
Mining Structured Petri Nets for the
Visualization of Process Behavior ∗

Javier de San Pedro
jspedro@cs.upc.edu

Jordi Cortadella
jordi.cortadella@upc.edu

Universitat Politecnica de Catalunya
Barcelona, Spain

ABSTRACT
Visualization is essential for understanding the models ob-
tained by process mining. Clear and efficient visual repre-
sentations make the embedded information more accessible
and analyzable. This work presents a novel approach for
generating process models with structural properties that
induce visually friendly layouts. Rather than generating a
single model that captures all behaviors, a set of Petri net
models is delivered, each one covering a subset of traces of
the log. The models are mined by extracting slices of la-
belled transition systems with specific properties from the
complete state space produced by the process logs. In most
cases, few Petri nets are sufficient to cover a significant part
of the behavior produced by the log.

CCS Concepts
•Applied computing → Business process modeling;

Keywords
Petri nets, process mining, visualization

1. INTRODUCTION
Process mining is used to deliver valuable insight into the

execution of real-life processes. Discovery [21], one of the
major areas of process mining, fosters this goal by construct-
ing abstract process models that describe the high level
structure of the process. These models are automatically
learned from the execution traces of the process. Real-life
processes, however, are often highly unstructured. Traces
obtained from running systems generally show repetitive
patterns, but also contain plenty of unrelated events.

Building unique and compact models out of such unstruc-
tured behavior results in the so-called spaghetti models, such
as the one shown in Fig. 1. As models are generated by au-
tomatically learning causal dependencies between different

∗
This work has been partially supported by the Spanish Ministry for

Economy and Competitiveness (MINECO) and the European Union
(FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R)
and by a grant from Generalitat de Catalunya (FI-DGR).

a

q ce

y aa

fg

r w bs

x nlh

o

v d ut p

z

mk

i j

Figure 1: Overfitting “spaghetti” model.

events, fitting many unrelated behaviors into a single model
produces highly complex relations. The model may learn
fake dependencies between events that are, in truth, unre-
lated in the original process. These spaghetti models are al-
most impossible to visualize and understand, and therefore
do not deliver any real insight into the underlying process.

One possible way for simplifying a model is by over-
generalizing the model, i.e. allowing behavior that is not
present in the execution traces. Models such as the flower
Petri net, in which everything is allowed, are conceptually
simple, but fail to provide useful information. In fact, it
has been argued that the main problem of discovery is find-
ing this balance between overfitting and underfitting mod-
els [19]. It is not easy to satisfy this balance in an automated
fashion, and there is plenty of research in the area.

In this paper, we propose a new methodology to mine
easy-to-understand process models (Petri nets) from logs,
even those containing unstructured data. At the core of this
proposal is a new clustering approach which automatically
separates out behaviors with structural properties that in-
duce visually friendly models. Thereby, our approach gen-
erates multiple process models, each of them conceptually
simple, but without removing any of the behaviors. For
most types of processes only a few models are required to
cover a majority of the behavior.

1.1 Related work
The problem of trying to find simple yet fitting models

from process logs has been approached from several areas.
The closest approaches are those related to clustering. Our
approach is novel in that clustering is performed by exam-
ining properties of transition systems, not log properties,
thus being more accurate in determining which clusters will
be visually friendly. A related approach is presented in [9],
where the quality and simplicity of the models obtained by
the heuristic miner is used to determine similarity of traces.
Our approach does not depend on any miner during the
clustering process. Most other clustering methods estimate
similarity based on the log structure, such as vector dis-
tance [18] or edit distance [4]. Significantly, event ordering
information can be used to construct the pattern vectors [2].
[10] also targets complexity reduction, but it does so by us-
ing hierarchical clustering, unifying repeated patterns.

Log

Saturation

Labelled Transition System

Clustering

LTS slice 1 LTS slice n. . .

Synthesis Synthesis

Petri net 1 . . . Petri net n

Log slice n

Mining

Figure 2: Scheme of the proposed flow.

Another group of techniques try to mine simple nets di-
rectly, by selectively ignoring noise from logs, such as the
inductive miner [14] or the region-based FSM miner [19].
When two or more significantly distinct behaviors are
present in the input logs, these methods must greatly re-
duce fitness or precision to generate simple models. Our
clustering approach, instead, generates separate models for
the separate behaviors.

The rest of simplification approaches reduce the complex-
ity of models already mined. For example, the authors of
[11] perform a log-based unfolding of the model and com-
pute a new model that only keeps the frequent parts. In [?],
an ILP model is also used to simplify existing models while
guaranteeing fitness. Like the previous strategies, these ap-
proaches also end up generating a single model.

2. METHOD OVERVIEW
In this section we describe the contributions of this work.

Figure 2 shows the main components of the mining flow.
The most important step is the clustering process, which

separates the log into several (possibly non-disjoint) sub-
sets of traces. The classification criteria is based on explor-
ing properties of the labelled transition system (LTS) con-
structed from the log. The procedure extracts slices from
the LTS induced by subsets of transitions satisfying certain
properties. Each LTS slice has an associated subset of traces
from the log (a log slice).

By ensuring certain properties on each LTS slice, Petri
nets with specific structures can be synthesized. This work
focuses on Marked Graphs and Free-Choice nets because
of their inherent visually friendly structure. However, the
paradigm does not preclude to use other structural proper-
ties that may induce other classes of nets. The details on
how the slices are generated are described in Section 4.

In the second step, the different log slices are converted
into Petri nets (dashed line in Fig. 2). Any miner can be
used to transform these clusters into a Petri net. However,
this work proposes a method based on the theory of regions
that generates Petri nets based on the LTS slices produced
by the clustering step.

2.1 Visual example
Figure 3 illustrates the different stages of the mining flow

with a simple example. Fig. 3a contains a fictional event log
used as input to the flow. This log is not very complicated,
containing only 7 cases and 5 event types.

Fig. 3b shows the LTS constructed from the log, where

the presence of transition s1
d−→ s11, coloured in Fig. 3b,

violates certain structural properties (later detailed in Sec-
tion 4). These violations imply that it is not possible to
synthesize a visually-friendly Petri net from the LTS. The

result is the intricate structure shown in Fig. 3c.
The clustering process proposed in this paper finds a set

of slices of the LTS that satisfy certain structural properties.
In this case, the LTS only needs to be split into two slices,
shown in Fig. 3d. Each slice also fits only a subset of the
traces from the log, shown in Fig. 3e, and these log slices are
the result of the clustering process. In this particular case,
the log slices are disjoint. However, overlapping slices can
be produced in the most general case.

Figure 3f shows the Petri nets synthesized from the indi-
vidual LTS slices. The LTS properties give rise to free-choice
Petri nets, which are much more visually friendly.

3. BACKGROUND

3.1 Process Mining
Process models are formalisms to represent the behavior

of a process. Among the different formalisms, Petri nets are
perhaps the most popular, due to its well-defined semantics.

A trace is a word σ ∈ T ∗ that represents a finite se-
quence of events. An event log L ∈ B(T ∗) is a multiset of
traces1. Event logs are the starting point to apply process
mining techniques, guided towards the discovery, analysis
or extension of process models. Process discovery is one of
the most important disciplines in process mining, concerned
with learning a process model (e.g., a Petri net) from an
event log. Although a novel discipline, there are several dis-
covery techniques that have appeared in the last decade,
most of them summarized in [21].

For any trace σ ∈ T ∗, the Parikh vector ψ(σ) maps every
element a ∈ T onto the number of occurrences of a in σ.

3.2 Petri nets
A Petri Net [16] is a tuple N = 〈P, T,F ,m0〉, where P is

the set of places, T is the set of transitions, connected via
the flow relation F : (P × T) ∪ (T × P)→ {0, 1}, and m0 is
the initial marking. A marking is an assignment of a non-
negative integer to each place. If k is assigned to place p
by marking m (denoted m(p) = k), we say that p is marked
with k tokens. Given a node x ∈ P ∪ T , its pre-set and
post-set are denoted by •x and x• respectively.

A transition t is enabled in a marking m when all places
in •t are marked. When t is enabled, it can fire by removing
a token from each place in •t and putting a token to each
place in t•. A marking m′ is reachable from m if there is
a sequence of firings t1t2 . . . tn that transforms m into m′,
denoted by m[t1t2 . . . tn〉m′. A sequence t1t2 . . . tn is feasible
if it is firable from m0.

In a Petri net, a choice is a place with more than one
output transition. Two transitions are said to be concurrent
if they do not have dependencies between them, i.e. they
can fire in any order.

A set of restrictions on the structure of Petri nets define
several classes of Petri nets. A Petri net N is a Marked
Graph if ∀p ∈ P : |•p| = |p•| = 1. It is a Free-Choice net
if ∀p1, p2 ∈ P : p•1 ∩ p•2 6= ∅ ⇒ |p•1| = |p•2| = 1. Note that
every marked graph is a free-choice net.

3.3 Labelled Transition Systems
A finite labeled trasition system is a tuple

A = (S,E, T, s0) where S is a finite set the states, E

1B(A) denotes the set of all multisets over A.

a b c d e a b
a c d b e c b
a c b d e a b
a c b e a
a d e c
a c b e c
a d e a

(a) Input log.

s0 s1
a

s2
c

s11

d

s14

b

s3d

s8

b

s12e

c

s4

b

d

s9
e

s13
a

s17
c

s5
e

s10

c
s18a

s6c

s15
a

s7
b

s16
b

(b) Labelled Transition System.

a

c

d

a

d

e

b

b

(c) Petri Net covering the full log.

s0 s1
a

s2c

s14
b

s3d

s8

b

c

s4

b

d

s9
e

s5
e

s18a

s10

c

s6c

s15
a

s7
b

s16
b

s0 s1
a

s11
d

s12
e

s18
c

s13
a

(d) Two slices extracted from the LTS.

a b c d e a b
a c d b e c b
a c b d e a b
a c b e a
a c b e c

a d e c
a d e a

(e) Corresponding log-slices.

a
c

b

d

e

b
a

c

a d e
c

a

(f) Synthesized Petri nets.

Figure 3: Examples at different stages of the mining flow.

a a b

b a

(a) Log.

(0, 0)

(1, 0)

a b

(0, 1)

(2, 0)

a
(1, 1)

b

(2, 1)

a

(b) Prefix multiset LTS.

(0, 0)

(1, 0)

a b

(0, 1)

(2, 0)

a b

(1, 1)

b

(2, 1)

a

a

(c) Arc-completed LTS.

Figure 4: Log and steps to construct LTS.

is a set of events, T ∈ S×E×S are the transition relations
between states, labelled with E, and s0 is the initial state.

We use s
e−→ s′ as a shorthand for the arc (s, e, s′) ∈

T . Similar to Petri nets, a sequence σ = e1e2 . . . en
is feasible in A if there exists s1, s2, . . . , sn ∈ S with

s0
e1−→ s2

...−→ sn−1
en−→ sn.

For a given LTS A = (S,E, T, s0) and event e ∈ E, we
define the Excitation Set of e as the set of states in which e
is enabled, i.e.,

ES(e) = {s ∈ S | ∃s′ ∈ S : s
e−→ s′}.

Two events a, b are concurrent if there are four

states, s1 . . . s4, in S such that s1
a−→ s2

b−→ s4 and

s1
b−→ s3

a−→ s4. In this case we will also say that a and b
are concurrent in s1. Two events a, b are in conflict if there
is a state s ∈ ES(a)∩ES(b) and a, b are not concurrent in s.

The previous definitions allow two events to have multiple
relationships in the same LTS (concurrency, conflict or or-
dered). One of the goals of this work would be to find LTS
slices with “clean” relationships that can be easily visualized
in the form of Petri nets.

Next, a concept tightly related to Free-Choice nets is pre-
sented. Two events a and b are in free-choice conflict if they
are in conflict and ES(a) = ES(b). In this situation the two
events are always enabled or disabled simultaneously, which
corresponds to a similar situation in Free-Choice nets.

3.4 Construction of an LTS from a log
Many methods exist to construct an LTS from a log. This

work uses a variation of the prefix multiset conversion [19].
In real-life, logs obtained from execution traces often miss

information required to fully learn the correct process model.
For example, in the log in Fig. 4a, events a and b are seem-
ingly concurrent as a is still enabled after firing b and vicev-
ersa. The log shows trace b a, but does not contain a b. The
original prefix multiset technique would generate an LTS
where a and b are not concurrent (Fig. 4b). The technique
presented below generates an LTS where a b is also feasible.

For an input log L ∈ B(T ∗), the procedure creates a new
LTS A as follows:

1. The Parikh vector ψ(σ) of every possible prefix σ ∈ T ∗
appearing in L is computed. A new state is created for
every such different Parikh vector.

2. An arc s1
ei−→ s2 is created for every pair

s1, s2 ∈ A if ψ(s1) = (x0, . . . , xi, . . . , xn) and
ψ(s2) = (x0, . . . , xi + 1, . . . , xn).

3. The initial state s0 is the zero Parikh vector.

An example of a log and the LTS generated using this
method can be seen in Fig. 4c.

3.5 Conformance checking
An important set of techniques in process mining is con-

formance checking, which compare the observed (log) and
modeled behavior in order to evaluate the model. There are
four quality dimensions for comparing model and log: replay
fitness, simplicity, precision, and generalization [21].

A trace σ ∈ T ∗ fits a model N if σ is a feasible sequence
in N . A model has a perfect replay fitness if all traces in
the log can be replayed by the model. A precise model, on
the other hand, does not replay any trace other than those
contained in the log. Metrics for fitness have been defined
indicating how much every trace from the log fits a model [1].
Likewise, metrics for precision exist in the literature [17].

4. CLUSTERING
This section explains the main contribution of this work: a

clustering procedure to extract LTS slices that cover subsets
of the log. The extraction is done in such a way that each
log slice can be modeled by a Petri net with visually friendly
structure (free-choice) that covers the log slice with 100%
fitness. Clustering is done in two steps:

a

a

a

a

b

b

b

c

cc

d

d

1
a

1
a

a2

a2

c
2

c
1

c
1

b

b

b

d

d

Figure 5: Splitting maximal connected ESs.

1. Transforming the LTS to enforce specific relations be-
tween pairs of events.

2. Extracting LTS slices with pre-defined structural prop-
erties.

The first step (explained in Section 4.1) transforms the
LTS to enforce unique relationships between pairs of events.
After these transformations, all pairs of events in the LTS
are guaranteed to have only one relationship: ordered, in
conflict or concurrent.

The second step extracts slides from the LTS in such a way
that certain properties are met. These properties are related
to the state spaces of Marked Graphs [3] and Free-Choice
nets [8]. The extraction will be based on a satisfiability
model that characterizes all slices that meet the required
properties (see Section 4.2).

4.1 LTS transformations
The transformations presented in this section aim at en-

forcing unique concurrency/conflict relationships between
pairs of events.

4.1.1 Splitting events with disconnected ESs
It is frequent to observe disconnected instances of the

same event in different states of the LTS. This transforma-
tion considers each instance as a different event.

The transformation splits each event e into a set of events
e1 . . . ek such that the ESs of each event is maximally con-
nected (only has one connected component). Figure 5 illus-
trates this transformation with an example, in which event a
has two maximally connected sets of states in ES(s). There-
fore, two new events, a1 and a2 are created to substitute the
original event a. A similar situation occurs with event c.

When synthesizing a Petri net from the LTS, these events
may end up by being represented by different transitions in
the Petri net if the Free-Choice property requires the split-
ting. The decision about whether the splitting is necessary
is left at the criterion of the synthesis tool [8].

4.1.2 Saturation of concurrency
The goal of this transformation is to define a unique rela-

tionship between every pair of events. For every pair a and
b, there are two options:

ES(a) ∩ ES(b) = ∅ ⇒ ordered.

ES(a) ∩ ES(b) 6= ∅ ⇒ concurrent and/or conflict.

This transformation aims at disambiguating the second case
by exclusively choosing between concurrency or conflict.
The following definition formally describes what concur-
rency saturation is.

Two concurrent events are concurrency-saturated
(c-saturated) if they are concurrent in all states of
ES(a) ∩ ES(b). An LTS is said to be c-saturated if all pairs
of events are c-saturated.

a

a

a

a
b

b

b

b

c

c

c

c

x

a

a

a
b

b

b
c

c

c

x

a a
b

b
c

c

c

x

(b) (c)(a)

Figure 6: Examples to illustrate c-saturation.

Figure 6 shows three LTSs with different concurrency
properties. The one in 6a is c-saturated since all pairs of
concurrent events, (a, b), (b, c), and (a, c), are c-saturated.
The one in 6b is also c-saturated with the pairs (a, c) and
(b, c) being concurrent. However, 6c is not c-saturated since
the pair (a, b) is concurrent, but not in all the states of
ES(a) ∩ ES(b). Therefore the pair (a, b) is also in conflict.

Any LTS can be transformed into c-saturated by adding
states and transitions to complete the missing diamonds of
the concurrent events. This process can be applied itera-
tively until reaching a fixpoint in which all pairs of concur-
rent events are c-saturated. The details of the algorithm are
not given in the paper, but the reader can easily figure out
how to design it and verify that converges to a finite LTS.

In the example of Fig. 6, the LTS in 6c would become the
one in 6a after c-saturation. With this transformation, there
is no pair of events that can be concurrent and in conflict
simultaneously. This contributes to remove intricate event
relations, thus resulting in simpler Petri net structures.

4.2 Extraction of LTS slices
Once an LTS A representing the input log L is constructed

and transformed, the following step extracts several LTS
slices A1, A2, . . . , Ak satisfying a set of properties than make
it amenable for the synthesis of visually friendly Petri nets.
Each slice Ai covers a subset of traces (log-slice) Li of L.
The output of the clustering process is a set of log-slices
that completely cover L. In the example of Fig. 3, two log-
slices are delivered, shown in Fig. 3e.

We first describe the properties enforced in the LTS slices
and then the satisfiability model that extracts the slices.

4.2.1 Properties of the LTS slices
Three properties are desired in the LTS slices: forward

persistency, backward persistency and free-choiceness.
Persistency is a property tightly related to the state spaces

of Marked Graphs (see [3]). An LTS A = (S,E, T, s0) is
forward persistent (FP) if

∀s1
a−→ s2, s1

b−→ s3 : ∃s3
a−→ s4.

Informally, if two events are simultaneously enabled, they
must be concurrent. Backward persistency (BP) is an anal-
ogous property applied to the reversed LTS (reversing the
direction of transitions). It is known that forward and back-
ward persistency are necessary conditions for an LTS to be
the state space of a Marked Graph [3].

The third property is free-choiceness (FC). An LTS is said
to be free-choice if for every pair of events a and b, the
following condition holds:

a and b are in conflict =⇒ ES(a) = ES(b).

FC characterizes the state space for conflicts in Free-Choice
Petri nets. Given that two transitions in conflict have the
same predecessor places in a free-choice net, the set of mark-
ings in which they are enabled is identical for both transi-

a a
b

c

c

c

d

d

e

e

d
f

f
d

a

d

b

b

0

1

2

3

4 5

6

7 8

9

11

10

12

b c d e f
a F ‖ ‖ C S
b ‖ ‖ C
c
d ‖ ‖
e

Figure 7: LTS with various conflict relations be-
tween events.

ba c

e d

f

a b e d

f

c

(a) (b)

Figure 8: Petri nets obtained from the synthesis of
the LTS in Figure 7: (a) from the the full LTS, (b)
from a slice obtained by removing states 1 and 4.

tions. This means that both excitation sets will be identical
in the corresponding LTS. The FC property is the one used
in [8] to split events and guarantee free-choiceness.

Figure 7 shows an LTS and the relationship between pairs
of events (‖: concurrent, C: conflict, F: free-choice conflict).
Blank cells in the table represent ordered events (disjoint
ES’s). We observe that the only free-choice conflict is be-
tween a and b, given that ES(a) = ES(b) = {s0, s2, s6}. The
conflicts for the pairs (a, e) and (b, e) are not free-choice.

Figure 8 depicts two Petri nets obtained from the LTS in
Fig. 7. The one in Fig. 7a has been obtained by synthesizing
the full LTS, whereas the one in Fig. 7b has been obtained
by a slice in which states 1 and 4 have been removed. In the
latter case, all conflicts for the pairs (a, b), (a, e) and (b, e)
become free-choice, and so does the Petri net.

4.2.2 Satisfiability model
An LTS slice is simply a subset of the original LTS. The

goal of the approach presented in this paper is to extract
LTS slices with the FP, BP and FC properties. Let us call
them Well-Behaved (WB) slices.

If each transition ti ∈ T of the LTS is represented by a
Boolean variable, the set of WB-slices can be characterized
by a Boolean formula WB(T) in which every satisfying as-
signment corresponds to a WB-slice that contains only the
transitions ti for which their variables are asserted.

Fortunately, the function WB(T) can be easily con-
structed by observing that the FP, BP and FC properties
can be formulated locally, i.e., in terms of neighboring tran-
sitions. Once the WB formula is constructed, a SAT solver
can be used to extract slices. Alternatively, the SAT model
can be transformed into an Integer Programming model in
which some specific cost function can be optimized.

Let us now see how the FP, BP and FC properties can be
characterized with Boolean constraints. Note that after the
transformations applied to the LTS, all pairs of events have
a unique relationship, i.e., they can only be concurrent or in
conflict (but not both) in case their ESs intersect.

Forward persistency (FP).
This property is only applicable to pairs of concurrent

events (a, b). For every state s1 ∈ ES(a)∩ES(b), a diamond
exists with the following transitions:

t1 = (s1, a, s2), t2 = (s1, b, s3), t3 = (s2, b, s4), t4 = (s3, a, s4).

s
1

s
2

t
1

t
3

t
2

t
4

x

a

b b

a
x

x

Figure 9: Example to illustrate the FC constraint.

Any selected subset of {t1, t2, t3, t4} must preserve the FP
property, which means that the selection of t1 and t2 must
imply the full diamond. The constraint can be formulated
as follows:

(t1 ∧ t2) =⇒ (t3 ∧ t4).

Backward persistency (BP).
This property is analogous to the previous one, but re-

versing the direction of the transitions. A similar Boolean
formulation can be constructed.

Free-choiceness (FC).
This property is applied to pairs of events in conflict. The

constraints must ensure that both events have the same ex-
citation sets in case both events are present in the LTS slice.

The formalization of the constraints for each pair of events
in conflict can be stated as follows:

Once one of the events is enabled in one state,
then the same enabling relation must be main-
tained in the successor states reachable by other
events.

Figure 9 depicts an scenario in which FC must be applied
for two events, a and b, that are in conflict. Notice that the
event x with transition s1

x−→ s2 must be concurrent with a
and b, otherwise a, b would not be enabled in s2, according
to the c-saturation transformation applied to the LTS.

Three options are possible with regard to the selection of
transitions t1 and t2 at state s1:

1. Both t1 and t2 are selected: in this case, the two events
must be enforced to have the same ESs and, thus, both
or none of t3 and t4 must be selected, i.e., t3 ⇔ t4.

2. Only one of them is selected, say t1. In this case, t3
would be present (because of the FP condition) and t4
cannot be selected, otherwise ES(a) 6= ES(b).

3. None of them is selected. In this case, no constraints
are imposed on t3 and t4 with regard to state s1.

Formally, the Boolean constraint applicable to s1 with
regard to events a and b is stated as follows:

(t1 ∧ t2) =⇒ (t3 ⇔ t4)

(t1 ∧ ¬t2) =⇒ ¬t4
(¬t1 ∧ t2) =⇒ ¬t3

The previous constraints can be simplified in case a and b
are in conflict but not all transitions of Fig. 9 are present in
the original LTS. For example, if t1 is not present (¬t1), the
previous constraints would be simplified and reduced to:

t2 =⇒ ¬t3.

Generation of choice-free Petri nets.
The previous constraints characterize LTS slices that de-

rive Petri nets in which all choices are free. A simple mod-
ification of the model can characterize Petri nets without
choices (only causality and concurrency relations). In par-
ticular, the FC conditions can be rewritten to disable the
selection of two transitions that are in conflict. This would
be equivalent to adding the constraint ¬t1 ∨ ¬t2.

4.3 Trace coverage
The conjunction of constraints for FP, BP and FC con-

form the Boolean formula WB(T) that characterizes all WB-
slices of the LTS. The question now is: which subset of slices
should be extracted? Two properties are desired:

• Every trace of the log must be covered by at least one
WB-slice.

• A small number of WB-slices should cover the majority
of traces of the log.

At this point, the satisfiability problem becomes an op-
timization problem that can be modeled with an Integer
Programming model with only binary variables.

A log L is a set of traces L = {σ1, . . . , σn}, and each trace
σi covers a set of transitions σi = {ti1 , . . . , tik} of the LTS,
according to the construction described in Section 3.4.

Each trace can be represented by a Boolean variable σi

that acts as a trace selector. The assertion of σi implies the
selection of all transitions of the trace in the LTS, i.e.,

σi =⇒ (ti1 ∧ · · · ∧ tik)

Including this constraint in the model, a subset of traces
can be covered by selecting their variables. The number of
covered traces is maximized by incorporating a cost function:

max
∑

σi

4.4 Algorithm for extracting WB-slices
Algorithm 1 Extraction of WB-slices

1: Input: A log L
2: Output: A set of pairs (LTS slice, Log slice)
3: A← c-saturated LTS from L
4: R← L . Remaining (uncovered) traces from L
5: i← 1
6: while |R| > 0 do
7: Ai ← SolveWB(A,R) . extract new LTS slice
8: Ti ← traces from L fitting Ai . associated traces
9: R← R \ Ti . subtract from remaining traces

10: i← i+ 1
11: return (A1, T1), (A2, T2), . . . , (An, Tn)

Algorithm 1 shows the main algorithm for extracting LTS
and log slices. The algorithm iterates until each trace in
log L is covered by at least one of the extracted LTS slices.
Variable R stores the list of traces not yet covered.

Function SolveWB extracts an slice from A that maxi-
mizes the number of covered traces from R. Still, this slice
may cover traces already covered by previous slices (in line 8,
the traces assigned to Ti are obtained from L, not R).

5. SYNTHESIS OF PETRI NETS
In addition to the main clustering procedure, we propose a

method to transform the LTS slices into Petri nets, extend-
ing a region-based synthesis tool, Petrify [7]. Region-based
miners are known for their tendency to construct overfitting
models [21]. The proposed modification allows Petrify to
construct Petri nets that trade off precision for visualization-
friendliness, and implements the ideas of [5].

Any mining tool can be used to obtain process models
from the log slices generated by the clustering method. How-
ever, the synthesis procedure described in this section reuses
the LTS slices constructed by the clustering algorithm, and
thus has inherent benefits in both efficiency and simplicity.

0

1 2

3

4

5

6

7

8

9

a

a

a

a

b

b

c

d

d

e

(a)

reg states
r1 0, 1
r2 2, 3
r3 0, 2, 4, 6, 8
r4 1, 3, 5, 7
r5 4, 5, 6, 7, 8
r6 9

(b)

e

r 6

r 5

r 3

r 1

r 2

4r

c

a

b

d

(c)

e

b

b

a

d

a

a

c

(d)

e

a b

c

a

d

(e)

Figure 10: Synthesis of Petri nets using regions.

For full details on the theory of regions, we refer to [8]. The
following section briefly surveys the basics of the theory.

5.1 Theory of regions
The theory of regions provides an algorithmic method

to derive a Petri net from an LTS. Given an LTS
A = (S,E, T, s0) and a subset of states r ⊆ S, a transition

s
e−→ s′ enters r if s /∈ r ∧ s′ ∈ r, exits r if s ∈ r ∧ s′ /∈ r,

and does not cross r otherwise. r is a region if for every
event e ∈ E, all transitions t ∈ T labelled e are in the same
relation with r (entering, exiting, or not crossing). A region
r is minimal if no subset of r is a region. Figure 10a shows
an example LTS, with 10b listing the minimal regions.

Intuitively, a region r corresponds to a place p in the Petri
net. p will precondition any of the events exiting r. Thus,
it will be marked only in states corresponding to those in
r, receiving tokens only from transitions corresponding to
events entering r. Straightforwardly, to construct a Petri
net from the list of minimal regions, a transition ti is created
for every event ei ∈ A and a place pj is created for every
minimal region rj . If ei enters rj , then pj ∈ •ti. Conversely,
if ei exits rj , then pj ∈ t•i . pj is marked iff s0 ∈ rj .

5.2 Excitation Closure
Let L(A) be the language of the LTS A, i.e., the set of

all traces fitting A, and L(N) the set of all traces fitting N ,
where N is a Petri net constructed from A using the above
method. Assuming e ∈ E, let ◦e be the set of minimal
regions of A where e is exiting. A is excitation closed [8] if:

∀e ∈ E, ◦e 6= ∅ ∧ ES(e) =
⋂

r∈◦e

r

L(A) = L(N) is only guaranteed if A is excitation closed [8].
If not, then L(A) ⊆ L(N) [5], N fits more traces than A.

Figure 10c depicts the Petri net N obtained from the min-
imal regions of the LTS A shown in 10a, whereas 10d shows
the LTS that models L(N). Since the LTS in 10a is not ex-
citation closed, N fits more traces than A (e.g., trace abce).

Traditional region-based synthesis tools, including Petrify,
transform the LTS to guarantee the excitation closure prop-
erty and thus enforce L(A) = L(N). These transformations
often degrade the visualization quality of the resulting Petri
nets [5] and result in hard to understand overfitting models
which are not ideal for Process Mining. For these reasons,

Table 1: Time required for clustering.

Log size Time [s.]

Log
Uniq.
traces

Event
types

Our
proposal

ActiTraC

documentflow 1411 70 90 95
fhmilu 701 12 60 106
fhmn5 693 13 174 38
incidenttelco 212 22 32 17
kim 1174 18 37 20
purchasetopay 76 21 7 55
receipt 116 27 15 7
tsl 1908 42 111 60

Table 2: Number of slices and crossings required to
reach specific fitness thresholds.

Our proposal
Log 85% 90% 95%

Slic. Cros. Slic. Cros. Slic. Cros.
documentflow 1 0 1 0 4 8
fhmilu 1 4 1 4 1 4
fhmn5 1 1 1 1 1 1
incidenttelco 1 0 1 0 2 1
kim 1 0 1 0 2 0
purchasetopay 1 0 1 0 1 0
receipt 1 3 1 3 1 3
tsl 1 3 3 3 10 9

ActiTraC
Log 85% 90% 95%

Slic. Cros. Slic. Cros. Slic. Cros.
documentflow 1 0 2 14 3 946701
fhmilu 6 4 Timeout computing fitness2

fhmn5 3 1 6 2 8 2
incidenttelco 1 3 1 3 2 3
kim 1 2 1 2 2 3
purchasetopay 1 2 1 2 1 2
receipt 2 5 2 5 2 5
tsl 1 25 1 25 2 145

our modification drops the excitation closure requirement to
avoid these transformations. Because of this relaxation, the
resulting Petri nets are less overfitting.

Finally, event splitting can contribute to further enhance
the structure of the Petri net while keeping the recognized
language. Figure 10e shows a new structure after splitting
event a. The details on how label splitting is performed are
out of the scope of this work (see [8]).

6. RESULTS
We have implemented the algorithms described on this

work in Python, using the PMLAB [6] process mining pack-
age. 8 logs combining real-life sources and benchmarks have
been used as inputs to the mining process. These logs
are available at http://www.cs.upc.edu/˜jspedro/pnsimpl/.
Gurobi [13] has been used to solve all ILP models. We have
evaluated the quality of the obtained models using the ET-
Conformance plugin in ProM, which compute the best align-
ment between trace and log before measuring fitness and
precision [1, 17].

As for the important issue of visualization-friendliness,
there are several studies in the literature [15]. In this work
we propose a metric related to the concept of planarity: the
minimal number of crossings required to embed the graph on
a plane. This value is hard to compute optimally. For this
reason, the mincross algorithm from Graphviz [12] is used to

2Because of the large number of Petri Nets, replay fitness
could not be measured for this benchmark.

obtain the estimations that will be used in this section. As
it is only an estimation, mincross may sometimes overesti-
mate the number of crossings in large, dense graphs. These
pathological cases, most often, are not visualization-friendly
even if the crossing number is overestimated.

In order to compare our proposal with the related work
we propose two experiments. In the first one, we show how
many slices (Slic.) and crossings (Cros.) are required by our
mining process, depending on how much behavior of the log
is preserved. We also compare it to ActiTraC [9], a state-of-
the-art clustering procedure that also targets visualization.

In the second experiment, we show how our slicing ap-
proach results into visualization-friendly models even when
using alternative miners.

6.1 Minimum number of log slices
We configured our implementation to generate as many

slices as required in order to obtain a set of slices that in-
clude at least 80% of traces from the input log. Petrify was
used to generate models for each of the slices. The size of
the logs, in number of unique traces and event types, as well
as the time spent during the slicing process is shown in Ta-
ble 1. Similarly, ActiTraC was configured with the default
settings, but a stop criteria of having generated enough clus-
ters to cover 80% of the traces. By default, ActiTraC uses
the Heuristic Miner to generate models for the clusters.

The models mined by both tools are generally underfit-
ting, i.e., precision is sacrificed to aid model visualization.
Thus, each model allows for more traces than those present
in the corresponding log slices. For this reason, measuring
entire log replay fitness using ProM usually results in values
higher than 80% of the log as configured.

In this experiment, we measure how many slices are actu-
ally required to reach a specific level of fitness when replay-
ing the entire input log. For both clustering algorithms,
the slices with the largest number of traces are selected
first. This number of slices estimates how much behavior
a clustering algorithm can fit into a single model. However,
the clustering algorithm needs to ensure each model is still
visualization-friendly. To estimate this, we measure the to-
tal number of crossings present in each of the selected slices.

The results, shown in Table 2, indicate that our approach
compares positively with ActiTraC. For most examples, the
first slice already provides with a model that fits 90% of the
original full log. In addition, these first slices have few or
almost no crossings.

6.2 Metrics of the first slice
In the second experiment, we repeat the proposed slic-

ing procedure on the same logs, but center on the metrics
of the slice containing the highest number of traces, which
we call the first slice. Two distinct miners are used: Pet-
rify (using the modifications described in Section 5) and the
α-miner [20]. The experiment shows how the slices gener-
ated by the proposed algorithm are visualization friendly
even when using other types of miners.

As a baseline for comparisons, we also show the metrics of
models obtained directly from the log, without applying our
slicing approach, but after applying a naive noise filtering
algorithm. This naive strategy removes the least frequent
20% traces from each log, effectively removing most infre-
quent behavior. Without this noise removal, attempting to
mine the full log would result in huge spaghetti models which

http://www.cs.upc.edu/~jspedro/pnsimpl/

Table 3: Comparing the first slice from the proposed clustering method vs. a naive noise removal algorithm
(removing 20% least frequent traces), using different miners.

Using Petrify as miner Using α miner
1st slice (our method) Naive method 1st slice (our) Naive method

Log Fit. Prec. Cros. Fit. Prec. Cros. Fit. Cros. Fit. Cros.
documentflow 92.1% 81.7% 0 97.9% 57.2% 0 37.8% 0 37.5% 2286
fhmilu 97.8% 64.5% 4 Out of memory 38.0% 8 16.8% 29
fhmn5 99.1% 49.4% 1 Out of memory 40.6% 4 25.5% 116
incidenttelco 92.6% 53.7% 0 99.3% 30.7% 14 63.1% 9 46.7% 53
kim 92.9% 75.1% 0 94.6% 84.6% 38 66.4% 7 56.1% 80
purchasetopay 99.8% 68.2% 0 94.0% 100.0% 0 96.9% 6 100.0% 0
receipt 98.0% 71.3% 3 95.9% 100.0% 0 99.8% 8 76.6% 1
tsl 82.7% 83.9% 3 99.7% 53.1% 1 Timeout 75.7% 310

would be meaningless to compare with the models generated
after our slicing procedure. Yet, the results show that even
when compared to models where most noise has been re-
moved, using our slicing algorithm still results in simpler
models with comparable fitness (Fit.) and precision (Prec.).

Table 3 shows these metrics on the first slice of each of
the logs as well as using the naive algorithm. When using
Petrify as miner, some of the models generated after the
naive noise elimination still have tens of crossings or low
precision. The models generated all have very few crossings
despite maintaining similar levels of fitness and precision.

When using the α-miner, low-fitting spaghetti models are
discovered even after noise elimination. When applied to the
first slices, the α-miner discovers models with a significantly
reduced number of crossings, and increased fitness.

7. CONCLUSIONS
In this paper, we have introduced a new method to mine

visualization-friendly Petri nets from real-life process logs.
We have shown our method to improve on the visualization
quality of other similar slicing methods while being compet-
itive in performance. This work is just an initial incursion
into the study of properties of labelled transition systems
with the goal of process model visualization. We envision
this effort to be a starting point for further simplifications
using other structural properties.

8. REFERENCES
[1] A. Adriansyah. Aligning observed and modeled behavior.

PhD, Technische Universiteit Eindhoven, 2014.
[2] A. Appice and D. Malerba. A co-training strategy for

multiple view clustering in Process Mining. IEEE Trans.
on Services Computing, 2015. Early online access.

[3] E. Best and R. Devillers. Characterisation of the state
spaces of live and bounded marked graph Petri Nets. In
Language and Automata Theory and Applications, volume
8370 of LNCS, pages 161–172. Springer, 2014.

[4] R. P. J. C. Bose and W. M. P. van der Aalst. Context
aware trace clustering: Towards improving process mining
results. In Proceedings of the 2009 SIAM International
Conference on Data Mining, pages 401–412, 2009.

[5] J. Carmona, J. Cortadella, and M. Kishinevsky. A
region-based algorithm for discovering Petri Nets from
event logs. In Business Process Management, volume 5240
of LNCS, pages 358–373. Springer, 2008.

[6] J. Carmona and M. Solé. PMLAB: An scripting
environment for Process Mining. In Proceedings of the
BPM Demo Sessions 2014, pages 16–21, Oct. 2014.

[7] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: a tool for manipulating
concurrent specifications and synthesis of asynchronous
controllers. IEICE Transactions on Information and
Systems, 80(3):315–325, 1997.

[8] J. Cortadella, M. Kishinevsky, L. Lavagno, and
A. Yakovlev. Deriving Petri nets from Finite Transition
Systems. IEEE T. on Comp., 47(8):859–882, Aug. 1998.

[9] J. De Weerdt, S. vanden Broucke, J. Vanthienen, and
B. Baesens. Active trace clustering for improved process
discovery. IEEE Trans. on Knowledge and Data
Engineering, 25(12):2708–2720, Dec. 2013.

[10] C. C. Ekanayake, M. Dumas, L. Garćıa-Bañuelos, and
M. La Rosa. Slice, mine and dice: Complexity-aware
automated discovery of business process models. In
Business Process Management, volume 8094 of LNCS,
pages 49–64. Springer, 2013.

[11] D. Fahland and W. van der Aalst. Simplifying mined
process models: An approach based on unfoldings. In
Business Process Management, volume 6896 of LNCS,
pages 362–378. Springer, 2011.

[12] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A
technique for drawing directed graphs. IEEE Trans.
Software Eng., 19(3):214–230, 1993.

[13] Gurobi Inc. Gurobi Optimizer Reference Manual. 2013.

[14] S. Leemans, D. Fahland, and W. van der Aalst. Discovering
block-structured process models from event logs - a
constructive approach. In Application and Theory of Petri
Nets and Concurrency, volume 7927 of LNCS, pages
311–329. Springer, 2013.

[15] J. Mendling, G. Neumann, and W. van der Aalst.
Understanding the occurrence of errors in process models
based on metrics. In On the Move to Meaningful Internet
Systems, volume 4803 of LNCS, pages 113–130. Springer,
2007.

[16] T. Murata. Petri Nets: Properties, analysis and
applications. Proc. of the IEEE, 77(4):541–580, Apr. 1989.

[17] J. Muñoz-Gama and J. Carmona. A fresh look at precision
in process conformance. In Business Process Management,
volume 6336 of LNCS, pages 211–226. Springer, 2010.

[18] M. Song, C. Günther, and W. van der Aalst. Trace
clustering in Process Mining. In Business Process
Management Workshops, volume 17 of LNBIP, pages
109–120. Springer, 2009.

[19] W. van der Aalst, V. Rubin, H. Verbeek, B. van Dongen,
E. Kindler, and C. Günther. Process mining: a two-step
approach to balance between underfitting and overfitting.
Software & Systems Modeling, 9(1):87–111, 2010.

[20] W. van der Aalst, T. Weijters, and L. Maruster. Workflow
mining: discovering process models from event logs. IEEE
Trans. on Knowledge and Data Engineering,
16(9):1128–1142, Sept. 2004.

[21] W. M. P. van der Aalst. Process Mining: Discovery,
Conformance and Enhancement of Business Processes.
Springer, 1st edition, 2011.

	Introduction
	Related work

	Method overview
	Visual example

	Background
	Process Mining
	Petri nets
	Labelled Transition Systems
	Construction of an LTS from a log
	Conformance checking

	Clustering
	LTS transformations
	Splitting events with disconnected ESs
	Saturation of concurrency

	Extraction of LTS slices
	Properties of the LTS slices
	Satisfiability model

	Trace coverage
	Algorithm for extracting WB-slices

	Synthesis of Petri Nets
	Theory of regions
	Excitation Closure

	Results
	Minimum number of log slices
	Metrics of the first slice

	Conclusions
	References

