lays in releases, high bug rates, stress and anxiety to all the personnel

involved in a project. As the ability of team members to understand the

changes to the system deteriorates so does their knowledge of the sys-

tem. New development performed by them will be negatively affected.

Similarly, Parnas warned of the ill-effects of Ignorant Surgery, modifica-

tions done by developers who are not sufficiently knowledgeable of the

code [Par94]. Such ignorance may be due to the developers being junior

developers or it may be due to the fast past of development which prevents

developers from keeping track of other changes. For instance, in a study

of the root cause of faults in a large telephony system it was determined

that over 35% of faults where due to change coordination, missing aware-

ness, communication, or lack of system knowledge problems [LPS02]. In-

formation hiding [Par72] and good designs attempt to reduce the need to

track other changes, but as the scatter of changes increases so does the

likelihood that developers will miss tracking changes that are relevant to

their work and managers will have a harder time allocating testing re-

sources or tracking the progress of the project. In short, a chaotic code

development process is a good indicator of many project problems.

over 35

In this section, we explained the need to measure the complexity of

the development process and the amount of predictability and chaos that

is associated with code modifications as a system evolves. We have yet

212

Section 8.3. Information Theory

to explain how we can measure such complexity. In the following section

we introduce concepts from information theory that will form the mathe-

matical basis of our models to measure the complexity of the development

process.

8.3 Information Theory

In 1948, Shannon laid down the basis of Information Theory in his sem-

inal paper - A mathematical theory of communication [Sha48]. Informa-

tion theory deals with assessing and defining the amount of information

in a message. The theory focuses on measuring uncertainty which is re-

lated to information. For example, suppose we monitored the output of

a device which emitted 4 symbols, A, B, C, or D. As we wait for the next

symbol, we are uncertain as to which symbol it will produce (i.e. we are

uncertain about the distribution of the output). Once we see a symbol

outputted, our uncertainty decreases. We now have a better idea about

the distribution of the output; this reduction of uncertainty has given us

information.

Shannon proposed to measure the amount of uncertainty/entropy in a

distribution. The Shannon Entropy, Hn is defined as:

Hn(P) = −
n∑

k=1

(
pk ∗ log2 pk

)
,

where pk ≥ 0,∀k ∈ 1, 2,, n and
n∑

k=1
pk = 1.

For a distribution P where all elements have the same probability of

occurrence (pk = 1
n
,∀k ∈ 1, 2,, n), we achieve maximum entropy. On the

other hand for a distribution P where one of the elements i has probability

of occurrence pi = 1 and all other elements have probability of occurrence

equal to zero (i.e. pk = 0,∀k 6= i), we achieve minimal entropy.

By defining the amount of uncertainty in a distribution, Hn describes

the minimum number of bits required to uniquely distinguish the distri-

213

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

bution. In other words, it defines the best possible compression for the

distribution (i.e. the output of the system). This fact has been used to

measure the quality of compression techniques against the theoretically

possible minimum compressed size.

8.4 The Basic Code Development Model

If we view the code development process of a software system as a sys-

tem which emits data, and we define the data as the FI modifications to

the source files, we can apply the ideas of information theory and entropy

to measure the amount of uncertainty/chaos/randomness in the develop-

ment process.

In the following three sections, we present three models which capture

the entropy of development at different levels of detail. In this section, we

present the Basic Code Development (BCD) Model for the entropy of soft-

ware development and its evolution. The BCD model measures the over-

all development complexity for a software project. The following section

extends the model to be more complete. Then the third section expands

the model to deal with the effect of complexity on the files or subsystems

in a software system instead of simply quantifying the overall code devel-

opment complexity for a software project.

8.4.1 Basic Model

Suppose we have a software system which consists of four files. If we were

to examine the development history of this system which is stored in a

source repository, we will find for each file the dates for each modification

to the file and the reason for modifying the file. We only concentrate on

FI modifications.

Once the FI modifications are extracted, we can plot for each file the

moments in time that specific file was modified. As can be seen in Fig-

ure 8.2, we put stars to indicate that for a specific file when it was modi-

214

Section 8.4. The Basic Code Development Model

✬

✫

✩

✪
0.5

0.3

0.1

0.1A

D

C

B

Time

File

period

(for e.g. week)

Figure 8.2: The Entropy of a Period of Development

fied. We now define a period of time, for example a week, or a month. For

that period of time, we can define a file modification probability distribu-

tion P . P gives the probability that filei is modified in a period. For each

file in the system, we count how many times it was modified during a pe-

riod and divide by the total number of modifications in that period for all

files. For example, in Figure 8.2, in the highlighted grey period we have

10 modifications for all the files in the system. fileA was modified once so

we have a p(fileA) = 1
10 = 0.1. For fileB we get p(fileB) = 1

10 = 0.1, for

fileC we get p(fileC) = 3
10 = 0.3, and so on. On the right side of Figure 8.2,

we can see a graph of the file modification probability distribution P for

the shaded period.

If we monitor the modifications to the files of a software system and

find that the probability of modifying fileA is 1 and all other files is zero,

then we have minimal entropy. On the other hand, if the probability

of modifying each file is equal (i.e. filek = 1
n

) then the amount of en-

tropy/chaos in the system is at its maximum.

Instead of simply using the number of modifications to the file, we use

the number of lines modified over the period to build the file modification

probability. The lines changed in a modification is the sum of the lines

added and deleted as described in the modification record.

215

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

8.4.2 Intuition

Consider these two changes. In the first change, the developer had to

modify over a dozen files to add a feature. When asked about the steps

required to add the feature, she/he may not recall half of them. Whereas

another change to add a different feature required the modification of a

single file. Recalling the modifications required for the latter feature is

much easier. Intuitively, if we have a software system that is being mod-

ified across all or most of its files, the developers and the managers will

have a hard time keeping track of all these modifications. The concern

about the complexity of keeping track of scattered changes have been ex-

pressed by many developers working on large software systems, such as

telephony systems [SGM+98].

If we were to imagine the brains of developers as a storage system,

then the lower the change entropy the easier it is for developers and for

managers to recall and track what has changed. The number of bits

needed to remember all these changes is proportional to the number of

files that have been modified. Miller has shown that human short-term

memory is limited, therefore information overload and losing grasp of the

current structure of a software system and the latest modifications to it

is quite possible [Mil56].

The BCD model focuses on quantifying the patterns of changes in-

stead of measuring the number of changes or measuring the effects of

changes to the structure of the source code. A developer may not be

aware of all the essential information when making a change because the

amount of information (recent changes) is too large and unpredictable to

keep track within her/his short-term memory. Thus our measurement of

the pattern of change activity is a reasonable indicator of overload.

Faults are introduced due to misunderstandings about the structure

of the system and its current state. Entropy gives us a way to measure

redundancy and patterns. Change patterns with low information content

as defined by entropy are easier to track and remember by developers

216

Section 8.4. The Basic Code Development Model

and others working on the project. By being aware of the current state of

the software system, developers are less likely to introduce bugs in it and

managers are likely to have an easier time monitoring the project.

The BCD model, along with the next two models, do not incorporate

Fault Repairing (FR) modifications in the entropy calculation, instead we

only use the FI modifications. FR modifications are not used since they

represent bug fixes which are likely to be more scattered and to touch ar-

eas that are not being developed during the current period. This property

of bugs fixes is likely to inflate the entropy measurement for a period.

Furthermore, bug fixes are not likely to introduce new features or func-

tionality, instead they are simply revisiting old changes which developers

are already aware of and are less likely to need recalling them. Never-

theless, the models could be redefined to include FI modifications if need

be.

The models focus on quantifying entropy for several modifications

within a period not just for a specific modification. This choice of grouping

several modifications is likely to inflate the entropy measurements, but

we are more concerned with variations across periods instead of the abso-

lute entropy values. In addition, by grouping modifications we can gauge

the challenges that managers and developers may have to deal with to

cope with wide spread changes due to several modifications. Neverthe-

less, the models could be adjusted to quantify entropy for every modifica-

tion.

8.4.3 Files As a Unit of Measurement

In the BCD model we use the file as our unit of code to build the mod-

ification probability distribution P for each period. Other units of code

can be used, such as functions or code chunks that are determined by a

person with good knowledge of the system. Our choice of files is based

on the belief that a file is a conceptual unit of development where de-

velopers tend to group related entities such as functions, data types, etc.

217

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

Based on our experience in studying large software system we found this

to be the norm with some notable exceptions. For example in the VIM

text editor [VIM], we found two files misc1.c and misc2.c which comprise

a substantial amount of the source code and which contain code that is

not related.

Furthermore, in recent work [HH04c] we were able to empirically sup-

port this belief. We showed that the probability of two source code entities

changing together is high, if both entities are contained in the same file,

at least for large open source software systems written in the C program-

ming language.

8.4.4 Evolution of Entropy

We can view the file modification probability distribution Pj for a period

j, as a vector which characterizes the system and uniquely identifies its

state. We can divide the lifetime of a software system into successive

periods in time, and view the evolution of a software system as the re-

peated transformation of the development process from one state to the

next. Looking at Figure 8.3, we can see the Pj ’s calculated for 4 consecu-

tive periods with their respective entropy. This allows us to monitor the

evolution of chaos/entropy in the development process. If the project and

the development process are not under control nor managed well, then

state of the system will head towards maximum entropy/chaos.

The manager of a large software project should aim to control and

manage the entropy. Monitoring for unexpected spikes in entropy and in-

vestigating the reasons behind them would let managers plan ahead and

be ready for future problems. For example, a spike in entropy may be due

to an influx of developers working on too many aspects of the system con-

currently, or to the complexity of the source code or to a refactoring or re-

design of many parts of the system. In the refactoring case, the manager

would expect the entropy to remain high for a limited time then to drop as

the refactoring eases future modifications to the source code. On the other

218

Section 8.5. Extended Code Development Model

✬

✫

✩

✪

Time

Entropy

0.5

1

1.5

2

A

D

C

B

 period 1 period2 period 3 period 4

Figure 8.3: The Evolution of the Entropy of Development

hand, complex source code may cause a consistent rise in entropy over an

extended period of time, till issues causing the rise in entropy/complexity

are addressed and resolved [HH03c].

8.5 Extended Code Development Model

In this section, we extend our BCD model to address some of the char-

acteristics and challenges associated with the evolution of large software

systems. In the BCD model we used a fixed period size to measure the

evolution of entropy. Also we assumed that the number of files in a soft-

ware system remains fixed over time. The Extended Code Development

(ECD) model presented in this section deals with these limitations.

219

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

8.5.1 Evolution Periods

In our BCD model, we presented the idea of using the file modification

probability distribution as a vector to characterize each period in our

study of the evolution of a software system. We used fixed length periods

such as a month, or a year. We now present more sophisticated methods

for breaking up the evolution of a software projects into periods:

Time based periods: This is the simplest technique and it is the one

presented in the BCD model in Section 8.4. The history of devel-

opment is broken into equal length periods based on calendar time

from the start of the project. For example, we break it on a monthly

or bi-monthly basis. A project which has been around for one year,

would have 12 or 6 periods respectively. We chose a 3 month period

in our experiments. The choice of three months was used mainly due

to the fact that it represent a quarter and we believe that a quarter

is a good amount of time to implement a reasonable amount of en-

hancements to a software system. This period creation method was

used by us in [HH03c].

Modification limit based periods: The history of development is bro-

ken into periods based on the number of modifications to files as

recorded in the source control repository. For example, we can use a

modification limit of 500 or 1000 modifications. A project which has

4000 modifications would have 8 or 4 periods respectively. To avoid

the case of breaking an active development week into two different

periods, we attach all modifications that occurred a week after the

end of a previous period to that period. To prevent a period from

spanning a long time when little development may have occurred,

we impose a limit of 3 months on a period even if the modifica-

tion limit was not reached. We chose in our experiments a limit

of 600 modifications. This period creation method was used by us

in [HH03c]. The entropy values depend on the limits chosen to de-

fine the modification or time based periods. This dependency on the

220

Section 8.5. Extended Code Development Model

period size is not a concern since for our purposes we are interested

in the variations in the entropy values over time for similar sized

periods rather than the absolute values.

Burst based periods: Based on studying the development history for

several large software systems, we observed that the modification

process is done in a bursty pattern. Over time, we see periods with

many code modifications then they are followed by short periods of

no or little code modifications. We chose to use that observation

to automatically break up the development history into periods. If

we find a period of a couple of hours where no code modifications

have occurred, we consider all the previous code modifications to be

part of the previous period and we start a new period. This period

creation method is used in our case study presented in Section 8.7

and in [HH03b]. The Burst based period creation method is the most

general method, as we do not need to specify modification counts or

time limits which may differ between projects or over time.

8.5.2 Adaptive System Sizing

As a software system evolves, the number of files in it changes; increas-

ing as new files are added, or split, and decreasing as files are removed,

or merged. We need to adjust our entropy calculations, presented in Sec-

tion 8.4, to deal with the varying number of files in a software system.

To compare the entropy when there is a varying number of files in the

software system, we define H, which we will call Standardized Static

Entropy as:

H(P) =
1

Max Entropy for Distribution
∗ Hn(P)

=
1

log2 n
∗ Hn(P)

= −
1

log2 n
∗

n∑

k=1

(
pk ∗ log2 pk

)
,

221

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

= −
n∑

k=1

(
pk ∗ logn pk

)
,

where pk ≥ 0,∀k ∈ 1, 2,, n and
n∑

k=1
pk = 1. The standardized static

entropy H normalizes Shannon’s entropy Hn, so that 0 ≤ H ≤ 1. We

can now compare the entropy of distributions of different size, such is the

case when we examine the various periods of a software system as new

files are added or removed. It is interesting to note that using standard-

ized static entropy H, we could compare the entropy between different

software projects. For example, we could compare the evolution of two

operating systems side by side or even an operating system and a window

manager.

The Standardized Static Entropy, H, depends on the number of files

in a software system, as it depends on n. For many software system

there exist files that are rarely modified, for example, platform and utility

files [LPR98]. Developers working on the software systems do not need

to worry about tracking changes to these files, as the probability of them

changing is very low. To prevent these files from reducing the standard-

ized entropy measure, we defined a working set standardized entropy H ′

– Adaptive Sizing Entropy. In H ′ instead of dividing by the actual cur-

rent number of files in the software system, we divide by the number of

recently modified files. We define the set of recently modified files using

two different criteria:

Using Time: The set of recently modified files is all files modified in the

preceding x months, including the current month. In our experi-

ments we used 6 months. Our choice of six months as a window

originates from our belief and our experience developing large soft-

ware systems. We found that usually what is hot (relevant) at the

beginning of the year and is the focus of the development tends not

to be a concern towards the end of the year. This is mainly due

to the fact that throughout the earlier part of the year most of the

problems and features related to these files are addressed.

222

Section 8.6. The File Code Development Model (FCD)

Using Previous Periods: The set of recently modified files is all files

modified in the preceding x periods, including the current period.

We don’t show results from using this model in this chapter but in

our experiments we used 6 periods in the past to build the working

set of files.

As we have two different criteria to create a period based on size,

then we have two different results based on the use of a time based

or a modification limit period creation models.

An adaptive sizing entropy H ′ usually produces a higher entropy than

a traditional standardized entropy H, as for most software systems there

exists a large number of files that are rarely modified and would not ex-

ist in the recently modified set. Thus the entropy would be divided by a

smaller number. In some rare cases, the software system may have under-

gone a lot of changes/refactorings and it may happen that the size of the

working set is larger than the actual number of the files that currently

exist in the software system, as many files may have been removed re-

cently as part of a cleanup [HH03c]. In that rare case, an adaptive sizing

entropy H ′ will be larger than a traditional standardized entropy H.

8.6 The File Code Development Model (FCD)

The two previously presented models in Sections 8.4 and 8.5 produce a

value which quantifies the entropy for each period in the development

lifetime of a software system. We have used the ECD model to moni-

tor the evolution of entropy for open source projects in [HH03c] and to

correlate events in the project’s history to spikes or drops in the entropy

measurements.

In this section, we extend the ECD model to deal with assigning a

complexity value to a file. By assigning a complexity value to a file we can

later (see Section 8.7) measure the ability of our entropy models to predict

faults in specific files or subsystems.

223

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

We believe that files that are modified during high complexity/chaotic

development periods, as determined by our ECD Model, will have a higher

tendency to contain faults as the developers performing the changes won’t

have a good grasp of the latest changes to the source code. We define the

History Complexity Metric (HCM) for each file in a software system.

The HCM assigns to a file the effect of the complexity of a period, as

calculated by our ECD model. A file that has been modified during periods

of high complexity/entropy will have a high HCM value to indicate that

the file will tend to be more prone to faults.

Given a period i, with entropy Hi where a set of files, Fi are modified

with a probability pj for each file j ∈ Fi, we define History Complexity

Period Factor (HCPFi) for a file j during period i as:

HCPFi(j) =

{
cij ∗ Hi, j ∈ Fi

0, otherwise

cij is the contribution of entropy for period i (Hi) assigned to file j. We

define three HCPF by varying the definition of cij :

• HCPF 1 with cij = 1: This factor assigns the full complexity value

(Hi) to every modified file in a period (j ∈ Fi). This is the simplest

model.

• HCPF 2 with cij = pj : This factor assigns a percentage of the com-

plexity associated to a period (Hi). The percentage is the probability

of file j being modified during period i.

• HCPF 3 with cij = 1
|Fi|

: This factor distributes evenly the complexity

associated to a period (Hi) between all modified files in that period.

More elaborate definitions of HCPF are possible but this is beyond the

scope of this chapter and our validation process.

Now we define the History Complexity Metric (HCM) for a file j

over a set of evolution periods {a, .., b} as:

224

Section 8.6. The File Code Development Model (FCD)

HCM{a,..,b}(j) =
∑

i∈{a,..,b}

HCPFi(j)

We use this simple HCM definition to indicate that complexity asso-

ciated to a file keeps on increasing over time, as a file is modified. Using

this simple HCM and our three HCPF definitions, we have three HCM

metrics namely: HCM1s, HCM2s, and HCM3s, where the s superscript

indicates the use of the simple HCM formula. In addition, we define a

more elaborate HCM1d, which employs a decay model using the simplest

HCPF (HCPF 1). In HCM1d, earlier modifications would have their con-

tribution to the complexity of the file reduced in an exponential fashion

over time. Similar decay approaches have been used by us in [HH] (see

Chapter 7) and others [GKMS00]:

HCM{a,..,b}(j) =
∑

i∈{a,..,b}

eφ∗(Ti−Current T ime)HCPF 1
i (j),

where Ti is the end time of period i and φ is the decay factor.

We define the HCM for a subsystem S over a set of evolution periods

{a, .., b} as the sum of the HCMs of all the files that are part of that

subsystem:

HCM{a,..,b}(S) =
∑

j∈S

HCM{a,..,b}(j)

If a file were to move from one subsystem to another during a studied

evolution period, the moved file would contribute to the HCM of its old

subsystem till the time it was moved. Then it would contribute to its new

subsystem afterwards.

Using the 4 defined HCMs at the subsystem level (HCM1s, HCM2s,

HCM3s, and HCM1d), we proceed to validate that the HCM metric is

a better predictor of faults in a software system compared to using the

number of prior modifications or prior faults. This validation provides a

concrete substantiation of our code development complexity model.

225

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

8.7 Case Study

In this section we present a quantitative case study which reexamines

prior research results, which make use of historical information to predict

faults, and compares fault predictors based on our entropy models to these

results. We focused on studying three aspects of fault predictors:

• Modifications vs. Faults: This study compares the performance of

prior modifications with the performance of prior faults in predicting

future faults in a software system.

• Modifications vs. Entropy: This study compares the performance

of prior modifications with the performance of our HCM entropy

models in predicting future faults in a software system.

• Faults vs. Entropy: This study compares the performance of prior

faults with the performance of our HCM entropy models in predict-

ing future faults in a software system.

Application Application Start Subsystem Subsystem Prog.

Name Type Date Count Count Lang.

(high level) (low level)

NetBSD OS March 1993 25 235 C

FreeBSD OS June 1993 33 152 C

OpenBSD OS Oct 1995 28 265 C

Postgres DBMS July 1996 16 280 C

KDE Windowing April 1997 32 108 C++

System

Koffice Productivity April 1998 85 158 C++

Suite

Table 8.1: Summary of the Studied Systems

To perform our study we used several open source software systems.

Table 8.1 summarizes the details of the software systems we studied. The

oldest system is over ten years old and the youngest system is five years

226

Section 8.7. Case Study

old. We based our analysis on the first five years in the life of each stud-

ied open source project. We chose to ignore the first year in the source

control repository, due to the special startup nature of code development

during that year as each project initializes its repository. Our case study

employed an approach similar to [GKMS00], in particular:

• We built Statistical Linear Regression (SLR Model) models for every

software system in Table 8.1. These SLR Models used data from the

second and third years from the source control repository to predict

faults in the fourth and fifth years of the software project. In total,

we build six SLR models: 4 models for the HCM entropy metrics,

one for prior faults, and one for prior modifications. All the built

SLR models predicted faults in the fourth and fifth years.

• We then measured the amount of error in each model and compared

it to the other models. In particular, we compared

– The performance of modifications and fault models.

– The performance of modifications and entropy models.

– The performance of faults and entropy models.

• We performed statistical tests to determine that the difference in

error is statistically significant and not due to the natural variability

of the studied data.

In the following subsections, we elaborate on these steps.

8.7.1 Building the Statistical Linear Regression Models

To perform our studies, we built six Statistical Linear Regression (SLR Model)

models for each software system in Table 8.1, namely:

SLR Modelm: uses the number of modifications to predict faults.

SLR Modelf : uses the number of faults to predict faults.

227

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

SLR ModelHCM1s: uses the HCM1s values to predict faults.

SLR ModelHCM2s: uses the HCM2s values to predict faults.

SLR ModelHCM3s: uses the HCM3s values to predict faults.

SLR ModelHCM1d: uses the HCM1d values to predict faults.

The built SLR models have the following form, where y is the depen-

dant variable and x is the predictor/independent variable:

y = β0 + β1x

For each model, y represents the number of faults in a subsystem.

This is determined based on the number of Fault Repairing (FR) modifi-

cations in the fourth and fifth years in the source control repository data.

As for x, it represents the value for the following variables from the data

in the second and third year of the source control repositories:

SLR Modelm: x represents the number of modifications.

SLR Modelf : x represents the number of faults.

SLR ModelHCM1s: x represents the HCM1s for each subsystem.

SLR ModelHCM2s: x represents the HCM2s for each subsystem.

SLR ModelHCM3s: x represents the HCM13s for each subsystem.

SLR ModelHCM1d: x represents the HCM1d for each subsystem.

The HCM models are based on the ECD bursty model that has a one

hour quiet time between bursts. The HCM1d uses a decay factor (φ) of

10, which minimizes the error for the SLR ModelHCM1d. To ensure the

mathematical validity of our SLR models, we actually use the mathemat-

ical log of the x values, instead of x. The use of a log transformation (e.g.

log(number of modifications)) stabilizes the variance in the error for each

228

Section 8.7. Case Study

data point in the SLR model, a requirement for linear regression mod-

els which assume that the error variance is always constant [Wei80]. The

SLR model parameters (β0 and β1) are estimated using the fault data from

the fourth and fifth years. Table 8.2 shows the R2 statistic to indicate the

quality of the fit. The better the fit, the higher the R2 value. A zero R2

indicates that there exits no relationship between the dependant y and

independent variable x. We notice that the C systems have a better fit in

comparison to the C++ systems (KDE and Koffice) for all the SLR models.

The SLR ModelHCM1d has the best fit of all the SLR models for all the

studied systems.

Application R2
f R2

m R2
1s R2

2s R2
3s R2

1d

NetBSD 0.57 0.55 0.54 0.53 0.61 0.71

FreeBSD 0.65 0.48 0.57 0.58 0.59 0.65

OpenBSD 0.45 0.44 0.54 0.55 0.54 0.57

Postgres 0.57 0.36 0.49 0.51 0.60 0.61

KDE 0.31 0.26 0.28 0.29 0.36 0.57

Koffice 0.30 0.27 0.33 0.33 0.27 0.41

Table 8.2: The R2 statistic for all the SLR Models for the Studied Sys-

tems

8.7.2 Measuring and Comparing the Prediction Error for

the SLR Models

Once we estimated β0 and β1 for the SLR Models for every system, we

measured the amount of prediction error. Mathematically for every model

with β0 and β1 as parameters, we get a ŷi for every xi, where ŷi is the

number of expected faults in the subsystem in the fourth and fifth years:

ŷi = β0 + β1xi

229

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

We define the absolute prediction error as

ei =| ŷi − yi |

where yi is the actual number of faults that occurred in subsystem i dur-

ing the fourth and fifth years.

Thus the total prediction error of an SLR model is:

E =
n∑

i=1

e2
i ,

for all n subsystems in the software system under study. To achieve

the goals of our study, we need to compare the prediction errors for the

SLR models. For example, to determine if prior modifications are better

than prior faults in predicting faults, we need to compare Em with Ef ,

where Em and Ef are the total prediction error for the SLR Modelm and

SLR Modelf respectively.

8.7.3 Determining the Statistical Significance for The

Difference in Prediction Error between Models

Unfortunately, simply comparing the total prediction errors (e.g. Em and

Ef) is not sufficient. Instead we need to ensure that the difference in

the prediction error is statistically significant and not due to the natural

variance of the data.

To perform the statistical test of significance between two SLR Models

(SLR ModelA and SLR ModelB), we use a statistical paired T -test and

formulate the following test hypotheses:

H0 : µ(eA,i − eB,i) = 0

HA : µ(eA,i − eB,i) 6= 0,

where µ(eA,i − eB,i) is the population mean of the difference between the

absolute error of each observation pair. As the data size is large enough

230

Section 8.7. Case Study

(the smallest software system has over 80 subsystems) and the T -test

is robust for non-normally distributed data, we can safely use a T -test.

Alternatively, a non-parameterized test such as a U -test can be used for

smaller software systems [MW47].

If the null hypothesis H0 holds then the difference in prediction is not

significant. Thus we need H0 to be rejected, with a high probability.

8.7.4 Comparing Models

In this subsection, we conduct our study to determine the quality of the

prediction of the built models. We compare the prediction error between

several of the SLR Models while ensuring that the difference in predic-

tion error is statistically significant using the definitions in the earlier

subsections.

8.7.4.1 Modifications vs. Faults

Application Em − Ef (%) P (H0 holds)

NetBSD +11.7 (+04%) 0.67

FreeBSD +71.2 (+48%) 0.00

OpenBSD +03.7 (+02%) 0.84

Postgres +47.2 (+49%) 0.02

KDE +26.3 (+07%) 0.32

Koffice +26.3 (+04%) 0.51

Table 8.3: The Difference of Error Prediction and T -Test Results for the

SLR Modelm and SLR Modelf for the Studied Systems

We are interested in determining if prior modifications are better than

prior faults in predicting faults; therefore, we compare the total predic-

tion error for both the SLR Modelm and SLR Modelf . The second column

in Table 8.3 shows the percentage of difference in prediction error when

SLR Modelm is used instead of SLR Modelf . The results indicate that

231

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

the number of prior faults is a better predictor of faults than the number

of prior modifications. The third column shows the results for the T -test

which determines if the difference is statistically significant or if it is due

to the natural variability of the data. The T -test on paired observations

of absolute error was significant at better than 0.02 for the FreeBSD and

Postgres systems (marked in grey in Table 8.3). For these two systems,

we are over 98% confident that the increase in prediction error between

SLR Modelf and SLR Modelm is statistically significant. Whereas for the

other systems, the increase is not statistically significant indicating the

performance of both models (prior faults or prior modifications) is statis-

tically similar.

These results indicate that prior faults should be used to predict faults

instead of using prior modifications. Using a predictor based on prior

modifications may cause a 48.5% rise in prediction error when compared

to a prior faults predictor.

8.7.4.2 Modifications vs. Entropy

Application EHCM3s − Em (%) P (H0 holds) EHCM1d − Em (%) P (H0 holds)

NetBSD -39.8 (-14%) 0.03 -106.5 (-36%) 0.00

FreeBSD -47.4 (-22%) 0.02 -72.0 (-33%) 0.00

OpenBSD -40.4 (-18%) 0.01 -53.8 (-23%) 0.00

Postgres -52.7 (-37%) 0.04 -56.9 (-40%) 0.03

KDE -52.1 (-13%) 0.01 -165.2 (-42%) 0.00

Koffice +03.3 (+01%) 0.83 -69.9 (-18%) 0.01

Table 8.4: The Difference of Error Prediction and T -Test Results for the

SLR Modelm, SLR ModelHCM3s, and SLR ModelHCM1d for the Studied

Systems

232

Section 8.7. Case Study

Given that our entropy models are derived from the number of mod-

ifications to the source code, we are interested in comparing the perfor-

mance of a predictor based on prior modifications with predictors based on

our HCM entropy models. We chose the simple SLR ModelHCM3s and the

decay SLR ModelHCM1d to compare with the SLR Modelm. Both HCM

models were the best two performing HCM models based on the R2 statis-

tic in Table 8.2. The second and fourth columns in Table 8.4 shows the

percentage of difference in prediction error when the SLR ModelHCM3s, or

the SLR ModelHCM1d are used instead of SLR Modelm respectively. The

third and fifth columns in Table 8.4 show the results for the T -test which

determines if the difference in prediction error is statistically significant

or if it is due to the natural variability of the data. Greyed cells in Ta-

ble 8.4 indicate that we are 95% confident that the decrease in prediction

error for SLR ModelHCM3s, or that the SLR ModelHCM1d is statistically

significant except for the Koffice system. For the Koffice system, the dif-

ference in prediction error is not statistically significant and is likely due

to the normal variability of the data.

These results indicate that both HCM (simple and decay) based model

are statistically likely to always outperform prior modifications in pre-

dicting future faults. The decrease in prediction error using an HCM

model ranges between 13% to 40% when compared to the prediction error

of a model based on prior modifications.

8.7.4.3 Faults vs. Entropy

Section 8.7.4.1 showed that the number of prior faults is a better predictor

of future faults than the number of modifications. Section 8.7.4.2 showed

that models based on our entropy metrics are better predictors of faults

than the number of modifications. We would like to compare the perfor-

mance of predictors based on our entropy metric models (HCM models)

with a predictor based on the number of prior faults. We chose the sim-

ple SLR ModelHCM3s and the decay SLR ModelHCM1d to compare with

233

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

Application EHCM3s − Ef (%) P (H0 holds) EHCM1d − Ef (%) P (H0 holds)

NetBSD -28.14 (-10%) 0.26 -94.84 (-34%) 0.00

FreeBSD +23.81 (+16%) 0.30 -00.79 (-01%) 0.97

OpenBSD -36.59 (-16%) 0.02 -50.05 (-22%) 0.01

Postgres -05.53 (-06%) 0.71 -09.71 (-10%) 0.55

KDE -25.72 (-07%) 0.32 -138.87 (-38%) 0.01

Koffice +19.20 (+05%) 0.34 -54.07 (-15%) 0.04

Table 8.5: The Difference of Error Prediction and T -Test Results for the

SLR Modelf , SLR ModelHCM3s, and SLR ModelHCM1d for the Studied

Systems

the SLR Modelf model. Both HCM models were the best two perform-

ing HCM models based on the R2 statistic in Table 8.2. The second and

fourth columns in Table 8.5 shows the percentage of difference in predic-

tion error when the SLR ModelHCM3s or the SLR ModelHCM1d are used

instead of SLR Modelf respectively. The third and fifth columns in Ta-

ble 8.5 show the results for the T -test which determines if the difference

in prediction error is statistically significant or if it is due to the natu-

ral variability of the data. Greyed cells in Table 8.5 indicate that the

difference between prediction errors is statistically significant. For the

SLR ModelHCM3s model, only the cell for the OpenBSD system is grey

indicating that the improvement in prediction error for this system is sta-

tistically significant. These results indicate that the SLR ModelHCM3s

performs as good as the number of prior faults for all studied systems

except for the OpenBSD where it outperforms the prior faults predic-

tor by 16%. For the SLR ModelHCM1d, all cells except the ones corre-

sponding to FreeBSD and Postgres are grey. These results indicate that

SLR ModelHCM1d outperforms the number of prior faults in predicting

future faults except for the FreeBSD and Postgres systems where it per-

forms as good as the prior faults.

234

Section 8.7. Case Study

These results indicate that models based on our entropy metrics are as

good as (or even better) predictors of faults than prior faults for most

studied software systems. The decrease in prediction error using an HCM

model ranges between 15% to 38% when compared to the prediction error

of a model based on prior faults.

In this subsection, we have shown that:

• The number of prior faults is a better predictor of future faults than

the number of prior modifications.

• The HCM based predictors are better predictors of future faults in

large software systems when compared with predictors based on

prior modifications or prior faults.

8.7.5 Threats to Validity

Our case study has produced statistically significant results showing that

a complex code development process negatively affects the software sys-

tem by causing the appearance of faults. We used the FCD model to quan-

tify complexity in the code development process. We used the count of

Fault Repairing (FR) modifications as an indicator of the quality of the

software system. However, we must carefully consider our results before

applying our findings elsewhere. In this subsection, we present a critical

analysis of our findings.

Empirical research studies should be evaluated to determine whether

they were able to measure what they were designed to assess. Therefore

we need to determine if our findings are sufficient to support our conjec-

ture about the code development process and its negative effect on the

software system. Four types of tests are used [Yin94]: construct validity,

internal validity, external validity, and reliability.

235

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

8.7.5.1 Construct Validity

Construct validity is concerned to the meaningfulness of the measure-

ments – Do the measurements quantify what we want them to? The main

conjecture of our work is that a complex code development process neg-

atively affects the software system by causing faults to appear in it. We

used as a dependant variable, the number of Fault Repairing (FR) mod-

ifications as recorded by the source control system. However, we do not

consider bugs that may have been found but never fixed, as we used the

bug fixes as recorded by the source control system instead of using the

reported bug counts stored in a defect management system. There may

exist subsystems in which a large number of bugs have been discovered

yet they were never fixed during our period of analysis. We believe the

chance of this occurring is low nevertheless it is a possibility. Further-

more, the number of fixed bugs are likely to be correlated to the number

of discovered bugs. Alternatively, we could have used data from defect

management systems. Unfortunately, such defect tracking systems do

not exist for most of the studied software systems.

8.7.5.2 Internal Validity

Internal validity deals with the concern that there may be other plausible

rival hypotheses to explain our findings – Can we show that there is a

cause and effect relation between the complexity of the code development

process and the occurrence of faults, or are there other possible explana-

tions? Demonstrating causality requires more than simply showing sta-

tistically significance relations, we need to show temporal precedence as

well. We need to show that the complex code development process caused

the appearance of faults in the software system. Unfortunately, this is a

rather hard task and may be difficult to demonstrate, as we believe the

complexity in the code development process interact with all the other

project facets in a feedback loop as shown in Figure 8.1. A complex code

base requires complex development process to maintain it and a complex

236

Section 8.7. Case Study

development process produces a complex code base. Furthermore, a com-

plex set of requirements may cause the development process to become

process which in turn may cause the appearance of faults in the software

system. Therefore to show true casuality we would need to build a richer

and detailed theory which can measure the effect of the feedback loop on

the interacting facets in a software project. We believe this would be a

very challenging task and may require us to perform a controlled exper-

iment with subjects but then the results of such experiment would have

a much weaker external validity (i.e. would be hard to generalize). Our

results do not show a casuality relation but intuitively we believe that a

complex code development process negatively affects the software system.

8.7.5.3 External Validity

External validity tackles the issue of the generalization of the results of

our study – Can we generalize our results to other software systems and

projects? We believe that the external validity of our results is reasonably

high.

The use of the detailed historical records stored in source control sys-

tems ensures that the studied code development process is a realistic

process which involves experienced developers working on large software

systems over long periods of time. Alternatively, we could have performed

controlled experiments which would run for limited time. We would not

be able to confidently simulate realistic change patterns. In that case we

would not be able to have individuals with such experience and knowledge

performing simulated modifications to the source code.

Furthermore, we examined a large number of software systems. Each

of these software systems is developed by a large number of developers,

over several years, using a variety of modern programming languages (C

and C++).

Although we examined a large number of software systems, the sys-

tems used in our study are all open source systems which have several

237

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

interesting characteristics that may not hold for other commercial sys-

tems. Some of the characteristics are: the large size of the projects’ code

base, the large size of the development team, the distribution of the de-

velopment team around the world (distributed development – with team

member’s rarely meeting in person and relying on electronic communica-

tions such as emails and newsgroups instead of in-person meetings such

as water cooler and lunch time conversations), and the self selective na-

ture of the team (i.e. developers volunteer to work on the project and have

full freedom to choose which areas to contribute to). All these character-

istics contribute to limiting the generalization of our results. We believe

that our results are generalizable to large open source systems with an

extended network of developers spread out throughout the world. Our

results are likely to generalize as well to commercial software systems

which are developed by teams distributed around the world, and proba-

bly even to commercial software systems developed in a single location.

We need to study a few commercial systems, before we can confidently

generalize our results.

8.7.5.4 Reliability

Reliability refers to the degree to which someone analyzing the data would

reach the same conclusions/results. We believe that the reliability of our

study is high. The data used in our study is derived from source control

systems. Such systems are used by most large software systems which

makes it possible for others to easily run the same experiments on other

data sets to reproduce our findings.

The gathering of the data and its classification has been carefully doc-

umented by us and explained. In particular, we used an automatic lexical

based technique, as described in Section 8.2, to classify modifications to

the source code as fault repairs, feature enhancements, or general modifi-

cations. One threat to validity is the reliability of such an automated clas-

sification and the probability of others performing similar classifications.

Alternatively, a manual classification of all modifications to the source

238

Section 8.8. Related Work

code may increase the reliability of our study when conducted by others.

Unfortunately, such manual classification is neither possible nor feasible

for large long lived software systems. Furthermore, we would have to deal

with the consistency of classifications done by different individuals.

Results by Mockus and Votta indicate that automated classifications

of changes using a lexical approach show moderate agreement with man-

ual classifications done by the developers who performed these changes

for large commercial telephony systems [MV00]. In addition, a study

by us shows that our automated classifications agree over 70% of the

time with classifications done manually by professional software devel-

opers [HH04d] (see Chapter 4).

8.8 Related Work

Barry et al. use a volatility ranking system and a time series analysis to

identify evolution patterns in a retail software system based on the source

modification records [BKS03]. For example, Eick et al. studied the concept

of code decay and used the modification history to create visualization of

the change history of a project [EGK+01, ELL+92]. Graves et al. showed

that the number of modifications to a file is a good predictor to the fault

potential of the file [GKMS00]. Leszak et al. showed that that there is a

significant correlation between the percentage of change in reused code

and the number of defects found in those changed components [LPS02].

Mockus et al. uses source modification records to assist in predicting

the development efforts in large software systems for AT&T [MWZ03].

Previous research has focused primarily on studying the source code repos-

itories of commercial software systems for predicting faults or required

effort. We believe that:

1. This focus on commercial source systems may limit the applicability

of the results. The results may be dependent on the studied system

or organization as only a single system is used in the validation.

239

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

2. By focusing on open source systems we are able to study a much

larger set of systems to validate our findings and are more confident

about our results.

We hope in future work to validate our findings against large commercial

software systems to determine if our approach holds for such systems as

well.

Whereas our model quantifies the complexity of the development pro-

cess as calculated from the source code modification statistics, previous

studies [AEH01, BCLV01, Cha95, Cha02, Har92, Wey88] quantify the

complexity of the source code. For example, in previous models the distri-

bution of special tokens in the source code or the control flow structure of

the source are used to calculate the entropy. Our work aims to compute a

measure of chaos in the development process instead of just focusing on

computing the complexity of the source code. We conjecture that detect-

ing chaos in the code development process will serve as an early warning

measure to help prevent the occurrence of faults in the software system.

Work by Lehman et al. [Leh80, LB85, LRW+97] and Godfrey

et al. [Mic00] focus on studying the evolution of size (number of modules)

and LOC between releases of software systems. Instead we focus on mea-

suring the entropy/chaos in the development process. In our presented

case studies, we quantified the idea of complexity/entropy in the devel-

opment process using our models and have shown that chaos is a good

indicator of faults due to increase in complexity. Whereas our presented

models study the evolution of complexity over time, Lehman advocates

studying the evolution of software over releases/versions. Our models

could be extended to use releases as a unit of observation instead of time.

This would permit us to compare our findings to Lehman’s previous find-

ings and laws of evolution.

Outside of the software engineering domain, the measure of entropy

has been used to improve the performance of Just In Time compilers and

profilers [SY99]. It has been used for edge detection and image searching

240

Section 8.9. Conclusion

in large image database [DV00]. Also, it has been used for text classifica-

tion and several text based indexing techniques [DMK].

8.9 Conclusion

In this chapter, we presented a new perspective on the complexity of soft-

ware. We examined the complexity and chaos associated with the devel-

opment process. We view the development process as a system with an

unknown output, in other words we are uncertain about the files that

will be modified by the process over time. Using the ideas of uncertainty

and entropy from information theory, we measure how much information

exists in the development process. We hypothesize that too much infor-

mation will require more effort for project members to keep track of the

development process over time. As the entropy of the development pro-

cess increases, developers are likely to lose their grasp of the state of the

software system and their shared image of the software system is likely

to deteriorate.

In particular, we conjecture that: A chaotic/complex code development

process negatively affects its outcome, the software system, such as the oc-

currence of faults. We presented models to quantify the complexity in a

software system over time based on the source code modification history

as stored in the source control repository. Furthermore, we performed

studies to gain a better understanding of the proposed models and to val-

idate mathematically our conjecture. We used data derived from six large

open source projects in our studies. Our case study has showed that the

number of prior faults is a better predictor of future faults than the num-

ber of prior modifications. Also we showed that predictors based on our

chaos models are better predictors of future faults in large software sys-

tems when compared with predictors based on prior modifications or prior

faults.

The studies presented in this chapter may have a number of potential

limitations as outlined in Section 8.7. Nevertheless, this chapter makes

241

Chapter 8. Code Development Chaos: a New Perspective on Software Complexity

a number of important contributions. It showcases the benefits of us-

ing source control systems to monitor the evolution of software system

and plan for the success of the project. It is also the first work to define

the idea of code development chaos using a sound mathematical concept

(Shannon’s Entropy) and to show the effects of change patterns on the

quality of large software systems.

Brooks warned of the effect of the program maintenance process on

the evolution of a software project:

“Program maintenance is an entropy-increasing process, and

even its most skillful execution only delays the subsidence of the

system into unfixable obsolescence.” Fred Brooks, The Mythical

Man-Month [Bro74].

We believe that such obsolescence can be avoided and that software

systems can be maintained and evolved for many years as long as anti-

regressive activities, such as refactorings, are performed as suggested by

Lehman [Leh80]. A good and up to date knowledge of the state of com-

plexity in the software project is needed to perform such activities. The

ideas and models for code development process entropy presented herein

can offer such assistance. Using our entropy measurements, managers

can monitor with great detail the evolution of complexity in their soft-

ware project and thereby control it. Managers can also use our entropy

measures as early warnings of potential faults occurring throughout their

source code.

242

Part IV

Conclusion

243

CHAPTER 9
Contributions and Future

Work

Data in software repositories, such as source control repositories, rep-

resents a valuable resource that is used by practitioners to maintain

and manage software projects. We have presented techniques and ap-

proaches to transform software repositories from static record keeping

repositories to active repositories used by software practitioners to pre-

dict and plan various aspects of their project. We overview our findings

and discuss opportunities for extending our work.

AFew years ago access to the source code of large applications was

usually limited. In many cases, companies were reluctant to pro-

vide software engineering researchers access to their source code. As the

open source movement gained popularity, researchers were finally able

to acquire the source code for several open source projects. Researchers

could finally apply their research ideas and verify their findings using

large non-trivial software systems (e.g. [HGH01]).

As these open source systems evolved, they left behind them a huge

trail of historical information which is recorded in a variety of repositories

245

Chapter 9. Contributions and Future Work

such as source control systems, bug tracking systems, and mailing lists.

Whereas access to such historical information for commercial systems is

usually very limited, access to such information for open source systems is

freely available and open. This historical information offers us the chance

to understand better the evolution of software systems and to study the

benefits of integration such historical information in traditional software

engineering research and industrial practices.

Unfortunately, the process of acquiring such information in a conve-

nient format is challenging, since such repositories are mainly designed

as record keeping repositories. Also the large amount of data stored in

these repositories complicates the data recovery process. The complexity

of recovering this historical information has hindered other researchers

from experimenting with it. The engineering contributions of this the-

sis to the area of software engineering is the proposal and development of

evolutionary extractors that could recover such historical information and

represent it in an easy to use format. Easy access to such rich and detailed

data will encourage interested researchers and practitioners to explore

the potential of historical project information and will assist researchers

in gaining a better understanding of software development practises and

evolutionary patterns [Per02].

The conceptual contribution of our work is the development of tech-

niques and approaches that make use of this recovered historical informa-

tion to augment traditional software engineering methods. For example,

we demonstrated that attaching historical information to the dependency

graph (Source Sticky Notes), could assist in architecture understanding

and investigation techniques along with well established techniques such

as the reflexion framework. We hope that our methods and techniques

will encourage other researchers to experiment with enriching their cur-

rent research methods and techniques with historical information. More-

over, we foresee that our results will not only incite practitioners to con-

sider using such information in their work, but will encourage practi-

tioners to offer researchers access to historical repositories for industrial

projects.

246

Section 9.1. Thesis Contributions and Findings

In the following section, we summarize our contributions and findings.

9.1 Thesis Contributions and Findings

1. Evolutionary Software Extractors: We introduced the idea of

an evolutionary extractor and advocated the need for such extrac-

tors to study and mine the evolutionary history of software projects

from historical repositories such as source control repositories. We

presented the implementation challenges and techniques for an evo-

lutionary code extractor for the C programming language (C-REX).

2. Source Sticky Notes: We proposed the benefits of attaching his-

torical information to each dependency in a software system. We

showed that these notes are useful in speeding up and automating

the software architecture understanding process.

3. Development Replay Approach: We argued for using historical

information to assess the expected and claimed benefits of adopting

new software maintenance tools and strategies. The Development

Replay (DR) approach permitted us to investigate the effectiveness

of a large number (over 20) of not-yet-developed software tools with

no cost associated with conducting long term case studies or even

building such tools. Our results show that a simple tool that uses

historical co-change information combined with code layout (same

file) information is likely to outperform tools that are based solely on

either historical co-change information, code layout, or code struc-

ture information.

4. Top Ten List: We introduced the notion that not all bugs are cre-

ated equal, instead managers are more concerned about bugs that

are likely to occur in the near future versus faulty code that is not

likely to have fault appear in it for some time. We proposed metrics

and models to measure traditional bug prediction techniques using

such notion and ideas. If we drew an analogy to bug prediction and

247

Chapter 9. Contributions and Future Work

rain prediction, our prediction models focus on predicting the areas

that are most likely to rain in the next few days. The predicted rain

areas may be areas that are known to be dry areas (i.e. not fault

prone) or may be areas which aren’t known to have large precipita-

tion values (i.e low predicted faults). We believe that the Top list

approach holds a lot of promise and value for software practitioners,

it provides a simple and accurate technique to assist them in allo-

cating resources as they maintain large evolving software systems.

5. Software Development Chaos: We conjectured that a chaotic

or complex development process negatively affects its outcome, the

software system. We proposed a complexity metric that is based

on the process followed by software developers to produce the code

instead of on the code or the requirements. We showed through a

case study that the number of prior faults is a better predictor of fu-

ture faults than the number of prior modifications. Also we showed

that predictors based on our development chaos models are better at

predicting future faults in large open source software systems than

predictors based on prior modifications or prior faults.

All of our contributions were validated through several case studies

using a large number of open source software systems and through a sur-

vey of professional software developers.

The following section lists suggestions for possible extensions of the

research work presented in this thesis.

9.2 Suggestions for Extending this Research

9.2.1 Evolutionary Extractors for C++ or Java

C-REX is an evolutionary extractor for the C programming language. We

chose to develop an extractor for the C programming language, since we

had access to a large number of repositories for systems written in C. It

248

Section 9.2. Suggestions for Extending this Research

would be interesting to implement evolutionary extractors for other pro-

gramming languages, for example J-REX for the Java language or Cpp-

REX for the C++ language. Such extractors could recover the evolution-

ary history of their software systems. We can then study and compare the

evolution history of systems written in different programming languages.

9.2.2 Integrating Source Sticky Notes into Graphical

Browsers

Software Exploration tools such as Rigi [Hau88], PBS [FHK+97], and

Shrimp [WS00] assist software developers in understanding the struc-

ture of their software system. The implementation of Source Sticky Notes

presented in this thesis is text based. We believe that integrating these

notes with a graphical interface in a software exploration tool would be

beneficial. This integration would permit developers to simply right click

on an unexpected dependency and a number of relevant Source Sticky

Notes would pop up in a floating window.

9.2.3 Better Change Propagation Techniques and More

Realistic Evaluations

To demonstrate the feasibility and usefulness of the Development Replay

(DR) approach, we presented an example of using it to compare several

change propagation tools. We believe that the performance of the pre-

sented tools could be improved. Luckily, such improvements could be eas-

ily validated using the DR approach.

In our work, we used the concepts of precision and recall to compare

the performance of several tools. A high recall would prevent the occur-

rence of bugs due to missed propagations. A high precision would save

the developer’s time since she/he will not need to examine incorrect sug-

gestions. It is not clear what is the most appropriate balance that would

encourage developers to adopt such tools. Would developers want a tool

249

Chapter 9. Contributions and Future Work

that is likely to give a large number of incorrect suggestions (low preci-

sion) but that is not likely to miss any of the entities that should change

(high recall)? Or would developers prefer a more conservative tool that

would suggest few correct suggestions (high precision) but miss other rel-

evant entities (low recall)? The answers to such questions are likely to

be dependant on the experience of a developer and their knowledge of

the software system being changed. Nevertheless, such answers should

be derived through case studies and interviews of software developers of

varying experience.

9.2.4 Commercial Software Systems

Applying many of the techniques and ideas presented in this thesis on

commercial software systems would let us determine if the presented find-

ings and results hold for such systems or if they are specific to open source

systems.

The following section provides some insight into new research oppor-

tunities that arise from our work.

9.3 Opportunities for Future Research

9.3.1 Grokking Through Time

Grok is a relational calculator which has been used for software architec-

ture recovery [BHB99a, HH02]. Grok takes as input facts (entities, rela-

tions and attributes) about the software system. Using the Grok language

one can write scripts to manipulate these facts and re-emit them. The

Grok language is based on Tarski’s binary relational algebra. It would be

interesting to extend Grok to perform analysis across versions by borrow-

ing concepts from temporal logic.

The work presented in this thesis is done using a variety of scripts

and programs written in the Perl programming language. Using a Time

250

Section 9.3. Opportunities for Future Research

extended Grok (TGrok) language would permit researchers and users of

the mined data to express their queries using high level mathematical

constructs. More elaborate formal analysis of the mined historical data

would be possible.

9.3.2 Visualizing the Recovered Data from Software

Repositories

Visualization approaches may reveal interesting patterns about how soft-

ware systems evolve or change. It would be interesting to develop visu-

alization techniques that could cope with the large amount of historical

data. Evolution Spectrographs is an example of a visualization technique

that has been used to study and explore data recovered using C-REX and

other evolutionary extractors [WSHH04, WHH04].

9.3.3 Recovery Of Aspects and Validation of Recovered

Aspects

Aspect-oriented techniques aim to improve the handling of crosscutting

concerns, within large software systems. The concerns are explicitly cap-

tured in well-modularized entities, called aspects. The hope is that such

modularization will ease the maintainability and understandability of a

software system.

The co-change historical information could be used to to locate parts

of the source code that are likely to change together and which represent

similar concerns or aspects. This information could be used to propose a

restructuring of the source code. The expected improvement due to re-

structuring could be measured by using the DR approach and the change

history of the project.

251

Chapter 9. Contributions and Future Work

9.3.4 Change Distance and Design Quality

A good design is likely to have localized changes. We would like to mea-

sure the locality of changes. For example, the most local change would

require the change of a single code entity (such as a function or a class) to

implement a specific feature. If two entities are changed, the closer they

are in the software dependency graph, the better the design is likely to

be. In short, we would like to determine the minimum number of enti-

ties (nodes) and dependencies (edges) needed to connect all the entities

changed to implement a specific feature. This aforementioned problem is

a well known graph theory problem called the Steiner tree problem — the

minimum interconnection problem [HRW92]. The solution to the Steiner

problem is unfortunately NP complete but new heuristic algorithm are

able to give approximate solutions.

It would be interesting to measure the change distance by approxi-

mating the Steiner Tree for the changed entities. We could as well mon-

itor variations to the change distance throughout the lifetime of several

software projects using the DR approach.

9.3.5 Discovery of Short Term and Long Term Evolution

Patterns

Work by Lehman et al. [LRW+97] has led to the development of the laws of

software evolution which are long term observations about the evolution

patterns followed by software systems. The evolution process is studied

using a limited number of data points which represent the releases of a

software system. Such aggregation causes the appearance of jumps in

the values of the data due to the discrete nature of the data. For example,

huge jumps in the LOCs of a system show up from one release to the

next, as releases may be a couple of months apart. Furthermore, the time

aggregation prevents the discovery of short term (release level) patterns.

We would like to use the detailed information produced by C-REX to

discover short term patterns and explain long term patterns. Further-

252

Section 9.3. Opportunities for Future Research

more, we are interested in discovering evolutionary patterns along a num-

ber of characteristics instead of simply focusing on simple characteristics

such as LOCs. For example, we could study the performance of change

propagation tools over time and between releases. A change propagation

tool which is based on historical co-change information is likely to per-

form well during periods of maintenance but its performance may suffer

when new features are being developed.

9.3.6 Evolution of Clones

Using the change data produced by C-REX, we could examine the evo-

lution of clones. In particular, we could study how clones appear and if

they ever disappear. We could also examine the history of co-change for

clones: Are clones likely to be changed together or in close proximity of

each other?

9.3.7 Standardization of Output

We hope that the results shown in this thesis will encourage other re-

searchers to consider adopting historical information to enhance their

current techniques and approaches. To permit such adoption, evolution-

ary extractors need to be available for others to use. Furthermore, tools

that make use of information generated by such extractor along with the

extractors themselves should use standard formats to ease the exchange

of data among tools and researchers.

9.3.8 Development Decision Support (DDS) Appliances

The work presented in this thesis has shown the value of software repos-

itories in assisting practitioners in their activities. Unfortunately, com-

panies are always reluctant to implement procedures and ideas that may

assist their development teams in the future. They are more concerned

253

Chapter 9. Contributions and Future Work

with the short term impact on their development cycle. Such mental-

ity explains the quick adoption of RAD (Rapid Application Development)

tools and hinders the adoption of many research results. In [Has01], we

commented that until companies begin planning beyond the next release

and adopt more mature development cycles which need better planning

and forecasting tools, the adoption of research tools in a commercial set-

ting is likely to be minimal.

Nevertheless, we believe that as the complexity of software systems

increases, the need for research tools will become eminent. Moreover,

we believe that one way to ease the adoption of results based on min-

ing software repositories is the creation of Development Decision Support

(DDS) Appliances. Such appliances are dedicated machines (similar to

intranet search appliances) which do not require the intervention of the

practitioners to maintain and which are very easy to setup. These appli-

ances are configured to continuously mine all available repositories in a

software development organization, and to provide different results and

charts that could support practitioners in their activities. Practitioners

would consult such appliances using a web browser, therefore requiring

no client side software installation.

Based on our survey of practitioners, it seems that many of them al-

ready use, in an ad-hoc fashion, information stored in software reposito-

ries such as source control and bug repositories. We believe that DDS

appliances are likely to be adopted by practitioners over time if they im-

plement the appropriate tools and methods that would assist practition-

ers in their activities.

9.3.9 Mining Other Repositories and Creating New

Repositories

The work presented in this thesis highlighted some of the many benefits

of software repositories. We focused on source control repositories as an

example of a software repository. Nevertheless, other software reposito-

ries such as mailing lists could be explored and different algorithm could

254

Section 9.4. Closing Remarks

be developed to showcase their benefits as well. Moreover, some of our

findings could be used to develop new repositories or enriching current

repositories. For example, it would be useful to ask developers to indicate

the type of a change (feature addition, bug fix, etc.) instead of having to

use a lexical approach based on heuristics.

9.3.10 Migrating Source Control Repositories

The historical information about a software system is critical for its fu-

ture. We have shown that such information could assist developers in

understanding its structure and in predicting faults. Unfortunately, most

software projects use several source control systems throughout their life-

time. Projects may start with simple source control systems such as CVS,

progress to other systems such as Perforce, then eventually adopt very

elaborate enterprise level source control systems such as ClearCase. Most

projects tend to abandon their old history when moving to a new source

control system. We believe that such historical information must be mi-

grated into the new source control system to avoid its loss. Investigating

tools and techniques to automate this migration would be valuable and

beneficial to practitioners.

9.4 Closing Remarks

The field of software repositories mining is maturing thanks to the rich,

extensive, and easily accessible software repositories available from open

source projects. We believe the field is likely to take a central role in

supporting software development practices and software engineering re-

search.

Our work contributes to the field of software engineering by helping

to show that software repositories contain a wealth of useful information

that could be easily mined and integrated with several software devel-

opment practices to assist developers and managers. We hope this work

255

Chapter 9. Contributions and Future Work

will encourage academic researchers to explore integrating historical in-

formation in their analysis, and will entice practitioners to consider the

potential of their repositories which are currently mainly used as static

record keeping repositories.

256

Bibliography

[AA55] Stuart AA. A test for Homogeneity of the Marginal Distri-

butions in a Two-way Classification. Biometrika, 42:412–

416, 1955. 91

[AB93] R.S. Arnold and S.A. Bohner. Impact analysis - toward

a framework for comparison. In Proceedings of the 13th

International Conference on Software Maintenance, pages

292–301, Montral, Quebec, Canada, 1993. 166

[ABGM99] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using ver-

sion control data to evaluate the effectiveness of software

tools. In Proceedings of the 21st International Conference

on Software Engineering, pages 324–333, Los Angeles,

CA, May 1999. 40, 137

[Ada84] E. Adams. Optimizing preventive service of software

products. IBM Journal for Research and Development,

28(1):3–14, 1984. 199

[AE70] Maxwell AE. Comparing the Classification of Subjects by

Two Independent Judges. British Journal of Psychiatry,

116:651–655, 1970. 91

[AEH01] S.K. Abd-El-Hafiz. Entropies as measures of software in-

formation. In Proceedings of the 17th International Con-

ference on Software Maintenance, pages 110–117, Flo-

rence, Italy, 2001. 240

257

BIBLIOGRAPHY

[AL98] Nicolas Anquetil and Timothy Lethbridge. Extracting

concepts from file names: A new file clustering criterion.

In Proceedings of the 20th International Conference on

Software Engineering, pages 84–93, Kyoto, Japan, Apr

1998. 141

[AP01] Annie I. Anton and Colin Potts. Functional paleontology:

System evolution as the user sees it. In Proceedings of the

23rd International Conference on Software Engineering,

Toronto, Canada, May 2001. 22

[AT98] M. N. Armstrong and C. Trudeau. Evaluating architec-

tural extractors. In Proceedings of the 5th Working Con-

ference on Reverse Engineering, pages 30–39, Honolulu,

HI, October 1998. 35

[BA96] S.A. Bohner and R.S. Arnold. Software Change Impact

Analysis. IEEE Computer Soc. Press, 1996. 166

[BCLV01] A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio.

Evaluating software degradation through entropy. In

Proceedings of the 7th International Software Metrics

Symposium, pages 210–219, 2001. 240

[BD00] B. Bruegge and A. Dutoit. Object-Oriented Software En-

gineering. Prentice Hall, 2000. 129

[Bel77] N. J. Belkin. The problem of matching in information

retrieval. In Theory and Application of Information Re-

search, The Second International Research Forum in In-

formation Science, pages 187–197, Copenhagen, Nether-

lands, 1977. 147

[BG02] Robert O. Briggs and Paul Gruenbacher. EasyWinWin:

Managing Complexity in Requirements Negotiation with

GSS. In Proceedings of the 35th Hawaii International

Conference on System Sciences, Hawaii, USA, 2002. 207

258

[BH99] Ivan T. Bowman and Richard C. Holt. Reconstructing

Ownership Architectures To Help Understand Software

Systems. In Proceedings of the 7th International Work-

shop on Program Comprehension, Pittsburgh, Pennsylva-

nia, USA, May 1999. 141, 161

[BHB99a] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster.

Linux as a Case Study: Its Extracted Software Architec-

ture. In Proceedings of the 21st International Conference

on Software Engineering, Los Angeles, USA, May 1999.

xx, 107, 108, 112, 250

[BHB99b] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster.

Reconstructing Ownership Architectures To Help Under-

stand Software Systems. In Proceedings of the 7th In-

ternational Workshop on Program Comprehension, Pitts-

burgh, USA, May 1999. 207

[BJR00] Lars Bratthall, Enrico Johansson, and Bjorn Regnell. Is a

design rationale vital when predicting change impact? a

controlled experiment on software architecture evolution.

In Proceedings of the International Conference on Product

Focused Software Process Improvement, Oulu, Finland,

2000. 129

[BKS03] Evelyn J. Barry, Chris F. Kemere, and Sandra A. Slaugh-

ter. On the uniformity of software evolution patterns. In

Proceedings of the 25th International Conference on Soft-

ware Engineering, pages 106–113, Portland, Oregon, May

2003. 239

[BKT03] David Budgen, Barbara Kitchenham, and Scott Tilley.

Workshop on “Where’s the evidence? The role of empirical

practices in software engineering”, 2003. Available on-

line at http://www.swen.uwaterloo.ca/∼kostas/

STEP2003/Workshops/evidence-workshop.htm. 2

259

http://www.swen.uwaterloo.ca/~kostas/STEP2003/Workshops/evidence-workshop.htm
http://www.swen.uwaterloo.ca/~kostas/STEP2003/Workshops/evidence-workshop.htm

BIBLIOGRAPHY

[BMS03] Elisa L.A. Baniassad, Gail C. Murphy, and Christa

Schwanninger. Design Pattern Rationale Graphs: Link-

ing Design to Source. In Proceedings of the 25th Inter-

national Conference on Software Engineering, Portland,

Oregon, USA, May 2003. 129, 170

[BMSK02] Elisa L.A. Baniassad, Gail C. Murphy, Christa Schwan-

ninger, and Michael Kircher. Managing crosscutting con-

cerns during software evolution tasks: an inquisitive

study. In Proceedings of the 1st IEEE International Con-

ference on Aspect-oriented software development, pages

120–126, Enschede, The Netherlands, April 2002. 158

[BP84] Victor R. Basili and Barry Perricone. Software errors and

complexity: An empirical investigation. Communications

of the ACM, 27(1):42 – 52, 1984. 3, 19

[BP03] Andreas Bauer and Markus Pizka. The contribution of

free software to software evolution. In Proceedings of the

6th IEEE International Workshop on Principles of Soft-

ware Evolution, Helsinki, Finland, September 2003. 158

[Bro74] Frederick P. Brooks. The Mythical Man-Month: Essays

on Software Engineering. Addison Wesley Professional,

1974. 137, 206, 212, 242

[BS77] Everitt BS. The Analysis of Contingency Tables. Chap-

man and Hall, London, 1977. 91

[CCW+01] Annie Chen, Eric Chou, Joshua Wong, Andrew Y. Yao,

Qing Zhang, Shao Zhang, and Amir Michail. CVSSearch:

Searching through source code using CVS comments. In

Proceedings of the 17th International Conference on Soft-

ware Maintenance, pages 364–374, Florence, Italy, 2001.

3, 19, 67, 72, 74, 127, 129, 171

260

[Cha95] Ned Chapin. An entropy metric for software maintain-

ability. In Proceedings of the 28th Hawaii International

Conference on System Sciences, pages 522–523, January

1995. 240

[Cha02] Ned Chapin. Entropy-metric for systems with COTS soft-

ware. In Proceedings of the 8th International Software

Metrics Symposium, pages 173–181, 2002. 240

[Cle] Rational ClearCase - Product Overview. Available online

at http://www-306.ibm.com/software/awdtools/

clearcase/. 72

[CM03] Davor Cubranic and Gail C. Murphy. Hipikat: Recom-

mending pertinent software development artifacts. In

Proceedings of the 25th International Conference on Soft-

ware Engineering, pages 408–419, Portland, Oregon, May

2003. 40, 130, 158, 170

[CMCmWH91] William Y. Chen, Scott A. Mahlke, Pohua P. Chang,

and Wen mei W. Hwu. Data access microarchitectures

for superscalar processors with compiler-assisted data

prefetching. In International Symposium on Microarchi-

tecture, pages 69–73, 1991. 189

[CNR90] Y.-F. Chen, M. Nishimoto, and C. Ramamoorthy. The C

Information Abstraction System. IEEE Transactions on

Software Engineering, 16(3):325–334, March 1990. 42

[Coh60] J. Cohen. A Coefficient of Agreement for Nominal Scales.

Educational and Psychological Measurements, pages 37–

46, December 1960. 88

[CPP] CPPX: Open Source C++ Fact Extractor. Available online

at http://swag.uwaterloo.ca/∼cppx. 42

261

http://www-306.ibm.com/software/awdtools/clearcase/
http://www-306.ibm.com/software/awdtools/clearcase/
http://swag.uwaterloo.ca/~cppx

BIBLIOGRAPHY

[CSY+04] Kai Chen, Stephen R. Schach, Liguo Yu, Jeff Offutt, and

Gillian Z. Heller. Open-Source Change Logs. Empirical

Software Engineering, 9(197):210, 2004. 159

[CTA] Exuberant Ctags. Available online at http://ctags.

sourceforge.net. 49

[CVSa] CVS - Concurrent Versions System. Available online at

http://www.cvshome.org. 72, 192

[CVSb] CVSup Home Page. Available online at http://www.

cvsup.org/. 66

[DMK] Inderjit Dhillon, S. Manella, and R. Kumar. Information

theoretic feature clustering for text classification. 241

[DP03] Dirk Draheim and Lukasz Pekacki. Process-Centric Ana-

lytical Processing of Version Control Data. In Proceedings

of the 6th IEEE International Workshop on Principles of

Software Evolution, Helsinki, Finland, September 2003.

37

[DV00] M. Do and M. Vetterli. Texture similarity measurement

using kullback-leibler distance on wavelet subbands. In

Proceedings of the 2000 International Conference on Im-

age Processing, Vancouver, Canada, September 2000. 241

[EGK+01] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Mar-

ron, and Audris Mockus. Does Code Decay? Assessing the

Evidence from Change Management Data. IEEE Trans-

actions on Software Engineering, 27(1):1–12, 2001. 3, 186,

189, 239

[ELL+92] Stephen G. Eick, Clive R. Loader, M. David Long, Scott

A. Vander Wiel, and Lawrence G. Votta Jr. Estimating

software fault content before coding. In Proceedings of the

14th International Conference on Software Engineering,

262

http://ctags.sourceforge.net
http://ctags.sourceforge.net
http://www.cvshome.org
http://www.cvsup.org/
http://www.cvsup.org/

pages 59–65, Melbourne, Australia, May 1992. 3, 19, 189,

239

[Ema99] Khaled El Emam. Benchmarking Kappa: Interrater

Agreement in Software Process Assessments. Empirical

Software Engineering, 4(2):113–133, December 1999. 89

[ESEES92] Stephen G. Eick, Joseph L. Steffen, and Jr. Eric E. Sum-

ner. Seesoft–A Tool for Visualizing Line Oriented Soft-

ware Statistics. IEEE Transactions on Software Engineer-

ing, 18(11):957–968, 1992. 3, 171

[FHK+97] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kon-

togiannis, H. A. Müller, J. Mylopoulos, S. G. Perelgut,

M. Stanley, and K. Wong. The software bookshelf. IBM

Systems Journal, 36(4):564–593, 1997. Available on-

line at http://www.almaden.ibm.com/journal/sj/

364/finnigan.html. 249

[FN99] N. E. Fention and M. Neill. A Critique Of Software De-

fect Prediction Models. IEEE Transactions on Software

Engineering, 25(5):675–689, 1999. 186

[Fog99] K. Fogel. Open Source Development with CVS. Coriolos

Open Press, Scottsdale, AZ, 1999. 192

[FPG94] Norman Fenton, Shari Lawrence Pfleeger, and Robert L.

Glass. Science and Substance: A Challenge to Software

Engineers. IEEE Software, 11(4):86–95, 1994. 134

[Ger04a] Daniel M. German. An empirical study of fine-grained

software modifications. In Proceedings of the 20th Inter-

national Conference on Software Maintenance, Chicago,

USA, September 2004. 37

[Ger04b] Daniel M. German. An empirical study of fine-grained

software modifications. In Proceedings of the 20th Inter-

263

http://www.almaden.ibm.com/journal/ sj/364/finnigan.html
http://www.almaden.ibm.com/journal/ sj/364/finnigan.html

BIBLIOGRAPHY

national Conference on Software Maintenance, Chicago,

USA, September 2004. 64, 67

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection

of logical coupling based on product release history. In

Proceedings of the 14th International Conference on Soft-

ware Maintenance, Bethesda, Washington D.C., Novem-

ber 1998. 3, 19, 37, 67, 171

[GJK03] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs

release history data for detecting logical couplings. In

Proceedings of the 6th IEEE International Workshop

on Principles of Software Evolution, Helsinki, Finland,

September 2003. 3, 37, 67

[GKMS00] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey P.

Siy. Predicting fault incidence using software change

history. IEEE Transactions on Software Engineering,

26(7):653–661, 2000. 3, 19, 67, 83, 163, 183, 186, 189,

190, 208, 225, 227, 239

[Gla92] R. L. Glass. We have lost our way. The Journal of Systems

and Software, 18(3):111–112, March 1992. 104

[Gla03a] Robert L. Glass. Questioning the Software Engineering

Unquestionables. IEEE Software, 20(3):119–120, 2003.

134

[Gla03b] Robert L. Glass. The State of the Practice of Software

Engineering. IEEE Software, 20(6):20–21, 2003. 2

[GM03] Daniel German and Audris Mockus. Automating the

measurement of open source projects. In Workshop on

Open Source Software Engineering (in ICSE03), Port-

land, Oregon, May 2003. 50, 51

264

[HAK+96] John P. Hudepohl, Stephen J. Aud, Taghi M. Khoshgof-

taar, Edward B. Allen, and Jean Mayrand. Emerald:

Software Metrics and Models on the Desktop. Computer,

13(5), 1996. 3, 19

[Hal77] Maurice H. Halstead. Elements of Software Science. El-

sevier, Amsterdam, Netherlands, 1977. 206

[Har92] W. Harrison. An entropy-based measure of software com-

plexity. IEEE Transactions on Software Engineering,

18(11):1025–1029, November 1992. 240

[Has01] Ahmed E. Hassan. Architecture Recovery of Web Applica-

tions. Master’s thesis, University of Waterloo, 2001. 254

[Hau88] Hausi A. Müller and K. Klashinsky. Rigi – A System

for Programming-in-the-large. In Proceedings of the 10th

International Conference on Software Engineering, pages

80–86, Singapore, April 1988. 42, 249

[HG99] James D. Herbsleb and Rebecca E. Grinter. Splitting the

organization and integrating the code: Conway’s law re-

visited. In Proceedings of the 21st International Confer-

ence on Software Engineering, pages 85–95, Los Angeles,

USA, May 1999. 207

[HGH01] Ahmed E. Hassan, Michael W. Godfrey, and Richard C.

Holt. Software Engineering Research in the Bazaar. In

Proceedings of ICSE Workshop on Open Source Software

Engineering, Toronto, Canada, May 2001. 245

[HH] Ahmed E. Hassan and Richard C. Holt. The top ten list:

Dynamic fault prediction. Submitted for Publication. 22,

91, 163, 225

[HH00] Ahmed E. Hassan and Richard C. Holt. A Reference Ar-

chitecture for Web Servers. In Proceedings of the 7th

265

BIBLIOGRAPHY

Working Conference on Reverse Engineering, Brisbane,

Queensland, Australia, November 2000. 107

[HH02] Ahmed E. Hassan and Richard C. Holt. Architecture Re-

covery of Web Applications. In Proceedings of the 24th

International Conference on Software Engineering, Or-

lando, Florida, USA, May 2002. 33, 250

[HH03a] Ahmed E. Hassan and Richard C. Holt. Adg: Annotated

dependency graphs for software understanding. In Pro-

ceedings of VISSOFT 2003: Annual DESIGNFEST On

Visualizing Software For Understanding And Analysis,

Amsterdam, Netherlands, September 2003. 51

[HH03b] Ahmed E. Hassan and Richard C. Holt. Studying the

chaos of code development. In Proceedings of the 10th

Working Conference on Reverse Engineering, Victoria,

British Columbia, Canada, November 2003. 51, 73, 74,

75, 91, 208, 221

[HH03c] Ahmed E. Hassan and Richard C. Holt. The Chaos of

Software Development. In Proceedings of the 6th IEEE

International Workshop on Principles of Software Evolu-

tion, Helsinki, Finland, September 2003. 208, 219, 220,

223

[HH04a] Ahmed E. Hassan and Richard C. Holt. C-REX: An Evolu-

tionary Code Extractor for C. Submitted for Publication,

2004. 121

[HH04b] Ahmed E. Hassan and Richard C. Holt. C-REX: An Evo-

lutionary Code Extractor for C. May 2004. Submitted for

Publication. 153

[HH04c] Ahmed E. Hassan and Richard C. Holt. Predicting

Change Propagation in Software Systems. In Proceedings

266

of the 20th International Conference on Software Mainte-

nance, Chicago, USA, September 2004. 40, 66, 161, 218

[HH04d] Ahmed E. Hassan and Richard C. Holt. Source Control

Change Messages: How are they used? What do they

mean? 2004. Draft Available Online. 65, 239

[HH04e] Ahmed E. Hassan and Richard C. Holt. Using Develop-

ment History Sticky Notes to Understand Software Ar-

chitecture. In Proceedings of the 12th International Work-

shop on Program Comprehension, Bari, Italy, June 2004.

40, 51, 66, 73, 74

[HRW92] Frank K. Hwang, Dana S. Richards, and Pawel Winter.

The Steiner Tree Problem. North-Holland (Annals of Dis-

crete Mathematics, Vol 53), 1992. 252

[Hul98] David A. Hull. The TREC-7 filtering track: description

and analysis. In Ellen M. Voorhees and Donna K. Har-

man, editors, Proceedings of TREC-7, 7th Text Retrieval

Conference, pages 33–56, Gaithersburg, US, 1998. Na-

tional Institute of Standards and Technology, Gaithers-

burg, US. 147

[KA98] Taghi M. Khoshgoftaar and Edward B. Allen. Predicting

the Order of Fault Prone Modules in Legacy Software. In

Proceedings of the 9th International Symposium on Soft-

ware Reliability Engineering, pages 344–353, Paderborn,

Germany, November 1998. 186, 202

[KAH+98] Taghi M. Khoshgoftaar, Edward B. Allen, Robert Hal-

stead, Gary P. Trio, and Ronald M. Flass. Using Pro-

cess History to Predict Software Quality. Computer, 31(4),

1998. 3

[KAJH99] Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D.

Jones, and John P. Hudepohl. Data Mining for Predictors

267

BIBLIOGRAPHY

of Software Quality. International Journal of Software

Engineering and Knowledge Engineering, 9(5), 1999. 208

[KBWA94] Rick Kazman, Leonard J. Bass, Mike Webb, and Gre-

gory D. Abowd. SAAM: A method for analyzing the prop-

erties of software architectures. In Proceedings of the 16th

International Conference on Software Engineering, pages

81–90, 1994. 207

[KPJ+02] Barbara A. Kitchenham, Shari Lawrence Pfleeger Les-

ley M. Pickard, Peter W. Jones, David C. Hoaglin,

Khaled El Emam, and Jarrett Rosenberg. Preliminary

guidelines for empirical research in software engineering.

IEEE Transactions on Software Engineering, 28(8):721–

734, 2002. 2, 134

[KSRP99] R. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern-

based reverse-engineering of design components. In Pro-

ceedings of the 21st International Conference on Software

Engineering, pages 226–235, Los Angeles, USA, May

1999. 129

[LB85] M. M. Lehman and L. A. Belady. Program Evolution - Pro-

cess of Sofware Change. Academic Press, London, 1985.

240

[Leh80] M. M. Lehman. Programs, life cycles and laws of software

evolution. IEEE Transactions on Software Engineering,

68:1060–1076, 1980. 240, 242

[Lio99] Lionel C. Briand and Jürgen Wüst and Hakim Lou-

nis. Using coupling measurement for impact analysis in

object-oriented systems. In Proceedings of the 15th In-

ternational Conference on Software Maintenance, pages

475–482, Oxford, England, UK, August 1999. 169

268

[LPR98] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications

of Evolution Metrics on Software Maintenance. In Pro-

ceedings of the 14th International Conference on Software

Maintenance, Washington, DC, USA, 1998. 212, 222

[LPS02] Marek Leszak, Dewayne E. Perry, and Dieter Stoll. Clas-

sification and evaluation of defects in a project retrospec-

tive. The Journal of Systems and Software, 61(3):173–

187, 2002. 3, 73, 208, 212, 239

[LRS01] M. M. Lehman, J. F. Ramil, and U. Sandler. An Approach

to Modelling Long-Term Growth Trends in Software Sys-

tems. In Proceedings of the 17th International Conference

on Software Maintenance, Florence, Italy, 2001. 69

[LRW+97] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry,

and W. M. Turski. Metrics and laws of software evolu-

tion the nineties view. In Proceedings of the 4th Interna-

tional Software Metrics Symposium, Albuquerque, NM,

1997. 36, 37, 68, 206, 240, 252

[LS81] B. P. Lientz and E. B. Swanson. Problems in applica-

tion software maintenance. Communications of the ACM,

24(11):763–769, 1981. 104

[LS03] Y. Liu and E. Stroulia. Reverse Engineering the Process

of Small Novice Software Teams. In Proceedings of the

10th Working Conference on Reverse Engineering, pages

102–112, Victoria, British Columbia, Canada, November

2003. 67

[MC04] Jonathan I. Maletic and Michael L. Collard. Supporting

Source Code Difference Analysis. In Proceedings of the

20th International Conference on Software Maintenance,

Chicago, USA, Sept 2004. 68

269

BIBLIOGRAPHY

[McC76] T. J. McCabe. A complexity measure. IEEE Transactions

on Software Engineering, 2(6):308–320, 1976. 191

[MFH00] Audris Mockus, Roy T. Fielding, and James D. Herb-

sleb. A case study of open source software development:

the apache server. In Proceedings of the 22nd Interna-

tional Conference on Software Engineering, pages 263–

272, Limerick, Ireland, June 2000. ACM Press. 158

[MH] Tests of Marginal Homogeneity. Available online

at http://ourworld.compuserve.com/homepages/

jsuebersax/margin.htm. 91

[Mic00] Michael W. Godfrey and Qiang Tu. Evolution in open

source software: A case study. In Proceedings of the 16th

International Conference on Software Maintenance, pages

131–142, San Jose, California, October 2000. 36, 37, 68,

240

[Mil56] G. A. Miller. The magical number seven, plus or minus

two: Some limits on our capacity for processing informa-

tion. Psychological Review, 3(81):81–97, 1956. 216

[Mit00] Mark Mitchell. GCC 3.0 State of the Source. In 4th An-

nual Linux Showcase and Conference, Atlanta, Georgia,

October 2000. 158

[MK92] John Munson and Taghi Khoshgoftaar. The Detection of

Fault-Prone Programs. IEEE Transactions on Software

Engineering, 18(5):423–433, 1992. 183, 198

[MNGL98] Gail C. Murphy, David Notkin, William G. Griswold, and

Erica S. Lan. An empirical study of static call graph ex-

tractors. ACM Transactions on Software Engineering and

Methodology, 7(2):158–191, 1998. 35

270

http://ourworld.compuserve.com/homepages/jsuebersax/margin.htm
http://ourworld.compuserve.com/homepages/jsuebersax/margin.htm

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Soft-

ware Reflexion Models: Bridging the Gap Between Source

and High-Level Models. In Proceedings of the Third ACM

SIGSOFT Symposium on the Foundations of Software

Engineering, pages 18–28, New York, NY, October 1995.

ACM. 11, 101, 109, 122

[MV00] Audris Mockus and Lawrence G. Votta. Identifying rea-

sons for software change using historic databases. In Pro-

ceedings of the 16th International Conference on Software

Maintenance, pages 120–130, San Jose, California, Octo-

ber 2000. 51, 73, 74, 75, 84, 154, 192, 210, 239

[MW47] H. B. Mann and D. R. Whitney. On a test of whether one

of two random variables is stochastically larger than the

other. Annals of Mathematical Statistics, pages 52–54,

December 1947. 149, 231

[MWZ03] Audris Mockus, David M. Weiss, and Ping Zhang. Un-

derstanding and predicting effort in software projects. In

Proceedings of the 25th International Conference on Soft-

ware Engineering, pages 274–284, Portland, Oregon, May

2003. 2, 3, 19, 239

[Nor02] Norman F. Schneidewind. Report on Results of Dis-

criminant Analysis Experiment. In Proceedings. of the

27th Annual NASA Goddard/IEEE Software Engineer-

ing Workshop, pages 9–16, December 2002. 207

[OA96] Niclas Ohlsson and Hans Alberg. Predicting Fault-Prone

Software Modules in Telephone Switches. IEEE Transac-

tions on Software Engineering, 22(12):886–894, dec 1996.

183, 208

271

BIBLIOGRAPHY

[Par72] D.L. Parnas. On the criteria to be used in decompos-

ing systems into modules. Communications of the ACM,

15(12):1053 – 1058, 1972. 207, 212

[Par94] D.L. Parnas. Software aging. In Proceedings of the 16th

International Conference on Software Engineering, pages

279 – 287, Sorrento, Italy, May 1994. 137, 212

[PE85] Dewayne E. Perry and W. Michael Evangelist. An Empir-

ical Study of Software Interface Errors. In Proceedings of

the International Symposium on New Directions in Com-

puting, pages 32–38, Trondheim, Norway, August 1985.

3, 19

[PE87] Dewayne E. Perry and W. Michael Evangelist. An Em-

pirical Study of Software Interface Faults — An Update.

In Proceedings of the 20th Annual Hawaii International

Conference on Systems Sciences, pages 113–136, Hawaii,

USA, January 1987. 3

[Per] Perforce - The Fastest Software Configuration Man-

agement System. Available online at http://www.

perforce.com. 50, 72, 192

[Per02] Dewayne E. Perry. Laws and principles of evolution. In

Proceedings of the 18th International Conference on Soft-

ware Maintenance, page 70, Montreal, Canada, October

2002. 246

[PPV00] Dewayne E. Perry, Adam A. Porter, and Lawrence G.

Votta. Empirical Studies of Software Engineering: a

Roadmap. In Proceedings of the 22nd International Con-

ference on Software Engineering (ICSE) - Future of SE

Track, pages 345–355, Limerick, Ireland, June 2000. 2,

134

272

http://www.perforce.com
http://www.perforce.com

[PS93] Dewayne E. Perry and Carol S.Steig. Software Faults

in Evolving a Large, Real-Time System: a Case Study’.

In Proceedings of the 4th European Software Engineering

Conference, Garmisch, Germany, September 1993. 3, 73

[Raj97] Václav Rajlich. A model for change propagation based on

graph rewriting. In Proceedings of the 13th International

Conference on Software Maintenance, pages 84–91, Bari,

Italy, 1997. 167

[RM02] Martin P. Robillard and Gail C. Murphy. Concern Graphs:

Finding and Describing Concerns Using Structural Pro-

gram Dependencies. In Proceedings of the 24th Inter-

national Conference on Software Engineering, Orlando,

Florida, USA, May 2002. 129, 170

[Roc75] Marc J. Rochkind. The source code control system.

IEEE Transactions on Software Engineering, 1(4):364–

370, 1975. 72, 210

[RSA99] H. Richter, Pascal Schuchhard, and Gregory Abowd. Au-

tomated capture and retrieval of architectural rationale.

In Proceedings of the 1st Working IFIP Conference on Soft-

ware Architecture, San Antonio, Texas, USA, Feb 1999.

129

[rsy] rsync Home Page. Available online at http://samba.

org/rsync/. 66

[SCH98] Susan E. Sim, Charles L. A. Clarke, and Richard C. Holt.

Archetypal Source Code Searching: A Survey of Software

Developers and Maintainers. In Proceedings of the 6th In-

ternational Workshop on Program Comprehension, pages

180–187, Ischia, Italy, June 1998. 104, 137

273

http://samba.org/rsync/
http://samba.org/rsync/

BIBLIOGRAPHY

[Sch99] Norman F. Schneidewind. Methodology for Validating

Software Metrics. IEEE Transactions on Software En-

gineering, 18(5):410–442, May 1999. 183

[SGEMGK02] Paul Schuster Stephen G. Eick., Audris Mockus, Todd L.

Graves, and Alan F. Karr. Visualizing Software Changes.

IEEE Transactions on Software Engineering, 28(4):396–

412, 2002. 3, 171

[SGM+98] Nancy Staudenmayer, Todd Graves, J. Steve Marron, Au-

dris Mockus, Dewayne Perry, Harvey Siy, and Lawrence

Votta. Adapting to a new environment: How a legacy

software organization copes with volatility and change.

In 5th International Product Development Management

Conference, Como, Italy, May 1998. 216

[SGPP04] Kevin A. Schneider, Carl Gutwin, Reagan Penner, and

David Paquette. Mining a Software Developers Local In-

teraction History. In Proceedings of the 1st International

Workshop on Mining Software Repositories, Edinburgh,

UK, May 2004. 29

[Sha48] C. E. Shannon. A Mathematical Theory of Commu-

nication. The Bell System Technical Journal, 27:379–

423,623–656, Jul, Oct 1948. 13, 213

[Shi03] Jelber Sayyad Shirabad. Supporting Software Mainte-

nance by Mining Software Update Records. PhD thesis,

University of Ottawa, 2003. 19, 29, 40, 141, 171

[Sim98] Susan E. Sim. Supporting Multiple Program Compre-

hension Strategies During Software Maintenance. Mas-

ter’s thesis, University of Toronto, 1998. Available on-

line at http://www.cs.utoronto.ca/∼simsuz/msc.

html. 104

274

http://www.cs.utoronto.ca/~simsuz/msc.html
http://www.cs.utoronto.ca/~simsuz/msc.html

[Sta84] Thomas A. Standish. An essay on Software Reuse. IEEE

Transactions on Software Engineering, 10(5):494–497,

1984. 104

[Ste03] Steven Klusener and Ralf Lämmel. Deriving tolerant

grammars from a base-line grammar. In Proceedings of

the 19th International Conference on Software Mainte-

nance, Amsterdam, The Netherlands, 2003. 34, 48

[SY99] S. Savari and C. Young. Comparing and combining pro-

files. In Second Workshop on Feedback-Directed Opti-

mization (FDO), 1999. 240

[TG01] Qiang Tu and Michael W. Godfrey. The Build-Time Soft-

ware Architecture View . In Proceedings of the 17th In-

ternational Conference on Software Maintenance, pages

398–408, Florence, Italy, 2001. 63

[TG02] Qiang Tu and Michael W. Godfrey. An integrated ap-

proach for studying architectural evolution. In Pro-

ceedings of the 10th International Workshop on Program

Comprehension, pages 127–136. IEEE Computer Society

Press, June 2002. 32, 36, 37

[TGLH00] John B. Tran, Michael W. Godfrey, Eric H. S. Lee, and

Richard C. Holt. Architectural Repair of Open Source

Software. In Proceedings of the 8th International Work-

shop on Program Comprehension, Limerick, Ireland,

June 2000. 128

[Tic85] Walter F. Tichy. RCS - a system for version control. Soft-

ware - Practice and Experience, 15(7):637–654, 1985. 72,

210

[VIM] The VIM (Vi IMproved) Home Page. Available online at

http://www.vim.org. 218

275

http://www.vim.org

BIBLIOGRAPHY

[vMV94] Anneliese von Mayrhauser and A. Marie Vans. Compre-

hension Processes During Large Scale Maintenance. In

Proceedings of the 16th International Conference on Soft-

ware Engineering, pages 39 – 48, Sorrento Italy, May

1994. 107

[vMV95] Anneliese von Mayrhauser and A. Marie Vans. Program

Comprehension During Software Maintenance and Evo-

lution. IEEE Computer, 28(8):44–55, August 1995. 104

[VN96] Michael VanHilst and David Notkin. Decoupling Change

from Design. In Proceedings of the 4th ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

pages 58–69, USA, 1996. 207

[vR79] C. J. van Rijsbergen. Information Retrieval. Butter-

worths, London, 1979. Available online at http://www.

dcs.gla.ac.uk/Keith/Preface.html. 146

[WB99] S. Woods and M. Barbacci. Architectural evaluation of

collaborative agent-based systems, 1999. 207

[Wei80] Sanford Weisberg. Applied Linear Regression. John Wiley

and Sons, 1980. 229

[Wei03] Zachary Weinberg. A Maintenance Programmer’s View of

GCC. In First Annual GCC Developers’ Summit, Ottawa,

Canada, May 2003. 158

[Wey88] E. J. Weyuker. Evaluating software complexity measures.

IEEE Transactions on Software Engineering, 14(9):1357–

1365, September 1988. 240

[WHH04] Jingwei Wu, Ahmed E. Hassan, and Richard C. Holt. Ex-

ploring Software Evolution Using Spectrographs. In Pro-

ceedings of the 11th Working Conference on Reverse Engi-

neering, Delft, Netherlands, November 2004. 251

276

http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.dcs.gla.ac.uk/Keith/Preface.html

[WS00] JingWei Wu and Margaret-Ann Storey. A multiperspec-

tive software visualization environment. In Proceedings

of the 10th Annual IBM Centers for Advanced Studies

Conference, November 2000. 249

[WSHH04] Jingwei Wu, Claus W. Spitzer, Ahmed E. Hassan, and

Richard C. Holt. Evolution Spectrographs: Visualizing

Punctuated Change in Software Evolution. In Proceed-

ings of the 7th IEEE International Workshop on Principles

of Software Evolution, Kyoto, Japan, September 2004.

251

[Yin94] R. K. Yin. Case Study Research: Design and Methods.

Sage Publications, Thousand Oaks, CA, 1994. 156, 235

[Yin03] Annie T.T. Ying. Predicting Source Code Changes by

Mining Revision History. Master’s thesis, University of

British Colombia, 2003. 40, 171

[YK03] Yunwen Ye and Kouichi Kishida. Toward an understand-

ing of the motivation of open source software developers.

In Proceedings of the 22nd International Conference on

Software Engineering, pages 419–429, Portland, Oregon,

May 2003. ACM Press. 158

[YNTL88] S.S. Yau, R.A. Nicholl, J.J. Tsai, and S. Liu. An integrated

life-cycle model for software maintenance. IEEE Transac-

tions on Software Engineering, 15(7):58–95, 1988. 140

[YSD98] T. J. Yu, V. Y. Shen, and H. E. Dunsmore. An Analysis of

Several Software Defect Models. IEEE Transactions on

Software Engineering, 14(9):1261 – 1270, sep 1998. 208

[ZDZ03] T. Zimmermann, S. Diehl, and A. Zeller. How history jus-

tifies system architecture (or not). In Proceedings of the

6th IEEE International Workshop on Principles of Soft-

ware Evolution, Helsinki, Finland, September 2003. 37

277

BIBLIOGRAPHY

[Zip49] George Kingsley Zipf. Human Behavior and the Principle

of Least Effort. Addison-Wesley, 1949. 162

[ZW04] T. Zimmermann and P. Weißgerber. Preprocessing CVS

Data for Fine-Grained Analysis. In Proceedings of the 1st

International Workshop on Mining Software Repositories,

Edinburgh, UK, May 2004. 50, 64, 67

[ZWDZ04] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.

Mining Version Histories to Guide Software Changes. In

Proceedings of the 26th International Conference on Soft-

ware Engineering, Edinburgh, UK, May 2004. 37, 40, 171

278

	Abstract
	Contents
	1 Introduction
	1.0.1 Prior Research
	1.0.2 Personal Experience
	1.0.3 The Open Source Phenomena

	1.1 Research Hypothesis
	1.2 Thesis Organization
	1.3 Thesis Overview
	1.3.1 Part I: Extracting Information From Software Repositories
	1.3.2 Part II: Using Software Repositories to Support Developers
	1.3.3 Part II: Using Software Repositories to Support Managers

	1.4 Thesis Contributions

	I Extracting Information From Software Repositories
	2 Studying The Evolution of Software Systems Using Evolutionary Code Extractors
	2.1 Introduction
	2.1.1 Organization Of Chapter

	2.2 Describing Source Code Evolution
	2.3 The Dimensions Of Source Code Evolution
	2.3.1 Frequency of Snapshots
	2.3.2 Data Source
	2.3.3 The Characteristics of the Source Code
	2.3.4 Level of Detail

	2.4 Challenges And Complexity
	2.4.1 Robustness and Scalability
	2.4.2 Accuracy
	2.4.3 The Changing and Unstable Nature of Source Code
	2.4.4 Development Time

	2.5 Previous Work
	2.6 Conclusion

	3 C-REX: An Evolutionary Code Extractor for C
	3.1 Introduction
	3.1.1 Organization of Chapter

	3.2 Evolutionary Code Extractors
	3.2.1 Frequency of Snapshots
	3.2.2 Data Source
	3.2.3 The Characteristics of Code
	3.2.4 Level of Detail

	3.3 Challenges In Developing C-REX
	3.3.1 Robustness and Scalability of the Extractor
	3.3.2 Accuracy of the Extracted Information
	3.3.3 The Changing and Unstable Nature of Source Code
	3.3.4 Time Required to Develop the Extractor
	3.3.5 Additional Challenges

	3.4 Schema For The C-Rex Evolutionary Change Data
	3.5 The Implementation Of C-REX
	3.5.1 Performance

	3.6 Limitations Of The C-REX Approach
	3.6.1 Dependency Analysis
	3.6.2 Beyond C
	3.6.3 Beyond CVS
	3.6.4 More Detailed Change Tracking
	3.6.5 The Use of Heuristics

	3.7 Using C-REX In Practice
	3.7.1 Acquiring Our Guinea Pigs

	3.8 Related Work
	3.9 Conclusion

	4 Source Control Change Messages: How Are They Used And What Do They Mean?
	4.1 Introduction
	4.1.1 Organization of Chapter

	4.2 Study Logistics
	4.2.1 Study Goals
	4.2.2 Study Participants
	4.2.3 Study Design
	4.2.4 Survey Design

	4.3 Results For Part 1: Usage and Content of Change Messages
	4.4 Results For Part 2: Classification of Changes
	4.4.1 Analysis 1A and 1B of Developers' Classifications
	4.4.2 Analysis 2 of Developers' Classifications

	4.5 Results For Part 3: Comparing Open Source and Commercial Change Messages
	4.6 Conclusion

	II Using Software Repositories to Assist Developers
	5 Using Development History Sticky Notes to Understand Software Architecture
	5.1 Introduction
	5.1.1 Organization of Chapter

	5.2 The Architecture Understanding Process
	5.2.1 Propose
	5.2.2 Compare
	5.2.3 Investigate

	5.3 The Software Reflexion Framework
	5.3.1 A Clarifying Example

	5.4 Investigating Dependencies - The W4 Approach
	5.4.1 Three Types of Dependencies
	5.4.2 Questions Posed During Investigation
	5.4.3 Source Sticky Notes

	5.5 Source Control Systems
	5.5.1 Attaching Sticky Notes to Static Dependencies

	5.6 Case Study
	5.6.1 Investigating Removed Dependencies
	5.6.2 Discussion of Results

	5.7 Related Work
	5.8 Conclusion

	6 Replaying Development History to Assess the Claimed Benefits of Code Maintenance Tools and Strategies
	6.1 Introduction
	6.1.1 Organization of Chapter

	6.2 The Change Propagation Process
	6.2.1 Information Sources Used to Propagate Changes

	6.3 Measuring The Performance Of a Tool in Propagating Changes
	6.3.1 A Simple Example
	6.3.2 Performance Measures for a Single Change Set
	6.3.3 Performance Measures for Multiple Change Sets Over Time
	6.3.4 Relative Performance of a Tool Over Time
	6.3.5 Relative Stability/Volatility of the Performance of a Tool

	6.4 The Development Replay (DR) Approach
	6.4.1 Threats to Validity and Limitations of Results Derived Through the DR Approach

	6.5 Case Study
	6.5.1 Enhancing the Performance of FREQ(A) tools

	6.6 Related Work
	6.6.1 Change Propagation
	6.6.2 The use of historical data

	6.7 Conclusion

	III Using Software Repositories to Support Managers
	7 The Top Ten List: Dynamic Fault Prediction
	7.1 Introduction
	7.1.1 Organization of Chapter

	7.2 Motivation
	7.3 Heuristics For The Top Ten List
	7.3.1 Most Frequently Modified (MFM)
	7.3.2 Most Recently Modified (MRM)
	7.3.3 Most Frequently Fixed (MFF)
	7.3.4 Most Recently Fixed (MRF)

	7.4 Studied Systems
	7.5 Measuring The Performance Of The Top Ten List
	7.6 The Effects Of a Larger List
	7.7 Discussion
	7.7.1 An Accurate Measure of the Performance of a Heuristic
	7.7.2 Performance of Fault Based Heuristics
	7.7.3 Determining a Practical Average Prediction Age

	7.8 Related Work
	7.9 Conclusion

	8 Code Development Chaos: a New Perspective on Software Complexity
	8.1 Introduction
	8.1.1 Overview Of Chapter

	8.2 The Code Development Process
	8.3 Information Theory
	8.4 The Basic Code Development Model
	8.4.1 Basic Model
	8.4.2 Intuition
	8.4.3 Files As a Unit of Measurement
	8.4.4 Evolution of Entropy

	8.5 Extended Code Development Model
	8.5.1 Evolution Periods
	8.5.2 Adaptive System Sizing

	8.6 The File Code Development Model (FCD)
	8.7 Case Study
	8.7.1 Building the Statistical Linear Regression Models
	8.7.2 Measuring and Comparing the Prediction Error for the SLR Models
	8.7.3 Determining the Statistical Significance for The Difference in Prediction Error between Models
	8.7.4 Comparing Models
	8.7.5 Threats to Validity

	8.8 Related Work
	8.9 Conclusion

	IV Conclusion
	9 Contributions and Future Work
	9.1 Thesis Contributions and Findings
	9.2 Suggestions for Extending this Research
	9.2.1 Evolutionary Extractors for C++ or Java
	9.2.2 Integrating Source Notes into Graphical Browsers
	9.2.3 Better Change Propagation Techniques and More Realistic Evaluations
	9.2.4 Commercial Software Systems

	9.3 Opportunities for Future Research
	9.3.1 Grokking Through Time
	9.3.2 Visualizing the Recovered Data from Software Repositories
	9.3.3 Recovery Of Aspects and Validation of Recovered Aspects
	9.3.4 Change Distance and Design Quality
	9.3.5 Discovery of Short Term and Long Term Evolution Patterns
	9.3.6 Evolution of Clones
	9.3.7 Standardization of Output
	9.3.8 Development Decision Support (DDS) Appliances
	9.3.9 Mining Other Repositories and Creating New Repositories
	9.3.10 Migrating Source Control Repositories

	9.4 Closing Remarks

	Bibliography

