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Abstract—Mining the most influential location set finds k locations, traversed by the maximum number of unique trajectories, in a given

spatial region. These influential locations are valuable for resource allocation applications, such as selecting charging stations for

electric automobiles and suggesting locations for placing billboards. This problem is NP-hard and usually calls for an interactive mining

processes involving a user’s input, e.g., changing the spatial region and k, or removing some locations (from the results in the previous

round) that are not eligible for an application according to the domain knowledge. Efficiency is the major concern in conducting this

human-in-the-loop mining. To this end, we propose a complete mining framework, which includes an optimal method for the light

setting (i.e., small region and k) and an approximate method for the heavy setting (i.e., large region and k). The optimal method

leverages vertex grouping and best-first pruning techniques to expedite the mining process. The approximate method can provide the

performance guarantee by utilizing the greedy heuristic, and it is comprised of efficient updating strategy, index partition and

workload-based optimization techniques. We evaluate the efficiency and effectiveness of our methods based on two taxi datasets from

China, and one check-in dataset from New York.

Index Terms—Location Selection, Most Influential k-Location Set, Maximum Coverage Problem, Trajectory Data Mining.
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1 INTRODUCTION

Advances in location acquisition technology have resulted in

massive trajectories, representing the mobility of a diversity of

moving objects, such as human, vehicles, and animals. As a

consequence, many techniques have been proposed for processing

and mining trajectory data with a broad range of applications over

the last decade, ranging from trajectory pattern mining [1], [2],

trajectory classification and clustering [3], [4], trajectory outlier

detection [5], to location-based services [6], [7], [8] etc. Different

from previous works, we focus on identifying a set of appropriate

locations which are traversed by the maximum number of unique

trajectories in a given spatial region.

Applications. Mining the most influential k-location set is vital to

many resource allocation applications.

The first application is selecting charging stations for electric

vehicles according to their GPS trajectories. As shown in Fig. 1(a),

the candidate locations are the road intersections. Among them,

intersections n1 and n3 form the most influential 2-location set as

they cover 5 unique trajectories. Intersections n2 and n3 are not

the most influential set, as they only cover 4 unique trajectories.

• Y.H. Li and Z.G. Gong are with the Department of Computer and

Information Science, University of Macau, Macau, China. This work was

done when Yuhong Li was a visiting student supervised by Jie Bao and Yu

Zheng at Microsoft Research Asia. E-mail: {yb27407,fstzgg}@umac.mo

• J. Bao and Y. Zheng are with Microsoft Research, Beijing, China. Y. Zheng

is also affiliated with School of Computer Science and Technology, Xidian

University, and Shenzhen Institutes of Advanced Technology, Chinese

Academy of Sciences. E-mail: {jiebao, yuzheng}@microsoft.com

• Y.H. Li is with the Computer Science Department, Worcester Polytechnic

Institute, Worcester, MA, USA. E-mail: yli15@wpi.edu

• Y.C. Wu is with the State Key Lab of CAD & CG, Zhejiang University,

Zhejiang, China. E-mail: ycwu@cad.zju.edu.cn

c1 c2

c3

c4

g1

g2

g3

tr1 tr2

tr3

tr4

tr5

n1

n2

n3

(a) EV Charging Station (b) Billboard (c) Observation Station

c5

Fig. 1: Application Scenarios.

Though they individually have the most number of trajectories

(i.e., 3 for each) traversing them.

The second application is selecting locations for placing bill-

boards based on users’ check-in histories or trajecotires [9]. as

shown in Fig. 1(b), a location can be defined as a uniform grid

covering a few points of interests (POIs). Grids g1 and g2 form a

most influential 2-location set, traversed by 4 unique trajectories,

i.e., visited by 4 users. Grids g1 and g3 cannot construct the most

influential 2-location set, as they only cover 3 users.

The third application is to place observation stations for migra-

tory birds, where a location can be a cluster of birds’ stay points

detected from their moving trajectories. As shown in Fig. 1(c),

clusters c2 and c4 form the most influential 2-location set, they

totally cover all birds’ trajectories.

Challenges. There are three major challenges in mining the most

influential k-location set from massive trajectories: i) this problem

can be mapped to the MAX-k-COVER problem, which is NP-hard

and computational intensive; ii) different users may be interested

in mining k locations in different spatial regions. For instance, as

shown in Fig. 2(a), two local business owners may want to place

different number of advertisements in different areas. However,
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it is not possible to pre-compute one location set serving all

requests with different mining parameters; and iii) users, i.e.,

domain experts, may need to interact with our system several

times based on their domain knowledge. For example, as depicted

in Fig. 2(b), c4 is located in a lake where we cannot find land to

place an observation station. Thus, c4 should be removed from the

returned set and {c1, c5} becomes the most influential 2-location

set.

Although the MAX-k-COVER problem has been studied [10],

[11], [12], [13], [14], existing methods are off-line approaches that

find a one-time result. Different from these works, our problem

setting allows a user 1) to specify a spatial region and k, and

2) to refine returned results interactively and iteratively. In order

to attract users to pursue interactions in the mining process, it is

crucial to improve the system’s efficiency.

Contributions. To address the aforementioned challenges, a com-

plete mining framework is proposed to find the most influential k-

location set efficiently. Our system consists of two main modules:

i) pre-processing module, which creates the spatial networks from

different types of trajectory data and builds a set of indices to

speed up the mining process; and ii) location set mining module,

which finds a k-location set by taking spatial region, k value,

and choices made during the user’s interaction as the input. Our

location mining module not only provides the optimal solution

for small spatial region and k, but also provide an approximate

solution for large spatial region and k with performance guarantee.

The contributions of this paper can be summarized as follows:

• We introduce a novel trajectory data mining task, i.e.,

mining the most influential k-locations set from massive

trajectories, with many potential applications.

• We propose an efficient algorithm to provide the optimal

result, when k and spatial area are small. The algorithm

groups the nearby locations together and performs the

best-first pruning to avoid checking some unpromising

candidates, i.e., k-location set.

• We propose an efficient algorithm to find the location set

with the greedy heuristic, in case of large k and spatial

area. The efficiency is enabled by precomputing several

data indices which can speed up the updating phase in the

greedy heuristic.

• Experimental evaluations on a taxi dataset from Tianjin

show that our proposed system is an order of magnitude

faster than the baseline solution. We also provide two case

studies to demonstrate the applicability of our proposed

system. Moreover, we have already deployed a system

to select the appropriate k-location set for placing bill-

boards [9], [15].

Outline. The rest of the paper is organized as follows. Sect. 2

provides the preliminary and overview of our proposed system.
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Fig. 2: Summary of Challenges.

Sect. 3 presents the pre-processing module of our system. The

optimal solution for the light setting is presented in Sect. 4, and we

describe the approximate solution for the heavy setting in Sect. 5.

Experimental evaluation are conducted in Sect. 6, followed by the

related works in Sect. 7. Finally, we conclude the work.

2 OVERVIEW

In this section, we formally define the problem and present the

framework of our proposed system.

2.1 Preliminary

We first introduce some basic definitions that are widely used in

this paper.

Definition 1 (Trajectory). A trajectory tr is a sequence of spatial

points that a moving object follows through space as a function of

time. Each point consists of an object ID, latitude, longitude, and

a time stamp.

Definition 2 (Location). A location is a spatial point or region,

which can be defined in three forms: 1) an intersection in a road

network, e.g., n1 as shown in Fig. 1(a); 2) a grid cell, e.g., g1 as

depicted in Fig. 1(b); or 3) a stay point or a cluster of points from

trajectories, e.g. c2 as illustrated in Fig. 1(c).

Definition 3 (Spatial network). A spatial network can be denoted

as a directed graph G = (V,E), where the vertex set V represents

the locations 1 and the directed edge set E represents the set of

edges where each has two terminal vertexes (locations).

Definition 4 (Trajectory coverage). A location vi covers a trajec-

tory trj , if and only if the trajectory trj passes the location vi.

Given a location on a spatial network (e.g., an intersection vi on a

road network), its coverage set Tr(vi) represents the set of trajec-

tories passing through the location vi. Similarity, we use Tr(V )
to denote the set of trajectories passing through the location set

V , and it can be formally calculated as Tr(V ) = ∪vi∈V Tr(vi).

2.2 Problem Definition.

The problem proposed in this work, i.e., mining the most influ-

ential k-location set in a given spatial region, is formally defined

as:

Definition 5 (The Most Influential k-Location Set). Given a user-

specified spatial region R, a k value and a trajectory set Tr, we

denote the spatial network in R as Gs = (Vs, Es). The most

influential k-location set in R finds k 2 locations in Vs, such that

the total number of unique trajectories being covered by these k

locations is maximized.

To be precise, we use the following integer linear programming

(ILP) formulation to captures the problem exactly. We use vi.s and

trj .s to indicate the solution of the problem. For each location

vi ∈ Vs, vi.s = 1 if vi is selected in the result set, and vi.s = 0
otherwise; for each trajectory trj ∈ Tr, trj .s = 1 if trj is

covered by these selected locations, and trj .s = 0, otherwise.

1. Vertex and location are interchangeable in this work.

2. Here k ≤ |Vs|.
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Fig. 3: System Overview.

max :
∑

trj∈Tr

trj .s, s.t. :
∑

vi∈Vs

vi.s ≤ k,
∑

trj∈Tr(vi)

vi.s ≥ trj .s

(1)

The objective of Eq. 1 is to maximize the total number of

unique trajectories being covered by the selected k locations.

The first constraint guarantees that the total number of selected

locations is no more than k; the second constraint ensures that

if a trajectory trj is covered, then at least one location vi that

trj ∈ Tr(vi) should be selected in the result set. This problem

is equal to the MAX-k-COVER problem and is NP-hard as been

proven in [10], [16], [17].

Moreover, in some application scenarios, the system need

to support interactions with the help of domain experts to find

the qualified k-location set. Specifically, at the initial step, the

system returns k locations that maximize the number of covered

trajectories based on the current parameters, i.e., spatial region and

k. Then, the expert involves and marks 0 ≤ ℓ ≤ k disqualified

locations from these k (selected) locations, based on his domain

knowledge. In the following steps, the system needs to remove

these ℓ marked locations and re-selects k locations, covering the

maximum number of unique trajectories. This process iterates,

until the expert accepts all the returned k locations 3.

Therefore, each interaction needs to be done in a timely

fashion, so that the expert can proceed to further mark disqualified

locations. This motivates our system to achieve two objectives:

1) maximizing the trajectory coverage; and 2) minimizing the

response time.

2.3 System Overview

Fig. 3 gives the overview of our proposed system. It contains two

main modules:

Pre-processing Module. As shown in the left portion of Fig. 3, pre-

processing module takes the trajectory dataset as the input, and it

performs the following four procedures:

Step 1- Spatial Network Mapping, which maps the raw trajectory

onto the corresponding spatial network (e.g., the road network as

shown in Fig. 1(a)). The output of this step is the trajectory-vertex

index.

Step 2- Spatial Indexing, which indexes the vertices (locations)

based on their spatial coordinates, i.e., latitude and longitude. The

goal of this step is to boost the spatial range search.

Step 3- Inverted Trajectory Indexing, which aggregates the trajec-

tory IDs over each vertex in the spatial network and generates the

vertex-trajectory index.

3. As a remark, pre-estimating the quality of all locations for different
applications maybe infeasible.

Step 4- Vertex-vertex Indexing, which calculates the number of

shared trajectories between two vertices.

Location Set Mining Module. As presented at the right part of

Fig. 3, Location Set Mining Module takes user’s mining parame-

ters, i.e., a spatial region R, a value k and a set of marked vertices

as the input, and returns k locations as the result. The process

goes multiple iterations until the user satisfies the final returned

result. In this paper, we propose an efficient optimal solution to

process each iteration with relatively smaller R and k (detailed in

Sect. 4); and an efficient approximate solution, which utilizes the

greedy heuristic to choose the candidate locations for larger R and

k (detailed in Sect. 5).

3 PRE-PROCESSING

In this section, we present the four procedures (cf. Sect. 2.3)

of the pre-processing module in detail.

Spatial Network Mapping This step contains two tasks: 1) spatial

network construction, the system first identifies the locations based

on different scenarios, e.g., the intersections, spatial cells, or

the stay points, then constructs the spatial network; 2) trajectory

map-mapping, the system needs to map the raw trajectories onto

the corresponding spatial network, e.g., using a map matching

algorithm as proposed in [18]. The output of the procedure is a

trajectory-vertex index which is denoted as Itv . In this index, each

entry records a set of locations that a trajectory traversed, i.e., the

entry of tri is {tri|vx, vy, ..., vz}.

Spatial Index Building The spatial index is used to speed up the

spatial selection process. In this step, we take the constructed

spatial network G = (V,E) as the input and use R+-tree [19] to

index the spatial vertices (locations). The output of this procedure

is a hierarchical tree structure Ispatial.
Inverted Trajectory Index Building In this step, the system builds

the vertex-trajectory index, which is denoted as Ivt. In this index,

it stores the covered trajectory IDs for each location, i.e., the

entry of vi is {vi|trx, try, ..., trz}. The construction of the vertex-

trajectory index is quite simple, i.e., it scans each entry (trajectory)

in trajectory-vertex index and adds the current trajectory ID to

each scanning vertex.

Vertex-vertex Index Building The vertex-vertex index records the

number of shared trajectories between two vertices, i.e., the entry

of vi is {vi|(vx, cix), (vy, ciy), ..., (vz, ciz)}, where cix indicates

the number of shared trajectories between vertices vi and vx. To

construct the vertex-vertex index, we take the trajectory-vertex

index as the input. For each trajectory, it adds one to every pair of

vertices in the vertex-vertex index. The utilization and optimization

of the vertex-vertex index are presented in Sect. 5.

4 OPTIMAL LOCATION SET MINING

For small spatial region R and k, it is possible to derive an

optimal solution to find the most influential k-location set from

massive trajectories. In this section, we first introduce a naive

algorithm (cf. Section 4.1), that finds the optimal solution by

enumerating and examining all possible k-location sets in a given

spatial region. Then, we develop an efficient optimal solution by

applying vertices grouping and best-first pruning techniques (cf.

Section 4.2).
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4.1 Naive Optimal Algorithm

The naive optimal algorithm is straightforward with three steps:

1) extracting all the vertices, denoted as Vs, within the spatial

region R by using the spatial index Ispatial; 2) generating all

the possible k-location sets from the extracted vertex set Vs; and

3) calculating the trajectory coverage for all combinations (i.e.,

k-location sets) and returning the combination with the maximum

coverage value as the result.

Obviously, the naive optimal algorithm is computing infeasible

for large |Vs| (i.e., spatial region R) and k. Specifically, the

algorithm needs to check Ck
|Vs|

= |Vs|!
k!(|Vs|−k)! k-location sets, i.e.,

the number of possible combinations increases exponentially with

both |Vs| and k. Moreover, calculating the trajectory coverage for

a k-location set is not an efficient process, especially when the

size of trajectory dataset is huge. A classical implementation for

counting the coverage of a k-location set is sorting the trajectories

in each vertex (location) according to their trajectory IDs4, then the

covered (unique) trajectories of a k-location set can be calculated

by a linear scan of their sorted trajectory lists.

4.2 Group Pruning Optimal Algorithm

The naive optimal algorithm needs to exhaustively scan all the

possible k-location sets to find the optimal result. To avoid this

drawback and improve the efficiency, the group pruning optimal

(GPO) algorithm is proposed.

Main idea. The intuition of GPO algorithm is to prune the

unpromising k-location sets by batch with two techniques:

• Vertices grouping. The vertices in the spatial region R can

be clustered into g groups. Instead of checking all the k-location

sets directly, we first estimate all the k-group sets. The number of

k-group sets should be much more less than the k-location sets.

If the coverage upper bound of a k-group set is already smaller

than the current best result, all the k-location sets belong to this

k-group set can be pruned safely.

• Best-first pruning. To improve the pruning ability, we can

apply the best-first strategy to prioritize the order of execution.

By processing the k-group set with the highest coverage upper

bound firstly, a better coverage bound can be expected to prune

the remaining unpromising k-group sets more effectively.

Algorithm 1 Group Pruning Optimal (GPO) Algorithm

Input: Vertex-trajectory index Ivt, spatial index Ispatial, spatial
range R, and k value.
Output: The optimal k-location set Vopt.

1: Vs := RangeSearch(Ispatial, R)
2: Divide Vs into a set of groups G
3: Generate all the k-group sets GS
4: Estimate the coverage upper bound for each k-group set
5: for gs ∈ GS in descending order of coverage upper bound do
6: if UB(gs) > |Tr(Vopt)| then
7: for Vi ∈ gs do
8: if |Tr(Vi)| > |Tr(Vopt)| then
9: Vopt := Vi

10: else
11: break;

12: Return Vopt

4. The sorting of trajectory IDs for all vertices can be done in the pre-
processing module.

Algorithm. Algorithm 1 gives the pseudocode of the group

pruning optimal (GPO) algorithm, with the following steps:

Step 1. Spatial Selection. The algorithm selects the vertices in

the mining region R, using the spatial index Ispatial (i.e., Line 1).

Step 2. Online Vertices Grouping. In this step, we divide all

the candidate vertices Vs into a set of groups g ∈ G (Line 2).

To achieve a tight upper bound, our grouping is based on the

observation that vertices, which are close to each other, usually

share more common trajectories. In our implementation, we apply

a R+-tree to group the vertices, where the number of groups

is controlled by maximum size of the leaf node. As a remark,

other grouping techniques (e.g., clustering [20], KD-tree [21],

and Hilbert curve[22]) are also applicable. After this phase, the

trajectory coverage Tr(g) for each group g ∈ G is calculated.

Step 3. k-group Sets Generation. In this step, the algorithm:

1) generates all possible k-group sets that may produce the k-

location set (Line 3); and 2) estimates the coverage upper bound

of each k-group set, by counting the number of unique trajectory

IDs (Line 4). Formally, the coverage upper bound of a k-group set

gs is defined as:

UB(gs) = | ∪g∈gs Tr(g)| (2)

Step 4. Best-first Pruning. In this step, we first sort all the k-

group sets based on their coverage upper bound. Then we check

the k-group sets in descending order of their coverage upper bound

(Line 5). For each qualified k-group set, i.e., the k-group set whose

coverage upper bound is larger than the best-so-far (Line 6), we

check all the k-location sets within this k-group set. The temporal

result is updated if one of these k-location set is better than the

current best-so-far Vopt (Line 8-9). This kind of process continues

until the coverage upper bound of a k-group set is less than the

current best-so-far (Vopt). Finally, the algorithm terminates and

returns Vopt as the result (Line 12).

Example. Figure 4 gives a example of choosing 2-location set

within a given region. As the first step, the algorithm identify the

vertices within the given spatial region R, and 9 candidate vertices

are selected from the spatial network (i.e., v1 to v9) as shown in

Figure 4(a).

After that, the algorithm divides the vertices into groups. In

our example, they are divided into 3 groups (i.e., g1 to g3), which

are bounded by different rectangles as shown in Figure 4(a).

Figure 4(b) shows the trajectory coverage for all vertices in the

group g1. Accordingly, we can estimate the number of covered

trajectories for this group. As shown in Figure 4(c), the number of

covered trajectories for g1, g2 and g3 are 8, 6 and 5 respectively.

Then, the k-group Sets Generation step is executed, as demon-

strated in Figure 4(d). In this step, we first generate all the possible

2-location sets. Note that it is possible that both two vertices comes

from the same group, thus we have the 2-group set like {g1, g1}.

We can estimate the coverage upper bound for all the 2-group sets

based on the Equation 2.

Finally, the algorithm runs the best-first pruning, as shown in

Figure 4(f). It first check the 2-group set with the highest coverage

upper bound (i.e., {g1, g2} in the example). For this 2-group set,

we need to exhaustively check all 2-location sets in it. In this

example, we find the 2-location set {v1, v4} possess the current

best with a total of 11 covered trajectories. As the maximum

coverage upper bound of the remaining 2-group sets is 10, the

algorithm then stops, and reports {v1, v4} as the final result.
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Fig. 4: Illustration of Group Pruning Optimal (GPO) Algorithm.

Algorithm 2 Framework of Greedy Heuristic Algorithm

Input: Vertex-trajectory index Ivt, spatial index Ispatial, vertex
coverage table vct, spatial range R, and k value.
Output: k-location set Vgdy

1: Vs := RangeSearch(Ispatial, R)
2: Vgdy := ∅
3: for i = 1 to k do
4: vcur := argmaxvi∈Vs\Vgdy

vct[vi]
5: Vgdy ← Vgdy

⋃
vcur

6: Update the coverage values of vct

7: Return Vgdy

Comparing to the naive optimal algorithm, which needs to

check C2
9 = 9×8

2 = 36 k-location sets, the group pruning optimal

(GPO) algorithm only needs to check 6 k-group sets and 9 k-

location sets. In this example, we can expect at least a 100%

efficiency improvement.

5 APPROXIMATE LOCATION SET MINING

In the case of large k value and spatial region, the optimal

solution may take a long time even by utilizing the GPO algo-

rithm. An efficient approximate solution becomes more promising,

especially when we need multiple rounds of interactions from

the field experts5. In the literature, the greedy heuristic has

been proved [23] as the best polynomial time solution with the

guarantee of 1− 1
e

approximation ratio.

In this section, we first present the framework of greedy heuris-

tic algorithm which contains a selection phase and an updating

phase. The updating phase dominants the performance of the

greedy heuristic algorithm (cf. Sect. 5.1). To reduce its processing

time, we introduce the basic updating algorithm by using the

trajectory-vertex index. However, even by the trajectory-vertex

index, it still takes more than 10 seconds for a trajectory dataset

with million trajectories (cf. Sect. 6). Finally, the partitioned index

batch updating (PIBU) algorithm is proposed by utilizing the

vertex-vertex index to select locations from massive trajectories

efficiently.

5.1 Framework of the Greedy Heuristic

In the greedy heuristic algorithm, we maintain a vertex cover-

age table, i.e., vct. Each entry of vct is identified by the vertex id

5. Whether the optimal or approximate solution should be used depends on
their response time and application scenarios.

Algorithm 3 Basic Updating (Basic) Algorithm

Input: vertex-trajectory index Ivt, trajectory-vertex index Itv ,
candidate vertices Vs, selected vertex vcur , vertex coverage table
vct.
Output: Updated vertex coverage table

1: Trnew ← newly covered trajectories by vcur
2: for each tr ∈ Trnew do
3: for each v ∈ Itv[tr] do
4: if v ∈ Vs \ Vgdy then
5: Update coverage value of v in vct.

vi, and is associated with a coverage value. The coverage value of

vertex vi is denoted as vct[vi], and it records the number of newly

covered trajectories if we put vi to the current result set.

The greedy heuristic algorithm is very simple, as shown in

Algorithm 2. Similar to Algorithm 1, it first selects a set of

candidate vertices Vs in the spatial region R (i.e., Line 1). After

that, a k-iterative process is executed with the following two

phases:

• Selection Phase. In this phase, the algorithm selects the

vertex with maximum coverage value in vct (i.e., Line 4) and

put it in the result set (i.e., Line 5).

• Updating Phase. In this phase, the algorithm updates the

coverage values in vct for all the unselected vertices by removing

the newly covered trajectories from their coverage (i.e., Line 6).

In Algorithm 2, the spatial range search and selection opera-

tions can be processed very efficiently. However, the updating step

is hideous and time consuming, especially in case of massive tra-

jectories, e.g., millions of entries, as the updating process needs to

remove all the newly covered trajectories from the vertex coverage

table. As a result, the key to expedite the mining processing lays

on improving the efficiency of the updating phase.

5.2 Basic Updating Algorithm

After each selection operation, a set of trajectories are newly

covered by the selected vertex. Thus, the coverage values of the

remaining vertices in vct need to be updated, i.e., removing the

newly covered trajectories by the selected vertex. Specifically,

the basic updating (Basic) algorithm scans the newly covered

trajectories and find the vertices that need to be updated by using

the trajectory-vertex index Itv .

Algorithm 3 shows the basic updating algorithm. After the

current vertex with maximum coverage vcur is selected, the

algorithm gets the newly covered trajectories Trnew, when adding

the vcur to Vgdy (Line 1). Specifically, Trnew is calculated as

Trnew = Ivt[vcur] \ Tr(Vgdy), where Ivt[vcur] and Trgdy are

the covered trajectories of vcur and Vgdy respectivially. Finally,
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Fig. 5: Illustration of Basic Updating (Basic) Algorithm.

the algorithm goes through the trajectory-vertex index for each

newly added trajectory in Trnew to update the values (i.e., minus

one) in vertex coverage table vct (Line 2-5).

Example. Figure 5 gives a running example of applying the basic

updating algorithm to extract the most influential 2-location set

using greedy heuristic algorithm. In this example, there are 6
vertices within the spatial region, i.e., {v1, v2, v3, v4, v5, v6}. The

corresponding vertex-trajectory index is shown in Figure 5(a),

and the trajectory-vertex index is shown in Figure 5(c). The

updating details of the vertex coverage table are demonstrated

in Figure 5(b), where each row indicates the updated coverage

values after removing a trajectory in Trnew. Initially, the coverage

value of each vertex is their original covered trajectories, i.e.,

{5, 4, 4, 3, 2, 2} for {v1, v2, v3, v4, v5, v6} respectively.

At the first iteration, v1 is selected and added to the result

set Vgdy , and all trajectories covered by v1, e.g., Trnew =
{tr1, tr2, tr3, tr4, tr5}, should be removed from the trajectory

sets of other locations. Then, the algorithm utilizes the trajectory-

vertex index of each trajectory in Trnew to update the coverage

values of the remaining vertices, i.e., v2 to v6. To be precise,

as shown in the first row of Figure 5(b), the algorithm notices

that the trajectory tr1 passes the vertices v1, v2 and v5 from

the trajectory-vertex index. Thus, the coverage values of v2 and

v5 should be updated, i.e., decreasing by 1, as tr1 has been

covered. The updating process continues until it checks all the

newly covered trajectories tr1 to tr5. After the updating phase, the

coverage values of the remaining vertices, i.e., {v2, v3, v4, v5, v6}

are {1, 2, 3, 0, 0}.

Based on the updated vertex coverage table, the greedy heuris-

tic algorithm continues to select the second vertex. In this case, it

will select v4, as v4 covers the most number of trajectories, i.e., 3.

Finally, the algorithm stops, as it has enough candidates.

Performance Analysis. The cost of the selection phase is rel-

atively small, i.e., a linear scan of the coverage values of the

remaining vertices, with the time complexity of O(|Vs|). The

dominant cost of the algorithm lays in the updating phase as it

not only needs to scan the trajectory list, but also the trajectory-

vertex index one by one. The time complexity of updating phase

by using Algorithm 3 is O(Tr(Vgdy)) × γ), where Tr(Vgdy) is

the total number of trajectories covered by the selected results, and

γ is the average length of each trajectory. Obviously, in the case

of large-scale trajectory dataset, the basic updating algorithm can

be prohibitively inefficient.

5.3 Partition Index Batch Updating

The performance bottleneck of the basic updating algorithm

is on the traversal of trajectory-vertex index, which scans every

covered trajectory and updates coverage values of the vertices

in vertex coverage table one by one. Actually, the objective of

updating phase is to deduct the number of common trajectories in

Trnew from the remaining vertices. In the best scenario, if we can

know the exact value changes in the vertex coverage table, and we

can just subtract the number without scanning the trajectory-vertex

index.

Based on this observation, we propose a partitioned index

batch updating algorithm. The proposed algorithm takes advan-

tage of the information stored in vertex-vertex index and tries

to avoid as much scanning operations on the trajectory-vertex

index as possible. To achieve this, it contains three optimization

techniques: 1) efficient updating strategy; 2) index partition; and

3) workload-based optimization.

5.3.1 Efficient Updating Strategy

The main challenge in using the vertex-vertex index is that this

index records the number of all shared trajectories for each vertex

pair. However, if we subtract the number of all shared trajectories

from the vertices in current iteration, some trajectories which are

covered by the selected vertices in previsous iteration will be

removed twice. Therefore, the vertex-vertex index can not be used

for the updating directly.

Main idea. We have the observation that, after a selection phase

(e.g., vcur is added into Vgdy), there can only be two possible

cases, when we want to update coverage values by the newly

covered trajectories Trnew introduced by vcur:

• Case 1. |Trnew| ≤ 1
2 · |Ivt[vcur]|: In this case, when

vcur is selected, more than half of its trajectories have

been covered by the previous selections. In this case, the

vertex-vertex index is less useful. We directly apply the

basic updating algorithm which scans the newly covered

trajectories to update the coverage table.

• Case 2. |Trnew| >
1
2 · |Ivt[vcur]|: In this case, when the

vertex vcur is selected, less than half of its trajectories

have been covered by the previous selections. In this case,

we first subtract the number of shared trajectories from

the vertex-vertex index for each remaining vertex. As

the previous operation subtracted the coverage values of

the previously covered trajectories, we need to scan the

previously covered trajectories (i.e., the smaller portion)

in vcur and add back the coverage values to the vertex

coverage table.

Algorithm. Algorithm 4 gives the pseudocode of the efficient

updating strategy. When picking a vertex vcur , the algorithm first

extracts two sets of trajectories: 1) Trpre, which is the vcur’s

trajectories that has been covered by Vgdy (i.e., Line 1); and

2) Trnew, which is the newly covered trajectory by vcur (i.e.,

Line 2).

Then, the algorithm makes a smart decision, which always

chooses the smaller portion of trajectories to perform updation.

In the case that when Trpre is relatively larger (i.e., case 1), the

algorithm simply calls the basic updating algorithm and utilizes

the trajectory-vertex index to update the coverage values (Line 3-

4); Otherwise, if the Trpre is the smaller (i.e., case 2), the

algorithm first subtracts the values in the vertex-vertex index from

the corresponding entries in the vertex coverage table. After that,
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Algorithm 4 Efficient Updating Strategy

Input: Vertex-trajectory index Ivt, trajectory-vertex index Itv ,
vertex-vertex index Ivv , result vertices Vgdy , selecting vertex
vcur , vertex coverage table vct
Output: Updated vertex coverage table

1: Trpre ← common trajectories between vcur and Vgdy

2: Trnew ← vcur’s trajectories minus Trpre
3: if |Trnew| ≤ |Trpre| then ⊲ Case 1
4: Perform basic updating algorithm
5: else ⊲ Case 2
6: Update coverage values using vertex-vertex index
7: for each tr ∈ Trpre do
8: for each v ∈ Itv[tr] do
9: if v ∈ Vs \ Vgdy then

10: Add one to the coverage value of v.

the algorithm scans each trajectory in Trpre and add back the

values to the vertex coverage table (Line 5-10).

Example. The updating process of case 1 is straightforward, while

case 2 is more complicated. We use Figure 6 to demonstrate the

updating process for case 2.

The initial status is presented in Figure 6(a), where the mining

process has been executed for a certain number of iterations and

chooses v1 as the next vertex to the result set. The newly covered

trajectories introduced by v1 are marked in grey. The algorithm

identifies that |Trnew| >
1
2 · |Ivt[v1]|(i.e., 4 > 2.5), thus it directly

subtracts the values in the vertex-vertex index from the vertex

coverage table, as demonstrated in Figure 6(b). Then, because the

original vertex-vertex index is calculated including tr1 (which is

already covered in the previous iterations), we essentially have

subtracted tr1 from the vertex coverage table twice. As a result,

the algorithm scans the trajectory-vertex index and adds back the

value in the vertex coverage table, as depicted in Figure 6(c).

By using the basic updating algorithm, it needs to scan four

trajectories, i.e., tr2, tr3, tr4, tr5, in the update phase. However,

as shown in this example, with the efficient update strategy, it only

needs to scan one trajectory, i.e., tr1, in the updating phase.

5.3.2 Index Partition

Applying the efficient updating strategy improves the updating

efficiency comparing to the basic updating algorithm. However,

even by using the efficient updating strategy, we may still need

to scan half of the trajectory list (to perform the updating) in the

worst case. Figure 7(a) gives an example, the vertex vj (e.g., a

busy intersection in the downtown area) is covered with millions

of trajectories and the number of its Trpre and Trnew is equal. In

this case, millions of trajectoris is still expected in the updating

phase. To this end, we propose index partition technique to
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.
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improve the efficiency by further reducing the number of scanned

trajectories.

Data structure. Partitioned vertex-vertex index is used, where

each entry, i.e., vcur , in vertex-vertex index is divided into multiple

groups. Each group contains a disjoint trajectory subset of vcur ,

and records the common trajectory numbers shared between vcur
and other vertices within the group. Figure 7(b) gives an example

of partitioned vertex-vertex index, where the trajectories of an

entry (e.g., vcur) are divided into two groups. From the partitioned

vertex-vertex index, we can identify that the common trajectories

between vcur and v1 in trajectory partition Pb is 3.

Main idea. The main intuition of the apply partition on the vertex-

vertex index originates from that, for the Figure 7(a)’s example,

if we have a partition of vertex-vertex index containing just the

newly covered trajectories available, we can directly subtract that

number in the table without scanning any trajectories. Moreover,

we have the observation that even if we cannot have such op-

timal partition scenario, we can still reduce the total number of

trajectories scans in the updating phase significantly, as long as

the vertex-vertex index are divided into multiple partitions.

The idea of using index partition technique is that, after divid-

ing the vertex-vertex index into multiple partitions, the efficient

updating strategy can be applied on each of the partition. In

this way, we can further reduce the number of scan operations

and improve the efficiency. The performance improvement is

guaranteed by Lemma 1.

Lemma 1. The number of trajectory scans with the index partition

is always smaller than only with the efficient updating strategy.

Proof. Suppose the trajectories of the vertex vcur are divided into

ρ ≥ 1 partitions. With only the efficient updating strategy, the

algorithm will always select the smaller size part between Trpre
and Trnew for the updating, thus the total number of trajectories

scanned is equal to min{
∑ρ

i=1 |Pi.T rnew|,
∑ρ

i=1 |Pi.T rpre|},

where Pi.T rpre and Pi.T rnew are the previously covered and

newly added trajectories of partition Pi respectively. By combin-

ing the index partition method and efficient updating strategy, the

algorithm will always choose the smaller part in each partition

to perform the updating, the number of scanned trajectories is∑ρ
i=1 min{|Pi.T rnew|, |Pi.T rpre|}. It can easily derive that∑ρ
i=1 min{|Pi.T rnew|, |Pi.T rpre|} ≤ min {

∑ρ
i=1 |Pi.T rnew|,∑ρ

i=1 |Pi.T rpre|}. As a result, Lemma 1 holds.

Algorithm. Algorithm 5 gives the pseudocode of Partition Index

Batch Updating (BIPU) algorithm. For each trajectory partition

Pi of vertex vcur , it first identifies the Pi.T rpre and Pi.T rnew
of each trajectory partition (Line 2). After that, the algorithm

performs the efficient updating strategy by using the correspond-

ing partition of partitioned vertex-vertex index (Ivv[vcur].Pi) to

update the corresponding coverage value, i.e., it always chooses
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Algorithm 5 Partition Index Batch Updating (PIBU) Algorithm

Input: Vertex-trajectory index Ivt, trajectory-vertex index

Itv , partitioned vertex-vertex index Ivv , result vertices Vgdy ,

selecting vertex vcur , vertex coverage table vct

Output: Updated vertex coverage table

1: for each Pi ∈ Ivv[vcur] do

2: Identify Pi.T rpre and Pi.T rnew
3: Perform efficient updating strategy using Ivv[vcur].Pi

to scan the smaller part of trajectories to perform the updating

(Line 3).

Partition Pa

Trajectory list of v
cur

 
Previously covered 

trajectories

Newly added 

trajectoriesPartition Pb Partition Pc

Basic updating method Efficient Updating Stragegy Index Partition

(a) Trajectory Partitions of v
cur

(b) Effect of Different Updating Algorithms

Fig. 8: Updating Example with Three Techniques.

Example. Figure 8 demonstrates an overall comparison between

three different update techniques. Figure 8(a) gives the initial

status, the vertex vcur is selected in current iteration, a part of

its trajectories are covered by the previous iterations (i.e., marked

in grey shade), and another part of trajectories are newly added

trajectories (i.e., marked in green shade). There are three imperfect

partitions, i.e., Pa, Pb and Pc, depicted by the brackets. Fig-

ure 8(b) demonstrates the updating cost for three different updating

algorithms: 1) the basic updating algorithm, which needs to scan

all the newly added trajectories (i.e., the green part) in the update

phase; 2) efficient updating strategy makes a better choice, which

always scans the smaller part between the previously covered

trajectories and newly added trajectories; 3) index partition takes

advantage of the partitions in the vertex-vertex index and performs

the efficient updating strategy on each partition (i.e., scanning the

smaller part in each partition.) As a result, the index partition

technique can significantly reduce the number of trajectory scans.

5.3.3 Workload-based Optimization

Lemma 1 proves the superiority of index partition in the updating

phase. However, the index partition also introduces a significant

storage overhead. The storage overhead is O(ρ · |V 2|), where ρ

is the average number of partitions on each entry. It would be

memory infeasbile in the case of large road network, e.g., the road

network of Tianjin has about 100K vertices, which means 20G

entries in partitioned vertex-vertex index when ρ = 2. Another

issue in the index partition is that how to effectively making the

partition of trajectories. To this end, we further propose workload-

based optimization, which includes two techniques: 1) workload-

based partition, and 2) workload-based selective indexing.

Workload-based Partition. The main intuition to partition the

vertex-vertex index is that we want to partition the trajectories

associated with each entry (i.e., vertex v) into different groups,

where trajectories in each group share more common vertices. A

straightforward method is trajectories clustering. However, this

Previously covered 
trajectories

Newly added 
trajectories

workload a

workload b

Partition result

Partition Pa Partition Pb

Partition Pa Partition Pb Partition Pc Partition Pd

vj

vj

Fig. 9: Example of Workload-based Index Partition

method is infeasible as it requires |Tr|2 trajectory similarity

computations. After we exam a set of mining results, we find an

observation that, in many cases, a set of vertices are often selected

in the same order. And a mining workload will naturally divide

the trajectories in a vertex into multiple partitions. If we can keep

track of this partitions during the process, in the best case scenario,

we may not need to scan any trajectory in the updating phase.

Figure 9 illustrates the workload-based partition method.

Given a vertex vj which are selected by mining workload a in

some iteration, the trajectories covered by vertex vj are naturally

divided into two parts, e.g., Pa and Pb, as its Trnew and Trpre.

For another mining workload, i.e., b, which also selected vj , the

original two partitions of vj will be further divided into four

partitions, i.e., Pa, Pb, Pc and Pd as shown in this figure. To

avoid very small trajectory partition, we use a parameter ξ to

control the partition process. The workload-based partition stops

for a trajectory parition when its size is less than ξ.

By using the workload-based partition, we can divide the

trajectories into several partitions without calculating their pair-

wise similarity.

Workload-based Selective Indexing. As discussed before, it is

infeasible to store all the partitioned vertex-vertex index in the

memory. Thus, we need to select a subset of vertices to index.

There are two basic intuitions to select the vertices for indexing:

1) the number of trajectories passed the vertex is large, otherwise,

we can directly apply basic updating algorithm efficiently; and

2) it is wasteful to index the vertices which would never hit by

the mining tasks. The reason is that some vertices even with large

number of trajectory coverage are never selected in the mining

tasks, because these vertices shares many common trajectories

with other vertices that are selected earlier (e.g., several consec-

utive vertices on a major road). To this end, we also apply the

workload-based method to select the vertices to index. The main

idea is that after running a set of mining tasks, we get all the

vertices in the result sets and only index the vertices with highest

hit ratio. In this way, the indexed vertices are with large trajectory

coverage and can provide high hit ratio for the coming mining

tasks.

As a remark, for the newly selected vertex which is not in

the partitioned vertex-vertex index, we can easily use the basic

updating algorithm to update the coverage values. Our system can

easily adopt typical caching policies (e.g., least recently used, first-

in-first-out and random replacement [24]) to dynamically replace

the vertices in the index to adapt to the new mining workloads.

6 EXPERIMENTS
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Fig. 10: Trajectory Distributions in Tianjin.

In this section, we first provide a set of efficiency experi-

ments based on large-scale taxi trajectories collected from Tianjin

(Section 6.1). After that, we provide two case studies: 1) charg-

ing station placement based on taxi trajectories in Beijing, and

2) advertisement placement based on check-in data collected

from Foursquare in NYC, to demonstrate the effectiveness of our

proposed system (Section 6.2).

6.1 Efficiency Study

6.1.1 Dataset & Settings

Road networks. We extract the road network of Tianjin, which

contains 99,007 vertices and 133,726 road segments. The road

network covers an area of 123 × 187 km2 with a total length of

32,487 km [25].

Taxi trajectories. The GPS trajectory dataset is generated by

3,501 taxicabs from Tianjin in 61 days [25]. It contains 4,509,519

trajectories (segmented based on the passenger on/off events) and

the total number of GPS points reaches 753,059,212. The average

sampling rate is 24.05 seconds per point. After map-matching,

the total length of trajectories is 46,028,698 where each trajectory

passes 10.2 vertices on average.

Figure 10(a) shows the spatial distribution of trajectories using

a heat map. The lighter the denser, and most of the trajectories

are crowded within the downtown area. As shown in Figure 10(b),

most of the vertices, e.g., about 95, 904 vertices, are only traversed

by trajectories with the size of 0 to 20k, and the maximum number

of trajectories covered by a vertex is about 200k.

TABLE 1: Parameter Settings

Type Parameter Range

Optimal
Result size, k 2, 3

Area of queries, |R| (km2) 4, 8, 12, 16

Greedy
Result size, k 10, 20, 30, 40

Area of queries, |R| (km2) Rand, 20, 40, 60, 80
Trajectories datasets, d (# of days) 15, 31, 46, 61

Table 1 summarizes the ranges of investigated parameters in

our efficiency studies with their default values in bold. The per-

formance are evaluated on a machine running Ubuntu 12.04 with

Intel Core 6-Cores (12-Threads) i7-3930K 3.2GHz and 16GBytes

of main memory. In each experiment, we vary a single parameter,

while setting the others to their default values.
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Fig. 11: Evaluations of GPO.

6.1.2 Optimal Location Set Mining

We have proposed the group pruning optimal (GPO) algorithm

for exact results with small size in section 4. We demonstrate the

experimental results of GPO in this subsection.

Different k Values. Figure 11(a) shows the processing time

(in grey bars) and pruning ability (in blue line) of GPO with

different k values. The processing time grows exponentially with

the increase of k, and we have to terminate the execution of GPO

when k = 4, as the processing time exceeds 5000 seconds, despite

of the fact that our GPO have pruned at least 85% candidates in

all settings.

Different Sizes of Spatial Region. Figure 11(b) shows the

processing time of GPO versus the size of the spatial region.

The processing time increases with the size of spatial region, e.g.,

from 4 km2 to 12 km2; but decreases slightly at 16 km2 as the

GPO can prune 96.3% combinations in this setting. It takes 727.1

seconds to complete a round of mining task on average when

k = 3.

In summary, the GPO algorithm provides an impressive prun-

ing ability on finding the exact location set. However, the GPO

algorithm only works for small mining parameters (i.e., small spa-

tial region and k values), therefore, is difficult to apply it to support

the interactive mining process for large mining parameters.

6.1.3 Approximate Location Set Mining

In this subsection, we demonstrate the experimental results for

our efficient approximate solutions. Under the default settings, the

construction time of Ivv is 3231.87 seconds, the average number

of partitions of each vertex in the index is 2.322. We set ∆ to

1000, and the memory usages of Ispatial, Ivt, Itv and Ivv are

2.99 MB, 829 MB, 846 MB and 1,959 MB. We compare two al-

gorithms:(1) Basic Updating Algorithm (i.e., Basic) (Section 5.2)

and our Partition Index Batch Updating (i.e., PIBU) Algorithm

(Section 5.3).

Performance Overview. Before evaluating the effect of various

mining parameters, we give the performance overview for our

proposed methods. We select a spatial region with 3, 406 can-

didate locations, and aim at mining 10-locations set. The selected

result set covers a total of 911, 244 trajectories. In terms of

the performance, the Basic approach takes 14.22 seconds, while

our proposed method PIBU is 5.02 times faster with only 2.83
seconds. Figure 12(b) shows the number of scanned trajectories

(in bars) and the processing time (in lines) for vertex selection

iteration. As a remark, the 10-th selected vertex does not need to

update. In the Basic algorithm, the number of scanned trajectories

for a vertex equals to its newly added trajectories Trnew. Totally,
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Fig. 12: Performance overview
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Fig. 13: Scalability Evaluations of Greedy Solutions

the Basic algorithm scans 905, 623 trajectories. PIBU can signif-

icantly reduce the number of scanned trajectories. Totally, PIBU

scans only 87, 330 trajectories, which is ten times less than the

Basic approach.

Scalability. In this part, we evaluate three scalability parameters

of the proposed solutions, i.e., result size k, size of trajectories

datasets d, and area of mining spatial region |R|.
Figure 13(a) shows the processing time (by lines) and the

number of scanned trajectories (by bars) in updating phase, with

different k values. The processing time and number of scanned

trajectories increase linearly with k for both algorithms. Our

efficient updating algorithm (i.e., PIBU) is 3.9 times faster than

Basic algorithm on average.

Figure 13(c) shows the processing time (by lines) and the num-
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Fig. 14: Effect of Different Spatial Regions

ber scanned trajectories (by bars) by varying the size of trajectories

datasets, d. Not surprisingly, the processing time and number of

scanned trajectories increase with d for both approaches. However,

our PIBU achieves more performance gain comparing to the Basic

updating method, with the larger trajectory data size, e.g., from 3.2

times (d = 15 days) to 4.5 times (d = 61 days). This chart confirms

that our PIBU method is able to handle the queries over large scale

trajectory datasets.

Figure 13(e) shows the processing time (by lines) and the

number scanned trajectories (by bars) versus the area of mining

region, |R|. The processing time increases for both approach,

as more vertices in the selected region trend to introduce more

covered trajectories. Our proposed method PIBU achieves at least

3.8 times performance gain comparing to the Basic method with

all settings.

Figure 13(b), 13(d) and 13(f) illustrate the index hit ratio of

PIBU by lines, the number of scanned trajectories for vertices

with index (PIBU-HT) or without index (PIBU-MS) by bars. The

number of scanned trajectories for vertex with index is larger than

the vertex without index in all settings as the vertices in the index

typically cover more trajectories than the non-indexed vertices.

In a summary, the index hit ratio reduces with the increasing

of k; increases slightly with the increasing of |R|; there is no

significantly difference with the size of trajectory datasets, d.

Further Exploration by Varying Regions. We further explore the

effect of different spatial regions. There are three different types

of spatial region as shown in Figure 14(a), i.e., urban, urban-

rural, rural. Given three different regions with equal area, it is

very time consuming to find the most influential k-location set in

the urban region by Basic method as the vertices in this region

typically cover massive trajectories. Nevertheless, our proposed

method PIBU works very efficiently as it can significantly reduce

the number of scanned trajectories in the updating phase, e.g., 16.1

times faster than Basic as shown in Figure 14(b). The performance

gap between PIBU and Basic reduces in the rural region as the

Ivv in PIBU trends to index less vertices in the rural region. As

a result, our PIBU approach is much more efficient in the urban

area, where we expect to have more mining tasks in the real world.

Tuning of System Parameters. We also test the robustness of

PIBU by varying two system parameters, i.e., number of indexed

vertices χ and trajectory partition size ξ.

We first study the effect of χ, which can be determined by

the size of available memory in the system. Figure 15(a) shows

the effect of χ. The memory consumption increase with χ, e.g.,

it consumes 972 MB memory for indexing Ivv when χ = 500,

and 3891 MB when χ = 2, 000. The processing time (by lines)

decreases from 3.6 seconds to 1.9 seconds as the index hit ratio
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Fig. 15: Tuning of System Parameters

increases with χ (by bars). According to our experiments, we pick

χ = 1, 000 as the default setting as it gives a good trade-off

between the time efficiency and memory consumption.

Finally, we study the effect of trajectory partition size ξ. As

shown in Figure 15(b), PIBU is not very sensitive to ξ, and we set

ξ = 8, 000 as our default setting.

6.2 Case Studies

In this subsection, we provide two case studies, i.e., billboards

placement and charging station placement, to demonstrate the

applicability of our proposed system.

6.2.1 Billboards Placement

Task. In this case study, a business owner would like to put three

billboards in New York City (NYC) to promote their products.

Assuming that each billboard can influence a spatial region with

size of 500× 500 m2, and we want to maximize the influences of

the billboards (i.e., the number of covered unique users) as much

as possible.

Dataset. We use a location-based social network dataset as a

sample of human movements in the city. The dataset is collected

from Foursquare [26], which contains 221,128 tips generated

by 49,062 users in NYC. We divide NYC into equal size (i.e.,

500× 500 m2) grids as demonstrated in Figure 16.

Results. The mining results are presented in Figure 16 as below:

• Figure 16(a) illustrates a heat map of the original users’ check-

in distributions in NYC, where the lighter area indicates more

users’ check-ins. The three selected girds are the areas with the

most number of users’ check-ins, which are: 1) Manhattan Mall,

2) Broadway Shopping Area A, and 3) Union Square Stations.

However, only counting the number of users’ check-ins may not

maximize the total number of covered unique users, as some users

may check-in multiple times in the same grid.

• Figure 16(b) illustrates a heat map of unique user’s check-

in distributions in NYC, where the lighter color indicates more

number of unique users visited the area. This approach eliminates

the scenario of one user’s multiple check-ins in a same grid. By

using this elimination, the three selected grids with maximum

unique user’s check-in are: 1) Broadway Shopping Area A, 2)

Broadway Shopping Area B and 3) East Village. However, it still

suffers from the drawback of overlapped users in the selected three

grids.

• Figure 16(c) shows the result of our solution, where we apply our

technique for approximate location set mining. The three selected

grids (i.e., the most influential 3-location set) are: 1) Broadway

Shopping Area A, 2) Union Square Station and 3) Chinatown. Our

selection captures more unique users (6,320) than the other two

approaches (i.e., 5,625 and 5,543). Our approach not only covers

a more diverse grids on the map, but also with a very diverse

semantics, which includes a shopping area, a transportation center

and a dining area.

As a result, our solution for selecting the most influential 3-

location set in NYC is more effective (influence more unique users

in the city) than all the other two approaches.

6.2.2 Charging Station Placement

Task. In this case study, the government wants to deploy three

electric vehicle (EV) charging stations in Wangjing Area (a district

in Beijing) to promote the green-energy. As the charing station

is a public service, we need to cover as many users’ travels

as possible. Moreover, the placement of EV charging stations

also need consider the following three domain constraints: 1) the

selected location needs to have space for parking; 2) the nearby

area needs a diverse array of POI categories; and 3) each two

selected locations should not be very close to each other.

Dataset. We use a GPS trajectories of 33,619 taxicabs in Beijing

as a sample of users’ vehicle movements. We perform a map-

matching algorithm to map the trajectories on the road network of

Beijing, which contains 186,266 vertices and 249,080 segments.

The target Wangjing area is demonstrated as the shaded polygons

in Figure 17.

Results. Figure 17 demonstrates the results using our most influ-

ential k-location set technique with multiple iterations from the

field experts.

• Figure 17(a) gives the selection results in the first iteration,

where three intersections are selected on the map (marked as red,

orange and green). The three selected locations covers a total of

11,558 trajectories in the area. However, when we exam closely

on each locations, we find that: 1) Node 2 and Node 3 do not have

enough places for parking, as demonstrated in the street map view;

and 2) the nearby POI distribution of Node 2 and Node 3 does

not satisfy the diversity requirement (i.e., without any medical

services), illustrated in the POI distribution view6. As a result,

we only keep Node 1 in the result, and perform a new selection

iteration.

• Figure 17(b) gives the selection results for the next two itera-

tions. In the second iteration, we find a new set of three locations,

where we keep Node 1 and Node 2 in the result and remove Node

3, as it does not have enough space for parking. On the third

iteration, we find a new Node 3. However, it still does not statisfy

our requirement, as it is very close to Node 1 in our result, as

they are intersections of a very popular bi-direction entry point of

Wangjing area. Thus, we need to remove Node 3 and perform our

algorithm continuously.

• Figure 17(c) gives the final result in the Wangjing area which is

demonstrated on the map (i.e., locations which are marked as red,

blue and yellow). All the selected locations fulfill our requirement,

where each of them has enough space for parking (demonstrated

in the street view) and statisfies the POI diversity (shown in the bar

chart). Most importantly to note here, the 3-location set covers a

total of 10,993 trajectories, which is very close to the total number

covered trajectories (i.e., 11,558) in the first iteration.

6. The POI distributions is calculated by aggregating the POIs within 1 km
range of the target location.
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Fig. 16: Placing Billboards in NYC

7 RELATED WORKS

Trajectory Query Processing. The increasing pervasiveness

of location-acquisition techniques has enabled collection of

massive trajectory data with a board range of applica-

tions [27][2][28][29][30]. [2] studies the problem of discovering

the gathering patterns from trajectories. [28] proposes to estimate

the travel-time of a path in real-time in a city based on the

GPS trajectories of vehicles. [29] studies a query which finds the

most frequent path of user-specified source and destination from

historical trajectories. However, their objectives are different from

ours, we aim to find the locations covers more trajectories within

a spatial region.

Location Selection. The location selection problem has been

extensively studied by researchers in both operations research and

database communities [31][32][33][34][35][36][37][38][39][40].

The classical location selection problem takes two spatial datasets

C = {c1,c2,...,cn} (i.e., clients) and F = {f1,f2,...,fm} (i.e.,

candidate locations for facilities) as the input, and returns k (k >

0) locations in F that optimizes a predefined metric for the clients.

Based on the objective function, these works can be divided into

two categories, i.e., the MinSum model [36], [37], [38] and the

MinMax model [35]. The MinSum (MinMax) model aims at

locating k facilities such that the average (max) cost to reach

all clients can be minimized. More specifically, [33] studies an

efficient solution to locate one optimal location in road network.

[34] tackles the problem of optimal retail store placement in the

context of location-based social networks. However, none of them

focus on selecting the locations that covers the maximum number

of trajectories within a spatial region.

Maximum Coverage. Maximum coverage problem has great

utility for several real world applications [11][12][13][14]. The

widely used greedy implementation (cf. Section 5.1) does not

behave well when the data is disk resident [11][13]. [13] proposes

an efficient disk-based algorithm which can find a solution that is

provably close to that of greedy. [12] introduces the online set-

cover problem which focuses on minimizing the number of total

selected items to cover every requirement coming online. Besides,

[14] proposes to maintain k blogs7 to cover the list of interesting

topics for a given user. Given a Netflix user, [41] aims to find

7. The topics of a blog can change after the updating.

k other users which can cover the like or un-like movies of a

given user. And it is the most similar work to ours. However,

their solution aims at approximating the greedy solution by using

coverage oracle. In a summary, all the works aforementioned

consider different problem as ours, thus their solutions can not

be applied directly.

8 CONCLUSION

This work presents a comprehensive study on mining the most

influential k-location set from massive trajectory dataset. It has

many potential applications in resource allocation applications.

Our study covers both the exact and approximate solutions. The

exact solution works for small k and spatial region R, while the

efficient approximate algorithm is studied to address the large k

and spatial region R. Extensive experiments on real datasets show

that our proposed solutions is up to an order of magnitude faster

than the baseline solutions. We also demonstrate the applicability

of our proposed solution by performing two case studies: 1) Bill-

board placement in NYC and 2) EV charging station placement

in Beijing. Finaly, we have already deployed our system and it is

available via [15].
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