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Mining the Situation: Spatiotemporal Traffic
Prediction With Big Data

Jie Xu, Dingxiong Deng, Ugur Demiryurek, Cyrus Shahabi, and Mihaela van der Schaar

Abstract—With the vast availability of traffic sensors fromwhich
traffic information can be derived, a lot of research effort has been
devoted to developing traffic prediction techniques, which in turn
improve route navigation, traffic regulation, urban area planning,
etc. One key challenge in traffic prediction is how much to rely
on prediction models that are constructed using historical data in
real-time traffic situations, which may differ from that of the his-
torical data and change over time. In this paper, we propose a
novel online framework that could learn from the current traffic
situation (or context) in real-time and predict the future traffic
by matching the current situation to the most effective prediction
model trained using historical data. As real-time traffic arrives,
the traffic context space is adaptively partitioned in order to effi-
ciently estimate the effectiveness of each base predictor in different
situations. We obtain and prove both short-term and long-term
performance guarantees (bounds) for our online algorithm. The
proposed algorithm also works effectively in scenarios where the
true labels (i.e., realized traffic) are missing or become available
with delay. Using the proposed framework, the context dimension
that is the most relevant to traffic prediction can also be revealed,
which can further reduce the implementation complexity as well
as inform traffic policy making. Our experiments with real-world
data in real-life conditions show that the proposed approach sig-
nificantly outperforms existing solutions.

Index Terms—Traffic prediction, big data, spatiotemporal, con-
text-aware, online learning.

I. INTRODUCTION

T RAFFIC congestion causes tremendous loss in terms
of both time and energy wasted. According to a recent

report from the Texas Transportation Institute [1], in 2007,
439 metropolitan areas experienced 4.2 billion vehicle-hours
of delay, which is equivalent to 2.8 billion gallons in wasted
fuel and $87.2 billion in lost productivity, or about 0.7% of
the nation's GDP. Traffic congestion is caused when the traffic
demand approaches or exceeds the available capacity of the
traffic system. In the United States, the Federal Highway
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Administration [2], [3] has observed that the number of miles
of vehicle travel increased by 76 percent from 1980 to 1999,
while the total miles of highway increased merely by 1.5 per-
cent, which hardly accommodates growth in travel. It is now
generally conceded that it is impossible to build our way out
of congestion, mainly because increased capacity results in in-
creased demand. These factors motivate an information-based
approach to address these problems.

Fortunately, due to thorough sensor instrumentations of road
networks in major cities as well as the vast availability of aux-
iliary commodity sensors from which traffic information can be
derived (e.g., CCTV cameras, GPS devices), a large volume of
real-time and historical traffic data at very high spatial and tem-
poral resolutions have become available. Several companies,
such as Inrix, now sell both types and at our research center we
have had access to both datasets from Los Angeles County for
the past three years. As shown by many studies [4]–[7], these
traffic datasets can be used to predict traffic congestion, which
in turn enables drivers to avoid congested areas (e.g., through
intelligent navigation systems), policy makers to decide about
changes to traffic regulations (e.g., replace a carpool lane with a
toll lane), urban planners to design better pathways (e.g., adding
an extra lane) and civil engineers to plan better for construction
zones (e.g., how a short-term construction would impact traffic).

One major challenge in predicting traffic is how much to
rely on the prediction model constructed using historical data
in the real-time traffic situation, which may differ from that of
the historical data due to the fact that traffic situations are nu-
merous and changing over time. Previous studies showed that
depending on the traffic situation one prediction model may be
more useful than the other. For example, in [6] it is shown that
a hybrid forecasting model that selects in real-time depending
on the current situation between an Auto-Regressive Integrated
Moving Average (ARIMA) model and a Historical Average
Model (HAM) model yields significant better prediction ac-
curacy. It is shown that the ARIMA prediction model is more
effective in predicting the speed in normal conditions but at
the edges of the rush-hour time (i.e., the beginning and the end
of rush hour), the HAM model is more useful. This becomes
even more challenging when considering different causes for
congestion, e.g., recurring (e.g., daily rush hours), occasional
(e.g., weather conditions), unpredictable (e.g., accidents), and
temporarily—for short term (e.g., a basketball game) or long
term (e.g., road construction) congestions. However there is no
holistic approach on when and in which situations to switch
from one prediction model to the other for a more effective
prediction. The exhaustive method that trains for each traffic
situation a prediction model is obviously impractical since it
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would induce extremely high complexity due to the numerous
possible traffic situations.

Our main thesis in this paper is that we try to learn from the
current traffic situation in real-time and predict the future traffic
by matching the current situation to the most effective predic-
tion model that we constructed using historical data. First, a fi-
nite (possibly small) number of traffic predictors are constructed
for the same number of representative traffic conditions using
historical data. Using a small set of base predictors reduces the
training and maintenance costs. Given this set of base predic-
tors, we learn to select the most effective predictor that best
suits the current traffic situation in real-time. For instance, sup-
pose we have two traffic predictors trained on historical datasets
in different weather conditions, sunny and rainy. We will learn
online which predictor to use for prediction in cloudy weather
which does not have a predictor trained for it. The basic idea
to learn and select the most effective predictor is based on es-
timating the reward of using a predictor in different situations.
The reward estimate is calculated based on how accurate each
predictor has been in predicting, say, speed value, given the ac-
tual speed values we have observed in the recent past via the
real-time data. However, significant challenges still remain as
we will explain shortly.

Many features can be used to identify a traffic “situation”,
which henceforth are called context . Example features include:
location, time of day, weather condition, number of lanes, area
type (e.g., business district, residential) etc. Therefore, the con-
text space is a multidimensional space with dimensions, where

is the number of features. Since the context space can be very
large, learning the most effective predictor in each individual
context (i.e., a -dimensional point in the context space) using
reward estimates for this individual context can be extremely
slow. For example, there are numerous possible weather condi-
tions (characterized by temperature, humidity, wind speed etc.)
but each specific weather condition only appears occasionally
in real-time. Thus, we may initially group weather conditions
into rough categories such as sunny, rainy, cloudy etc. and then
refine each category to improve prediction. However, how to
adaptively group contexts and partition the context space poses
a significant challenge for fast learning of the best predictor
for different traffic contexts. Moreover a rigorous performance
characterization of such a method is missing. These are the
problems that we are going to solve in this paper.

To evaluate our approach, we obtain and prove both short-
term and long-term performance guarantees (bounds) for our
online algorithm. This provides not only the assurance that our
algorithm will converge over time to the optimal predictor for
each possible traffic situation (i.e., there is no loss in terms of
the average reward) but also provides a bound for the speed of
convergence of our algorithm to the optimal predictor (i.e., our
algorithm is fast to converge to the optimal performance). In
addition, we conducted a number of experiments to verify our
approach with real-world data in real-life conditions. The re-
sults show our approach significantly outperforms existing ap-
proaches that do not adapt to the varying traffic situations.

The remainder of the paper is organized as follows.
Section II reviews the related work and highlights the dis-
tinctions of our approach. Section III formulates the traffic

prediction problem and defines the performance metric.
Section IV describes our context-aware adaptive traffic predic-
tion algorithm. Section V discusses several ways to optimize
our algorithm. Section VI reports our experimental results with
real world traffic datasets. Section VII concludes the paper.

II. RELATED WORK

In this related work section, we first compare our scheme
against other existing traffic prediction work (i.e., application-
related work) and afterwards we compare our work against var-
ious classes of online learning techniques (i.e., algorithm and
theory related work).

A. Traffic Prediction

Several traffic prediction techniques have been studied in the
past. The majority of these techniques focus on predicting traffic
in typical conditions (e.g., morning rush hours) [4], [6], [8],
[9], and more recently in the presence of accidents, e.g., [5],
[4]. Both qualitative [10] and quantitative [11] approaches have
been used to measure the impact of an accident on road net-
works and various machine learning techniques have been ap-
plied to predict the typical traffic conditions and the impact of
accidents, including Naive Bayesian classifier [12], Decision
Tree classifier [13], and Nearest Neighbor classifier [14]. The
main differences between our work and the existing studies on
traffic prediction are: 1) All existing approaches for traffic pre-
diction aim at predicting traffic in specific traffic situations, e.g.,
either typical conditions or when accidents occur. Instead, our
scheme is applicable to all traffic situations and learns to match
the current traffic situation to the best traffic prediction model,
by exploiting spatiotemporal and other context similarity infor-
mation. 2) All existing approaches used for traffic prediction
deploy models learned offline (i.e., they rely on a priori training
sessions) or they are retrained after long periods and thus, they
cannot adapt to (learn from) dynamically changing traffic situ-
ations. Instead, our scheme is able to dynamically adapt to the
changing traffic situations on the fly and improve the traffic pre-
diction over time as additional traffic data is received. 3) Most
previous work is based on empirical studies and does not offer
rigorous performance guarantees for traffic prediction. Instead,
our scheme is able to provide both short-term and long-term per-
formance bounds.

B. Ensemble Learning

Our framework builds a hybrid traffic predictor on top of a
set of base predictors and thus, it appertains to the class of en-
semble learning techniques. Traditional ensemble schemes [15],
[16] for data analysis are mostly focused on analyzing offline
datasets; examples of these techniques include bagging [15] and
boosting [16]. In the past decade much work has been done to
develop online versions of such ensemble techniques. For ex-
ample, an online version of Adaboost is described in [17]. An-
other strand of literature on online ensemble learning is repre-
sented by prediction with expert advice and the weight update
schemes [18]–[22]. These algorithms assign weights to experts
and make a final prediction by combining the experts' predic-
tions according to the weights. The weights are updated in a
manner that may enable regret bounds to be derived. Most of
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TABLE I
COMPARISON OF SLOT TYPES WITH MAB ALGORITHMS.

these schemes develop multiplicative update rules [18]–[20].
For example, the weighted majority algorithm in [18] decreases
the weights of the experts in the pool that disagree with the
true label whenever the ensemble makes a mistake. Additive
weight update is adopted in [21] where the weights of the ex-
perts that predict correctly are increased by a certain amount. In
[22], weights of the experts are updated based on stochastic gra-
dient descent. However, none of this work considers the context
information when making the prediction (or equivalently, they
consider that the context is the same in all time slots). We do
consider context information and hence, our benchmark for re-
gret analysis is much tougher. Specifically, in the existing work,
the regret is defined with respect to the context-free benchmark
in which the predictions are all made by the single best predictor
ignoring context information. In our paper, the regret is de-
fined with respect to the context-dependent benchmark in which
the predictions are made by the best predictor conditional on
each context. Given any context arrival process, the sum reward
obtained by the context-dependent benchmark is greater than
that by the context-free benchmark. Thus, even though existing
weighted majority type algorithms can achieve a good (e.g., sub-
linear in time) regret bound against the context-free benchmark,
the regret bound will not be sublinear in time when compared
against the context-dependent benchmark. In contrast, our al-
gorithm achieves a regret bound that is sublinear in time com-
pared against the context-dependent benchmark, thereby pro-
viding both short-term and long-term performance guarantees.
When there are several contexts, previous work provides regret
bounds on average over all contexts while our work provides
regret bounds on each context separately.

C. Contextual Multi-armed Bandits

When establishing the regret bound of the proposed algo-
rithm, we adapted techniques from multi-armed bandit (MAB)
problems [23]–[28] since techniques used for ensemble learning
problems, such as weighted majority type algorithms, lead to
weak regret bounds for the considered contextual learning sce-
nario. In our setting the prediction action does not have an ex-
plicit impact on reward realization and the learner can observe
the realized rewards of all predictors. Hence, the considered
problem is not an MAB problem and our algorithm is not an
MAB algorithm. In our proposed algorithm, all time slots are
equal in terms of the algorithm implementation and operation
and there are no exploration or exploitation slots. In principle
we could analyze all the time slots in the same way. However,
this would lead to weak regret bounds. To get our strong regret

bounds, we exploit the fact that we have stronger confidence
bounds of the reward estimates in some slots than in others and
hence, we use different ways to bound the learning loss in dif-
ferent slots. We divide slots in two types: type-1 slots represent
slots for which we can have stronger confidence bounds of the
reward estimates while type-2 slots represent slots for which we
do not have such strong confidence bounds. Note that this dif-
ferentiation of slots is very different from the differentiation be-
tween exploration and exploitation slots in the MAB literature,
which we highlight in Table I.

III. PROBLEM FORMULATION

A. Problem Setting

Fig. 1 illustrates the system model under consideration.
We consider a set of locations where traffic sensors are
deployed. These locations can be either on the highways or
arterial streets. We consider an infinite horizon discrete time
system where in each slot a traffic prediction
request from one of the locations arrives to the system
in sequence. Given the current traffic speed at this location,
the goal is to predict the traffic speed in some predetermined
future time, e.g., in the next 15 minutes or in the next 2 hours.
Note that the notation is only used to order the requests
according to their relative arrival time. Each request can come
from any location in at any time in a day, thereby posing a
spatiotemporal prediction problem.

Each request is associated with a set of traffic context infor-
mation which is provided by the road sensors. The context in-
formation can include but is not limited to:

• The location context, e.g., the longitude and latitude of the
requested location , the location type (highway, arterial
way), the area type (business district, residential).

• The time context, e.g., whether on weekday or weekend, at
daytime or night, in the rush hour or not, etc.

• The incident context, e.g., whether there is a traffic incident
occurred nearby and how far away from , the type of the
incident, the number of affected lanes etc.

• Other contexts such as weather (temperature, humidity,
wind speed etc.), temporary events etc.

We use the notation to denote the context information as-
sociated with the -th request where is a -dimensional space
and is the number of types of contexts used. Without loss
of generality, we normalize the context space to be .
For example, time of day can be normalized with respect to 24
hours.
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Fig. 1. System Diagram.

The system maintains a set of base predictors that
can take input of the current speed , sent by the road sensors,
and output the predicted speed in the predetermined fu-
ture at location . These base predictors are trained and con-
structed using historical data for representative traffic situ-
ations before the system operates. However, their performance
is unknown for the other traffic situations which are changing
over time. We aim to build a hybrid predictor that selects the
most effective predictor for the real-time traffic situation by ex-
ploiting the traffic context information. Thus, for each request,
the system selects the prediction result of one of the base pre-
dictors as the final traffic prediction result, denoted by . The
prediction result can be consumed by third-party applications
such as navigation.

Eventually, the real traffic at the predetermined future for the
-th request, denoted by , is revealed. We also call the

ground-truth label for the -th request. For now we assume that
the label is revealed for each request at the end of each pre-
diction. In reality, the label can arrive with delay or even be
missing. We will consider these scenarios in Section V. By com-
paring the system predicted traffic and the true traffic , a
reward is obtained according to a general reward function

. For example, a simple reward function indicates
the accuracy of the prediction, i.e.,
where is the indicator function. The system obtains a re-
ward 1 only if the prediction is correct and 0 otherwise. Other
reward functions that depend on how close the prediction is to
the true label can also be adopted.

As mentioned, each base predictor is a function of the current
traffic which outputs the future traffic prediction . Since
for a given the true future traffic is a random variable,
the reward by selecting a predictor , i.e., , is also
a random variable at each . The effectiveness of a base pre-
dictor is measured by its expected reward, which depends on
the underlying unknown joint distribution of and . The ef-
fectiveness of a base predictor in a traffic context is thus its

expected reward conditional on and is determined by the un-
derlying unknown joint distribution of and conditional on
the situation . Let be the expected
reward of a predictor in context . However, since the base
predictors are constructed using historical data, their expected
rewards are unknown a priori for real-time situations which may
vary over time. Therefore, the system will continuously revise
its selection of base predictors as it learns better and better the
base predictors' expected rewards in the current context.

B. Spatiotemporal Prediction and Multi-predictor Diversity

Gain

By taking into consideration the traffic context information
when making traffic prediction, we are exploiting the multi-pre-
dictor diversity to improve the prediction performance. To get
a sense of where the multi-predictor diversity gain comes from,
consider the simple example in Fig. 2, which shows the expected
rewards of various base predictors. Since the traffic prediction
is a spatiotemporal problem, we use both time of day and loca-
tion of the traffic as the context information. Given a location
5 miles from the reference location, we have three predictors
constructed for three representative traffic situations—morning
around 6am, afternoon around 2pm and evening around 7pm.
These predictors work effectively in their corresponding situa-
tions but may not work well in other time of day contexts due
to the different traffic conditions in different times of the day.
If we use the same predictor for the entire day, then the average
prediction performance can be very bad. Instead, if we use the
predictor for traffic situations that are similar to its represen-
tative situation, then much better prediction performance can
be obtained. However, the challenge is when to use which pre-
dictor for prediction since the effectiveness of the base predic-
tors is unknown for every traffic context. For example, the three
base predictors (constructed for locations 0 mile, 5 miles and
10 miles from the reference location, respectively, around time
12pm) have complex expected reward curves which need to be
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Fig. 2. Spatiotemporal prediction and multi-predictor diversity gain.

learned over time to determine which predictor is the best at dif-
ferent locations.

C. Performance Metric for our Algorithm

The goal of our system is to learn the optimal hybrid predictor
which selects the most effective base predictor for each traffic
situation. Since we do not have the complete knowledge of the
performance of all base predictors for all contexts in the online
environment, we will develop online learning algorithms that
learn to select the best predictors for different traffic contexts
over time. The benchmark when evaluating the performance of
our learning algorithm is the optimal hybrid predictor that is
constructed by an oracle that has the complete information of
the expected rewards of all base predictors in all situations. For a
traffic context , the optimal base predictor selected in the oracle
benchmark is

(1)

Let be a learning algorithm and be the predictor se-
lected by at time , then the regret of learning by time is
defined as the aggregate reward difference between our learning
algorithm and the oracle solution up to , i.e.,

(2)

where the expectation is taken with respect to the randomness
of the prediction, true traffic realization and predictors selected.
The regret characterizes the loss incurred due to the unknown
transportation system dynamics and gives the convergence rate
of the total expected reward of the learning algorithm to the
value of the optimal hybrid predictor in (1). The regret is non-
decreasing in the total number of requests but we want it
to increase as slow as possible. Any algorithm whose regret is
sublinear in , i.e., such that , will
converge to the optimal solution in terms of the average reward,

i.e., . The regret of learning also gives
a measure for the rate of learning. A smaller will result in
a faster convergence to the optimal average reward and thus,
learning the optimal hybrid predictor is faster if is smaller.

IV. CONTEXT-AWARE ADAPTIVE TRAFFIC PREDICTION

A natural way to learn a base predictor's performance in a
non-representative traffic context is to record and update its
sample mean reward as additional data (i.e., traffic requests and
the realized traffic) in the same context arrives. Using such a
sample mean-based approach to construct a hybrid predictor is
the basic idea of our learning algorithm; however, significant
challenges still remain.

On the one hand, exploiting the context information can po-
tentially boost the prediction performance as it provides ways to
construct a strong hybrid predictor as suggested in Section III-B.
Without the context information, we would only learn the av-
erage performance of each predictor over all contexts and thus,
a single base predictor would always be selected even though on
average it does not perform well. On the other hand, building the
optimal hybrid predictor can be very difficult since the context
space can be very large and the value space can be continuous.
Thus, the sample mean reward approach would fail to work ef-
ficiently due to the small number of samples for each individual
context .

Our method to overcome this difficulty is to dynamically par-
tition the entire context space into multiple smaller context sub-
spaces and maintain and update the sample mean reward es-
timates for each subspace. This is due to the fact that the ex-
pected rewards of a predictor are likely to be similar for similar
contexts. For instance, similar weather conditions would have
similar impacts on the traffic on close locations. Next, we will
propose an online prediction algorithm that adaptively partitions
the context space according to the traffic prediction request ar-
rivals on the fly and guarantees sublinear learning regret.

Algorithm Description

In this subsection, we describe the proposed online con-
text-aware traffic prediction algorithm (CA-Traffic). First we
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introduce several useful concepts for describing the proposed
algorithm.

• Context subspace. A context subspace is a subspace of
the entire context space , i.e., . In this paper, we
will consider only context subspaces that are created by uni-
formly partitioning the context space on each dimension,
which are enough to guarantee sublinear learning regrets.
Thus, each context subspace is a -dimensional hypercube
with side length being for some . We call such a hyper-
cube a level- subspace. For example, when the entire con-
text space is , namely the context dimension is ,
the entire context space is a level-0 subspace,
and are two level-1 subspaces, , ,

, are four level-2 subspaces etc.
• Context space partition. A context space partition is

a set of non-overlapping context subspaces that cover the
entire context space. For example, when , ,

are two context space parti-
tions. Since our algorithm will adaptively partition the con-
text space by adaptively removing subspaces from the par-
tition and adding new subspaces into the partition, the con-
text space partition is time-varying depending on the con-
text arrival process of the traffic requests. Initially, the con-
text space partition includes only the entire context space,
i.e., .

• Active context subspace. A context subspace is active
if it is in the current context space partition , at time
. For each active context subspace , the algo-

rithm maintains the sample mean reward estimates
for each predictor for the context arrivals to this subspace
from time 1 to time . For each active subspace ,
the algorithm also maintains a counter that records the
number of context arrivals to from time 1 to time 1.

The algorithm works as follows (see also a formal descrip-
tion in Algorithm). We will describe the algorithm in two parts.
The first part (line 3–9) is the predictor selection and reward
estimates update. When a traffic prediction request comes, the
traffic speed vector along with the traffic context information

are sent to the system. The algorithm first checks which ac-
tive subspace in the current partition the context
belongs to (line 3) and the level of this subspace (line 4). Next,
the algorithm activates all predictors and obtains their predic-
tions given the input (line 5). However, it
selects only one of the predictions as the final prediction , ac-
cording to the selection as follows (line 6)

(3)

In words, the selected base predictor has the highest reward es-
timate for the context subspace among all predictors. This is
an intuitive selection based on the sample mean rewards. When
the true traffic label is revealed (line 7), the sample mean re-
ward estimates for all predictors are then updated (line 8) and
the counter steps by 1 (line 9).

The second part of the algorithm, namely the adaptive context
space partitioning, is the key to our algorithm (line 10 – 12). At
the end of each slot , the algorithm decides whether to further
partition the current subspace , depending on whether we have

1This method requires keeping all request history in memory which can be
a concern for some systems. Alternatively, the counters can be restarted after
every partition. Our bounds will still hold but the performance of the algorithm
will be worse in practice since it does not capitalize on the prior knowledge.

Fig. 3. An illustration of the context space partitioning in a 2-dimensional
space: the lower left subspace is further partitioned into 4 smaller subspaces
because the partition condition is satisfied.

seen sufficiently many request arrivals in . More specifically,
if , then will be further partitioned (line 10),
where is the subspace level of , and are two
design parameters. When partitioning is needed, is uniformly
partitioned into smaller hypercubes (each hypercube is a
level- subspace with side-length half of that of ). Then

is removed from the active context subspace set and the
new subspaces are added into (line 11). In this way, is
still a partition whose subspaces are non-overlapping and cover
the entire context space. Fig. 3 provides an illustrative example
of the context space partitioning for a 2-dimensional context
space. The current context space partition is shown in the
left plot and the current subspace is the shaded bottom-left
square. When the partitioning condition is satisfied, is further
split into four smaller squares. The context space partitioning
process helps refine the learning in smaller subspaces. In the
next subsection, we will show that by carefully choosing the
design parameters and , we can achieve a regret upper bound
that is sublinear in time, which implies that the optimal time-
average prediction performance can be achieved.

A. Learning Regret Analysis

In this subsection, we analyze the regret of the proposed
traffic prediction algorithm. To enable this analysis, we make
a technical assumption that each base predictor achieves sim-
ilar expected rewards (accuracy) for similar contexts; this is
formalized in terms of a Hölder condition.

Algorithm Context-aware Traffic Prediction (CA-Traffic)

1: Initialize , , .
2: for each traffic prediction request (time slot ) do

3: Determine the level of .
5: Generate the predictions results for all predictors

6: Select the final prediction according to (3)
7: The true traffic pattern is revealed.
8: Update the sample mean reward
9:
10: if then

11: is further partitioned.
12: end if

13: end for
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Assumption: For each , there exists ,
such that for all , we have

(4)

This is a natural and reasonable assumption in traffic predic-
tion problems since similar contexts would lead to similar im-
pact on the prediction outcomes. Note that is not required to
be known and that an unknown can be estimated online using
the sample mean estimates of rewards for similar contexts, and
our proposed algorithm can be modified to include the estima-
tion of .

To obtain sharp bounds on the prediction regret, we divide the
time slots into two different types depending on a deterministic
control function where is the level of the
context subspace that the time- context belongs to: if

, then slot is a type-1 slot; if , then slot is a
type-2 slot. The important difference between these two types of
slots is that for the type-2 slot, we can have a stronger confidence
bound on the estimated rewards of the various predictors for the
current context subspace because we have sufficiently many
samples according to the deterministic function. This will help
us to derive the regret bound. However, this differentiation of
slots is used only in our regret analysis; all slots are equal in
terms of the implementation and operation of our algorithm.

Because any time slot is either a type-1 slot or a type-2 slot,
the prediction regret therefore can be divided into two parts:

(5)

where , are the regret due to choosing non-
optimal predictors in type-1 slots and type-2 slots, respectively.
We will bound these two parts separately to get the total regret
bound. To do this, we will first investigate the regret incurred for
a level- context subspace and then sum up the regret incurred
in context subspaces of all levels. Without loss of generality,
we assume that, for any context, the reward difference between
the optimal predictor and any non-optimal predictor is bounded
by 1.

In Lemma 1, we bound, for any level- subspace, the regret
due to choosing non-optimal predictors in type-1 slots.
Lemma 1: For every level- context subspace , the re-

gret due to choosing non-optimal predictors in type-1 slots is
bounded by .

Proof: Due to the definition of type-1 slot, at any time
, there are no more than type-1 slots for

level- context subspace. Hence, the regret is bounded above
by .

Next, we bound, for any level- subspace, the regret due to
choosing non-optimal predictors in type-2 slots. To do this, we
need to introduce some additional notations. For each subspace

, let be the predictor which is optimal for the center con-
text in that subspace. Let and

for any predictor . For a level- subspace , we
define the set of sub-optimal predictors as

(6)

where is a constant (which will be determined later)
and is the Hölder condition parameter. For those non-optimal
predictors that do not belong to the sub-optimal set, we call them
as the near-optimal predictors.

Lemma 2: Assume . Then for
every level- context subspace , the regret due to choosing
non-optimal predictors in type-2 slots is bounded by

.
Proof: To bound the regret in type-2 slots, we consider the

regret due to choosing sub-optimal and near-optimal predictors
separately.

(1) We first bound the regret due to choosing sub-optimal
predictors for subspace , denoted by . Because the
maximum loss due to choosing a non-optimal predictor is at
most 1 due to normalization, we can bound the probability of
choosing sub-optimal predictors instead. Let be the event
that a sub-optimal predictor is selected at time .
Let be the event that the context arrival belongs to at time

and time slot is a type-2 slot. The regret due to choosing
sub-optimal predictors in type-2 slots when the context belongs
to up to is bounded above as follows:

(7)

The second inequality is because, for to occur, it is nec-
essary that occurs. Furthermore,

holds only if for any given positive value (denoted by
), the following joint event occurs,

(8)

Therefore, we have

(9)

There are three terms on the right-hand side of the above
equation. We want to find conditions on such that the third
term equals zero. In this way, the regret can be bounded using
only the first two terms. Let denote the reward
estimate for a sub-optimal predictor in the best case (over the
subspace ) and the denote the reward estimate
for in the worst case (over the subspace ). We define

(and similarly ) as follows. The reward
estimate can be expressed as

(10)

where is the set of slots when the predictor is selected
by time for contexts in subspace , is the expected
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reward by selecting for the actual context arrived in slot and
is the noise in the observed reward in slot . Then

is defined as

(11)

where . is defined in
a similar way. It is then easy to see

and by ap-
plying the Hölder condition. The third term can be bounded
above as follows:

(12)

where is the possible maximum reward dif-
ference between the center context and a border con-
text for a given predictor according to the Hölder condi-
tion. The reason is because 1) for to
occur, it is necessary for to be
true; 2) for to occur, it is nec-
essary for to
be true due to ; 3)
for to occur, it is necessary for

to be true due to
.

Our objective is to show that right-hand side of (12) is zero,
thereby implying that the left-hand side is also zero. To show
that the right-hand side is zero, we will find a condition under
which the following three events,

(13)

(14)

(15)

cannot occur at the same time. Observe the second and third
events- if

(16)

then we must have . This contradicts
. Thus, we next find such that

(Section IV-B) holds. Since is a sub-optimal predictor, we
have . Therefore, (Section IV-B)
holds if

(17)

Let and , the above inequality
holds. Therefore, we have found a condition the left-hand side
of (12) is zero.

Next, we bound the first two terms on the right-hand side of
(9) by using the Chernoff-Hoeffding bound. Since on the event

, the number of samples is greater than , the first
term can be bounded as

(18)

The last equality is by substituting into the equation.
Similarly, for the second term on the right-hand side of (9), we
can also have

(19)

Summing over time and all sub-optimal predictors, we have
the

(20)

(2) Next we bound the regret due to choosing near-optimal
predictors in type-2 slots. Due to the definition of near-optimal
predictors, regret due to selecting a near-optimal predictor is at
most . Because there could be at most slots for a
level- subspace according to the partitioning rule, the regret
of this part is at most .

Combining (1) and (2), the regret due to choosing
non-optimal predictors in type-2 slots is bounded by

.
Now, we combine the results in Lemma 1 and Lemma 2 to ob-

tain the complete regret bound. The regret depends on the con-
text arrival process and hence, we let denote the number
of level- subspaces that have been activated by time . Before
we derive Theorem 1, we provide a bound on the highest level
of active subspace by time .
Lemma 3: Given a time , the highest level of active sub-

space is at most .
Proof: It is easy to see that the highest possible level of

active subspace is achieved when all requests by time have the
same context. This requires . Therefore,

.
Theorem 1 establishes the regret bound.
Theorem 1: Assume and . The

regret is upper bounded by

(21)
Proof: Combining the result of Lemma 1 and Lemma 2, it

is easy to see that the regret is upper bounded by

(22)
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In order to balance the time order of different terms on the right-
hand side, we let . Although choosing smaller than
will not make the regret of a subspace larger, it will increase the
number of subspaces activated by time , causing an increase
in the regret. Since we sum over all activated subspaces, it is
best to choose as large as possible.

The following corollary establishes the regret bound when the
context arrivals are uniformly distributed over the entire context
space. For example, if the context is the location, then the re-
quests come uniformly from the area . This is the worst-case
scenario because the algorithm has to learn over the entire con-
text space.
Corollary 1: If the context arrival by time is uniformly

distributed over the context space, we have

(23)

Proof: First we calculate the highest level of subspace
when context arrivals are uniform. In the worst case, all level
subspaces will stay active and then, they are deactivated until
all level subspaces become active and so on. Let
be the maximum level subspace under this scenario. Because
there must be some time when all subspaces are level
subspaces, we have

(24)

where is the maximum number of level subspaces and
is the maximum number of time slots that belong to a level

subspace. Thus, we have .
After substituting it into the regret bound in Theorem 1, we get

(25)

We have shown that the regret upper bound is sublinear in
time, implying that the average traffic prediction reward (e.g.,
accuracy) achieves the optimal reward as time goes to infinity.
Moreover, it also provides performance bounds for any finite
time rather than the asymptotic result. Ensuring a fast con-
vergence rate is important for the algorithm to quickly adapt to
the dynamically changing environment.

V. EXTENSIONS

A. Dimension Reduction

In the previous section, the context space partitioning is per-
formed on all context dimensions simultaneously. In particular,
each context subspace has a dimension and each time it is
further partitioned, new subspaces are added into the con-
text space partition . Thus, learning can be very slow when
is large since many traffic requests are required to learn the best

Fig. 4. An illustrative example for predictor selection with separately main-
tained context partition: a request with context (10:05am and 3.7 miles away
from reference location) arrives; Predictor 1 is the best for the time of day con-
text and Predictor 2 is the best for the location context; Predictor 2 is the finally
selected predictor.

predictors for all these subspaces. One way to reduce the number
of new subspaces created during the partitioning process is to
maintain the context partition and subspaces and perform the
partitioning for each dimension separately. In this way, each
time a partitioning is needed for one dimension, only two new
subspaces will be created for this dimension. Therefore, at most

more subspaces will be created for each request arrival.
The modified algorithm works as follows. For each context

dimension (e.g., time of day, type and distance), we maintain a
similar context space and partition structure as in Section III (in
other words the context space dimension is 1 but we have
such spaces). Denote as the context space partition for di-
mension and as the current context subspace for dimension
, at time . Note now that since we consider only one dimen-

sion, is a one-dimensional subspace for each . Each time a
traffic prediction request with context arrives, we obtain
the prediction results of all base predictors given . The final
prediction is selected according to a different rule than (3) as
follows

(26)

In words, the algorithm selects the predictor that has the highest
reward estimate for all current subspaces among all context di-
mensions. Fig. 4 shows an illustrative example for the predictor
selection when we only use the time of day and location as the
contexts. In this example, the time of day context (10:05am)
falls into the subspace at the most left quarter (7am—11pm) and
the location context (3.7 miles away from a reference location)
falls into the right half subspace (2.5–5 miles). According to the
time of day context dimension, the predictor with the highest
reward estimate is Predictor 1 while according to the location
context dimension, the predictor with the highest reward esti-
mate is Predictor 2. Overall, the best estimated predictor is Pre-
dictor 2, which is selected by the algorithm.

After the true traffic is observed, the reward estimates
for all predictors in all one-dimensional context subspaces

are updated. The partitions are also updated in
a similar way as before depending on whether there have been
sufficiently many traffic requests with contexts in the current
subspaces. Fig. 5 illustrates the context space partition for each
individual dimension. In this example, only the location context
satisfies the partitioning condition and hence its right half sub-
space is further partitioned.
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Fig. 5. An illustrative example for context space partition with relevant con-
text: partitioning only occurs on the location context since the partitioning con-
dition is satisfied.

B. Relevant Context Dimension

While using all context dimensions will provide the most re-
fined information and thus lead to the best performance, it is
equally important to investigate which dimension or set of di-
mensions is the most informative for a specific traffic situation.
The benefits of revealing the most relevant context dimension
(or set of dimensions) are manifold, including reduced cost due
to context information retrieval and transmission, reduced algo-
rithmic and computation complexity and targeted active traffic
control. In the extreme case, a context dimension (e.g., time
of day) is not informative at all if for all values of the con-
text along this dimension, the best traffic predictor is the same.
Hence, having this context dimension does not add benefits for
the traffic prediction but only incurs additional cost.

For expositional clarity, in the following we will focus only
on the most relevant context. The extension to the most rel-
evant context dimensions ( ) is straightforward. Let

be the expected prediction reward of predictor
when the context along the -th dimension is and

be the predictor with the highest expected re-
ward given . Then the expected reward if we only use the
-th dimension context information is

where the expectation is taken over the distribution of the -th
dimension context. The most relevant context dimension is de-
fined to be .

Our framework can be easily extended to determine the
most relevant context dimension. For each dimension, we
maintain the similar partition and subspace structure as in
Section III (with ). In addition, we maintain the time-av-
erage prediction reward for each dimension . The estimated
most relevant dimension at time is thus .
Theorem 2: The estimated most relevant dimension con-

verges to the true most relevant dimension, i.e., .
Proof: Since for each dimension , the time-average regret

tends to 0 as , the time-average reward also
as . Therefore, the most relevant dimension can also be
revealed when .

C. Missing and Delayed Feedback

The proposed algorithm requires the knowledge of the true
label on the predicted traffic to update reward estimates of dif-
ferent predictors so that their true performance can be learned. In
practice, the feedback about true traffic label can be missing
or delayed due to, for example, delayed traffic reports and sen-
sors being down temporarily. In this subsection, we can make

small modifications to the proposed algorithm to deal with such
scenarios.

Consider the case when the feedback is missing with prob-
ability . The algorithm can be modified so that it updates
the sample mean reward and performs context space parti-
tioning only for requests in which the true label is revealed.
Let denote the regret of the modified algorithm with
missing feedback, we have the following result.
Proposition 1: Suppose the feedback about the true label is

missing with probability , we have

(27)

Proof: Missing labels cause more type-1 slots to learn the
performance of base predictors accurately enough. In expecta-
tion, more type-1 slots are required in ratio. Hence,
the regret incurred in type-1 slots increases to of be-
fore. The regret incurred in type-2 slots is not affected since the
control function ensures that the reward estimates are ac-
curate enough. Using the original regret bound and taking into
account the increased regret incurred in type-1 slots, we obtain
the new regret bound.

Consider the case when the feedback is delayed. We assume
that the true label of the request at is observed at most
slots later. The algorithm is modified so that it keeps in its
memory the last labels and the reward estimates are
updated whenever the corresponding true label is revealed.
Let denote the regret of the modified algorithm with
delayed feedback. We then have the following result
Proposition 2: Suppose the feedback about the true label is

delayed by at most slots, then we have

(28)

Proof: A new sample is added to sample mean accuracy
whenever the true label of a precious prediction arrives. The
worst case is when all labels are delayed by time slots.
This is equivalent to starting the algorithm with an delay.

The above two propositions show that the missing and de-
layed labels reduce the learning speed. However, since the re-
gret bounds are still sublinear in time , the time average re-
ward converges to the optimal reward as . This shows
that our algorithm is robust to errors caused by uncertain traffic
conditions.

VI. EXPERIMENTS

A. Experimental Setup

1) Dataset: Our experiment utilizes a very large real-world
traffic dataset, which includes both real-time and historically
archived data since 2010. The dataset consists of two parts: (i)
Traffic sensor data from 9300 traffic loop-detectors located on
the highways and arterial streets of Los Angeles County (cov-
ering 5400 miles cumulatively). Several main traffic parame-
ters such as occupancy, volume and speed are collected in this
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Fig. 6. Freeway segment used in the experiment.

dataset at the rate of 1 reading per sensor per minute; (ii) Traffic
incidents data. This dataset contains the traffic incident informa-
tion in the same area as in the traffic sensor dataset. On average,
400 incidents occur per day and the dataset includes detailed in-
formation of each incident, including the severity and location
information of the incident as well as the incident type etc.
2) Evaluation Method: The proposed method is suitable

for any spatiotemporal traffic prediction problem. In our exper-
iments, the prediction requests come from a freeway segment
of 3.4 miles on interstate freeway 405 (I-405) during daytime
8am to 5pm. Fig. 6 shows the freeway segment used in the
experiment. Locations will be referred using the distance from
the reference location A. For each request from location , the
system aims to predict whether the traffic will be congested at
in the next 15 minutes using the current traffic speed data. If the
traffic speed drops below a threshold , then the location is la-
beled as congested, denoted by ; otherwise, the location is
labeled as not congested, denoted by . We will show the
results for different values of . We use the simple binary reward
function for evaluation. That is, the system obtains a reward of 1
if the prediction is correct and 0 otherwise. Therefore, the reward
represents the prediction accuracy. The context information that
we use in the experiments include the time of day when the pre-
diction request is made and the location where the request comes
from. These contexts capture the spatiotemporal feature of the
considered problem. Nevertheless, other context information
mentioned in Section III-A can also be adopted in our algorithm.

Using historical data, we construct 6 base predictors (Naive
Bayes) for 6 representative situations with context information
from the set . These
are representative traffic situations since 8am represents the
morning rush hour, 12pm represents non-rush hour, 4pm rep-
resents the afternoon rush hour, “0 mile” is at the freeway
intersection and “3.4 miles” is the farthest location away from
the intersection in considered freeway segment.
3) Baseline Approaches: Since our scheme appertains to the

class of online ensemble learning techniques, we will compare
our scheme against several such approaches. These baseline so-
lutions assign weights to base predictors but use different rules
to update the weights. Denote the weight for base predictor by

TABLE II
OVERALL PREDICTION ACCURACY.

TABLE III
TRAFFIC PREDICTION ACCURACY AT 0.8 MILES.

TABLE IV
TRAFFIC PREDICTION ACCURACY AT 10AM

. The final traffic prediction depends on the weighted combi-
nation of the predictions of the base predictors:

if
otherwise (29)

Three approaches are used to update the weights:
• Multiplicative Update (MU) [18], [19]: If the prediction

is correct for predictor , i.e., , then
where is a constant; otherwise, . In our
experiments, since is usually chosen to be
close to 1 for convergence purpose.

• Additive Update (AU) [21]: If the prediction is correct for
predictor , i.e., , then ; otherwise,

.
• Gradient Descent Update (GDU) [22]: The weight of pre-

dictor is update as
where is a constant. In our experiments, we use
a small , namely for convergence purpose.

B. Prediction Accuracy

In Table II, we report the prediction accuracy of our pro-
posed algorithm (CA-Traffic) and the baseline solutions for

mph and mph. Our algorithm outperforms the base-
line solutions by more than 10% in terms of prediction accuracy.

Tables III and IV further report the prediction accuracy in
different traffic situations. In Table III, the location context is
fixed at 0.8 miles from the reference location and the accuracy
for various time of day contexts (i.e., 10am, 2pm and 5pm) are
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TABLE V
MEAN SQUARE ERROR OF TRAFFIC SPEED PREDICTION (mph ).

Fig. 7. Accuracy over time with different time of day contexts at 0.8 miles.
mph .

Fig. 8. Accuracy over time with different location contexts at 10am. (
mph.

presented for our proposed algorithm and the benchmarks. In
Table IV, the time of day context is fixed at 10am and the accu-
racy for various location contexts (i.e., 0.8 miles, 2.1 miles, 3.1
miles) are reported. In all traffic situations, the proposed algo-
rithm significantly outperforms the baseline solutions since it is
able to match specific traffic situations to the best predictors.

Our proposed algorithm not only can predict traffic conges-
tion but also can be used to predict the actual traffic speed. In
Table V, we report the mean square errors of the traffic speed
prediction by using different algorithms. As we can see, our
algorithm achieves much smaller mean square errors than the
baseline approaches.

C. Convergence of Learning

Since our algorithm is an online algorithm, it is also important
to investigate its convergence rate. Figs. 7 and 8 illustrate the

TABLE VI
TRAFFIC PREDICTION ACCURACY WITH INCOMPLETE CONTEXT INFORMATION.

Fig. 9. Relative importance of contexts.

prediction accuracy of our proposed algorithm over time, where
the horizontal axis is the number of requests. As we can see, the
proposed algorithm converges fast, requiring only a couple of
hundreds of traffic prediction requests.

D. Missing Context Information

The context information associated with the requests may
be missing occasionally due to, for example, missing reports
and record mistakes. However, our modified algorithm (de-
scribed in Section V-A), denoted by CA-Traffic(R), can easily
handle these scenarios. In this set of experiments, we show the
performance of the modified algorithm for the extreme cases
in which one type of context information is always missing.
Table VI reports the accuracy of our algorithms (CA-Traffic
and CA-Traffic(R)) as well as the baseline approaches. Al-
though CA-Traffic(R) performs slightly worse than CA-Traffic
when there is no missing context, it performs much better than
CA-Traffic and the benchmark solutions when context can be
missing because it maintains the context partition separately
for each context type and hence, it is robust to missing context
information.

E. Relevant Context

In this set of experiments, we unravel the most rele-
vant context that leads to the best prediction performance.
To do so, we run the algorithm using only a single con-
text (i.e., either time of day or location) and record the
average reward. The most relevant context is the one
leading to the highest average reward. Fig. 9 shows the
relative importance (e.g., time of day
time of day location ) of each context for different
congestion thresholds mph mph mph. The
figure shows that the time of the day represents a more relevant
context for the traffic prediction problem in our experiment.
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Fig. 10. Prediction accuracy with missing and delayed labels. mph.

Fig. 11. Prediction accuracy with missing and delayed labels. mph.

F. Missing and Delayed Labels

Finally, we investigate the impact of missing and delayed la-
bels on the prediction accuracy, as shown in Figs. 10 and 11. In
the missing label case, the system observes the true traffic label
with probability 0.8. In the delayed label case, the true label of
the traffic comes at most five prediction requests later. In both
cases, the prediction accuracy is lower than that without missing
or delayed labels. However, the proposed algorithm is still able
to achieve very high accuracy which exceeds 90%.

VII. CONCLUSIONS

In this paper, we proposed a framework for online traffic pre-
diction, which discovers online the contextual specialization of
predictors to create a strong hybrid predictor from several weak
predictors.Theproposed frameworkmatches the real-time traffic
situation to the most effective predictor constructed using his-
torical data, thereby self-adapting to the dynamically changing
traffic situations. We systematically proved both short-term and
long-term performance guarantees for our algorithm, which
provide not only the assurance that our algorithm will converge
over time to the optimal hybrid predictor for each possible traffic
situation but also provide a bound for the speed of convergence
to the optimal predictor. Our experiments on real-world dataset
verified the efficacy of the proposed scheme and showed that it
significantlyoutperformsexistingonline learningapproaches for
traffic prediction. For future work, we plan to extend the current
framework to distributed scenarios where traffic data is gathered
by distributed entities and thus, coordination among distributed
entities are required to achieve a global traffic prediction goal.
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